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Abstract

Decision making is driven by multiple, somewhat independent systems within the

brain. One of these systems makes slow, deliberative decisions, and is thought to

be driven by a model-based neural algorithm, in that it learns an internal model

of the world which it uses to make decisions. Another system makes fast, habitual

choices, and is hypothesized to depend on a model-free neural algorithm, in that it

does not learn a model of the world, but simply stores state-action-reward associa-

tions. While the habitual system is relatively well-studied, the neural underpinnings

of the deliberative system are less clear. Speci�cally, it is not known how areas

comprising the deliberative system, such as prefrontal cortex and the hippocampus,

share information on fast timescales. Also, representations of contingency informa-

tion in prefrontal areas have previously been impossible to disambiguate from the

encoding of other time-varying information. In this thesis, we adapted for rats a task

which enabled the dissociation of model-based from model-free in
uence on choice,

and we found evidence for both model-based and model-free control. We also devel-

oped a simpler task which caused rats to repeatedly transition between deliberative

and habitual modes. On this second task, we found that both dmPFC and CA1

encoded information about task contingencies, while simultaneously representing un-

related time-varying information. Lastly, we examined interactions between dmPFC

and CA1 on fast timescales, and found that both areas represented prospective in-

formation simultaneously, but that the content of this prospective information was

not always identical between the two areas. Activity in dmPFC predicted whether

HPC would represent prospective information on broad timescales, and prospective

representation in HPC changed reward encoding in dmPFC on faster, sub-second

timescales. Our work begins to bridge the neural underpinnings of decision making

in rodents and the algorithms by which they select actions, con�rms that the delib-

erative system represents contingency information, and uncovers asymmetries in the

transfer of information between dmPFC and HPC.
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Chapter 1

Introduction

How does the brain compute which actions will realize its goals? Understanding

the neural systems which perform decision-making is critical not just for better un-

derstanding the brain, but also for developing treatments and therapies for a wide

range of psychopathologies which arise due to problems in decision making, including

addiction, obsessive-compulsive disorder, and attention de�cit-hyperactivity disorder.

Current theories suggest that there are multiple, somewhat independent subsys-

tems within the brain that contribute to decision-making (O'Keefe and Nadel, 1978a;

Adams and Dickinson, 1981; Sloman, 1996; Dayan and Balleine, 2002; Lieberman,

2003; Loewenstein and O'Donoghue, 2004; Balleine et al., 2008; van der Meer et al.,

2012; Kahneman, 2011; Redish, 2013; Dolan and Dayan, 2013). These systems are

thought to use di�erent algorithms to select actions, and may be used at di�er-

ent times, or even be active simultaneously and give rise to con
icting decisions.

Some research dissociates deliberative or goal-directed decision-making from habitual

decision-making systems (van der Meer et al., 2012; Redish, 2013), work in humans

separately identi�es \model-based" and \model-free" in
uences on decision-making

(Gl•ascher et al., 2010; Daw et al., 2011), other research distinguishes place from re-
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sponse strategies (O'Keefe and Nadel, 1978a; Packard and McGaugh, 1996; Redish,

1999; Yin and Knowlton, 2004), other work separates associative from rule-based

systems (Sloman, 1996), others distinguish \fast" and \slow" systems (Kahneman,

2011), and still others identify re
exive from re
ective processes (Lieberman, 2003).

A central theme to these dissociations is separating a fast, automatic, habit-like sys-

tem from a slow, intentional, deliberative system. Although there are likely more

than just two such systems (Redish, 2013), this thesis will focus on the deliberative

and habitual systems, which are thought to rely on \model-based" and \model-free"

neural algorithms, respectively.

The deliberative system is thought to employ a model-based algorithm to make

decisions. Model-based algorithms learn and store an internal model of the world,

and use this model to make more intelligent decisions (Doll et al., 2012). Model-based

algorithms tend to perform better in environments where either information is limited,

or when the environment is changing quickly (Gl•ascher et al., 2010; Daw et al., 2011).

However, because the use of the model-based algorithm relies on repeated simulations

of the internal model, decisions made with this system are comparatively slow, which

can be an important drawback in situations or environments where speed is required

(Keramati et al., 2011).

On the other hand, the neural system giving rise to habitual or procedural behav-

iors is thought to be supported by a model-free neural algorithm. Unlike model-based

algorithms, model-free algorithms do not learn a model of the world to store state

transition probabilities (thus the name!), and instead simply store associations be-

tween states, actions, and the resulting rewards. Essentially, these algorithms store

the expected value of taking any action in any given state, and update those expected

reward values as the agent performs those actions and experiences some amount of

reward as a result (Watkins, 1989; Rummery and Niranjan, 1994; Sutton and Barto,
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1998). Because this class of algorithms is association-based, instead of simulation-

based as with model-based algorithms, the computations required to make decisions

are very fast (Keramati et al., 2011). However, the drawback of this faster style of

algorithm is that they are relatively in
exible compared to model-based algorithms.

The state-action-reward associations in model-free systems are only able to be up-

dated as a result of direct experience, and so agents must repeatedly experience

sequences of events. Model-based algorithms, on the other hand, are able to dynam-

ically update valuations because they are able to synthesize knowledge of parts of an

environment to make more intelligent decisions, without having to directly experience

the entire chain of events sequentially (Doll et al., 2012).

However, most work dissociating model-based from model-free in
uence on deci-

sion making has been performed in humans, where measurements of information rep-

resentation on fast timescales is di�cult. In rodents, where simultaneously recorded

ensembles of single units make possible the measurement of information representa-

tion on fast time scales, research has focused on separating deliberative neural systems

from those neural systems giving rise to habitual or procedural behavior. It is thought

that a model-based neural algorithm underlies the deliberative system, and a model-

free neural algorithm drives habitual behavior, but the accuracy of this hypothesized

parallel remains unclear.

The neural correlates of the habitual system have been well-studied both ex-

perimentally (Packard and McGaugh, 1996; Schultz et al., 1997; Jog et al., 1999;

Schmitzer-Torbert and Redish, 2004; Yin and Knowlton, 2004) and theoretically (Niv

et al., 2006; Frank, 2011), and are thought to involve dorsal striatal areas, along with

the rest of the basal ganglia, the thalamus, and motor and sensory cortices. In con-

trast, the neural underpinnings of the deliberative system appear to be more complex

and are less well-understood (Doll et al., 2012; van der Meer et al., 2012). In rodents,
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some work observes the representation of prospective information by ensembles in

the hippocampus (HPC) during deliberation at choice points (Johnson and Redish,

2007), which is thought to correspond to the simulation of the outcomes of candidate

actions using an internal model stored in part by the hippocampus. Furthermore,

neural activity thought to corresponding to the estimation of the value of these sim-

ulated outcomes has been observed in ventral striatum (van der Meer and Redish,

2010) and in orbitofrontal cortex (Rich and Wallis, 2016; Wallis, 2018). However, it's

unclear how these valuations are then used to select between candidate actions, and

also where and how internal simulations of candidate action outcomes are initiated.

If model-based theories for the operation of the deliberative system are correct, then

presumably some brain areas are responsible for detecting the need for deliberative

control, instigating the internal simulation of outcomes associated with candidate ac-

tions, storing in working memory the estimated value of those simulated outcomes,

and after the value of multiple candidate actions has been estimated, using that value

information stored in working memory to make a decision as to which action to take.

Candidate brain regions for performing some or all of these roles include the

various subregions of the prefrontal cortex (PFC). The hippocampus (HPC) and

PFC, along with other structures, are thought to form an information-processing

loop where top-down contextual signals from PFC in
uence encoding in HPC, and

information retreival by HPC informs representations in PFC. This loop may also be

responsible for the initiation, simulation, and evaluation of candidate actions (van der

Meer et al., 2012). Various regions of the prefrontal cortex (PFC) have long been

thought to mediate executive function (Miller and Cohen, 2001; Dalley et al., 2004;

Kesner and Churchwell, 2011). The PFC, speci�cally the anterior cingulate cortex,

has been implicated in con
ict detection (Haddon and Killcross, 2005, 2006; Marquis

et al., 2007; Dwyer et al., 2010), suggesting it may be responsible for detecting the
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need for deliberative control. Also, the PFC plays an active role in the storage and

recall of working memories (Tronel and Sara, 2003; Ragozzino and Kesner, 1998;

Delatour and Gisquest-Verrier, 1999; Cowen and McNaughton, 2007; Yoon et al.,

2008; Horst and Laubach, 2009; Euston et al., 2012; Preston and Eichenbaum, 2013;

Urban et al., 2014), which may also translate to the storage of internally simulated

outcome valuations. It is theorized that PFC may initiate the internal construction

of hypothetical situations (Hassabis and Maguire, 2009; van der Meer et al., 2012;

Wang et al., 2015).

Speci�cally, the dorsomedial prefrontal cortex (dmPFC) also represents informa-

tion about environmental contingencies or behavioral strategies (Balleine and Dickin-

son, 1998; Jung et al., 1998; Wallis et al., 2001; Ragozzino et al., 2003; Floresco et al.,

2008; Young and Shapiro, 2009; Hyman et al., 2012; Mante et al., 2013; Powell and

Redish, 2014; Ma et al., 2016). This contingency information, or hidden information

which must be learned through experience and stored in working memory and used

to make optimal decisions, is very similar in spirit to the abstract information about

the world thought to be required for implementing a model-based algorithm.

However, it is hard to parse out how much of this apparent contingency repre-

sentation is due to actual contingency representation, as opposed to an artifact of

representational drift over time. Most work examining latent contingency representa-

tions in prefrontal areas employ tasks where the contingencies are present in blocks of

trials or time. This is because if the contingencies were to be cued, it would be com-

pletely impossible to distinguish representations of contingency from representations

of sensory information. Unfortunately, in removing one confound, this block-like task

structure gives rise to a second confound: time.

Neural activity in both dorsomedial prefrontal cortex and hippocampus are known

to change slowly over time (Mankin et al., 2012; Hyman et al., 2012; Ziv et al., 2013).
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If then, neural activity is changing over time, then it is di�cult to say whether dif-

ferences between neural activity across task blocks is due to encoding of information

speci�c to those blocks (of interest here, contingency information), or whether those

di�erences are due simply to some unrelated random drift over time. Studies attempt-

ing to disambiguate these two contributions to neural activity use decoding, ensemble

correlation, or clustering approaches to determine whether ensemble activity repre-

sents contingency information, for example Malagon-Vina et al. (2018). However,

these decoding approaches su�er from the aforementioned inability to disambiguate

contingency representation (when contingencies are presented in blocks of time) from

unrelated representational drift over time. Alternative approaches have been taken

which �nd sudden representational shifts coincident with contingency changes (Rich

and Shapiro, 2009; Durstewitz et al., 2010; Karlsson et al., 2012; Powell and Redish,

2016).

Assuming these brain areas are indeed representing abstract contingency informa-

tion, it is then also unknown how the timing of representational changes di�er between

brain areas representing this information. For the case of dorsomedial prefrontal cor-

tex and the hippocampus, theories of a spatial working memory loop between the

two areas certainly suggest that contingency information would appear �rst in dor-

somedial prefrontal cortex, and then make its way into hippocampal representations,

but it is unclear how quickly this transfer of information occurs. Also, the presence

of unrelated representational drift over time further complicates any measurement of

timing di�erences, as it is unknown how the drift rates di�er between hippocampus

and prefrontal cortex.

It is also less well studied how HPC and dmPFC share other types of information

(e.g. about reward, candidate actions, and location) on fast timescales. Theories of

the deliberative system indicate that prefrontal areas detect a need for deliberative
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control, instigate internal simulations of the outcomes of candidate actions, keep

track of the valuations of those outcomes, and use that information to decide which

candidate action to enact. Therefore, likely candidates for information being passed

between dmPFC and HPC include information about candidate actions, location,

and reward. Previous work has discovered that hippocampal ensembles represent

non-local spatial information which appears to correspond to internal simulations

of candidate actions (Johnson and Redish, 2007), and other areas such as ventral

striatum and orbitofrontal cortex represent value in ways suggesting they may be

estimating the value of these internally simulated outcomes (van der Meer and Redish,

2010; Rich and Wallis, 2016). But what instigates these internal simulations? If

dmPFC plays this role, then it should be possible to predict from activity in dmPFC

whether non-local information is about to be represented in HPC. Also, if dmPFC

is keeping track of predicted value of candidate actions, then when the outcomes

of these candidate actions are represented in HPC (which, in theory, cause value

representations in other areas corresponding to the estimated subjective value of those

simulated outcomes) should have an e�ect on reward encoding in dmPFC. However,

work involving simultaneous ensemble recordings in both dmPFC and HPC have not

yet investigated whether information encoding in these two areas occurs in this way

on fast timescales.

In this thesis we �rst examine the model-free and model-based in
uences on rat

behavior, and then further the representation of task-relevant information in dmPFC

and CA1, and how they may contribute to the model-based deliberative system.

� Chapter 2 describes a task we adapted which is able to distinguish the contribu-

tions of model-based from model-free in
uences on rodent decisions in spatial

mazes, and examines how rat decisions are explained by a combination of model-
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based and model-free in
uences, but �nds that this spatial version of the task

was not optimal for measuring trial-by-trial in
uences on rat choice, due mainly

to its complexity.

� Chapter 3 introduces a di�erent, simpler task we designed to study repeated

transitions between deliberative and habitual decision-making modes, and ex-

amines how behavioral correlates of deliberation correspond to rats' uncertainty

as to the task contingencies.

� Chapter 4 develops an analysis to disambiguate the contributions of contingency

encoding from representational drift over time, demonstrates that both CA1

and dmPFC encode contingency information while simultaneously displaying

representational drift over time, and examines the timing of these changes.

� Chapter 5 investigates the representation of spatial and reward information

in dmPFC and CA1, and demonstrates that both areas represent prospective

spatial information simultaneously, while not always representing identical lo-

cations, and that activity in dmPFC predicts non-local representation by HPC

ensembles on broad timescales, while prospective activity in HPC e�ects reward

representations in dmPFC on fast timescales.

� Chapter 6 summarizes our �ndings and their signi�cance, and discusses poten-

tial avenues and challenges of future work in this area.
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Chapter 2

Model-based and Model-free

Decision Making on a Two-Step

Task

The work discussed in this chapter has been previously reported in Hasz and Redish

(2018).

2.1 Introduction

Current theories suggest that decision-making arises from multiple subsystems within

the brain. Each system is thought to use di�erent algorithms to select actions based

on external, and sometimes internal, information. However, literatures using di�erent

experimental species have dissociated di�erent types of decision-making systems in

di�erent ways (O'Keefe and Nadel, 1978a; Adams and Dickinson, 1981; Sloman, 1996;

Dayan and Balleine, 2002; Lieberman, 2003; Loewenstein and O'Donoghue, 2004;

Balleine et al., 2008; van der Meer et al., 2012; Redish, 2013; Dolan and Dayan,
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2013).

Studies of rodent navigation through spatial mazes have revealed a dichotomy

between deliberative behavior and procedural behavior. Deliberative behaviors are

thought to arise from the use of some internal evaluation of the expected state of the

world, or \cognitive map" (Muenzinger and Gentry, 1931; Tolman, 1939; O'Keefe and

Nadel, 1978a). These deliberative behaviors are identi�ed by the use of \place strate-

gies", when rodents make decisions based on place or goal locations (Packard and Mc-

Gaugh, 1996; Schmidt et al., 2013; Gardner et al., 2013; Redish, 2016). Deliberation

is thought to involve an entire ensemble of brain areas, including the hippocampus,

other more associative brain areas such as prefrontal cortex and orbitofrontal cortex,

basal ganglia structures such as the ventral striatum, thalamic structures such as

nucleus reuniens, and more (Redish, 1999; van der Meer et al., 2012).

In contrast, procedural behavior is a much faster process thought to be driven

by habits. In rodents, procedural behavior is characterized by \response strategies",

where animals make decisions based on relatively simple stimulus-action associations

(Packard and McGaugh, 1996; Yin and Knowlton, 2004). Unlike deliberation, pro-

cedural behaviors are thought to be driven primarily by motor cortical and basal

ganglia structures such as the dorsolateral striatum (Packard and McGaugh, 1996;

Jog et al., 1999; Yin and Knowlton, 2004).

On the other hand, studies in humans dissociate decision-making behavior based

on how subjects make choices consistent with those of \model-based" and \model-

free" learning algorithms (Gl•ascher et al., 2010; Daw et al., 2011; Gillan et al., 2011;

Wunderlich et al., 2012; Otto et al., 2013b,a; Eppinger et al., 2013; Skatova et al.,

2013; Schad et al., 2014; Gillan et al., 2014; Sebold et al., 2014; Otto et al., 2015;

Gillan et al., 2015; Voon et al., 2015; Deserno et al., 2015; Radenbach et al., 2015;

Sharp et al., 2015; Doll et al., 2016; Decker et al., 2016), though some of this work has
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been done in rats on simpli�ed tasks (Miller et al., 2013, 2014, 2017). However, some

work suggests these simpli�ed tasks used for rodents are unable to truly separate

model-based from model-free in
uences on decisions (Akam et al., 2013).

Model-free algorithms were originally developed in the context of machine rein-

forcement learning. Some early versions of these algorithms include \Q-learning"

(Watkins, 1989) and \SARSA" (Rummery and Niranjan, 1994). This class of al-

gorithm learns the expected value of taking any given action in any given state.

Essentially, the algorithm stores a lookup table of the expected reward associated

with state-action pairs. Values in this table are updated according to the rewards the

agent actually experiences, with the hope that over time they come to approximate

the true values associated with each state-action pair. At inference time (when the

agent needs to make a decision), the algorithm simply looks up the available actions

for a given state and their estimated values, and chooses the action with the highest

expected reward for that state. As this algorithm has constant time complexity (as-

suming the number of available actions is constant), it is very fast (Keramati et al.,

2011).

However, model-free algorithms su�er from an important limitation: because they

only update their reward expectations according to experiences the agent has already

had, this class of algorithm is in
exible and performs poorly when contingencies

change. That is, when state-action rewards remain relatively constant, but the re-

lationships between states change, model-free algorithms must re-learn the expected

rewards from \scratch". This is because model-free algorithms do not contain any sort

of model of the world, but only associations between state-action pairs and reward.

Model-based algorithms, on the other hand, do store models of the world, and

therefore are able to use this information to handle more dynamic environments.

Early versions of these algorithms include the Dyna architecture (Sutton, 1991), and

11



prioritized sweeping (Moore and Atkeson, 1993). Model-based algorithms are similar

to model-free algorithms in that they too learn the expected reward associated with

state-action pairs. However, they also build an internal model of the agent's envi-

ronment which can be used to make more optimal decisions, especially in the face

of dynamic contingencies. Speci�cally, these models are usually instantiations of a

Markov decision process, and store the transition probabilities associated with each

state-action pair. That is, they learn not just the amount of reward the agent can

expect by performing a given action in a given state, but also how likely that action

is to cause the state to change to any other given state. This information can then

be used to evaluate on-line the tree of possible futures given di�erent potential ac-

tions. This dynamic on-line evaluation of expected action outcomes allows an agent

to more dynamically compute expected rewards, even when a given action (or chain

of actions) hasn't yet been observed by the agent to lead to large rewards. While

model-based algorithms allow for more 
exibility and optimal learning, they are far

more computationally demanding. Especially in the case of a large number of possible

future states, the number of possible paths through those future states becomes vast,

requiring much more computation at inference time (Keramati et al., 2011).

Recent behavioral and magnetic imaging work studying human subjects has in-

vestigated how human decisions and neural activity may be related to model-based

and model-free algorithms. Much of this work employs a two-step task which is able

to dissociate between decisions made by model-based algorithms from those made

by model-free algorithms (Gl•ascher et al., 2010; Daw et al., 2011). Brie
y, the task

involves two sequential binary choices, where the �rst choice probabilistically con-

trols which of two decisions will be presented for the second choice. Furthermore,

the rewards associated with actions taken at the second choice change over time.

This task is able to dissociate model-based from model-free decision making because
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model-based algorithms are able to use knowledge of the task structure and transi-

tion probabilities to update reward expectations at the �rst choice, while model-free

algorithms are not. More details on the two-step task will be given in Section 2.2.

This body of work in humans has found evidence that human decisions on the

two-step task are consistent with those of model-based and model-free algorithms

(Gl•ascher et al., 2010). Furthermore, human brain areas such as the ventral striatum

and prefrontal cortex appear to activate in ways consistent with reward prediction

errors in model-based and model-free algorithms (Gl•ascher et al., 2010; Daw et al.,

2011). Further work �nds that various factors and disorders can disrupt the bal-

ance between model-free and model-based in
uences on human decision making. For

example, obsessive-compulsive disorder appears to cause individuals to make deci-

sions which are more consistent with a model-free strategy (Gillan et al., 2011, 2014;

Voon et al., 2015). Also, subjects with alcohol dependence show weaker a in
uence

of the model-based system (Sebold et al., 2014), while the acute e�ect of alcohol

administration has been found to do the opposite (Obst et al., 2018). Individuals

displaying higher levels of cognitive control or those with more working memory ap-

pear more model-based, and individuals are unable to behave as model-based when

working memory is allocated elsewhere (Otto et al., 2013b,a; Schad et al., 2014; Otto

et al., 2015). Dopamine appears to play an integral role in either the balance between

the model-based and model-free systems, or the functioning of the model-based sys-

tem. Increased dopamine corresponds to more model-based-like behavioral strategies,

whether this increase in dopamine levels was experimentally increased via the admin-

istration of L-DOPA (Wunderlich et al., 2012; Sharp et al., 2015), or the amount of

naturally-occuring dopamine as measured by F-DOPA positron emission tomography

(Deserno et al., 2015) or genetic indicators (Doll et al., 2016). Age also has been

found to play a role in determining the balance between model-based and model-free
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strategies (Eppinger et al., 2013; Decker et al., 2016), and using model-based strate-

gies appears to defend against habit formation (Gillan et al., 2015). Stress leads to

a decrease in the ability to make model-based choices (Radenbach et al., 2015), and

some work has even found a relationship between an individual's extrovertedness and

the balance between model-based and model-free in
uences on their choices (Skatova

et al., 2013).

How do the model-free and model-based algorithms relate to procedural and de-

liberative behavior and neural activity? The procedural system is hypothesized to be

driven by a model-free neural mechanism, in that it is not thought to actually use

any internal model of the world to make decisions, but rather caches the expected

best action for each given state.

Schultz et al. (1997) �rst provided evidence that neural activity in monkeys actu-

ally re
ected internal variables of reinforcement learning models like the model-free

algorithm (Sutton and Barto, 1998). Speci�cally, they found that dopaminergic cells

in the ventral tegmental area (VTA) and the substantia nigra are tonically active,

and did not change their baseline �ring rates when monkeys received as much reward

as they expected. However, when monkeys received unexpected rewards, there was

a burst in the activity of the dopaminergic cells, and when an expected reward was

omitted, there was a transient decrease in the �ring rate of the dopaminergic units

(Schultz et al., 1997). This behavior is consistent with the \delta signal" used in

reinforcement learning algorithms (Sutton and Barto, 1998). This delta signal car-

ries information about the di�erence between the algorithm's current estimate of the

reward associated with a speci�c state-action pair, and the actual amount of reward

that was received at that timepoint.

Dopamine release is known to a�ect plasticity of corticostriatal synapses, and in

the context of habitual behavior (Calabresi et al., 2007), speci�cally the projections
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from sensory association and motor areas carrying state and motor plan information

to dorsolateral striatal areas. The striatum, speci�cally the dorsolateral aspects of

the striatum, are important for forming habits (Yin and Knowlton, 2004), and show

bursts of activity at the initiation of habitual action chains (Jog et al., 1999). The

striatum plays a key role in the basal ganglia circuit which gates action initiation

and selection. Theories have suggested that changes in the amount of dopamine

released onto corticostriatal synapses control the strength of these synapses, and

therefore are able to tune how strongly an action is initiated (or silenced) upon input

representing speci�c situations from sensory association areas (Swanson, 2000; Niv

et al., 2006; Frank, 2011). This hypothesized system is very similar to the state-action

pair reward associations of the model-free algorithm, and thus it is hypothesized that

the neural system generating habitual behaviors implements a model-free algorithm,

or something very similar.

The procedural system makes decisions quickly, but these decisions are habit-like

and in
exible once learned. That is, for the procedural system, un-learning a decision-

making policy requires a large amount of training relative to the deliberative system

(Niv et al., 2006; Keramati et al., 2011; van der Meer et al., 2012). Although model-

free algorithms are not necessarily slower to change their policies than model-based

ones (this speed is primarily dependent on the learning rate), model-free algorithms

do su�er from the limitation that the agent must observe the reward outcomes of a

sequence of actions before updating their reward beliefs. In complex environments

where the contingencies change, but not necessarily the rewards associated with tak-

ing actions in (potentially latent) states, model-free systems require many more ex-

periences than do model-based systems to accurately update the estimated reward

associated with state-action pairs. Thus, procedural decision making is thought to be

driven by a model-free neural algorithm. Like such algorithms, procedural decisions
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do not quickly re
ect changes in contingencies or state transition probabilities.

In contrast, the deliberative system is hypothesized to employ the model-based

neural mechanism: it is thought that the deliberative system stores and evaluates an

internal model of the world, based on contingencies or latent states, to estimate the

outcomes of potential actions. The storage of this internal model has been proposed

to reside in the hippocampus (Johnson and Redish, 2007; Redish, 2016) and perhaps

also in sub-regions of the prefrontal cortex such as orbitofrontal cortex (Wikenheiser

and Schoenbaum, 2016; Zhou et al., 2019). While the hippocampus has long been

known to play a role in memory (Scoville and Milner, 1957), more recently it has been

discovered that the hippocampus sometimes represents the potential outcomes of can-

didate actions while subjects deliberate (Johnson and Redish, 2007; Simon and Daw,

2011; Doll et al., 2015; Brown et al., 2016). The orbitofrontal cortex is also thought

to represent information about the \cognitive map" (Wikenheiser and Schoenbaum,

2016; Zhou et al., 2019), though it is unclear what aspects of environment represen-

tation and simulation occur in orbitofrontal cortex and which occur in hippocampus,

or how much of these roles are shared between the two structures. Prefrontal cor-

tex is important for working memory (Ragozzino and Kesner, 1998; Delatour and

Gisquest-Verrier, 1999; Cowen and McNaughton, 2007; Yoon et al., 2008; Horst and

Laubach, 2009; Urban et al., 2014), and plays a role in decision-making and generat-

ing goal-directed (as opposed to habitual) actions (Seamans et al., 1995; Killcross and

Coutureau, 2003; Matsumoto et al., 2003; Matsumoto and Tanaka, 2004; Hok et al.,

2005; St. Onge and Floresco, 2009). Furthermore, ventral aspects of the striatum rep-

resent reward-related information while hippocampus represents potential outcomes

of candidate actions (van der Meer and Redish, 2010), and so it is thought that dur-

ing deliberation the ventral striatum plays the role of a \critic" to the hippocampus'

\actor" (van der Meer et al., 2012). Taken together, this system has been hypoth-
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esized to perform internal simulations of a world model, and the evaluation of their

simulated outcomes, to decide which actions to take. This storage of action outcomes

in the context of environmental dynamics and hypothetical-based evaluation of action

optimality is very similar to the model-based algorithm, and therefore it is believed

that a model-based neural algorithm underlies deliberative decision-making and be-

haviors (Doll et al., 2012; Daw and Dayan, 2014; van der Meer et al., 2012; Redish,

2016).

This hypothesized internal model learns not only the expected reward for each

state-action pair in the environment, but also learns the relationships between states

- information the procedural (and putatively model-free) system does not represent

or use. That information is thought to be integrated on-line in order to make more

optimal decisions, even in completely new situations (Adams and Dickinson, 1981;

van der Meer et al., 2012). However, like with the model-based algorithm, one key

drawback of deliberation is that it requires more time and cognitive e�ort than the

procedural system, because it requires both the repeated simulation and the evalu-

ation of an internal model. It is hypothesized that the brain employs some sort of

trade-o� between fast, in
exible procedural strategies and slow, more 
exible delib-

erative strategies (Keramati et al., 2011).

In addition to using the identi�cation of place strategies, deliberation has also

been identi�ed in rodents by the presentation of a speci�c behavior termed \vicarious

trial and error." Vicarious trial and error (VTE) is a behavior where rats pause at

choice points of a maze, and look back and forth down each path as if deliberating

over which path to take (Muenzinger and Gentry, 1931; Tolman, 1939; Redish, 2016).

VTE behaviors are thought to occur during internal deliberative processes: the eval-

uation of an internal model of the world, which corresponds to a model-based neural

mechanism (Redish, 2016).
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During procedural behavior rats do not display VTE, and their paths through the

choice points are instead highly regular and stereotyped (Packard and McGaugh, 1996;

Jog et al., 1999; Schmitzer-Torbert and Redish, 2002; van der Meer et al., 2012; Smith

and Graybiel, 2013; Schmidt et al., 2013). Again, the procedural system generating

this stereotyped behavior is hypothesized to employ a model-free learning algorithm

(O'Keefe and Nadel, 1978a; Jog et al., 1999; Yin and Knowlton, 2004; Frank, 2011;

Redish, 2016). Animals usually display deliberative behavior early in training, which

transitions to more stereotyped behavior with experience on a given task (Packard

and McGaugh, 1996; Gardner et al., 2013; Schmidt et al., 2013; Redish, 2016).

While the model-based system is hypothesized to correspond to the deliberative

system, and the model-free system to the procedural system, research has not actually

mechanistically linked the hypothesized underlying algorithms to neural activity or

behavior in rodents. The model-based/model-free dichotomy has been evaluated using

tasks which di�erentiate decisions based on the apparent presence of knowledge about

relations between states, information which only the model-based system stores (Daw

et al., 2011; Doll et al., 2012). In contrast, the deliberative/procedural dichotomy has

been evaluated using behavioral markers such as place/response strategies and VTE,

but have not tied these behaviors to model-based or model-free choices. Both of these

literatures have been very successful in dissociating two types of decision-making, but

it is unknown how they correspond to each other.

Furthermore, the existence of multiple decision-making systems within the same

agent raises the question of how an organism makes a single coherent action when

multiple systems are contributing to a decision, potentially in con
icting ways. That

is to say: how is an agent which consists of multiple decision-making systems, some of

which make di�erent decisions at the same time, able to come to one single decision

which is eventually executed by the agent? Work in humans has assumed a subject-
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speci�c static weight between model-based and model-free in
uence (Gl•ascher et al.,

2010; Daw et al., 2011; Gillan et al., 2011; Wunderlich et al., 2012; Otto et al.,

2013b,a; Eppinger et al., 2013; Skatova et al., 2013; Schad et al., 2014; Gillan et al.,

2014; Sebold et al., 2014; Otto et al., 2015; Gillan et al., 2015; Voon et al., 2015;

Deserno et al., 2015; Radenbach et al., 2015; Sharp et al., 2015; Doll et al., 2016;

Decker et al., 2016). For example, according to this hypothesis the model-free system

contributes to all decisions with, say, 40% weight, and model-based with 60% weight.

This may not be the case { anecdotal and introspective evidence would suggest that

sometimes, one uses nearly entirely habitual control (say, when turning on a light

switch when entering a familiar room), while at other times one uses nearly wholly

deliberative control (say, when deciding which college to attend!), and at yet other

times it may be apparent that two systems are con
icting (for example when one is

�ghting to break an addiction). In fact, some evidence suggests the in
uence of each

system can indeed change over time (Otto et al., 2013a; Lee et al., 2014).

But what drives this change in control? Some work suggests that uncertainty

within the model-based and model-free systems may determine that system's in
uence

(Daw et al., 2005; Beierholm et al., 2011; Lee et al., 2014). Such an uncertainty-based

arbitration scheme causes decision-making systems that are more con�dent in their

decision to be used, while other systems which are unsure as to the optimal action

have less or no control of the agent during that decision. However, it is unclear

whether behavioral correlates of deliberation (such as VTE) or procedural learning

(such as behavioral stereotypy) correspond to uncertainty within the model-based or

model-free systems.

In Daw et al. (2005), the authors use approximate Bayesian versions of the model-

based and model-free reinforcement learning algorithms, which are able to express

uncertainty in their estimate of the value of taking an action in a given state. This is
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because the approximate Bayesian versions of the algorithms represent the expected

value of each state-action pair as a probability distribution across possible values,

instead of by a single scalar estimate, like the non-Bayesian versions of the reinforce-

ment learning algorithms. The uncertainty within a given system is then the variance

of that probability distribution of the value of a given state-action pair. If the distri-

bution is wide, then the algorithm is less certain as to the value of the state-action

pair, while if the distribution is sharp and the variance is low, the algorithm is highly

certain as to the value of taking that action in that state. It is important to note

that this form of uncertainty refers to the uncertainty in the estimate of the value

of individual state-action pairs, and not to the uncertainty as to which of several

competing state-action pairs has the higher value.

We adapted for rats a task which has often been used to dissociate model-based

from model-free decision-making in humans. In this chapter, we discuss the task

and how we have adapted it for rats, and evaluate rat behavior on our version of the

task. We also investigate how choice behavior of rats on our version of the task re
ects

model-based and model-free in
uence, and link that behavior to the more traditionally

rodent deliberative and procedural behaviors like VTE. We also evaluate what role

uncertainty in each of the model-based and model-free algorithms may play in the

arbitration between those two decision-making systems.

2.2 The Two-Step Task

To investigate the extent to which rodent behavior can be explained by model-free and

model-based in
uences, how the in
uence of each algorithm corresponds to habitual

and deliberative behavior, and to elucidate how arbitration between these two systems

may occur, we adapted for rats the two-step task previously designed for humans
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which is able to dissociate model-based from model-free decisions (Daw et al., 2011).

Rodents are an ideal model species for studying the relationship between information

representation in the brain with model-based and model-free algorithms, because

large ensembles of single cells can be recorded simultaneously while rodents perform

decision-making tasks. Ensemble recordings are an invasive method which result in far

more precise measurements of what the brain is doing than, say, magnetic resonance

imaging. However, because of its invasiveness, this method is obviously unethical to

perform on human subjects, and rodents provide a more cost-e�ective solution than

nonhuman primates.

2.2.1 The original two-step task for humans

The human two-step task (Daw et al. (2011), see Figure 2.1) consists of a sequence

of two choices: C1 (choosing between A vs. B) and then C2 (choosing between C

vs. D) or C3 (choosing between E vs. F). Choosing option A in C1 usually (but not

always!) leads to choice C2, while choosing option B in C1 usually leads to choice

C3. Choosing C vs. D (in C2) or E vs. F (in C3) leads to probabilistically-delivered

reward, with di�erent probabilities at C, D, E, and F. Another important feature

of the two-step task is that the reward probabilities drift slowly over time, so the

subject is constantly trying to �nd the best option and should not simply settle on

one option, but can use observations of reward as a signal that the option is a good

one to return to (at least for a while).

This human version of the two-step task is able to dissociate model-based from

model-free decisions because it creates conditions where the two decision-making algo-

rithms make di�erent choices, mostly on laps following a rare transition (e.g. choosing

A at C1 leads to C3, a choice between E and F). This is because the model-based
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Figure 2.1: The two-step task for humans. (A) State structure of the task. A �rst
choice between two options leads probabilistically to one of two second-stage choices.
Each of the four second-stage choices have some cost of reward associated with them,
and those costs change over the course of the session. (B) This task dissociates model-
based from model-free choices. When an agent receives reward after a rare transition,
the model-free system is more likely to repeat the �rst-stage choice which lead to that
reward, while the model-based system is more likely to take the opposite �rst-stage
action on the next lap. Figure from Hasz and Redish (2018).

algorithm stores information about the relation between states (speci�cally, the state

transition probabilities), while the model-free algorithm does not store information

about relations between states (and so does not use the transition probabilities for

valuation).

To illustrate this di�erence, suppose a subject chooses A at C1, experiences a rare

transition and is presented with C3 (a choice between E and F), chooses E at the

second choice, and receives a large reward (Figure 2.1). A model-free agent would

be more likely to repeat the choice at C1 (choice A), because model-free learning

algorithms reinforce actions which have led to reward in the past, without taking into

account relations between states. However, the world model of the model-based algo-

rithm stores relations between states, and so has access to the fact that choosing B at

C1 is more likely to lead to the C3 choice, where E can then be chosen. Therefore, the

model-based algorithm would be more likely to choose B at C1 in this scenario, while
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the model-free algorithm would be more likely to choose A. In general on this task,

model-based and model-free agents value the two choices at C1 slightly di�erently.

2.2.2 Our spatial two-step task for rats

Our version of the two-step task for rats was a spatial maze with two sequential

left/right choice points (or \stages"), which corresponded to the two choice stages

in the human task (Figure 2.2). The second choice (C2/C3) was the same physical

location for both the C/D and E/F choices, but an audiovisual cue at the second

choice point informed animals whether they were in the C2 or C3 context. Choosing

left (A) at the �rst choice led to C2 80% of the time, and to C3 20% of the time.

Like the human task, those probabilities were reversed after choosing right (B) at the

�rst choice point. After choosing left (C or E) or right (D or F) at the second choice

point, rats were rewarded with food pellets. While the cost of reward in the human

task was the probability of receiving a reward at all, we used delay to food delivery

as the cost: high delay to food delivery corresponded to high cost rewards, while low

delays corresponded to low cost rewards. Like the human task, these delays varied

between C, D, E, and F. The delays were initialized randomly between 1 and 30s,

and changed slowly over the course of a session according to a Gaussian random walk

with a standard deviation of 1s/lap.

To indicate to the animal which second-stage context they were in, we presented

auditory and visual cues after the �rst choice was made. The auditory cue was a

beep pattern unique to each second stage, and the visual cue was white-on-black lines

or circles (depending on the second stage) displayed on three monitors around the

second choice point. From the pellet dispensers on either side of the maze, there were

return hallways to the start of the maze. There was another pellet dispenser at the
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Figure 2.2: The two-step task for rats. (A) State structure of the task is identical
to that of the two-step task for humans. (B) The spatial version of the two-step task
for rats. An initial Left/Right choice point (labeled \1", corresponding to the �rst
choice in A), leads to a second-stage choice (labeled \2"). Which of the two second
stage choices is currently presented is indicated by an audio cue, and by a visual cue
on monitors (green boxes on outside of maze). Rats then wait some amount of time
before receiving food reward at feeder sites (red semicircles). Figure from Hasz and
Redish (2018).

start of the maze, where rats received one pellet per lap. Four one-way servo-actuated

doors were used to prevent the rats from moving backwards through the maze: one

on either side of the �rst choice-point, and one just before entry into the reward o�er

zone. The maze was constructed using LEGO walls and a canvas 
oor. Rats were

allowed to freely run the task for the duration of sessions which lasted 45 min, and

earned their food for the day while running the task (� 10� 15 g).

Animal behavior on the task was captured with a video camera placed above the

maze. Custom Matlab software determined animal position from the video on-line;

controlled delays and monitors; controlled pellet dispensers and the one-way doors

via an Arduino, and recorded animal trajectory through the maze along with task
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events. Custom Matlab software was written to track animal head positions from

video o�-line.

There were three phases of task training, each lasting 8d. For the �rst, there was

no delay to food delivery, no second-stage auditory or visual cues, and one option

was blocked at each choice point, leaving only one possible path through the maze.

Choices were blocked on sequential days such that all four paths through the maze

(LL, LR, RL, RR) were sampled equally. That is, the right side of the �rst choice

point and the right side of the second choice was blocked on the �rst training day,

then on the second training day the right side of the �rst choice and the left side

of the second choice were blocked, and so on. Eight pellets were dispensed at the

two feeder sites per reward on the �rst day of training, and the number of pellets

decreased by 1 pellet every two days for the duration of the training phase. A single

pellet per lap was dispensed at the rear feeder site.

For the second training phase, there were still no second-stage auditory or visual

cues, and one of the �rst-stage options was blocked, but both second-stage choices

were left open. Delay to food was set randomly between 1 and 10s on the �rst day of

second phase training, and the maximum delay increased by 2s/day for the duration

of the training phase. The delay values were allowed to change over the course of

the session according to the same Gaussian random walk used in the full task (but

not allowed to increase above the maximum delay for the day). Four pellets were

dispensed at each feeder site for the �rst four days of this training phase, and three

pellets for the last four days.

The third training phase was 8d of the full task, with no choices blocked, a max-

imum delay of 30s, and two pellets per feeder site.

One drawback to evaluating place and response strategies on traditional rodent

tasks, or even identifying VTE at single choice points, is that these behaviors are
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measured on a per-trial basis, and so it is impossible to determine how the decision-

making strategies might evolve over the course of single trials. Therefore, using

traditional rodent tasks it is di�cult to evaluate whether animals deliberate over

single decisions independently, or whether they enter deliberative or habitual modes

over the course of an entire trial and make all decisions therein using that policy. A

further possibility is that deliberation at the initiation of a trial instigates an epoch

of procedural control, which remains for the rest of the trial. Essentially, the question

is on tasks where each trial consists of a complex sequence of decisions, whether

rats deliberate at each choice, or whether they \plan out" their entire trial from the

beginning and follow that plan procedurally. The two-step task provides a method to

access this question: by having multiple decisions per trial, we are able to evaluate

how rats' decision strategies evolve over the course of single trials.

Furthermore, on traditional rodent tasks, the transition from deliberative to habit-

ual control is usually quanti�ed only as a function of time. For example, by measuring

the strength of place/response strategies across trial within a session, or session within

a training regimen (Packard and McGaugh, 1996). Assuming automation increases as

a function of an animal's experience with that speci�c action chain, then behavioral

stereotypy should increase not only with time, but speci�cally with the number of

actions or choices that the animal has performed. Again the two-step task allows us

to evaluate whether this is true without depending solely on time: because the re-

ward values change over time, sometimes rats will experience negligible di�erences in

reward contingencies from lap to lap, in which case they will in theory strengthen the

action chain leading to reward, while on other laps the reward value will have changed

signi�cantly, and we can measure how the strength of their procedural automation

di�ers in these cases.

But most importantly, the two-step task enables us to measure model-based and
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A) Sessions per Rat

Rat Number of Sessions

1 48
2 50
3 50
4 50
5 53
6 53
7 53

Total 357

B) Laps per Rat

Rat Number of Laps

1 3313
2 3602
3 4079
4 3610
5 3594
6 3805
7 4478

Total 26481

Table 2.1: The number of sessions and laps run by each rat

model-free in
uences on rat choice behavior, while simultaneously measuring delib-

erative and habitual behaviors, and allows for neural activity and representations to

be related to model-based and model-free in
uence.

2.3 Rat Behavior on the Two-Step Task

Rat behavior on the spatial two-step task was collected from seven male Brown Nor-

way rats aged 6-15 months for at least 48 sessions each (357 sessions in total, Table

2.1A). Before behavioral training, rats were handled daily for 7d to accustom them to

the experimenter, then acclimated for 7d to eat the food pellets delivered during the

task (45-mg sucrose pellets), and �nally trained to run through the one-way doors on

a separate maze for 7d. Rats were housed on a 12-hr light-dark cycle, and behavioral

sessions were run at the same time daily. Rats were food restricted to encourage them

to run the task, and maintained weight at> 80% of their free-feeding weight. Water

was always available in their home cage. All experimental and animal care procedures

complied with US National Institutes of Health guidelines for animal care and were

approved by the Institutional Animal Care and Use Committee at the University of

Minnesota.
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Figure 2.3: Rats displayed a preference for low-delay feeders on the spatial two-step
task. (A) The proportion of delays experienced by the rats (colored solid lines, each
line is one rat), as compared to the proportions of delays which would be expected by
visiting feeders randomly. (B) The mean delay experienced by the rats (+/- SEM) as
compared to the mean delay which would be expected by visiting feeders randomly
(generated by a model-free simulation run with learning rates at 0). Delays have been
aggregated over all sessions from a given rat. Figure from Hasz and Redish (2018).

2.3.1 Rats made choices which led to short delays

Rats ran an average of 74:2� 19:6 laps per session on the spatial version of the two-step

task (Table 2.1B). Not surprisingly, rats preferred reward o�ers with a low delay to

food delivery (Figure 2.3). We ran simulations of agents which made random choices

on the two-step task to determine the delays which would be expected by visiting

feeders randomly. That is, at each of the two choice points, the simulated agents

had an equal probability of choosing left vs. right. We simulated 10; 000 sessions of

this random-choice agent on the two step task, using 74 laps per session (the average

length of the rats' sessions).

All rats had a visibly stronger preference for low delays than did the random choice

agent simulations (Figure 2.3). Mean delays experienced by the rats were signi�cantly

less than the mean delay experienced by the random-choice simulations (two-sided
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Wilcoxon signed rank test,Nrats = 7, p = 0:0156, rat delays were 3:31 seconds lower

on average than simulation delays). This indicates that rats were able to learn the

task, by making decisions which led to lower-delay outcomes.

2.3.2 Rats displayed VTE at choice points

Vicarious trial and error (VTE) is a behavioral correlate of deliberation in rats, char-

acterized by a pause at a choice point, while simultaneously swinging of the head

back and forth between potential paths as if deliberating over which path to take

(Muenzinger and Gentry, 1931; Tolman, 1939; Redish, 2016). We used LogIdPhi, a

measure of pausing and head-turning, to measure VTE (Papale et al., 2012). The

LogIdPhi for a given choice point pass corresponds to the angular acceleration of the

rat's head, integrated over a pass through the choice point. Therefore, it captures

both how long the rat hesitates at the choice point, and how quickly the rat's head

is changing direction. Whenx and y are the position of the rat's head,

LogIdPhi = log
� Z zone exit

zone entry

�
�
�
�

�
�t

atan2
�

�y
�t

;
�x
�t

� �
�
�
� �t

�
(2.1)

On a very small proportion of choice point passes, we were unable to compute

VTE due to a momentary lag in the rat position tracking system. At the �rst choice

point, this occurred on 13 laps (0:049% of laps). At the second choice point, this

occurred on 10 laps (0:038% of laps). We excluded these laps from our analysis.

We found that on our spatial two-step task, rats displayed varying levels of LogId-

Phi at the �rst choice point (Figure 2.4). There was a clear bimodal distribution of

LogIdPhi at the �rst choice point, where one peak with lesser LogIdPhi values cor-

responded to laps where VTE did not occcur (Figures 2.4A and 2.4C) and the other

peak with greater LogIdPhi values corresponded to laps where VTE occurred (Fig-

29



Figure 2.4: Vicarious trial and error (VTE) at the �rst choice point. (A) An example
of a pass through the �rst choice point without VTE, and (B) an example of VTE at
the �rst choice point. Grey line is rat body position over the whole session, black line
is rat body position on example lap, and red or blue lines are rat head position at
the �rst choice point on the example lap. (C) Distribution of LogIdPhi values at the
�rst choice point over all laps, sessions, and rats. Blue line corresponds to LogIdPhi
value at the �rst choice point in the example lap shown in A, and the red line to the
example lap shown in B. Dashed line is the VTE/non-VTE threshold (see methods).
(D) LogIdPhi over the course of a session. Error bars indicate SEM. Stars indicate
laps for which LogIdPhi was signi�cantly greater than that of laps 51 and greater.
Data has been aggregated over rats (N = 357, the total number of sessions). Error
bars show SEM. Figure from Hasz and Redish (2018).
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Figure 2.5: Correlation between VTE at the �rst and second choice points. (A) Cor-
relation coe�cients per session for each rat individually. (B) Correlation coe�cients
per session pooled across rats. Figure from Hasz and Redish (2018).

ures 2.4B and 2.4C). The amount of VTE was greater at the beginning of a session

(Figure 2.4D). When comparing each lap to laps> 50, there was signi�cantly more

VTE at the �rst choice point for 8 of the �rst 10 laps. However, there was not signif-

icantly more VTE on laps 10-50 than on laps> 50 (Figure 2.4D, Wilcoxon rank sum

test, Bonferroni corrected for multiple comparisons, with pre-correction threshold of

p < 0:05).

2.3.3 VTE was correlated between within-lap decisions

The two-step task contains two left/right choice points within a single trial, which

enabled us to evaluate how deliberative behavior changed over the course of each trial.

We found that the amount of VTE at the �rst and second choice points on a given lap

were correlated (Figure 2.5, the median Spearman's correlation coe�cient between

LogIdPhi at the �rst and second choice points within a session was greater than 0,

two-sided Wilcoxon signed rank test,Nsessions = 357, p = 0:0337, median� = 0:0215),

although this correlation was very slight. Considered individually, 2 individual rats
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Rat Median � p

1 -0.0243 0.406
2 0.0430 0.0267
3 0.0834 0.00109
4 -0.0185 0.178
5 0.0216 0.661
6 0.0359 0.198
7 0.0270 0.982

Table 2.2: Spearman's correlations between VTE at choice point 1 and choice point
2 for each rat. Shown are the median correlation coe�cients (over sessions from that
rat) and the p-value of a Two-sided Wilcoxon signed rank test.

showed signi�cant positive correlations, while no rats showed signi�cant negative

correlations (Figure 2.5A and Table 2.2).

We also �t a mixed model to VTE at the two choice points, to determine if

there was a correlation between the amount of VTE at each choice point even while

accounting for rat- and session-speci�c di�erences in VTE. Speci�cally, the model

tried to predict zLogIdPhi (the z-scored LogIdPhi) at the second choice point from

zLogIdPhi at the �rst choice point on that same lap. The z-scored LogIdPhi was

simply z-scored across all rats, laps, and sessions for the �rst and second choice

points independently. These models included subject and session as random e�ects;

that is, they allowed levels of VTE to vary across subjects and sessions, but not in

a totally independent way. Our model included a �xed intercept, a �xed e�ect of

transition type on the current lap, a �xed e�ect of transition type on the previous

lap, a per-subject random e�ect, and a per-session random e�ect.

zLogIdPhi2;i � N (� 0 + � V T E � zLogIdPhi1;i + Rr + Ss; � e) (2.2)

whereR and S are the random e�ects coe�cients for rat and session, respectively.
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R � N (0; � r )

S � N (0; � s)
(2.3)

where

� zLogIdPhi2;i is the z-scored LogIdPhi value at the 2nd choice point on lapi ,

� zLogIdPhi1;i is the z-scored LogIdPhi value at the 1st choice point on lapi ,

� � 0 is the �xed intercept of the model (baseline LogIdPhi),

� � V T E is the standardized coe�cient (a parameter which captures the relation-

ship between the amount of VTE at the two choice points),

� Rr is rat r 's random e�ect (or adjustment coe�cient), which accounts for the

possibility that some rats have di�erent baseline levels of LogIdPhi,

� SS is sessions's random e�ect, which accounts for the possibility that rats have

di�erent baseline levels of LogIdPhi on di�erent sessions,

� � r and � s are the standard deviations of per-rat (R) and per-session (S) random

e�ects, respectively,

� � e is the standard deviation of the error, and

� N (�; � ) represents a normal distribution centered at� with standard deviation

� .

Using this mixed model, we found a signi�cant positive correlation between the

levels of VTE at the two choice points on single laps (Table 2.3). This suggests that

instead of deliberating at each single choice independently, rats may have entered a

deliberative mode for entire trials, where then each individual decision within that

trial was made using the deliberative system.
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Mixed Model of the correlation between VTE at the two choice points

Parameter 2:5% Estimate 97:5% t-statistic DF p

� 0.0570 0.0685 0.0801 11.7 26457 2:65� 10� 31

� r 0.129 0.225 0.392
� s 0.341 0.369 0.401
� � 0.896 0.904 0.912

Table 2.3: Mixed Model of the correlation between VTE at the two choice points

2.3.4 Path stereotypy increased over the course of the session

In contrast to vicarious trial and error, path stereotypy is a behavioral correlate of

procedural decision-making (Packard and McGaugh, 1996; Jog et al., 1999; Schmitzer-

Torbert and Redish, 2002; van der Meer et al., 2012; Smith and Graybiel, 2013;

Schmidt et al., 2013). To measure path stereotypy, we used the inverse of the mean

distance between the path on a given lap and all other paths during the same session

of the same type (LL, LR, RL, or RR), re-sampled in time (Schmitzer-Torbert and

Redish, 2002). This resulted in a value which was larger when paths were more

stereotyped (similar to the average path), and smaller for irregular paths through the

maze. When a lap was the only lap of its type in a session, we could not calculate

path stereotypy (with no similar paths for which to compute the mean distance),

and so we excluded such laps from our analysis. These laps made up a very small

proportion of the total data (0:66%).

The stereotypy of rats' paths also varied on our task (Figure 2.6). Unlike VTE,

there was a unimodal distribution of path stereotypy, where some laps were less

stereotyped (Figures 2.6A and 2.6C) and other laps were more stereotyped (Figures

2.6B and 2.6C). Also unlike VTE, path stereotypy increased steadily over the course

of a session, with 48 of the �rst 50 laps being signi�cantly less stereotyped than

laps greater than 50 (Figure 2.6D, Wilcoxon rank sum test, Bonferroni corrected for

multiple comparisons, with pre-correction threshold ofp < 0:05).
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Figure 2.6: Path stereotypy on the spatial two-step task. (A) An irregular, non-
stereotyped path, and (B) an example of a highly stereotyped path. The grey line is
rat body position over the whole session, and colored lines are the rat body position
on the example lap. (C) Distribution of negative log deviation from the average path
over all laps, sessions, and rats. Red line corresponds to the log deviation value of
the example lap shown in A, blue line to the example lap shown in B. (D) Negative
log deviation from the average path over the course of a session. Stars indicate laps
for which average path deviation was signi�cantly greater than that of laps 51 and
greater. Data has been aggregated over rats (N = 357, the total number of sessions).
Error bars show SEM. Figure from Hasz and Redish (2018).
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2.3.5 VTE and stereotypy were related to choice repeats

Previous rodent research has found that animals transition from displaying delibera-

tive behavior to stereotyped behavior over the course of a session, or with experience

on a task. If this shift towards stereotyped behavior is due to procedural learning,

then a decrease in deliberative behavior and a corresponding increase in stereotyped

behavior should also be apparent as a function of the number of repeated choices

an animal makes, and not only as a function of time within the session or training

regimen. For the two-step task, we de�ned a \repeated choice" to be when a rat made

the same choice at both the �rst and second choice points as on the previous lap.

We found that VTE at the �rst choice point was negatively correlated with the

number of repeated choices rats made on the two-step task (Figure 2.7A, E, and H;

the per-rat median Spearman's correlation coe�cient between LogIdPhi at the �rst

choice point and the number of choice repeats was less than 0, two-sided Wilcoxon

signed rank test,Nrats = 7, p = 0:0156, median� = � 0:205). On the other hand,

path stereotypy was positively correlated with the number of repeated choices (Figure

2.7D, G, and J; the per-rat median Spearman's correlation coe�cient between path

stereotypy and the number of choice repeats was greater than 0, two-sided Wilcoxon

signed rank test,Nrats = 7, p = 0:0156, median� = 0:274). We found no signi�cant

correlation between VTE at the second choice point and the number of choice repeats

(Figure 2.7B, F, and I; the per-rat median Spearman's correlation coe�cient between

LogIdPhi at the second choice point and the number of choice repeats was not signif-

icantly di�erent from 0, two-sided Wilcoxon signed rank test,Nrats = 7, p = 0:156,

median � = � 0:0730).
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Figure 2.7: VTE and Path Stereotypy as a function of the number of repeated
choices. Raw levels of VTE at the �rst (A) and second (B) choice points, the ratio
of laps on which rats showed VTE (C), and path stereotypy (D) as a function of
choice repeats. For A-D, error bars show mean +/- SEM withN = 7, the number
of rats. (E-F) Per-rat correlation coe�cients between the number of repeated choices
and VTE at the �rst choice point (E), second choice point (F), and path stereotypy
(G). (H-J) Per-session correlation coe�cients between the number of repeated choices
and VTE at the �rst choice point (H), second choice point (I), and path stereotypy
(J). Figure from Hasz and Redish (2018).

2.3.6 VTE at the second choice was related to transition type

However, the amount of VTE at the second choice point did change depending on

whether the transition on that lap was common or rare. We �t linear mixed models

for VTE at the �rst choice point, for VTE at the second choice point, and for path

stereotypy, with transition type (common or rare) on the current and previous laps

as �xed variables, and rat and session as random variables. These models included

subject and session as random e�ects; that is, they allowed levels of VTE or path

stereotypy to vary across subjects and sessions, but not in a totally independent way.
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Our model included a �xed intercept, a �xed e�ect of transition type on the current

lap, a �xed e�ect of transition type on the previous lap, a per-subject random e�ect,

and a per-session random e�ect.

Yi � N (� 0 + T ti + TP t i � 1 + Rr + Ss; � e) (2.4)

whereR and S are the random e�ects coe�cients for rat and session, respectively.

R � N (0; � r )

S � N (0; � s)
(2.5)

and

� Yi is the LogIdPhi value at the �rst choice point on lapi (or the LogIdPhi value

at the second choice point on lapi for the second choice point model, or the

path stereotypy value on lapi for the path stereotypy model) ,

� � 0 is the intercept of the model (baseline LogIdPhi or path stereotypy value),

� T is the parameter capturing the �xed e�ect of rare transitions on the current

lap,

� t i is an indicator variable which is 0 when there was a common transition on

lap i , and 1 when there was a rare transition on lapi ,

� TP is the parameter capturing the �xed e�ect of a rare transition on the previous

lap,

� t i � 1 is an indicator variable which is 0 when there was a common transition on

lap i � 1, and 1 when there was a rare transition on lapi � 1,
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Mixed Model for LogIdPhi at Choice Point 1

Parameter 2:5% Estimate 97:5% t-statistic DF p

� 0 3.979 4.168 4.357 43.28 26106< 10� 100

T -0.01987 0.009811 0.03949 0.6479 26106 0.517
TP -0.004464 0.02525 0.05496 1.666 26106 0.0958
� r 0.1424 0.2476 0.4307
� s 0.3734 0.4049 0.4390
� � 0.9622 0.9706 0.9790

Table 2.4: Mixed model of VTE at the �rst choice point, with transition type
on the current lap and previous lap as �xed e�ects, and rat and session as random
e�ects. The 2:5% column indicates the lower bound of the 95% con�dence interval,
and the 97:5% column indicates the upper bound of the 95% con�dence interval. DF
= degrees of freedom.

� Rr is rat r 's random e�ect (or adjustment coe�cient), which accounts for the

possibility that some rats have di�erent baseline levels of LogIdPhi or path

stereotypy,

� SS is sessions's random e�ect, which accounts for the possibility that rats have

di�erent baseline LogIdPhi or path stereotypy values on di�erent sessions,

� � r and � s are the standard deviations of per-rat (R) and per-session (S) random

e�ects, respectively,

� � e is the standard deviation of the error, and

� N (�; � ) represents a normal distribution centered at� with standard deviation

� .

Laps which were the �rst in a session were not used in this analysis, as the transi-

tion type of the previous (nonexistent) lap was unde�ned. The degrees of freedom in

the mixed model for path stereotypy were di�erent from the degrees of freedom in the

mixed models for VTE because on some laps path stereotypy could not be calculated
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Mixed Model for LogIdPhi at Choice Point 2

Parameter 2:5% Estimate 97:5% t-statistic DF p

� 0 3.696 3.726 3.756 243.8 26106< 10� 100

T 0.01528 0.02556 0.03584 4.874 26106 1:100� 10� 06

TP -0.009982 0.0003090 0.01060 0.05892 26106 0.9530
� r 0.01959 0.03678 0.06906
� s 0.1006 0.1095 0.1191
� � 0.3334 0.3363 0.3392

Table 2.5: Mixed model of VTE at the second choice by transition type

Mixed Model for Path Stereotypy

Parameter 2:5% Estimate 97:5% t-statistic DF p

� 0 0.04815 0.05263 0.05712 23.00 25965< 10� 100

T -0.001344 -0.0008540 -0.0003650 -3.420 25965 6:276� 10� 4

TP -0.001006 -0.0005160 -0.00002600 -2.064 25965 0.03900
� r 0.0033665 0.0058732 0.010247
� s 0.0095065 0.010264 0.011082
� � 0.015813 0.015951 0.01609

Table 2.6: Mixed model of path stereotypy by transition type

(when a lap was the only lap of that type in a session). Also the degrees of freedom in

the mixed models for VTE are di�erent here than for the mixed model used between

VTE at the two choice points, because this model does not include laps which were

the �rst in a session.

There was a signi�cant increase in the amount of VTE at the second choice point

following a rare transition (Table 2.5). VTE at the �rst choice point on the lap

following a transition did not signi�cantly di�er between common and rare transitions

(Table 2.4). Path stereotypy on a given lap, however, was signi�cantly decreased when

there was a rare transition either on that lap or on the preceding lap (Table 2.6).
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2.3.7 VTE at the �rst choice was driven by multiple factors

To determine what may have been driving VTE at the �rst choice point, we �t a

mixed model of VTE at the �rst choice point, with random e�ects of rat and session,

and with �xed e�ects of the transition on the previous lap, whether the rat repeated

its previous choice, and the delay on the previous lap. This model included subject

and session as random e�ects, a �xed intercept, a �xed e�ect of transition type on

the previous lap, a �xed e�ect of delay experienced on the previous lap, and a �xed

e�ect of choice repetition (whether the previous choice was repeated or not).

Yi � N (� 0 + TP t i � 1 + DP di � 1 + Cci + Rr + Ss; � e) (2.6)

whereR and S are the random e�ects coe�cients for rat and session, respectively.

R � N (0; � r )

S � N (0; � s)
(2.7)

where

� Yi is the LogIdPhi value at the �rst choice point on lap i

� � 0 is the intercept of the model (baseline LogIdPhi value),

� TP is the parameter capturing the �xed e�ect of a rare transition on the previous

lap,

� t i � 1 is an indicator variable which is 0 when there was a common transition on

lap i � 1, and 1 when there was a rare transition on lapi � 1,

� DP is the parameter capturing the �xed e�ect of the delay on the previous lap,

� di � 1 is the delay in seconds on lapi � 1,
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� C is the parameter capturing the �xed e�ect of choice repetition,

� ci in an indicator variable which is 0 when the rat did not repeat its choice on

lap i , and 1 when it did,

� Rr is rat r 's random e�ect (or adjustment coe�cient), which accounts for the

possibility that some rats have di�erent baseline levels of LogIdPhi or path

stereotypy,

� SS is sessions's random e�ect, which accounts for the possibility that rats have

di�erent baseline LogIdPhi or path stereotypy values on di�erent sessions,

� � r and � s are the standard deviations of per-rat (R) and per-session (S) random

e�ects, respectively,

� � e is the standard deviation of the error, and

� N (�; � ) represents a normal distribution centered at� with standard deviation

� .

We found that VTE at the �rst choice point was driven by a complex interaction

between these three factors (Table 2.7). Con�rming our previous results, there was

not a detectable main e�ect of the transition on the previous lap, and there was a

signi�cant negative correlation between VTE at the �rst choice point and repeated

choices. There was also a signi�cant positive correlation between delay on the previous

lap and VTE at the �rst choice point. Several of the interaction terms and the three-

way interaction were also signi�cant. Taken together, this suggests that VTE at the

�rst choice point re
ects a deliberative process, where the interaction between many

task variables are being taken into account, instead of simply being driven by a single

task variable such as transition.
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Mixed Model for LogIdPhi at Choice Point 1

Parameter 2:5% Estimate 97:5% t-statistic DF p

� 0 4.142 4.328 4.514 45.59 26110< 10� 100

TP -0.2222 -0.1086 0.005064 -1.873 26110 0.0611
C -0.5217 -0.4608 -0.3999 -14.83 26110 1:60� 10� 49

DP 0.002559 0.00567 0.00878 3.573 26110 0.000354
TP *C 0.08108 0.2126 0.3441 3.168 26110 0.00153

TP *DP -0.0007716 0.005783 0.01234 1.729 26110 0.0838
C*DP 0.008183 0.0119 0.01562 6.272 26110 3:62� 10� 10

TP *C*DP -0.02229 -0.01439 -0.006489 -3.57 26110 0.000358
� r 0.1358 0.2353 0.4077
� s 0.3282 0.3566 0.3874
� � 0.9514 0.9597 0.9678

Table 2.7: Mixed model of VTE at the �rst choice point. Transition type on the
previous lap, delay on the previous lap, and whether the rat repeated its choice
or not are �xed e�ects, and rat and session are random e�ects.A*B indicates an
interaction term betweenA and B. The 2:5% column indicates the lower bound of
the 95% con�dence interval, and the 97:5% column indicates the upper bound of the
95% con�dence interval. DF = degrees of freedom.

These results indicate that VTE at the �rst and second choice points may have

been partially driven by di�erent factors. VTE at the �rst choice point occurred more

often when rats had just switched to a new choice pattern and interactions between

task variables, but was not detectably a�ected by the transition on the previous lap

alone. On the other hand, VTE at the second choice point occurred more often

after an unexpected transition, but was not detectably a�ected by choice repetitions.

We hypothesize that VTE at the �rst choice point arises more as a result of some

deliberative process, which in theory also decreases with the number of repeated

choices. Conversely, we hypothesize that VTE at the second choice point, when not

being driven by a deliberative mode, arises more as a result of the interruption of

a procedural process, which may lead to deliberation, because it is in
uenced more

strongly by unexpected transitions in the middle of a lap than by a change in choice

patterns.

43



The correlation between VTE at the two choice points may seem inconsistent with

our interpretation that VTE at the second choice point is driven by an interruption

of a procedural process. However, we do not believe that VTE at the second choice

point is being driven entirely by such interruptions. Rather, we would hypothesize

that VTE at the second choice point likely co-occurs with VTE at the �rst choice

point when rats are in a deliberative mode, and that VTE at the second choice point

is only primarily driven by rare transitions when rats are in a procedural mode and

the unexpected transition interrupts their stereotyped behavior.

2.4 Rats Display a Mix of Model-based and

Model-free Decision-Making

Do rat choices on the two-step task re
ect in
uences of model-based and model-

free decision making algorithms? First, we'll explain in detail how these algorithms

actually work. Then, we'll compare the behavior of simulations of model-based and

model-free agents on the two-step task to choice patterns of the rats. Finally, we'll �t

these reinforcement learning algorithms to rat behavior in order to determine what

kinds of models best explain rat behavior on the two step task.

Each algorithm computed the expected value (orQ-value) of taking an actiona,

in any given state, s. Our model of the two-step task included only two possible

actions in any state (\go left" or \go right"), and only three states: the �rst choice

point (C1, a choice between A and B), and the two possible second choice points (C2,

a choice between C and D; and C3, a choice between E and F, see diagram in Figure

2.2).

The next 3 subsections explain how each algorithm computes the expected value
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(or Q-value) of taking an action a, in any given state, s. The section after that

describes how the likelihood is computed for each algorithm from that algorithm's

Q-values. This \likelihood" is the probability that the algorithm, with a given set of

values for its parameters, would make the same choices we observed the rats make

on the two-step task. Then, we compare simulations of these agents to rat behavior

on the two-step task, and use Bayesian inference and model comparison to determine

which model is most likely to explain rat behavior.

2.4.1 The model-free algorithm

For the model-free algorithm, we used the SARSA(� ) temporal di�erence learning

algorithm (Rummery and Niranjan, 1994), as was used in Daw et al. (2011). This

algorithm learns the expected value (QMF ) of taking a given actiona, in any given

state s, by updating the Q values according to the delta rule:

QMF (si;t ; ai;t ) = QMF (si;t ; ai;t ) + � i � i;t (2.8)

where si;t is the state on trial t at stage i , and ai;t is the action taken in that state

on that trial. � i is the learning rate for stagei . There were only two stages on the

two-step task: decisions at the �rst stage (C1) used� 1, and decisions at the second

stage (C2 or C3, see Figure 2.2) used� 2. The reward prediction error, � i;t , was the

di�erence between expected and experienced reward on trialt at stagei :

� i;t = r i;t + QMF (si +1 ;t ; ai +1 ;t ) � QMF (si;t ; ai;t ) (2.9)

where r i;t is the reward experienced at stagei of trial t. For the �rst stage reward,

we de�ned r1;t = 0, because rats did not receive reward between the �rst and second

45



choice points. For the second stage rewards, we de�ned the reward as the opposite of

the cost:

r2;t = dmax � d2;t (2.10)

wheredmax is the maximum possible delay to food on our task (30 seconds), andd2;t

is the delay experienced on trialt (and explicit delays only occurred after a choice at

stage 2). This assumes that rats are aware of the maximum delay, which we believe

is a valid assumption, because rats were trained extensively on the task before the

experiment began. We also de�ned a third \virtual" state, whereQMF (s3;t ; a3;t ) = 0,

because there is no further reward in a trial following food delivery. The algorithm

updates the �rst-stage state-action value based on the eligibility trace parameter and

second-stage reward prediction error at the end of each trial:

QMF (s1;t ; a1;t ) = QMF (s1;t ; a1;t ) + � 1�� 2;t (2.11)

Note that with the SARSA algorithm the update for QMF (s1;t ; a1;t ) occurs twice

per trial: once after the �rst-stage choice (where the� 1 learning rate is used), and

again after the end of the trial according to the eligibility trace parameter,� (where

a learning rate of (� 1� ) is used, as in equation 2.11.

2.4.2 The model-based algorithm

The model-based algorithm updates the state-action values of the second-stage states

( Q(a2;t ; s2;t ) ) in exactly the same way as the model-free system. However for the

�rst-stage state action values, instead of updating them according to the delta rule,

the model-based algorithm takes into account the transition probabilities and the best
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option at either second stage, and computes the �rst-stage action values at decision

time by:

QMB (sA ; at ) = p(sB jsA ; at ) maxa02f aA ;aB g QMF (sB ; a0)

+ p(sC jsA ; at ) maxa02f aA ;aB g QMF (sC ; a0)
(2.12)

where sA is the �rst-stage state, sB is one of the two second-stage states,sC is

the other second-stage state, andat is an action taken at the �rst stage of trial t.

p(sX jsY ; at ) is the transition probability from state sY to sX after taking action at at

sY . Because the rats were trained on the two-step task for over three weeks before we

started collecting the data to which these models were �t, we assumed the rats had

learned the transition probabilities by the end of training, and so our model did not

include the learning of the transition probabilities. Thereforep(sX jsY ; at ) was set to

either 0:8 for a common transition or 0:2 for a rare transition.

2.4.3 The constant-weight hybrid algorithm

This algorithm values actions according to some constant weight between the model-

based and model-free algorithm values. Essentially, the constant-weight hybrid algo-

rithm \runs" both the model-free and model-based algorithms simultaneously, and

then computes the value (QCW ) of taking some actiona in some states as the weighted

average between the state-action values of the model-free and model-based systems:

QCW (s; a) = wQMB (s; a) + (1 � w)QMF (s; a) (2.13)

where w is a free parameter which determines the weighting between the model-

based and model-free systems. Ifw = 1 then the algorithm is purely model-based,

and if w = 0 then the algorithm is purely model-free. The model-based and model-
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free algorithms within the constant-weight hybrid algorithm are assumed to share

parameters, as in Daw et al. (2011).

However, note that this assumption may not actually be true: for example, the

procedural system is thought to have a far slower learning rate than the deliberative

system. It would be interesting for further work to examine if more complex models

which allow the two systems to have independent parameters better explain rat or

human behavior. Here, however, we stick to the parameter-sharing version of the

constant weight model, in order to most closely match the models used in Daw et al.

(2011).

2.4.4 Computing the likelihood of each algorithm

To transform each algorithm's valuations of di�erent state-action pairs (each algo-

rithm's Q-values) into probabilities that the algorithm would make the same choice

as the rats did at stagei of trial t (we denote this probability by p(ai;t = ajsi;t )), we

used a softmax for each algorithm, in the same way as in Daw et al. (2011):

p(ai;t = ajsi;t ) =
exp(� i [Q(si;t ; a) + p � rep(a)])

P
a0 exp(� i [Q(si;t ; a0) + p � rep(a0)])

(2.14)

where� i is an inverse temperature parameter that controls how stochastic the models'

choices are at each choice point, and the sum in the denominator sums over all

available actions,a0. As � i ! 0, the choices become purely random, and as� i ! 1 ,

the probability of choosing the action with the largestQ value approaches 1. We used

independent� i parameters for each stage of the task, and thei index of � i corresponds

to the stage. There were only two stages on the two-step task. Decisions at the �rst

stage (C1) used� 1, and decisions at the second stage (C2 or C3, see Figure 2.2) used

� 2.
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The p parameter accounts for an inclination to repeat the same action taken on

the last lap (p > 0), or to switch to the opposite action (p < 0), regardless of expected

action values.rep(a) was a function which evaluated to 1 if the rat repeated its action,

that is, performed action a at that stage on the previous lap (stagei , trial t � 1),

and 0 if it chose a di�erent action. Therefore if thep parameter was positive, the

algorithm was more likely to repeat the previous choice, and if it was negative, the

algorithm was more likely to switch (choose the opposite choice from the previous

trial). The purpose of this p parameter was to capture perseveration behavior.

We initialized all Q values to the mean reward value at the beginning of each

session. The log likelihood of observing rat choices across allNs sessions given an

algorithm was then computed by summing the log likelihood of each choice for each

stage, lap, session, and rat:

log(p(dataj� )) =
NdX

d=1

N tX

t=1

N iX

i =1

log (p(ai;t = ajsi;t )) (2.15)

where� is the set of all parameters for a given algorithm,N i is the number of choice

stages in each trialt (for our task this is always 2: the �rst choice point, C1, and the

second choice point, C2 or C3, see Figure 2.2),N t is the number of trials in a given

session (or \day") d, and Nd is the total number of sessions across all rats.

2.4.5 Rat behavior compared to algorithm simulations

We ran simulations of model-free and model-based agents on the two step task, and

compared the choice patterns of the simulated agents to those of the rats. The

model-free and model-based simulations were generated by 10,000 simulated sessions

of model-free or model-based agents with 74 trials per session (the average number

of trials per session run by the rats). Parameters used for the simulations were
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� 1; � 2 = 0:5; � 1; � 2 = 3; p = 0:3; � = 0 for both the model-free and model-based

agents.

On the two-step task, our simulated model-free agents were more likely to repeat

�rst-stage choices which led to low-delay (low-cost) rewards than those which led to

high-delay (high-cost) rewards, even if this reward occurred after a rare transition

(Figure 2.8A). However, model-based agents were more likely to show the opposite

pattern after rare transitions { that is, they are less likely to repeat �rst-stage choices

which led to low-cost rewards than those which led to high-cost rewards after rare

transitions (Figure 2.8B). The choice patterns of rats on the two-step task appeared

neither purely model-based nor purely model-free, suggesting a mix of model-based

and model-free behavior (Figure 2.8C), consistent with behavior seen in human sub-

jects (Gl•ascher et al., 2010; Daw et al., 2011).

2.4.6 Bayesian reinforcement learning model �ts

To more rigorously evaluate model-based or model-free in
uences on rat choices, we

�t model-based and model-free algorithms to rat choices on the two-step task. We also

considered the constant-weight hybrid algorithm where choices were made according

to some �xed weight between model-based and model-free in
uence. Speci�cally, we

performed Bayesian inference with these models using Markov chain Monte Carlo

(MCMC) in Stan (Carpenter et al., 2017), and the Python programming language

interface to Stan, PyStan (Stan Development Team, 2017), to generate model param-

eter posterior distributions so that we could perform model comparison and inference

of the parameter values (Kruschke, 2014). Stan is a platform for Bayesian statisti-

cal modeling (http://mc-stan.org ), in which models can be written using a simple

modeling language, and Stan performs MCMC sampling resulting in model and pa-

50



Figure 2.8: First-stage choice repetition by delay for (A) model-free and (B) model-
based reinforcement learning simulations. Data has been aggregated over simulated
sessions. Error bars were omitted from A and B because SEM of the simulations
was negligible. (C) Rats show features of both model-based and model-free behavior.
Data has been aggregated over rats and sessions. Error bars show SEM withN =
the total number of laps with a given delay. Figure from Hasz and Redish (2018).
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rameter posterior probabilities. This allowed us to perform Bayesian inference as to

the values of model parameters, and model comparison using DIC scores.

We used vaguely informative priors for the Bayesian �ts in Stan. Across all models,

the priors used were:

Parameter Prior
� 1 Beta distribution with � = 1:2; � = 1:2
� 2 Beta distribution with � = 1:2; � = 1:2
� Beta distribution with � = 1:2; � = 1:2
� 1 Exponential distribution with � = 0:5
� 2 Exponential distribution with � = 0:5
p Normal distribution with � = 0; � = 10
w Beta distribution with � = 1:2; � = 1:2

Table 2.8: Priors used for reinforcement learning models

Each algorithm was �t in PyStan with 5 chains per algorithm, and 10,000 itera-

tions per chain (5000 warm-up and 5000 sampling). Chains which took longer than 96

hours to run were aborted and re-started. We used pooled (non-hierarchical) models,

such that the same parameter was used for each rat.

Note that each of the three models had a unique number of parameters, with the

constant-weight algorithm having the most:

Algorithm Number of Parameters List of parameters
Model-free 6 � 1; � 2; �; � 1; � 2; and p
Model-based 4 � 2; � 1; � 2; and p
Constant-weight 7 � 1; � 2; �; � 1; � 2; p; and w

Table 2.9: Number of parameters per reinforcement learning model

Using naive model comparison methods, like comparing model likelihoods, could

cause models with more parameters to be deemed more likely due to over�tting.

Therefore, we used Deviance Information Criterion (DIC) scores to select the most

likely of these three algorithms (Spiegelhalter et al., 2002). DIC allows a more fair
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comparison of models with di�erent numbers of parameters by penalizing models

which have a higher e�ective number of parameters. It is also well-suited for use with

models whose posterior distributions have been computed via MCMC, which is the

method we used. Given MCMC samples of parameter values� (a vector of parameter

values), we compute the DIC score by:

DIC = D( �� ) + 2 pD (2.16)

where the e�ective number of parameters (pD ) is computed by:

pD = �D � D( �� ) (2.17)

�D is the average of the deviance,D(� ), over all the MCMC samples of� :

�D =
1

Nsamples

N samplesX

i =1

D(� i ) (2.18)

D( �� ) is the deviance evaluated at the average of the MCMC samples of� :

D( �� ) = D

0

@ 1
Nsamples

N samplesX

i =1

� i

1

A (2.19)

and the deviance is computed by:

D(� ) = � 2 log(p(dataj� )) (2.20)

where log(p(dataj� i )) is the algorithm likelihood, as computed above (in section

2.4.4), given parameters� for a MCMC sample. The deviance is technically

D(� ) = � 2 log(p(dataj� )) + C, but C is a constant which cancels out when com-

paring di�erent models. Algorithms are compared based on their DIC scores, where
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models with lower DIC scores are more likely to explain the data. Di�erences in DIC

scores greater than 7 suggest the algorithm with the higher DIC score has \consider-

ably less support" (Spiegelhalter et al., 2002) than the algorithm with the lower DIC

score.

The purely model-based algorithm was more likely than the purely model-free

algorithm to explain rat choices on the two-step task (DIC score di�erence of 94,

Tables 2.10, 2.11, and 2.13). In tables 2.10-2.13, MAP: maximum a posteriori param-

eter estimate; Mean: mean of the MCMC samples for that parameter; Std: standard

deviation of the MCMC samples for that parameter; DIC score: deviance informa-

tion criterion for that model; Log Post.: mean log posterior probability. However,

the constant-weight hybrid algorithm was more likely than the purely model-based

algorithm to explain rat choices on the two-step task (DIC score di�erence of 69,

Tables 2.11, 2.12, and 2.13). The fact that the constant-weight hybrid algorithm

had a far lower DIC score suggests that rat choices on the two-step task were driven

by some combination of model-based and model-free decision making, and were not

driven by either the model-based or model-free system alone. This is consistent with

many human studies which �nd that human choices on the two-step task display

both model-based and model-free in
uences (Gl•ascher et al., 2010; Daw et al., 2011;

Wunderlich et al., 2012; Otto et al., 2013b,a; Doll et al., 2016).

2.4.7 Discussion

Our �ndings are consistent with previous work in humans which �nds that hybrid

algorithms are more likely to explain behavior than model-based algorithms alone,

and that the weights in these hybrid algorithms favor model-free decision-making

(Daw et al., 2011; Voon et al., 2015), though see Simon and Daw (2011) and Gillan
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Model-free

Parameter MAP Mean Std

� 1 0.0710 0.0739 0.0120
� 2 0.00165 0.00170 0.000551
� 1 3.44 3.73 1.20
� 2 3.64 3.93 1.28
p 0.380 0.387 0.120
� 0.00200 0.00171 0.00140

DIC score: 51515 Log Post.: -25832

Table 2.10: Model-free algorithm �t to rat behavior

Model-based

Parameter MAP Mean Std

� 2 0.000933 0.000920 0.000240
� 1 7.29 7.87 1.98
� 2 6.39 6.90 1.74
p 0.177 0.174 0.0451

DIC score: 51421 Log Post.: -25741

Table 2.11: Model-free algorithm �t to rat behavior

et al. (2015). However, some work in rodents on the two-step task �nds that ro-

dent choices are primarily, but not necessarily exclusively, model-based or \planning-

driven" (Miller et al., 2013; Akam et al., 2013; Miller et al., 2014, 2017). This dis-

crepancy could have been caused by any of several factors, but we suspect di�erences

in how we implemented the two-step task for rodents was the main contributor.

There were some speci�c di�erences between our version of the two-step task and

that used by others. Unlike the human version of the two-step task (Daw et al., 2011)

and other rodent adaptations (Miller et al., 2017), we used delay to reward delivery

as the cost, instead of the probability of reward delivery. We also implemented the

full version of the two-step task, with costs which changed according to a random

walk, and no second stage choice cue. The more simpli�ed version used in rodents

by Miller et al. (2017) had costs which switched between blocks of trials but stayed
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Constant Weight

Parameter MAP Mean Std

� 1 0.0371 0.0360 0.0196
� 2 0.00121 0.00129 0.000360
� 1 6.16 6.55 1.84
� 2 4.96 5.01 1.38
p 0.207 0.211 0.0593
� 0.00144 0.00190 0.00207
w 0.675 0.647 0.0795

DIC score: 51352 Log Post.: -25735

Table 2.12: Constant-weight algorithm �t to rat behavior

Relative DIC scores

Model Constant Weight < Model Based < Model Free
DIC di�erence (most likely) 69 94 (least likely)

Table 2.13: DIC scores between reinforcement learning algorithms

constant throughout a block, and had a cued second stage choice.

We found that reinforcement learning models were di�cult to �t to rat choices

on our task. The number of MCMC iterations required to obtain �ts whose chains

converged was extremely high (� 10; 000), and attempting to �t multilevel models

(models with rat as a mixed e�ect) only aggravated this problem. Furthermore, the �t

learning rates of our reinforcement learning models were suspiciously low (see Tables

2.10 and 2.11). We suspect that the complexity of our version of the two-step task

for rodents, along with the use of delay to reward delivery as the cost, prevented the

rats from learning the task well enough to employ solely the model-based system, and

so relied also on the model-free system in order to make choices on the task. This

may explain why we found that a mix of model-based and model-free strategies best

explained rat choices on our task.

We also noticed that some rats preferred certain feeders over multiple days, re-

gardless of delay (data not shown here). It could be that Pavlovian decision-making
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or place preferences also played a role in some rats' choices. This might explain in

part the relatively low values of the �t second-stage learning rates (see Tables 2.10

and 2.11). In the current analysis, we chose not to model side biases in order to

limit our models to the simplest set of model features which were able to capture

model-based vs. model-free choices. However, it would be informative in future work

to investigate and model the in
uences of other decision-making systems in addition

to only the model-based and model-free systems.

Hierarchical learning, or \chunking" of action sequences, is thought to occur when

multiple actions are chained together and are able to be released as a single action.

While action chains are usually thought to be driven by a model-free system, some

work suggests that model-based systems are capable of initiating action chains which

may appear driven by procedural learning (Dezfouli and Balleine, 2012, 2013; Dez-

fouli et al., 2014). In future work, it would be interesting to investigate if and how

the e�ects of hierarchical learning on the two-step task a�ect (or are a�ected by)

arbitration between systems.

Our task used the same two physical locations for the four second-stage end states.

Although the task included auditory and visual cues, some rats may have confused

the two second-stage end states which shared the same location (for example they

may have confused E and C, or D and F, see Figure 2.2B). This may have caused

some \bleeding" between the expected values of state-action pairs which led to those

states. Any confusion of states in this way would have been an error in situation

recognition, and would not necessarily have been occurring in the model-based or

model-free systems themselves. Situation recognition is thought to be carried out

by a separate system, one not intrinsic to the model-based or model-free systems

themselves (Redish et al., 2007; Fuhs and Touretzky, 2007; Gershman et al., 2015).

Therefore, any confusion between states would presumably a�ect both the model-
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based and model-free systems equally. For this reason we decided not to model any

bleeding of state-action values because we were interested only in di�erences between

the model-based and model-free systems.

We adapted the two-step decision task from Daw et al. (2011) for rats in order

to study behavioral correlates of model-free and model-based decision-making, but

another main advantage of a spatial version of the task is that it can also be used to

study neural correlates of model-free and model-based decision-making using electro-

physiological techniques in the rodent brain. Representation of state-action pairs and

\task-bracketing" in dorsolateral striatum have been hypothesized to initiate action

sequences which have been learned procedurally (Jog et al., 1999; Frank, 2011; Regier

et al., 2015b). On the other hand, model-based neural activity has been observed in

a variety of brain areas including hippocampus, ventral striatum, orbitofrontal cor-

tex, prefrontal cortex, and dorsomedial striatum (Johnson and Redish, 2007; van der

Meer et al., 2012; Daw and Dayan, 2014; Wikenheiser and Redish, 2015; Brown et al.,

2016), and inactivating the dorsal hippocampus in rats impairs model-based decisions

(Miller et al., 2017). The current behavioral analysis assumes that either the model-

based or model-free system is used to make a decision, but it would be informative

to record from the neural structures implicated in procedural learning and those in-

volved in deliberation in rats as they run the two-step task to determine if and how

the two systems operate concurrently. That said, this spatial version of the task was

di�cult for rats to learn, and further work is required to create a spatial version of

the task for rodents which enables both the collection of a large number of trials per

session, and allows animals to better learn the task.

Also, Akam et al. (2015) suggest that certain model-free strategies can appear to

generate model-based choices on the two-step task. Therefore, if these systems may

not be able to be conclusively dissociated based purely on choice patterns, it will
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be important for further work to investigate neural activity in brain areas thought

to drive model-based or model-free decision making in order to truly disentangle the

contribution of each system.

By adapting for rats a decision task which is made up of multi-choice trials, we were

able to investigate how rats used model-free and model-based choice strategies on the

task, along with how the transition from deliberation to procedural automation occurs

over the course of single trials, and over the course of sequences of repeated choices.

We found that a mixture of model-based and model-free choice strategies was more

likely to explain rats' choices on this task than either strategy alone. Furthermore, we

found that vicarious trial and error at the two choices within a trial were correlated,

which suggests that rats entered deliberative or procedural modes for whole laps.

Also, vicarious trial and error at the �rst choice in a trial corresponded to a complex

interaction between task variables and the number of repeated choices, suggesting a

deliberative process. Conversely, we found that vicarious trial and error at the second

choice in a trial corresponded to unexpected transitions, suggesting it was driven by

interruptions in a procedural process which triggered deliberation.

2.5 Uncertainty-based Arbitration between Deci-

sion Making Systems

In the previous section we identi�ed that a mixture of model-based and model-free

in
uences appear to drive rat decisions on the two-step task. However, presumably

this weighting is not constant. If the hypothesis is correct that deliberation is driven

by a model-based mechanism, and procedural behavior by a model-free mechanism,

then we would expect that sometimes the model-free system is primarily in control,
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while at other times the model-based system is primarily in control. This is because

rats often display more deliberative behavior early in training (Figure 2.4D) or before

making many repeated identical choices (Figure 2.7A), while they display more pro-

cedural behavior with extensive experience on a task (Figure 2.6D) or after making

many repeated identical choices (Figure 2.7D).

But what drives this change in control? How are multiple decision-making sys-

tems within the brain arbitrated between? The animal is only a single agent which

obviously is only able to make one single coherent action, so how does the brain

decide which of the decision making systems to use, or if each come to a decision

independently, how does the brain combine their decisions into a single action plan?

Daw et al. (2005) hypothesize that uncertainty in each system is what decides

which system is used. That is, they propose that the system which is more con�dent

in its decision has more control over the animal's or agent's action. In that work,

the authors use approximate Bayesian versions of the model-based and model-free

reinforcement learning algorithms discussed in section 2.4. These algorithms capture

in their estimate of the value of taking a given action in a given state (theQ-values)

by representing the Q values as probability distributions, instead of point values as

in the previously discussed versions of the algorithms. The uncertainty of a given

system at any moment in time is the variance of the distribution representing the

expected reward associated with the state-action pair being experienced.

However, this form of uncertainty may not be the only type of uncertainty that

is relevant for a decision-making system. The 
avor of uncertainty captured by the

models used by Daw et al. (2005) express only the uncertainty as to the amount of

reward expected from the action which was actually taken by the agent. However,

another type of uncertainty would capture the di�erence in the mean expected rewards

obtained from competing actions. A third type of uncertainty would capture both the
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di�erence between the mean expected rewards and the variance associated with those

estimates. We designed versions of the Bayesian reinforcement learning algorithms

which use each of these three types of uncertainty to arbitrate between the model-

based and model-free decision making systems.

To elucidate the extent to which model-free and model-based uncertainty predicts

which system is used to make a decision, and which type of uncertainty (if any) is

most important for arbitration, we �t uncertainty-dependent versions of the rein-

forcement learning algorithms which used di�erent forms of uncertainty to weight the

contributions of the model-based and model-free systems on a decision-by-decision

basis.

2.5.1 Bayesian reinforcement learning algorithms

We simulated the approximate Bayesian versions of model-based and model-free re-

inforcement learning algorithms from Daw et al. (2005), given the same experiences

as the rats, in order to compute the uncertainty within each algorithm at each of

the rats' decisions. Importantly, the models used to estimate uncertainty { the ap-

proximate Bayesian models from Daw et al. (2005) { were separate from the models

which were being arbitrated between (the non-Bayesian model-based and model-free

reinforcement learning algorithms, discussed in section 2.4). That is, the \uncertainty-

dependent algorithm" used the uncertainty of the approximate Bayesian models to

determine which of the non-Bayesian algorithms to use to make a choice. We did this

so that we could compute uncertainty in as similar a way as possible to the method

used in Daw et al. (2005).

We converted the delay to a \reward" value between 0 and 1 in order to match

the range of reward values in Daw et al. (2005). We assumed that by the time the
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experiment began (after> 8 days of training), the rats had learned the maximum

(dmax ) and minimum (0) reward delays, and therefore felt it was valid to convert

the delay to a value between 0 and 1. For the approximate Bayesian versions of

the reinforcement learning models, we calculated reward,R, such that a reward of

1 corresponded to the lowest possible delay and a reward of 0 corresponded to the

highest possible delay:

R =
dmax � delay

dmax
(2.21)

The value of each state-action pair was modeled by a beta distribution, which

represents the probability that the reward of a state-action pair takes the valueR,

R � Beta(�; � ) (2.22)

where � and � are the two shape parameters of the beta distribution. Note that

the � and � here refer to the two shape parameters of a beta distribution {not to

the reinforcement learning rate parameters (� 1 and � 2) or the inverse temperature

parameters (� 1 and � 2) as in other sections.

Importantly, we use the quanti�cation of uncertainty from Daw et al. (2005), which

uses a beta distribution to model the underlying probability of binary outcomes. The

outcomes in our task are not binary, but continuous (delay in seconds). In order

to stay as close to the quanti�cation of uncertainty used in Daw et al. (2005), we

normalized the continuous-valued delays between 0 and 1 (see above), such that we

could use the same quanti�cation of uncertainty as used in Daw et al. (2005).
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2.5.2 Bayesian model-free algorithm

For each state-action pair's beta distribution, we used a prior of�; � = 1. That is,

at the beginning of each session, we initialized�; � = 1 for each state-action pair.

This resulted in a uniform distribution between 0 and 1. This di�ered from Daw

et al. (2005), who used a prior of�; � = 0:1. The prior of 0:1 is used in Daw et al.

(2005) because it yields a beta distribution with highest density around 0 and 1, and

the authors argue that agents probably initially assume that the result of an action

is that there either is reward or there isn't. This makes sense for their task because

they use probabilistic rewards: for their subjects, there always is a reward or there

isn't. However our task is di�erent in two ways: �rst, we use non-binary rewards

(delay), and second, rats have been trained on our task for 8 days before beginning

the experiment, instead of experiencing an experimental session only once, as is often

done with human subjects. Delays are initialized randomly at the beginning of each

session, so after training the rats should be at least somewhat aware that there is a

uniform probability of delay at the start of the task. That is, no one delay is more

likely than any other. Therefore, we initialize�; � = 1 because this results in a beta

distribution which is uniform between 0 and 1.

Upon reward delivery, the parameters (� and � ) of the beta distribution for the

experienced second-stage state-action pair were updated with:

� MF
s0;a0 = � MF

s0;a0 + R (2.23)

� MF
s0;a0 = � MF

s0;a0 + (1 � R) (2.24)

where (s0; a0) is the state-action pair that was experienced at the second stage (sos0
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is either C2 or C3), andR is the amount of reward experienced after taking actiona0

in state s0 (a value between between 0 and 1, see de�nition above).

The shape parameters of the beta distribution for the experienced �rst-stage state-

action pair were then updated using the mean of the distribution for the experienced

second-stage state-action pair,

� MF
C1;a = � MF

C1;a + � MF
s0;a0 (2.25)

� MF
C1;a = � MF

C1;a + (1 � � MF
s0;a0) (2.26)

where (s0; a0) is the state-action pair that was experienced at the second stage, (C1; a)

is the state-action pair that was experienced at the �rst stage (at choice C1), and

� MF
s0;a0 =

� MF
s0;a0

� MF
s0;a0 + � MF

s0;a0

(2.27)

The mean and variance of a model-free 1st-stage distribution was then

� MF
C1;a =

� MF
C1;a

� MF
C1;a + � MF

C1;a
(2.28)

(� 2)MF
C1;a =

� MF
C1;a� MF

C1;a

(� MF
C1;a + � MF

C1;a)2(� MF
C1;a + � MF

C1;a + 1)
(2.29)

As in Daw et al. (2005), we use a decay factor (
 ) which causes the state-action

beta distributions to decay toward their priors each timestep. At the end of each

trial, we decay each state-action distribution shape parameters by

� MF = � MF � 
 (� MF � (� MF )0) (2.30)
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and

� MF = � MF � 
 (� MF � (� MF )0) (2.31)

where (� MF )0 and (� MF )0 are the priors on the� MF and � MF parameters, respec-

tively (1 for both, for all state-action pairs). We use a decay factor of
 = 0:02, as

was used by Daw et al. (2005). This decay approximates a learning rate, in that in-

formation learned further in the past is weighted less than information learned more

recently.

2.5.3 Bayesian model-based algorithm

The model-based Bayesian reinforcement learning algorithm is similar to the model-

free Bayesian reinforcement learning algorithm except it takes transition probabilities

into account, in order to compute online the probability of reward for �rst-stage state-

action pairs. As with the model-free Bayesian reinforcement learning algorithm, we

used a prior of�; � = 1 for each state-action pair's beta distribution. For second-stage

state-action distributions, the model-based state-action distributions were modeled

in the same way as in the model-free algorithm. That is, upon reward delivery, the

distribution for the experienced second-stage state-action pair was updated with:

� MB
s0;a0 = � MB

s0;a0 + R (2.32)

and

� MB
s0;a0 = � MB

s0;a0 + (1 � R) (2.33)

In Daw et al. (2005), a Dirichlet distribution was used to model state transition
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probabilities, but we made the simplifying assumption that the rats had learned the

transition probabilities during training phase 3. So, we modeled the �rst-stage model-

based state-action beta distributions by

� MB
C1;a =

X

i 2f C2;C3g

p(C1 ! i ja) � MB
i;a max

(2.34)

� MB
C1;a =

X

i 2f C2;C3g

p(C1 ! i ja) � MB
i;a max

(2.35)

where stateC1 is the �rst-stage state, andC2 andC3 are the two second-stage states,

and p(C1 ! i ja) is the probability that performing action a at the �rst-stage state

leads to statei (where i is either C2 or C3). As with the non-Bayesian version of the

model-based algorithm, we assumed the rats had learned the transition probabilities

by the end of training, and so we setp(C1 ! i ja) to either 0:8 for common transitions

or 0:2 for rare transitions. amax denotes the apparently best action in the given

second-stage state (the action with the highest mean expected reward),

amax = argmaxx2f L;R g� MB
i;x (2.36)

The mean and variance of a model-based �rst-stage distribution was then

� MB
C1;a =

� MB
C1;a

� MB
C1;a + � MB

C1;a
(2.37)

(� 2)MB
C1;a =

� MB
C1;a� MB

C1;a

(� MB
C1;a + � MB

C1;a)2(� MB
C1;a + � MB

C1;a + 1)
(2.38)

We decayed the model-based Bayesian reinforcement learning algorithm's state-

action distributions toward their priors in exactly the same way as in the model-free
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Bayesian reinforcement learning algorithm (Eqs. 2.30 and 2.31), again using
 = 0:02,

as was used by Daw et al. (2005).

We did not use a step penalty parameter, although it was used in Daw et al.

(2005), because our task had only two stages, and so a state was never more than one

action removed from a terminal state. This parameter was used in Daw et al. (2005)

to penalize the variance of state-action pair beta distributions which had non-terminal

successor states (those which led to states which were not the end of a trial).

2.5.4 Value Uncertainty

To quantify uncertainty, Daw et al. (2005) used the variance of the beta distribution

representing �rst-stage state-action pair reward values (Figure 2.9A). We refer to this

type of uncertainty as \value uncertainty," because it refers to uncertainty as to the

value of a speci�c state-action pair. So, the value uncertainty of the model-free system

on lap i (before making the �rst-stage decision on that lap) was

uMF
value (i ) = ( � 2)MF

C1;a(i ) (2.39)

and the value uncertainty of the model-based system on lapi was

uMB
value (i ) = ( � 2)MB

C1;a(i ) (2.40)

where the actiona is the action the rat took at the 1st-stage choice on lapi .

2.5.5 Action Uncertainty

However, another conceivable way of formulating uncertainty would be to use the

uncertainty as to which action to take. That is, uncertainty as to what action in
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Figure 2.9: Three di�erent types of uncertainty. (A) Value uncertainty, which
includes only the uncertainty as to the value estimate of the chosen option. (B)
Action uncertainty, which captures only the uncertainty as to which choice has the
highest expected value. (C) Decision uncertainty, which captures both mean and
variance di�erences in reward between potential options.

a given state has the highest expected reward (Figure 2.9B). We refer to this type

of uncertainty as \action uncertainty," because it refers to uncertainty as to which

action has the highest expected reward, instead of to the uncertainty as to the value

of a speci�c state-action pair. To quantify action uncertainty, we used the entropy

between the means of the beta distributions representing the expected reward of

available actions in a given state. In the two-step task, there were only two actions

ever available in any state (left or right). So, the action uncertainty of the model-free

system on lapi was
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uMF
action (i ) = H([ � MF

C1;L ; � MF
C1;R ]) = � � MF

C1;L log2 � MF
C1;L � � MF

C1;R log2 � MF
C1;R (2.41)

and the action uncertainty of the model-based system on lapi was

uMB
action (i ) = H([ � MB

C1;L ; � MB
C1;R ]) = � � MB

C1;L log2 � MB
C1;L � � MB

C1;R log2 � MB
C1;R (2.42)

whereC1 is the �rst-stage state, L is the action corresponding to choosing left, and

R is the action for choosing right.

2.5.6 Decision Uncertainty

Yet a third way of formulating uncertainty would be to use not just the means or the

variances, but to use the entire distribution to compute uncertainty as to what deci-

sion to make. Speci�cally, when the divergence between the reward beta distributions

for two available actions is low, uncertainty is high, and vice-versa (Figure 2.9C). We

refer to this type of uncertainty as \decision uncertainty," because it refers to un-

certainty as to the entire decision when taking into consideration the full expected

reward distributions. We quanti�ed decision uncertainty by taking the natural ex-

ponential function of the negative symmetrised Kullback-Leibler divergence between

the two beta distributions representing the expected reward value of available actions

in the 1st-stage state.

So, with
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PMF = Beta( � MF
C1;L ; � MF

C1;L ) and QMF = Beta( � MF
C1;R ; � MF

C1;R ) (2.43)

the decision uncertainty of the model-free system on lapi was

uMF
decision (i ) = exp

�
� DKL (PMF jjQMF ) � DKL (QMF jjPMF )

�
(2.44)

and with

PMB = Beta( � MB
C1;L ; � MB

C1;L ) and QMB = Beta( � MB
C1;R ; � MB

C1;R ) (2.45)

the decision uncertainty of the model-based system on lapi was

uMB
decision (i ) = exp

�
� DKL (PMB jjQMB ) � DKL (QMB jjPMB )

�
(2.46)

where the Kullback-Leibler divergence (DKL ) between two beta distributions was

computed with

DKL (Beta(�; � )jjBeta(� 0; � 0)) = ln
�

B( � 0;� 0)
B( �;� )

�
+ ( � � � 0) (� ) + ( � � � 0) (� )

+( � 0 � � + � 0 � � ) (� + � )
(2.47)

where B(x) is the beta function and (x) is the digamma function.
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2.5.7 Uncertainty-based Arbitration

We �t to rat behavior three di�erent uncertainty-based algorithms, each of which used

one of the aforementioned three types of uncertainty to arbitrate between the model-

based and model-free systems for decision-making. Like the constant-weight algo-

rithm, the uncertainty-based algorithms ran both the model-based and model-free al-

gorithms simultaneously. However, instead of the �nal state-action values being some

constant weighted average between the model-free and model-based state-action val-

ues, the uncertainty-based algorithm used the model-based state-action values if the

uncertainty of the model-free Bayesian reinforcement learning algorithm was greater

than that of the Bayesian model-based reinforcement learning algorithm on a given

lap:

QUB (i ) =

8
>><

>>:

QMB (i ); if uMF (i ) > u MB (i )

QMF (i ); otherwise
(2.48)

2.5.8 Uncertainty models were di�cult to �t to rats' choices

Unfortunately, the �ts of the uncertainty-based reinforcement learning algorithms

were extremely hard to �t to the rats' choices on the two-step task. The MCMC

chains did not converge for any of the three models. Even taking only chains with

the best seemingly convergent log likelihoods (chains which seemed to have converged

on a single best log likelihood posterior density), the log likelihood was worse for the

uncertainty-based models than for even the model-free algorithm, which as seen in

section 2.4.6 was otherwise the worst-�tting algorithm. This suggests that while our

version of the two-step task was su�cient for determining the contribution model-

based and model-free in
uence overall or on average (section 2.4), it was insu�cient
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for revealing the contributions of model-based and model-free in
uences on a trial-by-

trial basis, which would required for �tting these uncertainty-based models reliably.

As discussed in section 2.4.7, it seemed to be di�cult for the rats to learn this

version of the two-step task. This could be due to any number of factors, but the

most likely culprits seems likely to be the low trial count per session, in combination

with the slow speed of the changing delays. A paucity of situations where the delay

values were suddenly di�erent from what the rats were expecting (due to the overly

slow delay changes) would obstruct our ability to see a di�erence between the two

reinforcement learning algorithms. Those sudden unexpected changes in delay or

reward values are the situations where the predictions of the two systems di�er, and

therefore the only times when our model would be able to parse out the in
uence of

uncertainty on the arbitration between the two models' in
uences. So, it seems likely

that these problems prevented us from accurately capturing trial-by-trial di�erences

in the in
uence of di�erent decision-making systems, and were therefore unable to

asses the in
uence of uncertainty on the balance between the two decision-making

systems.

However, both theoretical work (Daw et al., 2005) and experimental evidence

(Beierholm et al., 2011; Lee et al., 2014) suggest that uncertainty within the model-

based and model-free systems may indeed determine that system's in
uence. For

future work using this task in rodents, we would suggest using a simpli�ed version of

the task (Miller et al., 2013, 2014, 2017), or ensuring the random walk of reward values

are fast enough to allow algorithm �ts to discern the di�erences between model-based

and model-free in
uences on behavior.

In order to better study the di�erences between habitual and deliberative behav-

iors, as well as the representations of more abstract task features usually associated

only with the model-based system, we next developed a di�erent task. The goals of
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this task were for the task structure to be easier for rats to learn, for the rats to be able

to run far more laps within a single session, but for the task to still present rats with

a decision-making challenge that would engage both the habitual and deliberative

decision-making systems at di�erent times, allowing us to study the di�erences and

dynamics between habitual and deliberative behaviors and neural activity. Therefore,

we designed a simpler contingency-switching task, which will be the focus of the next

chapter.
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Chapter 3

Contingency-Aware Behavior on a

Contingency Switching Task

3.1 The Contingency-Switching Task

The two main drawbacks of the two-step task were that rats were unable to run

enough laps for us to reliably �t models which captured variables changing on a

trial-by-trial basis (like uncertainty), and that the reward values changed too slowly

to create drastic di�erences between habitual and deliberative systems. To address

both these problems, we designed a variant of the multiple-T Left/Right/Alternate

(MT-LRA) task. This task variant allowed us to study the neural correlates of both

the deliberative and habitual systems, but in a way which would be easier for rats

to learn, and which had sudden, drastic changes in reward contingencies (unlike the

two-step task, which had slowly drifting changes in those contingencies).

The Multiple-T Left/Right/Alternate (MT-LRA) contingency-switching task was

a spatial reversal task where rats were required to adjust their behavioral strategies

after uncued rule changes. The maze consisted of several low-cost choice points fol-
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Figure 3.1: The MT-LRA contingency-switching task. (A) The MT-LRA task is
a spatial maze with a choice point where rats receive rewards dependent on making
choices consistent with the current contingency. (B) Contingencies are presented in
blocks of laps lasting 30� 5 trials. (C) Example behavioral data from a single session.

lowed by a high-cost choice point between two actions: left or right (Figure 3.1A).

The maze was constructed using LEGO blocks on a white canvas. The con�guration

of the low-cost choice points at the center of the maze was determined by a single

wall in the middle of the maze, which switched back and forth from the left to right

side randomly each day.

Each lap, if rats chose the action at the high-cost choice point which was consistent

with the current contingency, they received one un
avored 45mg food pellet at one

of two reward sites on the side of the maze, and an additional food pellet at the rear

of the maze. If their choice was inconsistent with the current contingency, no reward

was delivered and rats had to circle around to the start of the maze to initiate a

new lap. Two di�erent auditory cues also signalled to the rats whether their decision

was correct or incorrect: a swept-frequency sinewave \chirp" from 1kHz to 3kHz for

correct, and two shorter 1kHz square wave tones for incorrect. The contingency on

any given lap was either Left (only left choices at the choice point lead to reward),

Right (only right choices), or Alternate (the opposite choice from the previous lap
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was required for reward). Rats were allowed to run laps freely on the task for one

hour each day, and their daily food allowance came only from performing the task.

However, rats were fed extra food after running the task if their weight dropped

below 80% of their free-feeding weight. This post-feeding occurred after 0 out of 85

experimental sessions, and after 7 out of 212 training sessions (3%).

Rat behavior and neural activity has been studied on previous versions of the

MT-LRA task (Gupta et al., 2010; Blumenthal et al., 2011; Steiner and Redish,

2012; Gupta et al., 2012; Powell and Redish, 2014; Regier et al., 2015a; Powell and

Redish, 2016). However, these earlier versions of the task included only a single

contingency switch halfway through the task session, or no mid-session switch at

all (where contingency di�erences were only between sessions). The main di�erence

between our version of the task and previous iterations is that we modi�ed the task to

include multiple uncued contingency changes per session (once per about 30 trials).

That is, the contingencies were presented in blocks: every 30� 5 laps, the contingency

changed randomly to one of the other two contingencies (Figure 3.1B). This allowed

us to investigate the reliability of the contingency representations over time, and

separate the contributions of any unrelated slow representational changes over time

(which could be erroneously construed as contingency representation) from explicit

representations of the contingency identity.

How could slow representational changes be misconstrued as the encoding of task

contingencies? On the contingency-switching task { and in fact most tasks where

there are latent contingencies { those contingencies are presented in blocks of trials.

If the contingencies were cued, then the experiment would not so much be studying

the ability of animals to use working memory and the deliberative system to perform

the task, but simply stimulus-response behaviors. To really access how internal rep-

resentations of the world (in the form of working memory) are used to make decisions
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by the deliberative system, we need a task where the contingencies are latent and an-

imals must �gure them out for themselves and use their memory of the contingencies

to make decisions.

Unfortunately, this presents a problem when we wish to determine if the contin-

gencies are being represented by the brain: if the contingencies are always presented

in blocks of trials, then these contingency blocks are synonymous with blocks of time.

How then can we determine if the brain is representing the contingency as an ab-

stract rule, or if the brain is simply representing blocks of time { or perhaps other

information which is changing over time { in a way perhaps unrelated to contingency?

One way to disentangle the e�ects of time and contingency representation in the

brain is to use a task which has multiple, separated presentations of the same con-

tingency type, and then analyze the reliability of contingency representations across

time. This is why we altered the contingency switching task to use more than two

contingency blocks per session, to allow us to determine whether contingency repre-

sentations are stable across multiple presentations of that contingency, or whether the

apparent contingency representation is due simply to unrelated change in encoding

over time.

Because of the contingency de�nitions, switches between all contingency types

were not identical: switches from L or R blocks to any other type resulted in a 0%

reward probability, while switches from A to either L or R resulted in a 50% reward

probability (in the case where the new contingency was consistent with the opposite

of the choice the rat made on the previous lap, see Table 3.1).

Rat positions on the maze were tracked using a video camera placed above the

maze. Custom Matlab software determined animal position from the video, and

controlled the state of the task (the current contingency, food pellet release, the

presentation of audio cues, etc). The Matlab software also interfaced with an Arduino
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Contingency Reward rate under
switch type perseveration

L ! R 0%
L ! A 0%
R ! L 0%
R ! A 0%
A ! L 50%
A ! R 50%

Table 3.1: The reward probability under perseveration (taking actions consistent
with the old contingency type) for di�erent contingency switch types.

Uno Rev3 which ran custom software and triggered the release of food pellets from

food pellet dispensers.

Rats were trained over the course of four weeks. Starting on the �rst week, rats

were deprived of the freely available food in their home cages, but continued to have

free access to water. Rats were handled and o�ered up to 15g of food pellets each day

for half an hour, to train them to eat the food pellets which would be available while

performing the LRA task. For the second week, rats performed a simpli�ed version of

the task where the contingency was either Left or Right, and the contingency stayed

constant throughout each session but changed randomly from session to session. Rats

were rewarded with 2 food pellets per feeder at all feeder sites for the second week.

For the third week, again there were no within-session contingency switches, but all

three contingencies were possible (including Alternate), and only 1 food pellet was

delivered at the rear food delivery site. For the �nal week of training, only 1 food

pellet was delivered at all feeder sites, but the task was otherwise the same as during

week 3.

After training, rats were given free access to food for at least 3 days, and then

surgerized. After 3 days of post-surgery recovery, rats were again food deprived and

re-trained for 1-2 weeks on the �nal training phase of the task (all 3 contingencies
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possible, but no within-session contingency switches, and 1 pellet per feeder). Fi-

nally, rats performed the full version of the task including within-session contingency

switches and neural recordings for 2-3 weeks.

3.2 Rat Behavior on the Contingency Switching

Task

We ran eight FBNF-1 rats aged 8-14 months at the beginning of behavior on the

contingency-switching task (4 male, 4 female), bred from Fischer and Brown Norway

rats. Only six of these had usable neural recordings (4 male, 2 female), so in this

section we report only behavioral data from those six rats which were used for the

neural analyses as well. Rats were housed on a 12 h light-dark cycle, and experi-

mental sessions were conducted at the same time each day during the light phase.

All experimental and animal care procedures complied with US National Institutes

of Health guidelines for animal care and were approved by the Institutional Animal

Care and Use Committee and the University of Minnesota.

Rats ran 137:7 � 31:7 laps per session (mean� standard deviation), and encoun-

tered 4:1� 1:2 contingency switches per session. Rats made correct choices (rewarded

choices consistent with the current contingency) on 78� 3 percent of laps across all

three contingency types, which was signi�cantly more often than chance (4347 correct

laps out of 5508, two sided binomial test vs 50%,p < 10� 100). Rats performed less

well on laps during the Alternate contingency (Figure 3.2C), where they made correct

choices on only 62:9 � 9:9 percent of laps, but their performance on laps during the

Alternate contingency was still signi�cantly better than chance (1231 correct laps

out of 1874, two sided binomial test vs 50%,p = 1:4 � 10� 42). Rats did not show
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Figure 3.2: Behavioral performance on the MT-LRA task. (A) Laps per session
(N = 6 rats). Filled circles indicate sessions which met the inclusion criteria (> 10
cells simultaneously recorded in both structures), and empty circles correspond to
sessions which were not used for neural analyses. (B) Percent correct by session. (C)
Performance by contingency (N = 40 sessions). (D) Performance aligned to switch,
split by contingency.

80



Figure 3.3: Performance aligned to the previous switch (A) overall, and (B) split by
contingency. If rats were anticipating contingency switches, we would expect to see
more probing of choices which were inconsistent with the current contingency, which
would have led to a decrease in the proportion of correct trials as rats approached
the expected transition lap.

any behavioral signs of anticipating the switch, as their choices did not re
ect an in-

crease in actions consistent with other contingencies as rats approached the expected

contingency switch lap (Figure 3.3).

The percentage of correct choices dropped on laps immediately following a contin-

gency switch, but then increased over the course of the following contingency block,

and plateaued well before the next contingency switch (Figure 3.4A).

To identify laps where rats updated their behavioral choices to be consistent with

the new contingency, we used a change point analysis from Gallistel et al. (2004). We

considered 20 laps on either side of a contingency switch, after which the contingency

in place was contingencyX . We excluded laps which were before the previous switch,

or after the next switch (in cases where contingency blocks lasted< 20 laps). For

each lapi in this window around each switch, we computed whether rats' choices were

consistent with the new contingency (the rat made a choice which would be correct

if X were the current contingency,ci = 1) or inconsistent with the new contingency

(the rat made a choice which would be incorrect ifX were the current contingency,

ci = 0). We then applied the change point analysis from Gallistel et al. (2004) onc
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Figure 3.4: Rat behavior on the MT-LRA task aligned to contingency switches.
(A) Rat performance aligned to contingency switches. The vertical dotted line corre-
sponds to the last lap of the previous contingency block. (B) Rat behavioral change
laps aligned to contingency switches. The dotted line corresponds to the last lap of
the previous behavioral strategy. (C) VTE (measured by zIdPhi) aligned to contin-
gency switches. (D) zIdPhi aligned to behavioral change laps. Plots show mean�
standard deviation,N = 6 rats.

to determine on what lap rats were most likely to have updated their choices to be

consistent with the new strategy. This change-point analysis (Gallistel et al., 2004)

indicated that rats updated their behavioral strategies to be consistent with the new

contingency within about 5 laps of a contingency switch (Figure 3.4B).

While at choice points, rats sometimes display vicarious trial and error (VTE),

a behavioral marker of deliberation (Redish, 2016), also see section 2.3.2 for more

detail. During VTE behaviors, rats pause and look back and forth down potential

paths, as if deliberating over which path to choose (Figure 3.5A). To quantify VTE, we

measuredzIdPhi, the z-scored integrated angular velocity of head movement (Papale

et al., 2012). See section 2.3.2 for a more thorough de�nition of IdPhi.

To distinguish VTE events from non-VTE events, we �t a half-Gaussian distri-
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bution to values less than the mode of the zIdPhi distribution. We then assumed

that zIdPhi values under a full Gaussian distribution with the same mean and stan-

dard deviation as the �t half-Gaussian corresponded to non-VTE events, and passes

through the choice point with greater zIdPhi values corresponded to passes on which

VTE occurred (Figure 3.5B).

As with many other studies which examine VTE (Steiner and Redish, 2012;

Schmidt et al., 2013; Stott and Redish, 2014), we observed low levels of zIdPhi on

most choice point passes and higher levels of zIdPhi on fewer laps (Figure 3.5B),

suggesting rats deliberated on the minority of laps. A decrease in the amount of

VTE over the course of a session is usually observed on other tasks (Papale et al.,

2012; Breton et al., 2015; Redish, 2016), but on our task zIdPhi did not decrease over

the course of the session (Figure 3.5C). This suggests that the presence of multiple

contingency switches, which continued to occur throughout the course of the session,

repeatedly forced rats to deliberate and prevented them from fully automating their

behavior on the task.

Although rats did not appear to automate over the course of an entire session,

they did automate over the course of single contingency blocks. On laps immediately

following a contingency switch zIdPhi increased, and then decreased throughout the

subsequent contingency block (Figure 3.4C). This suggests that rats deliberated after

contingency switches, but then automated as they learned the new contingency. How-

ever, this e�ect seemed to be mostly driven by switches to the Alternate contingency

(Figure 3.5D). The greatest levels of VTE were observed on laps where rats updated

their behavioral strategies to be consistent with the new contingency (Figure 3.4D,

the median zIdPhi was signi�cantly greater on laps where a behavioral change oc-

curred than on other laps, two-sided Wilcoxon rank sum test,p = 2:7� 10� 5, N = 164

behavior change laps vs 5344 non-change laps).
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Figure 3.5: Vicarious trial and error (VTE) on the MT-LRA task. (A) Example of
a pass through the choice point where the rat displayed VTE (left) and a non-VTE
pass (right). (B) Distribution of zIdPhi across all laps and rats. (C) zIdPhi over the
course of a session. (D) zIdPhi aligned to switch split by contingency.

Figure 3.6: Post-error slowing. (A) The average di�erence in lap duration between
laps following errors vs correct choices (N = 6 rats). (B) Lap duration split by both
VTE and whether the rat made an error on the previous lap (N = 6 rats). Also
shown arep values of two-sided Wilcoxon signed-rank tests, and Cohen'sd.
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