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Abstract

Interventions targeting cognitive disorders often hinge on assumptions that
humans and nonhuman animals recruit equivalent cognitive mechanisms during decision-
making. Identifying parallel decision systems across species could help bridge gaps
between clinical and non-clinical research, and in turn, improve intervention efficacy.
The goal of this dissertation is to assess for similar behavioral and neural markers of
decision-making across humans and rodents using a sequential foraging paradigm (“The
Web-Surf Task”) that was adapted from a rodent spatial neuroeconomic task (“Restaurant
Row”). The included studies highlight a functional translational approach that aims to
access similar functional constructs via parallel tasks and methodological approaches.
The results provide evidence of cross-species behavioral equivalents, such as the ability
to detect revealed preferences. Findings from a neuroimaging study suggest that different
neural systems track past and forward representations, indicative of human prospection
during deliberation (i.e., episodic future thinking). Moreover, neural activation related to
difficult decisions is similar to many of the structures that underlie rodent deliberation.
Lastly, a risk-variant of the task suggests that regret-instances provide a bridge between
our liking and pursuit of rewards. This final study also finds that impulsive individuals
may fail to learn from regret. Collectively, this dissertation demonstrates the utility of this
novel task for elucidating human deliberative mechanisms and identifying cross-species

decision system compatibilities.
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CHAPTER 1: GENERAL INTRODUCTION

In his seminal review, George Ainslie (1975) described the cross-disciplinary
study of impulsive choice, synthesizing findings from economics, sociology, and
behavioral psychology. He opened with a question that continues to motivate researchers:
“Why [do] organisms, particularly human beings, often freely choose the poorer, smaller,
or more disastrous of two alternative rewards even when they seem to be entirely familiar
with the alternatives?” Ainslie posited that, although this question spawned immense
research within a variety of disciplines, there was a general disregard among researchers
for “their neighbors’ work.” The need for cross-discipline communication remains a core
issue even some 40 years later, particularly for the human and nonhuman animal
branches of decision-making research.

Animal models of impulsivity and addiction are considered among the most well-
regarded representations of human psychopathology, despite fissures that exist between
model validity and the efficacy of human treatments based on these animal models (Hall,
De Serrano, Rodd, & Tropepe, 2014; Kalivas, Peters, & Knackstedt, 2006). Coordinating
clinical and pre-clinical research to model equivalent behaviors is necessary to
understand the mechanisms that underlie impulsivity (Belzung & Lemoine, 2011;
Potenza, 2009). Functional translational research is a promising approach in this regard,
as it aims to access similar functional constructs via parallel tasks. The success of this
approach hinges on the careful coordination of construct definitions, paradigm
development, and analytic streams. Although demanding, this type of parallel processing
between clinical and pre-clinical science could have an immense impact on our ability to

treat psychologically and financially devastating disorders, such as substance abuse and
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ADHD (Naqvi & Bechara, 2010). But to achieve this ideal synergy, we must first
establish behavioral models that capture fundamental decision processes in human and
nonhuman animals.

The purpose of this introduction is to provide a systematic review of the decision-
making literature, with a specific focus on behavioral and neurobiological findings from
human and rodent studies. I synthesize research across a variety of disciplines that
include behavioral neuroscience, ecology, clinical psychology, and personality. This
introduction is broadly organized into three main sections: the first section provides a
review and critique of the traditional approaches for modeling impulsive choice (i.e.,
binary intertemporal choice models). The second section highlights foraging models as a
promising approach for modeling naturalistic intertemporal decision behaviors. These
first two sections are further subdivided into (1) theoretical and mathematical
descriptions, (2) human and rodent task designs, (3) relevance to psychopathology, and
(4) the underlying neural biological correlates. The third section provides
recommendations aimed to improve our investigation of cross-species behavioral
parallels and reduce gaps between animal decision model validity and corresponding

treatment efficacy.

1.1 Traditional Binary Choice Models

Impulsivity is a multi-dimensional construct that includes a broad range of
potentially unrelated maladaptive behaviors (de Wit, 2009b). These behaviors include an
impaired ability to withhold responses, the incapacity to wait, or insensitivity to delayed

or negative outcomes. The delay-discounting phenomenon is arguably the most highly



studied aspect of impulsivity (MacKillop et al., 2012). In particular, delay-discounting
models quantify how quickly reward value declines as a function of temporal delay
(alternatively called temporal discounting or intertemporal choice; Mazur, 1987). These
models emerged from economics, stemming from the field’s emphasis on understanding
choice behaviors within a constrained system (Bickel, Green, & Vuchinich, 1995).
Within this framework, impulsive choice is considered the selection of a smaller,
immediate reward over a larger, delayed reward (Ainslie, 1975). Delay-discounting
models are a common index for measuring impulsivity in addiction and other
neuropsychiatric illnesses (Heerey, Robinson, McMahon, & Gold, 2007; Mackillop et al.,
2011; Marsch & Bickel, 2001; Odum, 2011).

In the following section, I begin with an overview of the mathematical functions
and behavioral techniques often used to measure impulsive choice in human and rodents.
I next review the literature relating impulsive choice with severe psychopathology in
humans and rodents, as well as a discussion of individual differences findings in humans.
Lastly, I discuss the neural circuitry that underlies healthy and aberrant decision-making
behaviors. I conclude this section by describing cross-species parallels and divergences in

the impulsive choice literature, with an emphasis on areas for advancing translational

synergy.

Mathematical Models of Delay Discounting

Two major mathematical models have been proposed to describe temporal
discounting behavior. Economists and decision analysis researchers have traditionally

favored an exponential model (Bickel, Jarmolowicz, Mueller, Koffarnus, & Gatchalian,
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2012; Green, Fristoe, & Myerson, 1994; Green & Myerson, 2004; Reynolds, 2006a). The
exponential model takes the following form:

V=Ae", (D
where V' is the subjective (or discounted) reward value of amount A4 that is available after
a delay in D units of time. The & parameter reflects the discounting rate, or the rate at
which value decreases with delay, with larger £ values reflecting steeper discounting.
This parameter has become a fundamental metric for assessing both within-subject (e.g.,
between offers) and between-group variability (e.g., controls versus drug users; Bickel et
al., 2012). The exponential function assumes that value is discounting by a fixed
proportion (Bickel et al., 2012; Kirby, 1997). Although this function may explain certain
impulsive behaviors (e.g., temporal myopia, which assumes a large discounting rate),
empirical research better supports alternative models (Marsch & Bickel, 2001).

One pivotal alternative from the behavioral economic literature is the hyperbolic

discounting function (Mazur, 1987). This function takes the following form:

A @
C1+kD’

where V, 4, and D are defined in equation (1). Comparable to the exponential function
(1), a larger k parameter reflects steeper discounting. However, the hyperbolic function
does not assume that discounting occurs at a fixed rate. Instead, reward devaluation is
proportional to delay magnitude (Ainslie & Haslam, 1992), where small delay rewards
are devalued more rapidly than more delayed rewards.

Many researchers argue that temporal discounting is better captured by the

hyperbolic than exponential function in humans across an array of species (Green &



Myerson, 2004; Mazur & Biondi, 2009; Mazur, 2007). However, the optimal discounting
function may hinge on the type of decision at hand (Wikenheiser, Stephens, & Redish,
2013), where the precise nature of the decision is modulated by task specificities (e.g.,
different cost types). Researchers can empirically determine the optimal discounting
model by computing indifference points, which is the point at which the immediate and
delayed options are equivalent in value (Green et al., 1994). When indifference points are
calculated over a series of possible delays, researchers can plot an indifference curve to
visualize the shape of the discounting function (Marsch & Bickel, 2001). The next

section describes possible procedures for obtaining indifference points.

Methods to Derive Indifference Points

The most common delay procedures used to derive indifference points are the
adjusting-delay (Mazur, 1987) and adjusting-amount methods (Rachlin, Raineri, &
Cross, 1991). Mazur (1987) first proposed the adjusting-delay procedure to examine the
influence of delay and uncertainty on reward value. In this method, the shorter delay is
lengthened each time a subject chooses the immediate reward, and reduced each time a
subject chooses the delayed reward. Rachlin and colleagues (1991) proposed the
complementary adjusting-amount procedure, which adjusts the magnitude of the
immediate reward as a function of choice, while holding the larger reward and delay
length constant.

Numerous studies have assumed that both delay procedures tap into the same
behavioral processes (Christensen, Parker, Silbergeld, & Hursh, 1998; Green et al., 1994;

Jimura, Myerson, Hilgard, Braver, & Green, 2009; Raineri & Rachlin, 1993; Rodriguez
5



& Logue, 1988). Only two studies directly compared these procedures, the first including
pigeons (Green, Myerson, Shah, Estle, & Holt, 2007) and the second using humans (Holt,
Green, & Myerson, 2012). Green and colleagues (2007) did not observe any systematic
differences in the discounting rates produced using the adjusting-amount or adjusting-
delay procedures. Holt et al. (2012) used three discounting procedures to assess this
claim: adjusting-delay, adjusting-immediate-amount, and adjusting-delayed-amount. The
authors found robust magnitude effects for all three discounting methods, whereby
smaller rewards were discounted more steeply than larger rewards. Thus, these delay
procedures may tap into common underlying decision processes.

Alternatively, one can calculate discounting without indifference points. For
instance, Evenden and Ryan (1996) developed a procedure where animals cycle through
a fixed list of options. Specifically, the delay to the larger reward increases over the
session to improve task efficiency and ensure that subjects remain sensitive to the delay
(Odum, 2011). Choice behavior is then quantified as the percentage of times a subject
chooses the larger delayed reward. For more extensive descriptions of the procedures
used to derive discounting functions in human and nonhuman animals, I refer the reader
to Madden and Johnson (2010). Importantly, indifference points are computed from
impulsive choice tasks that vary according to several structural dimensions, which are

discussed in the following section.

Laboratory Models of Impulsive Choice

Impulsive choice tasks vary along at least three structural dimensions: (1) reward

type (i.e., abstract to concrete), (2) cost type (e.g., delay, effort), and (3) the availability



of a reward following a decision (i.e., commitment- versus sustained-choice). The
majority of human and nonhuman animal paradigms can be described within this
framework. The following section explores these dimensions and the corresponding task

designs in more detail, with an emphasis on cross-species comparisons.

Reward Types: From Abstract to Concrete

The rewards used in human paradigms exist along a continuum that ranges
from more abstract offers (e.g., hypothetical monetary gains) to concrete gains (e.g.,
primary reinforcers, such as juice). These reward types are then incorporated into
various discounting paradigms, which are further categorized as: (1) hypothetical, (2)
real-reward, and (3) real-time paradigms (Reynolds, 2006a). These tasks all entail
scenarios in which a subject selects between immediate and delayed outcomes of
different magnitudes; however, the precise nature of the reward and delay components
differs across paradigms.

Hypothetical paradigms are the most common discounting measure (Green &
Myerson, 2004; Odum, 2011), and typically ask subjects to make abstract choices about

future monetary gains (Madden & Bickel, 2010), such as:

“Which would you prefer: $10 now or $50 in two weeks?”

Hypothetical discounting paradigms are often used in psychology and neuroscience
experiments because they are relatively inexpensive and time efficient to employ.

Hypothetical choices are also favorable in situations in which real offers are impractical
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or unethical (Kang, Rangel, Camus, & Camerer, 2011). However, researchers have
questioned the validity of hypothetical paradigms in modeling real-world decisions
(Green & Myerson, 2004; Kirby, 1997; Marsch & Bickel, 2001; Odum, 2011) and other
researchers have questioned whether hypothetical and real choices tap into the same
underlying systems (Navarick, 2004).

Real-reward discounting paradigms were developed to improve the face validity
of hypothetical discounting tasks (Reynolds, 2006a). In real-reward paradigms, one or a
few of the choices made by the subject during the task are randomly selected and paid to
the subject at the end of the testing session. When compared directly, the majority of
studies did not detect differences between discounting rates derived from real versus
hypothetical tasks (e.g., Johnson & Bickel, 2002; Lawyer, Schoepflin, Green, & Jenks,
2011; Madden et al., 2004; Matusiewicz, Carter, Landes, & Y1i, 2013). Nonetheless,
Lagorio and Madden (2005) argued that real-world paradigms may only capture
potentially real-rewards. Potentially real-reward paradigms should theoretically yield
similar results to real-reward paradigms, as subjects do not know which outcome they
will receive, assuming that subjects treat all choices as possibly real.

Motivated by this concern, real-time (or experiential) paradigms were designed
such that subjects could experience the consequences of their choices (e.g., delay,
reward) on a trial-by-trial basis (Reynolds, 2006). A few real-time studies used primary
reinforcers (Jimura et al., 2009; Kirk & Logue, 1997; McClure, Ericson, Laibson,
Loewenstein, & Cohen, 2007), although many used monetary rewards of smaller reward
magnitude available at shorter delays (Reynolds, 2006; Shiels et al., 2009). Real-time

paradigms may be especially valuable for populations that struggle with abstract



decision-making (e.g., children, people with severe mental illness; Reynolds, 2006), as
trial-by-trial consummatory responses are perhaps more salient than hypothetical
monetary gains available weeks or months away. However, two methodological concerns
are worth noting. First, the trial-by-trial structure could confound discounting behaviors
with learning effects. For instance, it may be challenging to parse whether an individual
is more impulsive or has difficulty adapting behavior based on prior experiences. Second,
the frequent use of monetary rewards ultimately detracts from the experiential aim of
these tasks. Even though subjects physically receive money (via coin dispenser) on each
trial, this does not equate to spending or consuming a monetary reward on each trial.

In contrast to human tasks, rodent discounting paradigms are always experiential,
given that rodent subjects encounter real-time delays and consume rewards as the
consequence of each choice. In this vein, rewards are frequently in the form of
primary reinforcement such as food pellets, saccharin, or a drug. Rodent discounting
paradigms can take on non-spatial and spatial designs.

Non-spatial paradigms typically require rodents to make a series of lever-presses
or nose-pokes to receive reward. For instance, rodents may be placed in operant
chambers that contain several nose-poke holes. In such a task, nose-pokes to one hole
may deliver a small, immediate reward, whereas nose-pokes to another hole may deliver
a delayed but larger reward (Pattij, Schetters, Janssen, Wiskerke, & Schoffelmeer, 2009).
Lever-press paradigms are comparable in design, where different levers presses produce
rewards of disparate delay and magnitude.

Spatial paradigms frequently require rodents to navigate mazes while making

choices. Numerous researchers have adopted maze designs to probe rodent cognitions,



given their inclination towards narrow, winding passages (Dudchenko, 2004). The T-
maze is the simplest spatial maze design (Tolman, 1925). In the context of delay-
discounting, rats choose between smaller, immediate rewards at one maze arm and larger,
delayed rewards from the other maze arm. This design is advantageous in several
respects: First, rats tend to alternate arms even in the absence of forced-choice trials. This
behavior has been called exploration or investigation (Dudchenko, 2004; Papale, Stott,
Powell, Regier, & Redish, 2012), and may reflect the process by which the rat learns
which side of the maze represents which delay type. Second, the T-maze design does not
require complex lever-press or nose-poke pre-trainings (Papale et al., 2012). Given these

positive attributes, T-mazes are often employed in rodent discounting studies.

Cost Types: Delay, Probability, and Effort Discounting

Comparable to the reward type dimension, human and rodent discounting
models can differ in the fype of cost involved --- temporal delay, probability of
receipt, or effort requirements. Although delay is most often used, researchers also use
probability and effort discounting tasks that similarly include discrete binary offers (Bari
& Robbins, 2013). Distinctions between cost types are important as different response
costs may recruit separable neural substrates (Prévost, Pessiglione, Météreau, Cléry-
Melin, & Dreher, 2010).

Probability discounting (alternatively called uncertainty or odds discounting)
captures subjective reward value as a function of the probability of receipt, given a
choice between a smaller certain reward and a larger uncertain reward (Bidwell et al.,

2013). For humans, subjective reward value is expected to decrease as the odds of receipt
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increase, according to a hyperbolic function (Cardinal, 2006). There is debate as to
whether delay and probability discounting reflect the same or dissociable processes,
though recent evidence supports the latter assertion. Several studies found that delay- and
probability-discounting rates were not highly correlated in humans (Andrade & Petry,
2012; Holt, Green, & Myerson, 2003; Madden, Petry, & Johnson, 2009) or rats (Wilhelm
& Mitchell, 2008), and may differentially relate to addiction (Bidwell et al., 2013;
Madden et al., 2009).

Effort discounting models describe subjective reward value as inversely related to
the effort required to obtain it (Botvinick, Huffstetler, & McGuire, 2009). Consideration
of effort costs are important for developing ecologically valid decision-making models,
as animals in the wild (and laboratory) must weigh the metabolic costs needed to obtain
sustenance or reward (Croxson, Walton, O’Reilly, Behrens, & Rushworth, 2009). Despite
this ecological utility, relations between physical effort and choice have been examined
far less than alternative decision costs (Klein-Fliigge, Kennerley, Saraiva, Penny, &
Bestmann, 2015). Most studies suggest that effort costs are discounted linearly (Burke,
Briinger, Kahnt, Park, & Tobler, 2013; Phillips, Walton, & Jhou, 2007) or hyperbolically
(Grossbard & Mazur, 1986; Prévost et al., 2010; Sugiwaka & Okouchi, 2004). Effort and
delay discounting may be functionally similar despite separable neural substrates (Prévost
et al., 2010; Reed, Kaplan, & Brewer, 2012); although others challenged this notion by
identifying dissociable underlying functions that yielded uncorrelated choice parameters
(Klein-Fliigge et al., 2015). The extent to which effort and delay-based discounting tap
into dissociable systems is further discussed in a later section (see How Specific Are

These Associations?).

11



Room to Deflect: Commitment- versus Sustained-Choice

Choice impulsivity is typically assessed using the kinds of paradigms described in
the previous section, where subjects choose between rewards of differing magnitudes
available at different costs. These tasks are considered “commitment-choice” procedures,
because a subject commits to one option over the other (Reynolds & Schiffbauer, 2005;
Shamosh & Gray, 2008). Alternatively, “sustained-choice” procedures (often called
delay of gratification paradigms) measure choice impulsivity when the smaller
immediate reward is continuously available. This means that even if an individual
selects the delayed option, he can deflect to the alternative until the trial ends.

Walter Mischel’s Stanford marshmallow experiments during the 1960s to 70s are
perhaps the most well-known studies of delayed gratification (Mischel, Ebbesen, & Zeiss,
1972). In one variant, a child was presented a food reward and delay (Mischel & Mischel,
1983). If the child waited through the delay, the experimenter returned and the child
received two food rewards, although at any point during the delay the child could ring a
bell and the experimenter would return. The failure to wait through the entire delay
resulted in only a single food reward. In effect, delayed gratification depends on cognitive
control, or the capacity to suppress contesting thoughts or action (Casey et al., 2011).
Delayed gratification abilities in children have been positively correlated with academic
and social competency, SAT scores, and self-regulation abilities in adulthood (Mischel,
Shoda, & Peake, 1988; Shoda, Mischel, & Peake, 1990).

Few studies have directly compared delay discounting and delay of gratification

paradigms, which have yielded conflicting results regarding their discriminant validity
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(Reynolds, De Wit, & Richards, 2002; Reynolds & Schiffbauer, 2005; Rachlin, Brown, &
Cross, 2000). A lack of consistent operational definitions has contributed to difficulties in
determining whether these paradigms capture distinct impulsivity facets (de Wit, 2009b).
For instance, different studies use the terms delay discounting and delay of gratification
to reflect either commitment- or sustained-choice tasks (Shamosh & Gray, 2008).
Similarly, some researchers ascribe delay of gratification to impulsive behaviors
exhibited during response inhibition tasks (e.g., Casey et al., 2011), which are believed to
reflect impulsive action (Bari & Robbins, 2013). These tasks typically require subjects to
postpone action until a go-signal appears, restrain action when an unexpected no-go
signal appears, or cancel action when a stop-signal appears after the response has begun.
Bari and Robbins (2013) distinguish these paradigms from impulsive choice tasks, as one
tries to inhibit the urge to select an immediate, smaller reward over the larger, delayed
reward. Although impulsive choice and action paradigms both fall under the umbrella of
“impulsivity”, the current review focuses primarily on the former. Nonetheless, rectifying
this lack of consistent terminology is of utmost importance for elucidating the extent to
which various tasks map onto unique impulsivity branches.

More broadly, it appears that researchers can sufficiently conceptualize human
and rodent impulsive choice paradigms according to three parameters (i.e., reward type,
cost type, and the ability to deflect). However, clear methodological differences emerge
when directly comparing human and rodent task designs. Regardless, established
associations between impulsive choice and psychopathologies have encouraged the
continued use of discounting tasks in human and nonhuman animal research. The next

section examines the literature on discounting and psychopathology, with a particular

13



focus on addiction, obesity, schizophrenia, and ADHD. This discussion considers the
relevance of task design to specific disorders, as well as knowledge into potential causal

mechanisms gained from the rodent literature.

Correlates with Psychopathology

Impulsive Choice and Severe Psychopathology: Findings from Human and Rat Studies
“Loss of Control” Disorders: Drug Addiction, Excessive Gambling, and Obesity

Impulsive choice paradigms are frequently used to investigate aberrant decision-
making in substance addiction. Numerous reviews have substantiated greater
impulsivity in addicts given robust relations with delay discounting parameters (Bickel et
al., 2012; de Wit, 2009; Marsch & Bickel, 2001; Reynolds, 2006a). Hyperbolic
discounting functions, in particular, capture the preference reversals characteristic of
addiction, that are related to loss of control and relapse (Bickel et al., 2012). For example,
someone with alcohol addiction may prefer the delayed alternative when both options are
delayed (e.g., long-term fitness benefits), whereas preference may shift to the immediate
alternative as delays decrease (e.g., the clock approaches happy hour). In other words,
individuals may wish to abstain when substances are not immediately available, but
reverse their preference when substances become readily available. Despite compelling
links between discounting and addiction, research remains uncertain as to whether
impulsive choice precedes drug use, or if repeated drug use fosters impulsive choice
(Bickel et al., 2012).

Animal models are particularly advantageous for elucidating causal relations

between drug use and impulsive behaviors (Jupp & Dalley, 2014), as researchers can
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ensure subjects are drug-naive at the outset (de Wit & Mitchell, 2010). Preclinical models
can provide insight as to whether impulsivity is a determinant or consequence of drug use
(Potenza, 2009). Supporting impulsivity as a determinant, rodent research suggests
steeper discounting rates may precede various indices of drug use, particularly for
amphetamines (Weafer, Mitchell, & de Wit, 2014). Several longitudinal studies have
demonstrated similar prospective associations in humans (Audrain-McGovern et al.,
2009; Brody et al., 2014; Fernie et al., 2013; Janssen, Larsen, Vollebergh, & Wiers,
2015), although methodological challenges make it difficult to determine the shared
causal mechanisms across human and nonhuman animals (Weafer et al., 2014).
Nonetheless, discounting rates may represent a risk factor for developing addiction and a
promising target for intervention development.

In contrast to the convergent results above, the human and animal literatures
diverge as to whether impulsive choice is a consequence of drug use (Weafer et al.,
2014). The majority of animal studies note discounting rate changes following acute drug
administration, though these effects may depend somewhat on rat strain and drug dosage.
Far fewer studies have examined these associations in human subjects (de Wit &
Mitchell, 2010), yielding inconsistent results and cross-species discrepancies (Bickel et
al., 2012). For instance, acute alcohol administration to humans has been linked with both
increased (Reynolds et al., 2006) and decreased discounting rates (Ortner, MacDonald, &
Olmstead, 2003), as well as null effects (Richards, Zhang, Mitchell, & de Wit, 1999).

Impulsive choice paradigms are similarly used to examine excessive gambling
(Bickel et al., 2012), which is conceptualized as a behavioral addiction. Comparable to

substance use disorders, a plethora of findings reveal increased impulsive choice among
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individuals with pathological gambling (Koffarnus, Jarmolowicz, Mueller, & Bickel,
2013); however, some evidence indicates that impulsive action is a better predictor of
gambling severity (Brevers et al., 2012). Many studies also posit that comorbidity with
substance abuse may yield the highest discounting rates. Andrade and Petry (2012) aimed
to elucidate relations between response cost types (i.e., delay versus probability
discounting) and specific impulse-related psychopathology (i.e., pathological gamblers
with and without substance use), finding that substance use influenced delay but not
probability discounting. Accordingly, different response costs may tap into different
impulsivity facets, and/or delay discounting may be more sensitive to drug addictions.
Regardless, there are considerable similarities across substance use and gambling
pathology with respect to behavior and neural substrates (Leeman & Potenza, 2012).
Differences between these disorders may be partly attributed to the effects of chronic
drug exposure on the brain. If this latter point is indeed true, investigations into
behavioral addictions could become a key avenue for investigating the relevant brain
circuitry sans drug impact.

Potential utility notwithstanding, certain procedural limitations influence the
ecological validity of gambling studies in humans (Madden, Ewan, & Lagorio, 2007).
Limitations include regulations on the extent to which risks and consequences are real.
Animal models can address this issue, though this requires that animal gambling
paradigms equivalently capture /oss (Clark et al., 2013). This notion has led some
researchers to adopt rat variations of the lowa Gambling Task (which involves subjects
deducing between several options to maximize gains), rather than employing probability

discounting paradigms as done previously (Zeeb, Robbins, & Winstanley, 2009).
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Probability discounting paradigms arguably capture the failure to gain an additional
reward rather than the loss of resources that occurs from gambling. Consequently,
traditional impulsive choice tasks may be ill suited for investigating cross-species
parallels in gambling addiction. That said, probability-discounting paradigms are an
especially powerful control for delay-discounting tasks, as they allow researchers to
discern the specific effects of delay on behavior when rewards are equivalent.

The strong overlap between over-eating and substance use disorders supports
addiction models of obesity (Barry, Clarke, & Petry, 2009). For instance, sugar-bingeing
in rats can yield behavior equivalent to that observed in drug-dependent rats (Avena,
Rada, & Hoebel, 2009). It is therefore unsurprising that obesity and drug addiction
produce similar impulsive tendencies and share common neurobiological substrates
(Volkow & Baler, 2015; Volkow, Wang, Tomasi, & Baler, 2013). Recent endeavors have
linked discounting with obesity and body mass, particularly for females (Jarmolowicz et
al., 2014). Weller and colleagues (2008) found that obese women discounted monetary
rewards more steeply than healthy-weight women. Thus, discounting metrics can capture

behavioral tendencies that cut across diagnostically separate, but related disorders.

Other Goal-Directed Disorders: Schizophrenia and ADHD

Schizophrenia is a heterogeneous disorder characterized by a range of symptoms
(i.e., positive, negative, disorganized), as well as cognitive, social, and functional
impairments. Moreover, motivational and goal-directed deficits are a core issue for
treating schizophrenia (Barch & Dowd, 2010). Such concerns have led researchers to

investigate how decision-making systems go awry in schizophrenia. Still in its nascent
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stages, the impulsive choice literature for schizophrenia indicates both heightened (Ahn
et al., 2011; Heerey, Matveeva, & Gold, 2011; Heerey et al., 2007; Weller et al., 2014)
and normative discounting rates (Docx et al., 2015; MacKillop & Tidey, 2011; Wing,
Moss, Rabin, & George, 2012) when compared with healthy controls. It is possible that
differences observed between groups and/or across studies could be related to smoking
covariates (Bickel et al., 2012), given the links between substance use and discounting
behaviors.

An alternative theory suggests psychiatric-control differences emerge from
disrupted dynamics between working memory capacity, value/cost representations, and
motivational processes. Through a series of experiments, Gold et al. (2008) explored the
interplay between hedonic experience and cognition in schizophrenia. Interestingly,
individuals with schizophrenia exhibited relatively normative experiences of positive
emotion when shown evocative stimuli. However, deficits were apparent when patients
had to incorporate or weigh multiple factors during decision-making (Heerey, Bell-
Warren, & Gold, 2008), which may be explained in part by working memory capacity
(see Ahn et al., 2011 and Heerey et al., 2011 for examples); this deficiency may be linked
to one or more of the memory systems that are critical to learning and planning (Johnson,
van der Meer, & Redish, 2007; Poldrack & Packard, 2003). Individuals with
schizophrenia also have difficulties in representing the value (or cost) of different offers
(Gold et al., 2008), especially temporally distant rewards (Heerey et al., 2011). Such
abnormal cost estimations may underlie disconnects between intact hedonic experiences
and goal-directed pursuits (Gold et al., 2013). Taken together, it is possible that aberrant

discounting in schizophrenia reflects failures in memory, perceptual, and/or deliberative
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decision systems (for a review of these systems see Redish, 2013).

As suggested earlier, real-time paradigms may be a promising alternative for
examining decision-making processes in schizophrenia. Such tasks could reduce the
abstraction needed to represent temporally distant hypothetical rewards, and thus reduce
strains on working memory. If real costs and consummatory rewards were more salient,
patients might have less difficulty using immediate experiences to guide subsequent
decisions (or less difficultly in mentally representing potential outcomes). In turn,
experiential models could enable a more focused investigation into the specific
mechanisms impaired in schizophrenia by reducing certain cognitive demands. These
endeavors could also foster parallels with animal discounting models of schizophrenia, an
area in need of development (Barnes, Der-Avakian, & Markou, 2014).

The perception of time can also influence intertemporal choices (Wittmann &
Paulus, 2008). For example, people are more patient when distal rewards are perceived as
closer (Lempert & Phelps, 2016). This idea relates to the Construal-Level Theory that
describes psychological distance with respect to abstract versus concrete thinking,
whereby more distal objects are represented more abstractly (Trope & Liberman, 2010);
it is also possible that more distal rewards are harder to ‘find” and thus evaluate, from the
perspective that deliberation is a mental search process that identifies rewards available in
the future (Kurth-Nelson, Bickel, & Redish, 2012). Of note, temporal perception is
sometimes altered among individuals with severe mental illness (Dale et al., 2010;
Mcdowell, Clementz, & Wixted, 1996; Papageorgiou et al., 2013), and can be influenced
by certain drugs (Fowler, Pinkston, & Vorontsova, 2009). Temporal perception is

therefore an important consideration for clinical research.
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Attention deficit hyperactivity disorder (or ADHD) is a developmental disorder
characterized by inattention, hyperactivity, and disinhibition. Steeper discounting rates
have been observed for children, adolescents, and adults with ADHD (Bickel et al.,
2012). Similar to the schizophrenia literature, group differences were associated with
working memory. This common cognitive-behavioral association may provide a novel
avenue for modifying impulsivity, and subsequently treating a range of disorders,
including substance abuse (e.g., Shamosh et al., 2008). For instance, preliminary findings
indicated reduced discounting in stimulant addicts following working memory training
(Bickel, Yi, Landes, Hill, & Baxter, 2011). Future schizophrenia and ADHD treatment
studies could extend this work to elucidate the importance of working memory, and other
cognitive abilities, to impulsive choice and psychopathology. But how does individual
variation influence impulsivity? Similarly, are discounting rates only useful for clinical

case-control studies?

Individual Differences: Relations with Personality-Based Impulsivity Indices in Humans
The prior section highlights the effectiveness of impulsive choice paradigms for
distinguishing psychiatric groups from healthy subjects. Given this wide applicability,
excessive temporal discounting has been conceptualized as a core mental health
(McClure & Bickel, 2014) or trans-disease process that underlies a range of disorders
(Bickel et al., 2012). The idea of discounting as a shared behavioral marker speaks to
dimensional models of psychopathology, in which individuals are characterized
according to various symptom continuums as opposed to distinct categories (Cuthbert,

2014; Krueger & Markon, 2006). Rather than emphasizing between-group differences,
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a dimensional approach stresses within-group investigations that capture individual
variation in traits or behaviors. This approach has critical implications for animal models,
as high comorbidity encourages animal researchers to model specific symptom
dimensions rather than entire disorders (Fernando & Robbins, 2011).

Historically, personality and individual differences researchers have used self-
report questionnaires to evaluate impulsivity dimensions in clinical and non-clinical
populations (Cyders & Coskunpinar, 2011; Marsch & Bickel, 2001). Self-report
measures are beneficial in several respects (e.g., easy to administer, inexpensive), but are
limited by factors like subject response-bias. Reynolds et al. (2006) were the first to
directly compare behavioral and self-report impulsivity measures in a non-clinical sample
and found no significant overlap. Alternatively, work by Mobini et al. (2007) reported
positive associations between discounting rates and self-reported impulsivity. Given
discrepancies in the literature, Cyders and Coskumnipar (2011) conducted a meta-
analysis to better elucidate relations between these methods. The authors found evidence
for a significant association but the effect size was small. Thus, while some lab tasks
corresponded with self-reported impulsivity facets, by and large these approaches shared
a small amount of variance. Hence, these divergent approaches should not be
conceptualized under the same broad impulsivity header. Instead, researchers should
classify measures according to the specific one-dimensional concept they were designed
to capture, like sensation seeking or impulsive choice. The lack of overlap between self-
report and behavioral measures might also motivate researchers to use these measures in
conjunction to obtain a more comprehensive picture.

An important component of impulsivity research is identifying the biological
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systems that support decision-making across species. A detailed account of these systems
is necessary for understanding how they break down and in turn, developing effective
pharmacological treatments. The next section discusses the neural systems involved in

decision-making, with attention to cross-species parallels and psychopathology.

Neurobiological Correlates of Decision-Making: Implications for Psychopathology

Seminal work by McClure and colleagues (2004) first described the brain areas
involved in delay discounting, noting dissociable neural systems: limbic areas rich with
dopaminergic projections (e.g., ventral striatum [VStr], medial prefrontal cortex [mPFC],
orbitofrontal cortex [OFC]) activated for decisions involving immediate rewards, whereas
lateral frontal areas (e.g., dorsolateral prefrontal cortex [dIPFC]) activated in response to
all choices (immediate and delayed). The authors framed these results as a two-
component model of discounting, where the beta system weighed immediate rewards and
the delta system weighed rewards at all delays (Ballard & Knutson, 2009). The two-
component model can also be conceptualized as competing impulsive (i.e., limbic areas)
and executive control (i.e., frontal and parietal areas) systems. This competing framework
then proposes that addiction emerges from the imbalance between two interacting but
distinct neural systems (Bechara, 2005). For instance, excessive discounting among
individuals with addiction may result from chronic use that decreases function in the
executive system (Meier et al., 2012), which in turn, reduces preference for delayed
rewards (McClure et al., 2004). Similarly, an underdeveloped or weakened executive
system could explain heightened discounting in ADHD or antisocial personality disorder

(Bickel et al., 2007).
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Findings by Kable and Glimcher (2007) challenged the two-component model
offering a one-component model instead. The authors found that many of the impulsive
or beta areas (e.g., VStr, mPFC, and posterior cingulate cortex [PCC]) tracked the
subjective value of delayed rewards, thus contradicting the claim that these regions form
an impulsive system that primarily values immediate rewards (although cross-study
methodological differences prevented a direct comparison of these findings; Peters &
Biichel, 2011). Despite cumulative evidence that supports the dual-system model
(McClure & Bickel, 2014), decision-making systems are likely more complex than
initially proposed.

Current theories suggest that decision-making is driven by multiple interacting
systems (Daw, Niv, & Dayan, 2005; Redish, Jensen, & Johnson, 2008; van der Meer,
Kurth-Nelson, & Redish, 2012): The first is the reflex system, which is hardwired into the
central nervous system and responds immediately to direct dangers and events; it is
simple and follows basic rule-based reactions (e.g., pulling your hand away from a hot
stove; Redish, 2013). Next is the Pavlovian action-selection system, which reacts to
expected outcomes in a genetically prewired manner (i.e., species-specific actions that are
acquired via associative learning processes; Bouton, 2007). This system is
computationally fast. In comparison, the deliberative action-selection system is flexible
but much slower. This system is responsible for planning actions and maximizing
expected rewards (van der Meer et al., 2012), and likely entails searching through a series
of mentally simulated future possibilities, i.e., ‘episodic future thinking’ (Redish, 2016).
Finally, the Aabit action-selection system learns the best action to implement for a given

situation; importantly, stored actions are fast but inflexible. There are also various
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motor, perceptual, and motivational support systems. These systems are also equipped
with unique but overlapping systems. For instance, the Pavlovian system includes the
periaqueductal gray, ventral tegmental area, amygdala, VStr, and OFC (Ledoux, 2002;
McDannald, Lucantonio, Burke, Niv, & Schoenbaum, 2011), whereas the deliberative
system includes the hippocampus, prefrontal cortex, VStr, ventral tegmental area, and
dorsomedial striatum (Johnson & Redish, 2007; Schacter & Addis, 2011; van der Meer,
2009). Importantly, failure nodes or vulnerabilities within each of these decision systems
may lead to addiction (see Redish, 2013 for review).

Meta-analytic research indicates the OFC and VStr, specifically the nucleus
accumbens or NAcc, are key players in human reward processing (Liu, Hairston, Schrier,
& Fan, 2011). More specifically, the OFC (including medial OFC and ventromedial PFC)
plays a pivotal role in reward value representation (Jan Peters & Biichel, 2011),
particularly during reward receipt or consumption (Diekhof, Kaps, Falkai, & Gruber,
2012; Liu et al., 2011). The OFC processes a wide array of reward types, from primary
rewards (e.g., juice, water, pleasant smells), to abstract secondary rewards (e.g., money,
positive feedback, and social stimuli), to conditioned arbitrary stimuli (e.g., light flashes;
Peters & Biichel, 2011). Subdivisions within the OFC have different hedonic coding
functionalities (Berridge & Kringelbach, 2015): while the mid OFC codes the subjective
experience of pleasure (e.g., sex, food), the medial OFC tracks valence and learning of
reward values but not pleasure per se. In addition, the lateral OFC subdivision is often
recruited during punishment. Considering OFC functionality more broadly, several delay-
discounting studies noted that OFC lesions in rats yielded an increased preference for

immediate rewards (Kheramin et al., 2002, 2005; Mobini et al., 2002), although an
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increased preference for delayed rewards has also been observed (Winstanley, Theobald,
Cardinal, & Robbins, 2004).

Compared to the OFC, the striatum is often evoked during reward anticipation
and consumption (Diekhof et al., 2012; Liu et al., 2011). Although fMRI studies suggest
that these areas share strong functional overlap, findings from the rodent literature
indicate that the VStr may be involved in action selection before a decision, whereas the
OFC may process post-decision information (Stott & Redish, 2014). Moreover,
dopamine-projection striatal areas like the NAcc may signal prediction errors, or
differences between received and expected rewards, that in turn, contribute to learning
and motivation (Sescousse, Caldl, Segura, & Dreher, 2013). The NAcc-error association
is further corroborated by evidence that midbrain dopamine neurons signal reward
prediction error in rodents (Doya, 2008). With respect to discounting behaviors, lesions
to the NAcc core (but not shell) may also produce heightened impulsivity in rats
(Cardinal, Pennicott, Sugathapala, Robbins, & Everitt, 2001; Pothuizen, Jongen-Rélo,
Feldon, & Yee, 2005). Thus, the OFC and NAcc are pertinent to the study of impulsivity
in human and non-human animals.

Other core decision areas include the ventromedial PFC (or vimPFC), anterior
cingulate cortex (or ACC), anterior insula, and amygdala (Liu et al., 2011). Similar to the
OFC, the vimPFC is likely responsible for reward value computations and comparisons
(Padoa-Schioppa, 2011; Sescousse et al., 2013). In contrast to the OFC, the ACC and
anterior insula may be more responsive during the anticipation phase (Liu et al., 2011);
this functionality is consistent with reports that the insula processes risk and uncertainty

(Kuhnen & Knutson, 2005; Liu et al., 2011; Sescousse et al., 2013). Converging
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evidence suggests that the amygdala signals emotional valence (Bickel et al., 2007),
rather than intrinsic value (Sescousse et al., 2013). This area may also encode loss-related
expected values in humans, which contrasts the VStr, which may solely reflect gain-
related expected value (Yacubian et al., 2006). Complementary findings from rodents
implicate the amygdala’s role in biasing choice when losses (but not gains) are
emphasized (Tremblay et al., 2014). Taken together, the amygdala is a key target for

assessing gambling-specific neural substrates.

How Specific Are These Associations?

As noted previously, delay and effort-based discounting paradigms may evoke
somewhat separable neural substrates. Such distinctions are critical in delineating the
specific mechanisms associated with various costs, as separate valuation systems may
have evolved in response to different types of environmental costs (Prévost et al., 2010).
Moreover, different valuation systems may be differentially weighted across species. For
instance, certain primate species show less inclination towards exerting effort but more
tolerance towards delay, whereas other species exhibit opposing patterns (Stevens,
Rosati, Ross, & Hauser, 2005). A firm grasp on the neural representation of cost among
different species can inform the extent to which specific impulsive choice models
measure the same constructs and translate across species.

Dissociable substrates were first observed in rodent lesion studies: while ACC
lesions impacted effort-based decisions in rats (Walton, Bannerman, Alterescu, &
Rushworth, 2003), they did not yield impulsive delay-based decisions (Rudebeck,

Walton, Smyth, Bannerman, & Rushworth, 2006). Rather, OFC lesions produced more
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impulsivity, but did not alter effort-based decision processes. Researchers also found that
introducing lesions to the NAcc core or disconnecting the ACC and NAcc core similarly
impacted effort-based decisions by reducing the preference for high-effort rewards
(Hauber & Sommer, 2009). Thus, transfer between these regions may be pertinent to
effort-based decision-making.

Human neuroimaging studies similarly highlight the ACC and NAcc in effort
discounting. Botvinick and colleagues (2009) first examined the neural correlates of
effort discounting in humans, finding that NAcc activation fluctuated with reward
outcome and the amount of mental effort needed to obtain reward. Moreover, NAcc
activation was correlated with preceding dACC activation, again suggesting that effort-
demand information is shared between these areas. Additional human studies further
highlight the ACC in effort-based decision-making (Croxson et al., 2009; Hernandez
Lallement et al., 2014; Massar, Libedinsky, Weiyan, Huettel, & Chee, 2015; Prévost et
al., 2010). Many studies also link VStr activity with effort valuation (Croxson et al.,
2009; Hernandez Lallement et al., 2014; Treadway et al., 2012), although the VStr has
also been shown to represent delayed reward value but not effort cost (Prévost et al.,
2010). Lastly, the insula may also be implicated (Burke et al., 2013; Hernandez
Lallement et al., 2014; Prévost et al., 2010; Treadway et al., 2012), perhaps through
functional coupling with the prefrontal cortex (Burke et al., 2013) or ACC (e.g., salience
network; Prévost et al., 2010).

Effort-based paradigms have become a recent focus for measuring motivational
deficits in schizophrenia (Green, Horan, Barch, & Gold, 2015), as these symptoms are

linked with daily functioning impairments and represent a novel treatment target
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(Green, Hellemann, Horan, Lee, & Wynn, 2012; Rassovsky, Horan, Lee, Sergi, & Green,
2011). Emerging evidence suggests that individuals with schizophrenia may opt for lower
effort options, although there are discrepancies across task designs (e.g., button-pressing
versus grip tasks). Moreover, several studies identified relations between willingness to
expend effort and motivational deficits, such as apathy and anhedonia (Barch, Treadway,
& Schoen, 2014; Hartmann et al., 2014; Wolf et al., 2014).

No studies to date have directly examined the neural activity associated with
effort computation in schizophrenia. However, VStr activation has been linked with
negative symptom severity (Juckel et al., 2006; Simon et al., 2010; Waltz et al., 2010).
Functional and structural abnormalities of the ACC have also been observed in
schizophrenia samples (Fervaha, Foussias, Agid, & Remington, 2013). For instance, a
recent meta-analysis found that individuals with schizophrenia had reduced ACC activity
during an executive task that required effortful responses (Minzenberg, Laird, Thelen,
Carter, & Glahn, 2009). Thus it is plausible that dysfunction within (or between) the VStr
and ACC could negatively impact effort valuation and motivational processes in
schizophrenia. The empirical assessment of these neural associations, and their cross-
species parallels, is pertinent as researchers push forth efforts to translate animal effort-
based paradigms for use in schizophrenia clinical trials (for recent work in this domain

see Reddy et al., 2015).

Summary of the Impulsive Choice Literature: A Within- and Cross-Species Assessment

This section covered behavioral and neurobiological findings from traditional

intertemporal choice studies. More broadly, human and rodent impulsive choice tasks
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solicit a forced-choice between two discrete options of different values that are available
at different time delays. The two research domains converge in the mathematical
functions shown to best characterize discounting behavior (e.g., hyperbolic functions), as
well as the procedures used to produce those functions (e.g., adjusting delay procedures
to derive indifferences points). Furthermore, a common set of neural structures appears to
broadly support human and rodent decision-making. Despite these overlapping features,
certain methodological differences may challenge cross-species compatibility.

Rodents often experience the consequences of their actions (e.g., delay) and
consume primary rewards during each trial, whereas humans typically do not. 1t
follows that delay-discounting tasks likely require animals to use reward experience to
guide subsequent responses (Chudasama and Robbins, 2006). With the exception of real-
time discounting measures that also include primary rewards, human tasks rarely entail
an analogous experiential design. In other words, few human paradigms include real-time
delays and primary rewards for immediate consumption. This discrepancy raises at least

two issues: (1) different stimuli (e.g., primary versus secondary rewards) may evoke

separable brain systems in humans, and (2) hypothetical versus real choices may not

evoke equivalent valuation systems in humans.

With respect to the first issue, rodent tasks typically include primary rewards,
whereas human tasks typically include money (Mitchel and Potenza, 2014). This
methodological distinction has implications for elucidating the shared neurobiological
correlates. A recent meta-analysis examined the extent to which primary (e.g., erotica,
food) and secondary (e.g., money) reinforcing rewards showed overlapping neural

representations (Sescousse et al., 2013). The results revealed a “core reward system”
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that included the vmPFC, VStr, amygdala, insula, and thalamus, as well as reward-
dependent activation patterns. In particular, the VStr and right anterior OFC were more
likely to be activated by monetary rewards than food or erotic stimuli. The authors
posited that, in comparison to primary rewards, secondary reinforcers might be coded in
evolutionary recent brain areas, such as the anterior OFC. In contrast to monetary
rewards, food stimuli more strongly recruited the dorsal anterior insula and
somatosensory cortex, and erotic stimuli more strongly recruited the ventral anterior
insula and the extrastriate body area. When collapsed together, primary rewards recruited
the middle insula more so than secondary rewards. These results are consistent with
theories that the insula coordinates various interoceptive, homeostatic, emotional, and
cognitive signals (Augustine, 1996; Cauda et al., 2011; Liang, Zou, He, & Yang, 2013;
Mesulam & Mufson, 1982a, 1982b), whereby the insula’s integrative nature may be
pertinent to processing sensory and emotionally evocative stimuli. Thus, although
primary and secondary rewards exhibit several neurobiological parallels (Haber and
Knutson, 2010), the observed differences may be critical to successful human-rodent
translational. Furthermore, given the insula’s prominent role in impulse-related disorders
in humans and rodents (e.g., addiction; Abram et al., 2015; Contreras, Ceric, &
Torrealba, 2007; Goodkind et al., 2015; Abram et al., 2015; Contreras et al., 2007;
Goodkind et al., 2015), a shift towards primary reward paradigms might influence the
extent to which impulsive choice tasks effectively capture psychopathology.

In regards to the second issue, the “hypothetical bias” theory indicates that
hypothetical valuations are greater than real valuations (Cummings, Harrison, &

Rutstrom, 2013; Johannesson, Liljas, & Johansson, 1998; List & Gallet, 2001). This
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theory led researchers to question whether real and hypothetical recruits recruit separable
valuation systems in the brain. Two studies by Kang and colleagues (2011; 2013)
explored this question using tasks where subjects decided whether to purchase consumer
goods. In the first study, the authors found evidence for a common valuation circuit, as
both real and hypothetical decisions recruited the medial OFC and VStr. However, the
authors did note that certain valuation and cognitive control areas (e.g., OFC, ACC,
caudate) were more active for real choices. This latter finding could indicate that real-
choice neural activation reflects more careful or deliberate decision-making. The second
study extended this work to assess neural differences when choices were made to avoid
aversive outcomes. Contrary to the hypothetical bias, subjects were willing to pay more
to avoid bad choices under real conditions. Similar to Kang et al. (2011), real decisions
more strongly activated the OFC and VStr. Real decisions also evoked unique neural
activity in the insula and amygdala (areas implicated in negative emotions). This
additional insula finding complements the association between the insula and primary
rewards described above. Moreover, these studies suggest that, despite a set of core
valuation regions, there are detectable neural differences for real decisions; these
divergences may be relevant for psychopathology research, e.g., relations between the
insula and impulsivity. However, these studies did not directly address neural differences
using impulsive choice tasks, and future work is needed in this regard.

Hypothetical discounting measures may capture state and/or trait-level
impulsivity in humans. Both state and trait-level factors are posited to affect decision-
making behaviors (Bickel et al., 2007). Work by Dixon et al. (2006) provides evidence

for this dual process model in a sample of pathological gamblers. The authors observed
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stable discounting functions over multiple sessions (trait component), but also context-
dependent shifts when subjects were tested in a gambling context (state component). To
some degree, these results indicate that hypothetical measures can capture state and trait
dimensions by modulating environmental features. However, there are inconsistent
results regarding how acute drug administration impacts hypothetical discounting rates
(Bickel et al., 2013). It is thus important to clarify the specificity of this dual-process
model in terms of psychopathological disorders (e.g., behavioral versus substance
addiction) and drugs and abuse (e.g., alcohol versus opiates), as this can inform the
direction of cross-species translational endeavors.

Rodents often undergo repeated sessions and/or extensive pre-training. Testing
is often repeated daily with upwards of a month or more of training time (Foscue, Wood,
& Schramm-Sapyta, 2012). This approach sharply contrasts human research, where
subjects typically complete a single session with same-day training. This discrepancy has
prompted researchers to develop and test more efficient methods of acquiring rodent
decision-making data (Foscue et al., 2012), including a single-session variant of the
rodent lowa Gambling Task that measures stable individual differences (de Visser et al.,
2011; Rivalan, Ahmed, & Dellu-Hagedorn, 2009; Rivalan, Coutureau, Fitoussi, & Dellu-
Hagedorn, 2011). With respect to human studies, researchers have demonstrated strong
test-retest reliability for discounting rates derived from hypothetical tasks among healthy
(Matusiewicz et al., 2013; Simpson & Vuchinich, 2000; Weafer, Baggott, & de Wit,
2013) and disordered populations (Baker, Johnson, & Bickel, 2003). However,
comparable reports for an experiential discounting measure (i.e., the Experiential

Discounting Task; Reynolds & Schiffbauer, 2004) showed poorer test-retest reliability
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(Smits, Stein, Johnson, Odum, & Madden, 2013). This psychometric divergence may
support hypothetical tasks as measures of stable trait-like features when compared to
experiential tasks. That said, a more nuanced understanding of the underlying
mechanisms these tasks measure and their corresponding psychometric properties is
necessary. For instance, an ideal experiential task would produce stable parameter
estimates under constant conditions (e.g., same testing room, same time of day), and
varying estimates when influential variables were introduced (e.g., acute drug

administration). A thorough account of these psychometric properties could enhance

cross-species translation, and convey the optimal amount of pre-training and sessions

needed to produce equivalently stable estimates in humans and rodents.

In addition to these cross-species methodological limitations, intertemporal choice
models rely primarily on economic theories and techniques, such as the binary delay-

discounting tasks described previously. Alternative decision-making models grounded in

evolutionary theories may be an important counterpart to binary decision paradigms. The

next section will focus on one alternative decision-making model that may be particularly

useful in facilitating cross-species translation.

1.2 Serial-Choice Foraging Models

Serial-choice paradigms, specifically foraging tasks, are a naturalistic complement
to traditional binary choice investigations (Wikenheiser et al., 2013). In particular,
foraging models can provide a computational account of how individuals allocate scare
resources (e.g., time) when searching for valuable goods like food, money or drugs

(Stephens, 2008). Foraging tasks fall within an alternative class of decision problems,
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where options are considered sequentially rather than simultaneously and choices are
interdependent (Constantino & Daw, 2015). Essentially, individuals decide whether to
accept a current offer (i.e., foreground option) or go in search of a superior alternative
(i.e., the background).

Many of the problems framed within the traditional binary system (i.e., choice
between sooner-smaller versus larger-later) can be adequately described within a serial
stay/leave framework (Carter, Pedersen, & McCullough, 2015). Take, for example, the
scenario where an alcoholic must decide whether to order a drink or abstain. In the binary
choice framework, imbibing alcohol entails an immediate payoff, whereas not imbibing
yields larger long-term gains (e.g., abstinence). Within the serial framework, the choice
to drink represents a stay decision, whereas to not drink would represent a /eave strategy
(e.g., individual searches for preferred alternatives elsewhere). This structure may
potentially capture the extent to which certain choices are mutually exclusive more
realistically than binary models: An individual cannot drink alcohol and abstain at the
same moment as suggested by a binary choice model, whereas a drink in the current
moment does not preclude future abstinence as indicated by a stay/leave framework.

In the following section, I begin with an overview of traditional foraging theories.
I next review the predominant foraging paradigms that have been used with rats and
humans to date. Next, I discuss the literature that links foraging models with
psychopathology that includes evolutionary support for addictive behaviors. Lastly, I
discuss the neural circuitry that underlies foraging decisions. I conclude this section by
commenting on the relative value of foraging paradigms, as well as target areas for

advancing cross-species foraging models.
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Early Foraging Theories

While economics typically emphasizes problems faced by humans (e.g., weighing
costs of consumer goods), foraging theories emerged to conceptualize non-human animal
problems. It is therefore unsurprising that stay/leave paradigms are often preferable to
binary choice tasks for modeling naturalistic animal decisions (Hayden, 2015; Kacelnik,
Vasconcelos, Monteiro, & Aw, 2011; D. W. Stephens & Anderson, 2001), where is it
unlikely that animals encounter concurrent food sources when foraging in the wild
(Wikenheiser et al., 2013). Rather, foraging is better described as the choice to exploit or
explore: when an animal encounters a potential food source, the animal must elect
whether to exploit the source at hand or search for alternatives (Watson & Platt, 2008).

Two of the major issues identified in the foraging literature include: (1) the patch-
leave problem, where an animal decides when to stay or leave a prey-rich patch for
another one, and (2) the diet selection problem (also referred to as the prey selection
problem), where an animal decides whether to accept or reject a prey item (Hayden &
Walton, 2014). In the classical patch-leave problem, an animal seeks to optimize
behavior in a patchy environment, where food is dispersed in clumps or “patches.” The
animal exerts a cost when traveling between patches to obtain food. The animal also
depletes the available resources at a given patch the longer it remains in that location.
Different patches also provide different food types (e.g., small versus large prey).
Charnov’s (1976) Marginal Value Theorem (MVT) indicates that the animal seeks to
maximize energy intake as a function of patch type and energy costs (e.g., travel or

search time). More specifically, an animal should leave a patch when the rate of return
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from the current patch drops below the average rate of return for that environment. The
MVT has been shown to apply across an impressive range of species, including worms,
insects, fish, birds, primates, rodents, and humans (Stephens, Brown, & Ydenberg, 2007).
In the classical diet selection problem, an animal forages for randomly distributed
food items that are encountered in a serial fashion (Mitchell, 1990). The animal elects
whether to allocate handling time to the encountered prey, or spend time searching for a
preferred alternative. Here, choices are associated with different energetic investments
and different rates of energetic return (Watson & Platt, 2008). MacArthur and Pianka

(1966) proposed an early prey model function:

_E 3)

CT,+T,]
where R is the net benefit gained by consuming a particular prey, E is the energy gained,
T} is the handling time, and 75 is the search time. Maximizing R derives the diet offering
that yields the largest energetic return, and in turn, maximizes evolutionary success.
Contrary to the patch-leave problem, optimal diet theory assumes that resource depletion
does not occur; thus, the emphasis is on the frequency and type of prey the animal selects.
While this model has been used to describe behavior across a variety of species, it may
not perfectly characterize real-world decisions (Watson & Platt, 2008); the model
predicts that rate-maximizing behavior is to always prefer one prey to the alternatives,
although many studies found that subjects showed partial preferences for other prey. The
next section will explore the experimental paradigms that researchers have used to

investigate the patch-leave and diet-selection problems.
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Laboratory Models of Foraging

Patch-Exploitation Paradigms: Evidence of Excessive Exploitation

Charnov’s MVT was initially tested in a series of patch-use experiments where
birds foraged between groups of pinecones (Krebs, Ryan, & Charnov, 1974). More
recently, researchers outside of the ecology field have begun to employ computerized
patch-foraging tasks (Blanchard & Hayden, 2014; Calhoun & Hayden, 2015; Constantino
& Daw, 2015; Hayden, Pearson, & Platt, 2011). Hayden and colleagues (2011) first used
a patch-foraging task with rhesus monkeys, where two monkeys made stay/leave choices
by shifting eye gaze towards one of two targets. One target reflected a stay choice, where
the monkey remained in the current patch and received a juice reward, and the juice
reward declined in magnitude each time it was selected. The other target reflected a leave
choice. If this option was selected, the monkey encountered a delay (to simulate travel
time between patches) and the patch was replenished. Consistent with the MVT: (1)
monkeys remained in the current patch longer as travel times between patches increased,
and (2) patch residence time decreased as handling time increased (i.e., delay before
reward delivery). The authors also noted that the MVT model better fit the sequential
choice data than a traditional discounting model (i.e., hyperbolic function), even when
stay/leave choices were conceptualized as smaller-sooner/larger-later decisions. This
suggests that the stay/leave foraging structure may capture a dissociable aspect of
intertemporal choice.

Patch-exploitation paradigms have been far less utilized in human research
(Bixter & Luhmann, 2013). Hutchinson and colleagues (2008) employed one of the first

computerized patch-exploitation studies in humans, where subjects caught
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(computerized) fish in ponds and ponds were depleted as subjects caught more fish. The
ponds were not replenished, but subjects could switch ponds at any time. Subjects earned
monetary rewards for each caught fish (although payment was not delivered until the
end). Contrary to predictions, humans delayed patch switching for longer than optimal.
Similar “over-staying” tendencies have been observed in other patch-exploitation
paradigms with humans (Carter et al., 2015; Constantino & Daw, 2015). Likewise, these
findings are akin to foraging animals that over-stay in patches (Nonacs, 1991), or wait
through longer-than-necessary delays (Wikenheiser et al., 2013; Carter & Redish, 2016).
The multi-armed bandit task is an alternative patch-exploitation paradigm, where
a forager explores a new environment to uncover hidden values at various locations and
then exploits the option that yields the greatest value (Addicott, Pearson, Kaiser, Platt, &
McClernon, 2015). In an uncertain environment the reward values and locations can
fluctuate, thus, the forager’s challenge is to maximize long-term gains by adjusting his
exploit/explore strategy accordingly. An example of the multi-armed bandit problem is a
computerized task that presents four slot machines, where the number of points obtained
from each machine shifts gradually across the trials (Addicott et al., 2015; Addicott,
Pearson, Wilson, Platt, & McClernon, 2013; Daw, O’Doherty, Dayan, Seymour, &
Dolan, 2006). Thus, the subject will obtain the maximum payoff by exploiting the current

machine with the greatest yield, and then exploring when that yield declines.

Alternative Foraging Paradigms: Forced Exploration
In contrast to the patch-exploitation paradigms described previously, alternative

foraging paradigms may require a subject to explore his environment without the option

38



to continuously exploit any single reward site. Forced exploration paradigms allow for
the assessment of individual preferences and emotional constructs (e.g., regret), which
are important features of dynamic decision-making. The “Restaurant Row” task is a
spatial foraging paradigm that forces subjects to explore each reward site in sequence
(Steiner & Redish, 2014). In this task, rats foraged for food around a circular track that
had four feeders (or “restaurants”). Each feeder provided a different flavor of pellet after
a variable delay. Upon arrival at a feeder, a tone indicated the delay length before the rat
would receive the food pellets. The rat then made a stay/leave choice, i.e., whether to stay
and wait through the delay and receive the reward, or travel to the next feeder.
Importantly, the rat could not stay at any feeder and receive a second offer. Rather, the rat
had to continue to the next feeder to receive a subsequent offer (i.e., forced exploration).
The rat could only return to the same reward site after completing a full cycle around the
maze. Individual preferences were revealed by the rat’s willingness to wait out a certain
delay length for a particular pellet flavor; these preferences differed across rats but were
consistent within-subject and across-session (Abram et al., 2016). Using this paradigm,
the authors highlighted the value of serial choice designs, as pairs of consecutive trials
tracked distinct emotional events (Steiner & Redish, 2014). In particular, the results
revealed specific behavioral and neural signatures for regretful situations (as compared to
disappointing situations), where the rat deviated from its behavioral strategy in error.

I designed the “Web-Surf Task™ as a human analogue to the Restaurant Row
paradigm, drawing from human ethology and information foraging (Abram et al., 2016).
Information foraging theory suggests that humans make stay/leave foraging choices when

surfing the Internet, e.g., deciding when to begin a new search or follow links within
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the current page (Pirolli, 2005). In the Web-Surf Task, humans had 30 minutes to
“forage” for rewards in the form of photos or video clips. Comparable to Restaurant Row,
there were four galleries (each of which included a different category of stimuli, e.g.,
kitten clips). The subject was informed of the random delay time upon arrival at the
gallery and could then choose to stay and wait through the delay, or continue on to the
next offer. Similar to rats, humans showed evidence of revealed preferences that were
consistent within subject (i.e., revealed preferences correlated with other preference
metrics) but differed across subjects. This study was seminal in that we directly compared
cross-species behaviors using analogous tasks and operational definitions. In the same

vein as traditional discounting tasks, foraging tasks can include different types of costs.

Cost Types: Delay versus Physical Expenditures

The types of costs an individual encounters may influence the measurement of
foraging