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Abstract
Humans have a remarkable capacity to mentally project themselves far ahead in time. This ability, which entails the mental
simulation of events, is thought to be fundamental to deliberative decision making, as it allows us to search through and evaluate
possible choices. Many decisions that humans make are foraging decisions, in which one must decide whether an available offer
is worth taking, when compared to unknown future possibilities (i.e., the background). Using a translational decision-making
paradigm designed to reveal decision preferences in rats, we found that humans engaged in deliberation when making foraging
decisions. A key feature of this task is that preferences (and thus, value) are revealed as a function of serial choices. Like rats,
humans also took longer to respond when faced with difficult decisions near their preference boundary, which was associated
with prefrontal and hippocampal activation, exemplifying cross-species parallels in deliberation. Furthermore, we found that
voxels within the visual cortices encoded neural representations of the available possibilities specifically following regret-
inducing experiences, in which the subject had previously rejected a good offer only to encounter a low-valued offer on the
subsequent trial.
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Humans have the remarkable ability to mentally travel in time
(Suddendorf, 2013). This capacity for episodic simulation af-
fords individuals the cognitive and behavioral flexibility to

anticipate and evaluate potential outcomes when making de-
cisions (Buckner & Carroll, 2007; Gilbert & Wilson, 2007;
Schacter, Addis, & Buckner, 2008). This flexibility is espe-
cially relevant to deliberative decision making, which entails
the mental simulation and evaluation of distinct, imagined
future possibilities. Many choices that humans make are for-
aging decisions and involve choosing whether or not to take
an available offer (i.e., the foreground option), as compared
against unknown future outcomes (i.e., the background;
Charnov, 1976; Stephens, 2008). Foraging decisions occur
in a variety of real-world contexts; for example, humans for-
age for food in harsh environments, such as arctic hunters
(Smith, 1991), taxi cab drivers forage for passengers in a city
(Camerer, 1997), humans decide what food to purchase
(Riefer, Prior, Blair, Pavey, & Love, 2017), and drug users
forage for heroin in a black market (Hoffer, Bobashev, &
Morris, 2009). However, it remains unknown what roles (if
any) deliberative decisionmaking plays in foraging behaviors.

Foraging decisions are often characterized by the prey se-
lection model, in which one makes sequential accept/refuse
choices (Stephens, 2008; Wikenheiser, Stephens, & Redish,
2013). Limited resources impose trial interdependence across
a session, so that maximizing gains depends on comparing
current offers against expected but unknown future options,
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and resources spent on one offer are not available for future
offers. Many such experimental tasks include a time con-
straint, asking subjects to maximize gains within a specific
time window, where the time (or another limited resource)
spent on one option is then unavailable for future options.

A fixed economy can reveal a subject’s preferences by
measuring their willingness to endure the cost to attain some
but not all rewards. For instance, during the neuroeconomic
Restaurant Row task (Steiner & Redish, 2014), rats have a
limited time to cycle between four feeders and collect different
flavored food pellets available after variable delays. Rats re-
veal their preferences (or thresholds) by being willing to wait
for different delays for each flavor; in turn, good offers are
those with delays below threshold, and bad offers are those
above threshold. A key aspect of the Restaurant Row task is
that the flavor order is held constant, whereas the delays are
random—that is, rats know the location of the flavors but not
the specific delays they will encounter on arrival. Thus, to
accept the current cherry offer would mean that a rat would
have less time available to spend at the chocolate restaurant
that would come up next. Critically, the sequential task design
separates out the past (the offer just left), the current time (the
offer available to the rat), and the future (the next offer that
will be available); neural signatures can then be tracked in a
circular format, to indicate whether a rat was contemplating
the current versus alternative offers. This sequential structure
has led to novel discoveries regarding deliberation and regret
in rats—that is, scenarios in which a rat turned down a good
offer on the previous trial only to encounter an unfavorable
offer on the subsequent trial.

Human neuroimaging and nonhuman neurophysiology
findings inform our investigation of the neural circuits that
underlie human episodic simulation during deliberation.
Higher-level visual cortices may support the representation
(and distinguishing) of complex visual stimuli (Haxby et al.,
2011; Norman, Polyn, Detre, & Haxby, 2006), including such
regions as the lateral occipital cortex and fusiform gyrus
(Grill-Spector & Weiner, 2014). Sensory cortices may also
play a role. For instance, Doll, Duncan, Simon, Shohamy,
and Daw (2015) found that binary decisions that depend on
planning activate the sensory cortical representations of those
outcomes; this finding is consistent with evidence that over-
lapping neural systems are involved in past recall and future
simulation (Hassabis & Maguire, 2007; Schacter & Addis,
2007a; Schacter et al., 2012) and when imagining and perceiv-
ing a stimulus (Pearson, Naselaris, Holmes, & Kosslyn,
2015). Additionally, human fMRI studies and neural record-
ings from rodents have implicated the hippocampus and
parahippocampus in deliberation (Buckner & Carroll, 2007;
Hassabis, Kumaran, Vann, & Maguire, 2007; Redish, 2016).
The hippocampus supports the formation of internal cognitive
maps and the evaluation of potential options (Kaplan, Schuck,
& Doeller, 2017; Wang, Cohen, & Voss, 2015): Individuals

may use cognitive maps during deliberation to extract key
information from prior experiences, to guide future choices,
and to more efficiently encode new experiences.

In nonhuman animals, deliberation is intimately tied to the
difficulty of a choice. Rats faced with difficult choices, those
just above the decision threshold, spend more time deliberat-
ing over those choices (Steiner & Redish, 2014; Sweis,
Abram, et al., 2018a) and exhibit a behavioral process termed
“vicarious trial and error” (VTE; Tolman, 1939). Similarly,
humans making difficult choices show lengthened reaction
times (Shenhav, Straccia, Cohen, & Botvinick, 2014).
Because VTE is implicated during uncertainty and in difficult
decisions, it is thought to capture the indecision that underlies
deliberation (Redish, 2016). During VTE, hippocampal place
cells show forward-sweeping representations that alternate be-
tween options, suggesting that the rat is mentally simulating
possible outcomes (Johnson & Redish, 2007). These forward
sweeps are evident during challenging choices requiring more
deliberation and fade out as decision behaviors become more
automated (Johnson & Redish, 2007; K. S. Smith & Graybiel,
2013; van der Meer, Johnson, Schmitzer-Torbert, & Redish,
2010). The hippocampus may serve an analogous role in
humans, although this theory has not been tested directly.

In the present study, we employed a human version of the
Restaurant Row task, called the “Web-Surf Task” (Fig. 1;
Abram, Breton, Schmidt, Redish, & MacDonald, 2016).
Humans had a fixed amount of time to forage for videos
across four serially presented “galleries” (i.e., video catego-
ries: kittens, dance, landscapes, and bike accident videos). On
the basis of previous data that animals, tools, bodies, and
scenes are represented differently within cortical circuits
(Haxby et al., 2011; Haxby et al., 2001; Reddy, Tsuchiya, &
Serre, 2010; Tong & Pratte, 2012), we first hypothesized that
we could differentiate representations of the four categories
via fMRI. After confirming that humans made internally con-
sistent foraging decisions and that the neural representations
of categories were dissociable, we tested for evidence of epi-
sodic simulation during deliberation. We hypothesized that in
foraging decisions, deliberation should be more concerned
with the upcoming offer (i.e., the foreground option) than with
the alternatives (i.e., the background) and that such delibera-
tion would be supported in visual cortices known to represent
complex visual stimuli. Additionally, we anticipated that hip-
pocampal regions would be involved in making difficult
choices (requiring more deliberation).

Materials and method

Subjects

Twenty-nine healthy volunteers were recruited for the present
study. Twenty-five of the subjects were retained for analysis
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(52%male; age range = 20–39 years old, mean age = 28 years,
all right-handed), after excluding one subject for excessive
head motion (i.e., mean movement greater than 3 mm, or 1.5
times the voxel size), one for claustrophobia, and two for
invalid behavioral data. The subjects were recruited via
Craigslist (an American classified advertisement website)
and reported no prior history of neurological disease or severe
mental illness and no first-degree relatives with a severe men-
tal illness. Subjects completed a urine drug screen prior to
participation, and only those with a negative screening contin-
ued. All subjects provided written informed consent, and the
study procedures were approved by the Institutional Review
Board at the University of Minnesota.

Web-Surf Task layout

Subjects had 35 min to cycle between four video categories
(i.e., kittens, dance, landscapes, and bike accidents) pre-
sented using PsychoPy (Peirce, 2009). The categories were
indicated by the symbol at the top of the screen (Fig. 1),
and appeared in a fixed order. On arrival at a category,
subjects were presented with a “download bar” (the offer)
that indicated how long they would have to wait (delays
ranged from 3 to 30 s) for a given reward (i.e., 4-s video
clip). If they elected to stay, the delay counted down, the
subject watched the video clip, and then rated it on a 1–4
scale. If the subject chose to skip, the subject proceeded to

the next category and received a new offer. The period
between the start of a trial (i.e., the arrival at a category)
and the subject’s stay/skip choice was defined as the
decision, and the period between the start of a video and
the subject’s rating was defined as consumption. When
traveling between categories, subjects had to click on the
numbers 1–4 as they randomly appeared around the screen;
this represented a travel cost. The numbers were presented
in dark gray against a gray screen, to increase the difficulty.
Trials were presented in 9-min blocks, with 45 s of a fix-
ation crosshair shown between blocks. All subjects com-
pleted practice both in- and outside the scanner.

Web-Surf preview task

Before the main task, subjects completed a preview task that
presented a fixed set of ten 4-s video clips from each category;
the categories appeared in the same order as in the main task,
and the video clips were randomly ordered within each cate-
gory. Subjects rated each video using the same scale as in the
main task. A fixation crosshair appeared between videos for
3–6 s (the durations were randomized). The total task timewas
approximately 7 min. This task provided baseline estimates of
preference and neural activation for each category, in case a
subject were to skip all offers from a particular category dur-
ing the main task.

Fig. 1 MRI Web-Surf Task layout and flow diagram. The flow diagram
illustrates differences between a stay and a skip trial (left). If the subject
stays (1), the subject waits through the delay, views the 4-s video clip (2),
and rates the video (3). If the subject instead chooses to skip, the subject

then proceeds through the cost phase (4) and arrives at the next offer (5).
(Upper right) Schematic of the Web-Surf Task: Subjects had 35 min to
cycle between the four video galleries in the depicted order. (Bottom
right) Example of delay threshold computation for a single subject
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fMRI data acquisition and preprocessing

Neuroimaging data were collected using a 3-T Siemens
MAGNETOM Prisma with a 32-channel head coil at the
University of Minnesota’s Center for Magnetic Resonance
Imaging. A high-resolution T1-weighted (MPRAGE) scan
was collected for registration [repetition time (TR) = 2.5 ms;
echo time (TE) = 3.65ms; flip = 7°; voxel = 1 × 1 × 1mm]. The
main task data were collected using a single whole-brain echo-
planar imaging (EPI) run, with the following sequence param-
eters: TR = 720ms, TE = 37ms, flip angle = 52°, voxel size = 2
× 2 × 2mm (approximately 3,500 volumes), multiband factor =
8; the same parameters were used for the preview task EPI
sequence (approximately 500 volumes), and an additional short
reverse phase-encoded EPI sequence was used for distortion
correction (ten volumes). The entire scanning session lasted 1
h. The order of acquisitions was as follows: three-axis localizer
scan, AA Scout [aligned slices to the anterior commissure–
posterior commissure (AC–PC) line], T-1 MPRAGE, reverse
phase-encoded EPI sequence, preview task, and the Web-Surf
Task. There was no set spacing between scans.

We carried out standard preprocessing using the FMRIB
Software Library (FSL version 5.0.8; Jenkinson, Beckmann,
Behrens, Woolrich, & Smith, 2012), which included brain
extraction, motion correction,1 prewhitening, high-pass tem-
poral filtering with a sigma of 50 s, spatial smoothing with a 6-
mm full-width-at-half-maximum Gaussian kernel, and spatial
normalization and linear registration to the Montreal
Neurological Institute (MNI) 152 standard brain. We also
employed FSL’s top-up functionality to correct for
susceptibility-induced distortions. This entailed collecting a
reverse phase-encoded EPI sequence with distortions going
in the opposite direction, which was paired with both the main
task and the preview task. The susceptibility-induced off-res-
onance field was estimated from these pairs using a method
similar to that described in Andersson, Skare, and Ashburner
(2003). The images were then combined into a single
corrected one.

Value computations

Value was computed as the category-specific threshold minus
delay, where thresholds indicated the delay time at which a
subject reliably began to skip offers for a particular category.
Delay thresholds were computed separately for each trial, per
category, using a leave-one-out approach: To obtain the thresh-
old for trial i, we fit a Heaviside step function to all trials in
category c excluding trial i. This produced a vector of thresh-
olds with length equal to the number of trials in category c, and
we used the average of that vector in subsequent analyses. We

used a Heaviside step function as an alternative to the logistic fit
function described in Abram et al. (2016) because the
Heaviside step function can better handle extreme cases (i.e.,
when a subject stays or skips all offers in a category). In such
instances, the Heaviside step function produces a reasonable
value (e.g., 3 or 30) reflecting the range of possible delays,
whereas the logistic fit function is likely to produce a value
approaching infinity. Values then ranged from approximately
– 27 to 27 (e.g., a 30-s delay with a threshold of 3 s vs. a 3-s
delay with a threshold of 30 s), and a value of 0 meant that the
offer was equal to the threshold.

Behavioral validity analyses

We first asked whether humans made internally consistent for-
aging decisions, by correlating the subject-derived delay thresh-
olds with measures of reward liking (i.e., average category rat-
ings, post-test category rankings). These methods were the
same as those previously described (Abram et al., 2016).

Learning analyses

We next investigated cross-session learning effects, given that
subjects skippedmore as the session progressed, potentially due
to satiation.2 We were specifically interested in whether we
could detect behavioral changes as subjects became more fa-
miliar with the task (i.e., a switch frommore to less deliberative
decision processes). To this end, we compared decision reaction
times against trial number and then conducted follow-up anal-
yses to understand how learning impacted the relations between
reaction times and value. We performed the same analyses
using video-rating reaction times, to assess whether the cross-
session shifts were similar for the decision and consumption
phases. We also examined the extent to which the video ratings
fluctuated across the session, with consideration of subject-
specific preferences.

Preview task general linear model analyses

Functional data from the preview task were first analyzed at the
group level, using a whole-brain voxel-wise general linear
model (GLM) approach to assess for category-relevant activa-
tion. Here we used the fMRI Expert Analysis Tool (FEAT)
within FSL. We modeled the video viewing and rating for each
category as separate events (yielding four regressors of interest),
along with the six standard motion parameters as confound
regressors. The events were convolved using a double-gamma
hemodynamic response function (HRF) and a threshold of z >
3.1, and a whole-brain, corrected cluster-extent threshold of p <
.01 was applied.

1 Average absolute (mean = 0.57 mm) and relative (mean = 0.09 mm) head
displacements.

2 Themixed-effect logistic model had a negative slope, indicative ofmore skip
choices across the session (β = – .005, p < .001).
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Decoding validity analyses

Weused amultivoxel pattern analysis decodingmethod, which
offers a unique approach for probing episodic memory in
humans and is useful for identifying category-specific repre-
sentations. In particular, we employed the sparse multinomial
logistic regression (SMLR; Krishnapuram, Carin, Figueiredo,
& Hartemink, 2005) classifier, available in the PyMVPA
machine-learning package (for multivariate pattern analysis
in Python, http://www.pymvpa.org; Hanke et al., 2009). We
selected this classifier because of its computational efficiency
and good classification performance (Krishnapuram et al.,
2005; Sun et al., 2009). The SMLR classifier utilizes multiple
regression to predict the logarithm of the odds ratio of belong-
ing to a particular class. This ratio is then transformed into a
probability via a nonlinear transfer function that ensures that all
classification probabilities sum to 1. The sparsification compo-
nent promotes a more parsimonious and generalizable solu-
tion. For the present analyses, we used the default lambda
penalty setting (λ = 1).

Decoding was conducted on a subject-by-subject basis and
included the previously preprocessed fMRI data. We trained
the classifier on the preview task data for all decoding analy-
ses, because (1) each subject saw the same set of videos during
the preview task,3 (2) the preview task contained trials from
every category (whereas subjects could elect to skip all videos
from a category during the main task), and (3) this provided a
separate training set, so we did not have to create a cross-
validation set from the main-task data.

In Step 1, we determined whether stimuli from the four
categories were distinguishable via SMLR decoding using only
the preview task data, as the subsequent analyses hinged on
successful category separation. The first step in this process
entailed fitting a GLM to the preview task data, to obtain linear
model activity estimate images (i.e., parameter estimates),
which were then supplied as examples to the classifier. Each
video category was modeled as a separate event, and we also
included a regressor to account for the fixation periods between
the videos; this event was considered the other category and
provided a control from which to compare the four video cate-
gories. For this analysis, samples were “chunked” to create
groups of samples for cross-validation, each of which included
two video samples from each category, as well as the fixation
periods between those samples; the scan duration of a chunk
ranged from approximately 60 to 80 s, depending on the fixa-
tion lengths between videos. All trials in a given loop (or com-
plete pass through all four categories) were included in the same
chunk, as well as four trials from a different loop. We averaged
two samples per category when forming chunks, as this

approach produces less noisy examples (Pereira, Mitchell, &
Botvinick, 2009). After fitting the model, we z-scored the data
separately for each chunk.4 We performed 60/40 cross-valida-
tion—i.e., we left two chunks out—on the preview task param-
eter estimate maps.5

In Step 2, we tested whether we could predict which video a
subject had viewed during the main task after training the clas-
sifier on the preview task data. We again fit a GLM to acquire a
parameter estimate map for the video consumption time; we
scaled the resulting parameter estimates to the training data, as
the training data included an equal number of data points per
condition. We then predicted which category the consumption
time best represented (i.e., kittens, dance, landscape, bike acci-
dents, or non-video) and extracted the corresponding probabil-
ity estimates (one per category). The final step entailed com-
bining the subject-specific data and reorganizing the probabili-
ties according to the subjects’ locations within the loop of video
categories. Given that the categories were presented in a fixed
cycle (e.g., kittens, dance, landscapes, bike accidents, and then
back to kittens), we could organize the decoding results by
using previous, current, next, opposite, or non-video labels to
indicate a subject’s location within that cycle, and track the past,
current, and future representations as the subject traversed the
task. As an example, for a subject at the kitten category, the
obtained probabilities were labeled as follows: bike accidents
(previous), kittens (current), dance (next), and landscapes
(opposite). For a subject at the dance category, the obtained
probabilities were labeled as follows: kittens (previous), dance
(current), landscapes (next), bike accidents (opposite), or non-
video (when the data did not correspond to any of the video
category neural signatures).

We computedmixed-effect logistic models to compare prob-
abilities between the locations using the lme4 package in R
(Bates, Maechler, Bolker, & Walker, 2014). Specifically, we
regressed the SMLR probabilities on location, with subject as
a random effect. In the main text we report F statistics to indi-
cate whether there were overall probability differences between
the locations. For significant overall models, we used two-tailed
chi-square tests to determine which locations had probabilities
above chance—that is, 1/5 = .20 (four video categories and one
control category). Finally, for locations with probabilities above
chance, we used follow-up one-tailed chi-square tests to deter-
mine whether that location’s probabilities were greater than
those of the additional locations (e.g., for a model with only
the current category attaining probabilities above chance, the
contrasts would be current > previous, current > next, current >
opposite, and current > non-video we report the original p-
values as well as false discovery rate (FDR)-adjusted p values,
using Benjamini and Hochberg’s FDR control algorithm

3 The first three subjects were excluded from this analysis because they com-
pleted a version of the preview task with half the number of trials; this resulted
in a sample of N = 22.

4 This approach prevents an outlier from dragging down the global mean.
5 Two chunks constituted 40% of the data, since the preview task was sepa-
rated into five chunks total.
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(Benjamini & Hochberg, 1995) for follow-up between-location
comparisons.

Decoding deliberation analyses

Our primary aim was to test for evidence of deliberation dur-
ing decision making. We employed an approach comparable
to that described under Step 2, but instead we fit GLMs to the
decision phase of the main-task data when acquiring the acti-
vation maps for the classifier (again scaling these maps to the
training data).

We used mixed-effect logistic models and chi-square tests
(as described above) to first identify which location(s) (i.e.,
previous, current, next, opposite, or non-video) were represent-
ed best across all the trials, and then by different decision con-
ditions (e.g., stay vs. skip choices). In follow-up analyses, we
capitalized on the sequential task structure by evaluating the
relations between serial actions and deliberation, on the basis
of foundational work by Steiner and Redish (2014) using the
rodent Restaurant Row task. To this end, we used mixed-effect
logistic models to compare decision-decoding probabilities and
decision reaction times across four conditions: skip previous +
skip current, stay previous + skip current, skip previous + stay
current, and stay previous + stay current; importantly, we con-
sidered the value (i.e., threshold – delay) of the past offer, since
the decision to reject good versus bad offers should yield dif-
ferential effects (Steiner & Redish, 2014; Sweis, Redish, &
Thomas, 2018b; Sweis, Thomas, & Redish, 2018c).

Choice difficulty general linear model analyses

Finally, we compared the decoding results above with those
from a traditional GLM approach that pinpointed activation
related to difficult choices. This model included four regressors
(choice, delay, video viewing/rating, and travel), plus motion
parameters. We weighted each decision and video-viewing
event by its distance from the respective category threshold,
such that events closer to threshold were weighted more heavi-
ly. Decisions in this model were isolated to the last second of
the choice phase (given that reaction times differed systemati-
cally by value). Events were convolved using a double-gamma
HRF and evaluated with a threshold of z > 3.1 and a corrected
cluster-extent threshold of p < .01.

Results

Choices predict reward likability

Initial behavioral analyses revealed that people typically made
choices consistent with offer value—that is, threshold minus
delay, where thresholds represented the point at which a sub-
ject reliably began to skip offers from a particular video

category (see Fig. S1 for plots of each subject’s thresholds).
Foraging decisions conformed to a sigmoid pattern, in which
subjects typically accepted offers above threshold (offers val-
ued greater than 0) and declined those below threshold (Fig.
S2A). This suggests that our threshold metric was a good
indicator of value-based decisions. To test the correspondence
between subjects’ decisions and their liking of rewards, we
correlated the four category thresholds with average category
ratings and post-test category rankings separately. We found
that 76% of the average rating correlations were above .5, and
88% of the post-test ranking correlations were above .5 (Fig.
S2B); these values were comparable to those previously re-
ported (Abram et al., 2016). We also noted that, on average,
subjects rated all categories between 2 and 3 (Fig. S3), indi-
cating that subjects generally found the video stimuli
rewarding.

Cross-session characteristics

We observed a strong downward trend in decision reaction
times as the session progressed (β = – .002, p < .001; Fig.
2A). In the first half of the session, reaction times were con-
sistently slow for low-valued trials, as compared to a more
peaked formation around threshold in the second half.
Furthermore, reaction times were lower overall in the second
half (paired t = 11.92, p < .001). These patterns could reflect
the process of adjusting one’s threshold, with subjects show-
ing a much clearer understanding of their thresholds later in
the session.

We also point out that the increased reaction times for low-
valued trials near threshold are analogous to the VTE pattern
observed in rats and mice during the Restaurant Row task
(Steiner & Redish, 2014; Sweis, Abram, et al., 2018a):
Subjects took longer to make choices for offers that approached
threshold, and were fastest for those offers significantly above
or below threshold (Fig. 2A). Consistent with the rodent data,
reaction times remained high for lower-value offers (above
threshold) more than for higher-value offers (below threshold)
during the first half of the session; this suggests that offers just
above threshold (i.e., small negative values) were especially
challenging and required more thoughtfulness.

In comparison to decision reaction times, rating reaction
times did not decline significantly as a function of trial number
(β = .000, p = .15; Fig. 2B). Rating reaction times were also
less impacted by offer value, suggesting that learning is more
relevant to decision making than to post-consumption
evaluation.

Subjects also showed a slight decline in ratings across the
session (β = – .002, p < .001; Fig. S4), with relatively similar
declines across the four categories; however, when consider-
ing rating shifts by preference, we see that the two top pre-
ferred categories showed a sharper drop off in the second half
of the session than did the lesser preferred categories.
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Distinguishability of video categories

To test for deliberation, it was critical that we could discrim-
inate the four video categories on the basis of their neural
signatures. An initial evaluation of the preview task data
showed similar activation patterns across the video categories
(Fig. S5; Table S1; regions included the anterior insula, pre-/
post-central cortex, hippocampus/parahippocampal gyrus, an-
terior cingulate cortex (ACC), lateral occipital cortex, lingual
gyrus, and inferior frontal gyrus). Given the large overlap in
activation across the categories during the preview task, we
created a cumulative mask for decoding that entailed merging
the four main effect maps—i.e., the preview task mask (Fig.
3). However, because the preview task mask extended beyond
the visual cortex (into more anterior substrates), we compared
its decoding performance to that from a second mask—i.e.,
the preview task visual mask; we restricted this mask to
higher-level visual regions known to represent complex visual
stimuli (Haxby et al., 2011).

Initial validity analyses showed that the visually restricted
mask outperformed the broader preview task mask for disso-
ciating categories (Fig. 4). First, the preview task visual mask
had better accuracy overall when decoding the preview task
data (Fig. 4A), with approximately 53% accuracy for
predicting each video category, roughly 80% accuracy for

classifying the fixation periods between videos (i.e., the con-
trol condition), and an overall accuracy of 58% (as compared
to a chance level of 20%). Thus, the stimuli were distinguish-
able via decoding, despite their spatially similar activation
maps.6

Decoding of the main task consumption phase (i.e., while
video viewing) was also used as a positive control, given that
both the training and test data also entailed video viewing.
Figure 4B shows that decoding of consumption-related acti-
vation using the preview task (PT) mask indicated a signifi-
cant difference between locations [F(4, 7954) = 31.70, p <
.001], with the best representation being at the current location
(i.e., the location with probability above chance; Mcurr_PT =
.277, SE = .009; χ2 = 58.19, p < .001; Table S2) and the non-
video location falling below chance. In comparison, we ob-
served significantly better decoding7 using the preview task

Fig. 2 Cross-session behavioral shifts. (A) Decision reaction times show
the steepest decline in the first 50 trials (left); reaction times were
consistently slow for low-valued trials in the first half of the session
(middle) versus a sharp peak at threshold for the second half (right). (B)
Video rating reaction times did not decline significantly across the session

(left), and video rating reaction times were less driven by value than
decision reaction times (middle and right). Thresholds are indicated by
the vertical lines at 0, and shaded bands represent 95% confidence
intervals

6 Of note, probabilistic masks of the orbitofrontal cortex and nucleus
accumbens—that is, the regions investigated by Steiner and Redish
(2014)—showed poor decoding performance (Fig. S6), which could represent
a possible cross-species divergence in the neural mechanisms involved in
foraging.
7 Akaike information criterion (AIC)PT = 6,356.5, log likelihoodPT = –
3,171.2, deviancePT = 6,342.5; AICPTV = – 3,343.5, log likelihoodPTV =
1,678.2, deviancePTV = – 3,357.5, p < .001.
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visual (PTV) mask [F(4, 7954) = 109.87, p < .001] (Mcurr_PTV

= .285, SE = .005; χ2 = 71.31, p < .001; Table S2); we note
that both models reported in Table S2 include four pairwise
comparisons (i.e., current vs. the other four categories).

On the basis of the stronger performance of the preview
task visual mask for decoding both the preview task and main
task consumption data, all remaining analyses focused solely
on this mask.

Visual cortices track upcoming and future locations
during foraging decisions

Decoding using the preview task visual mask revealed the
strongest representation of the next location [F(4, 15259) =
14.51, p < .001; Fig. 5A; Table S3] (Mnext_PTV = .23, SE =
.007; χ2 = 17.67, p < .001), followed by the current location
(Mcurr_PTV = .22, SE = .007; χ2 = 5.51, p = .02); we then
performed seven follow-up pairwise comparisons based on this
model (Table S3). We also detected a significant Location ×
Choice interaction [F(4, 15259) = 3.89, p = .004]; post-hoc
analyses showed representations of both the current
(Mcurr_PTV = .22, SE = .01; χ2 = 5.46, p = .02) and next
(Mnext_PTV = .22, SE = .01; χ2 = 5.20, p = .02) locations to be

the strongest during skip decisions [F(4, 7289) = 5.50, p < .001;
Fig. 5B; Table S3), whereas for stay decisions, [F(4, 7949) =
12.05, p < .001; Table S3, Fig. 5B], the next location was
strongest (Mnext_PTV = .24, SE = .009; χ2 = 13.00, p < .001),
followed by the previous location at a trend level (Mprev_PTV =
.22, SE = .009; χ2 = 3.66, p = .06); we similarly conducted
seven pairwise comparisons for each of the stay and skip
models (Table S3).

We also note that representations were stronger during the
first [F(4, 1647) = 16.00, p < .001; Fig. S7, Table S4] than
during the second [F(4, 1411) = 2.62, p = .03] half of the
session; see the supplemental materials, Cross-Session Shifts
in Deliberation section.

Regret uniquely impacts deliberation while foraging

The prior analyses suggested that competing representa-
tions of the past and future outcomes guide an agent’s
choice to stay or skip (e.g., on a skip choice, subjects may
ponder: “do I accept this offer or try my luck at the gal-
lery?”), but to what extent do that agent’s past actions im-
pact the deliberation? If we consider time a limited resource,
then trials become interdependent, and past actions might

Fig. 3 Decoding masks: Illustrations of the two masks used for the
decoding analyses. The preview task visual mask is a restriction of the
preview task mask that includes only visual areas. ACC = anterior

cingulate cortex; Ant = anterior; Inf = inferior; Lat = lateral; Mid =
middle; Occ = occipital; Parahippo = parahippocampal; Temp = temporal
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impact future decision making. To answer this question, we
first tested whether past decisions impacted the neural represen-
tations during the decision time. As is shown in Fig. S8, rejec-
tion of a good offer (value > 0) on the last trial was associated
with the strongest representation of the current location, partic-
ularly when the subject also chose to skip the current offer
(orange box in top left cell of the figure). This suggests that a
subject’s realization that an error has just been made could lead
to more deliberation about whether to reject the new offer.
Subjects were also slowest when making a skip decision if they
had stayed on the previous trial [F(3, 15155) = 40.03, p < .001],
followed by skip decisions when they had stayed on the previ-
ous trial (Fig. S9; see the supplemental materials, Decision
Times in Response to Sequential Choices section).

We hypothesized that this sequencing finding was akin
to experiences of regret, defined here as the realization that
one’s actions yielded an unfavorable result—that is, an al-
ternative action would have led to a preferred outcome

(Bell, 1982). More specifically, a regret-inducing scenario
occurred when a subject skipped a high-value offer only to
encounter a low-value offer on the subsequent trial. We
thus explored the possibility that humans would show more
deliberation following regret (than following other serial
outcomes), using the criteria from Steiner and Redish
(2014). Table S5 provides detailed descriptions of regret
and the four comparison conditions, where Control 1 and
Control 2 reflect disappointment (i.e., the agent encounters
an unfavorable offer after making the correct choice on the
last trial), and Rejoice 1 and Rejoice 2 reflect the receipt of
good offers after skipping the previous trial. We used
mixed-effect logistic models to assess for between-
condition effects (i.e., regret vs. controls) for each of the
four locations plus the non-video control (e.g., previous,
current, next, opposite, and non-video), yielding five
models. We found that the current representations were
strongest for regret-inducing scenarios [F(4, 2084) = 7.96,

a

b

Fig. 4 Validity of the decoding method. (A) The four video categories
were dissociable using our decoding methods for both the preview task
and preview task visual masks. Predictions were based on training with
60% of the sample and testing on 40% of the sample over ten iterations.
Probabilities were based on four video and one control (non-video)
category, yielding a chance level of 20%. (B) Decoding using the
preview task and preview task visual masks represented the current

category during video consumption. Chance is indicated by the
horizontal black lines at .2. Error bars reflect within-subjects standard
errors, and asterisks reflect locations with probabilities significantly
different from chance (five follow-up χ2 tests performed per each
significant model: *p < .05. **p < .01. ***p < .001). BA = bike
accidents; D = dance; K = kittens; L = landscapes; NV and Non-vid =
non-video

1500 Cogn Affect Behav Neurosci (2019) 19:1492–1508



p < .001] (Mcurr_PTV_regr = .34, SE = .05; χ2 = 7.73, p =
.005; Fig. 6), followed by Control 1 (Mcurr_PTV_ctrl1 = .25,
SE = .03; χ2 = 8.63, p = .003). We then tested whether
regret representations were greater than each of the four
other conditions, using one-tailed tests; we found that the
regret representations significantly exceeded each of the
other conditions: Control 1 (z ratio = 2.08, p = .02, padj =
.03), Control 2 (z ratio = 3.39, p = .0003, padj = .0006),
Rejoice 1 (z ratio = 1.84, p = .03, padj = .03), and Rejoice
2 (z ratio = 4.51, p = .0001, padj = .0004). Comparatively,
the neural representations following regret instances were
not above chance for any of the other locations (Fig. S10);
however, we did find overall differences for the opposite
and non-video models, with Control 1 being above chance
for the opposite model (Mopp_PTV_ctrl1 = .23, SE = .03; χ2 =
4.27, p = .04).

Neural activation for difficult choices

We then investigated which brain areas were associated
with difficult choices on the main task. Figure 7A shows
that decision making recruited the ACC, middle frontal gy-
rus (MFG), bilateral hippocampus, posterior cingulate cor-
tex, and lingual gyrus (Table S6). Likewise, video viewing
after the delay recruited the ACC, hippocampus, and visuo-
spatial areas, as well as bilateral portions of the orbitofrontal
cortex (OFC), nucleus accumbens, amygdala, insula, and
thalamus; we note that in the case of consumption, these
regions may reflect more intensive post-consumption valu-
ation processes rather than greater difficulty (because the
subject was long past the decision phase). An intersection
mask revealed that both decisions and consumption evoked
the ACC, bilateral hippocampus/parahippocampus, and

Fig. 5 Decision decoding with the preview task visual mask. (A)
Decoding using the preview task visual mask during the decision phase
best represents the current and next locations for all trials collectively. (B)
Decoding using the preview task visual mask during the decision phase
best represents the current and next locations for skip trials (top), as
compared to the previous and next locations for stay trials (bottom).

Probabilities were based on four video and one control (non-video)
category; chance is indicated by the horizontal black lines at .2. Error
bars reflect within-subjects standard errors, and asterisks reflect
locations with probabilities different from chance (five follow-up χ2

tests performed per each significant model: . p < .10; *p < .05; ***p <
.001). Non-vid = non-video
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visuospatial areas (Fig. S11); follow-up analyses showed
that both decisions and video viewing led to increased
hippocampal/parahippocampal activation (Fig. 7C).
Although it is possible that signals from consumption were
erroneously attributed to decisions (or vice versa), given the
sluggish nature of the hemodynamic response and some
shorter wait times (Lindquist, Meng Loh, Atlas, & Wager,
2009), we note that subjects had not always elected to view a
video on the prior trial and that we intentionally introduced
jitter between the trials (i.e., the cost phase shown in Fig. 1)
to help separate these events.

Finally, we contrasted choice and video viewing to de-
termine the extent to which challenging offers were asso-
ciated with different brain structures at different points in
the decision process. Here we observed increased ACC and
MFG activation during decision making, as compared to
increased OFC and posterior insula activation during con-
sumption (Fig. 7B and C).

Discussion

Recent theories have posited that humans engage in future-
oriented thinking during deliberative decision making
(Buckner & Carroll, 2007; Gilbert & Wilson, 2007; Kurth-
Nelson, Bickel, & Redish, 2012; Schacter & Addis, 2011).
This entails imagining rich and concrete future representations
(Peters & Büchel, 2010; Redish, 2016). These processes have
been directly observed in rats during foraging decisions
(Steiner & Redish, 2014), and have yielded important insights
as to how agents’ awareness that they have made an error—
that is, an experience of regret—could drive episodic simula-
tion during deliberation. Using the Web-Surf Task, a
sequential-foraging paradigm with real-time costs and re-
wards, we discovered a set of human decision-making mech-
anisms indicative of deliberation while foraging. Our unique
task design allowed us to differentiate the representations of
the foreground versus background options as humans cycled
between four video categories that appeared in a constant or-
der but varied trial-by-trial with regard to the specific delay.
We used multivoxel pattern analysis decoding to uncover cat-
egorical representations within a category-selective mask that
contained key visual regions, and we found that choices fol-
lowing regret-inducing experiences led to better representa-
tions of the current offer.

Our initial decision decoding findings depict overall effects
for all trials, and then separately for stay and skip choices.
These results suggest the possibility of competing representa-
tions when agents make choices: We found the best represen-
tations of the current and next locations during skip trials,
versus the best representations of the previous and next loca-
tions for stay trials. These initial results diverged somewhat
from our expectation that foraging decisions should be more
concerned with the upcoming offer (i.e., the foreground op-
tion) than with the alternatives (i.e., background), implying
that the current representations would exceed the other op-
tions. Instead, our results suggest that during skip decisions,
subjects waver between whether the current offer is worth it or
whether they should take their chances with the next offer; this
could be explained by slower responses on skip trials (mainly
during the first half of the session), suggesting more difficulty
in rejecting versus accepting offers. Comparatively, the back-
ground offers (i.e., previous, next) were depicted better on stay
trials, which might point to broader task representations com-
ing online. These choice-specific differences might also be
understood in terms of default foraging behaviors, in which
the default action is to engage with an offer (whereas
continued foraging requires an override of the default
option; Kolling, Behrens, Mars, & Rushworth, 2012; Sweis,
Abram, et al., 2018a; Sweis, Thomas, & Redish, 2018c). Our
data suggest that the default option in our task would be to
stay, and the nondefault to skip. It is possible that on skip
trials, stronger current and next representations emerge as

Fig. 6 Regret-inducing experiences enhance deliberation: Decision
decoding probabilities from the current location using the preview task
visual mask for regret versus the control conditions. Chance is indicated
by the horizontal black line at .2. Error bars reflect within-subjects
standard errors, and asterisks reflect locations with probabilities
different from chance (five follow-up χ2 tests performed: **p < .01).
The additional p values reflect one-tailed odds ratios that compare
regret to the four control conditions
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the subject overrides the default (and more automatic) action;
this effect might be evenmore amplified in situations in which
the subject elected to skip after having just skipped a high-
valued offer (Fig. S8).

We also found that decoding of the different locations was
more clearly distinguished in the first than in the second half
of the session (Fig. S7). As with our reaction time results (Fig.
2A), we can conceptualize this finding as a shift from a delib-
erative to a more rule-based approach, whereby earlier trials in
the task required more thoughtfulness. Subjects might think
more deeply on earlier trials—that is, reflect on whether a
particular offer is “worth it”—before thresholds are well-
established. This finding also fits with the hypothesis that
repeated trials with the same (or similar) questions can yield
the development of “associations.” Subjects can then draw
from the association while making a decision, rather than
needing to retrieve an episode (Zentall, 2010). Perhaps as
subjects gain experience with the task, they form associations
with the category and delays that limit their reliance on epi-
sodic simulation processes.

A more nuanced assessment of our data also highlighted
the need to account for how past actions influence deliberative

processes. More specifically, we observed the strongest repre-
sentations of the current option when a subject had rejected a
good offer only to encounter a low-valued offer; this suggests
that the awareness that an alternative action would have been
better (i.e., an experience of regret; Bell, 1982) led to more
thoughtfulness about the current option. This regret effect was
greater than the disappointment control conditions, in which a
subject encountered an unfavorable outcome but had not
made an error (though we note that one of these control con-
ditions had overall probabilities above chance, suggesting that
deliberation may generally be needed for evaluating low-
valued offers).

Mental time travel in the context of reinforcement
learning

At least three cases have been suggested for modeling episod-
ic simulation. These include deliberative model-based learn-
ing, in which a subject uses an internal map to guide goal-
directed behaviors; reflexive model-free strategies, in which
learning occurs outside of a model, and instead on a trial-and-
error basis; and a hybrid of model-based and model-free

Fig. 7 Neural activation related to difficult choices. (A) Activation main
effects related to difficult choices during decision making (top) and
consumption (bottom). (B) Contrasts showing differential activation for
decision making and consumption, as related to difficult choices. (C)
Contrasts reveal which cognitive and sensory areas were associated
with difficult choices during decision making versus consumption (left).

Both decision making and consumption recruited voxels within the
hippocampus and parahippocampus (right). Error bars reflect between-
subjects standard errors. ACC = anterior cingulate cortex; Cons =
consumption; Decis = decision; MFG = middle frontal gyrus; OFC =
orbitofrontal cortex

1503Cogn Affect Behav Neurosci (2019) 19:1492–1508



approaches (Dyna-Q) that utilizes offline replays—that is, re-
plays when the subject is not moving (Cazé, Khamassi,
Aubin, & Girard, 2018; Redish, 2013; Schacter & Addis,
2007b; Suddendorf, 2013). Critically, model-based learning
involves using past memories to construct future possibilities,
which is most likely to occur during decisionmaking, and thus
most likely what we were observing in the present task. In
comparison, the reactivation of representations driving
model-free strategies, which involves updating expectations
after recent feedback, is more likely to occur after consump-
tion (e.g., phasic dopamine signals during learning; Foster &
Wilson, 2006; Montague, Dayan, & Sejnowski, 1996;
Schultz, Dayan, & Montague, 1997), whereas Dyna-Q learn-
ing likely occurs offline (Cazé et al., 2018; Johnson & Redish,
2005). As can be seen in Fig. 7C, the hippocampus can be
activated during both decision and consumption—that is, pro-
viding prospection during decisions, and reactivation during
consumption.

Prospection versus retrospection versus perception

Our results for episodic simulation during deliberation can
also be framed in terms of prospection, retrospection, and
perception (Schacter, Addis, & Buckner, 2008), a framework
that in many ways maps onto the reinforcement-learning
models described above. Episodic prospection, or the antici-
pation of future events, hinges on a system that can flexibly
recombine elements of past experiences to guide decision
making (i.e., model-based learning; Redish, 2016; Schacter
& Addis, 2007a, 2007b; Zeithamova, Schlichting, &
Preston, 2012). Here we found the strongest representations
of the subsequent location (i.e., next) in several instances (Fig.
5), with the exception of regret scenarios (Fig. 6). This sug-
gests that subjects engaged in future-oriented thinking while
deliberating at the choice point. At least two features of our
analysis support our theory: (1) Subjects had more complete
knowledge of the current offer (i.e., they knew the type of
video and delay) than of the subsequent offer (i.e., they knew
the type of video but not the delay), and (2) we trained our
classifier on a separate but categorically similar set of videos,
meaning that subjects did not encounter identical video re-
wards during the training and test phases. Because subjects
did not have complete knowledge of the subsequent offer (i.e.,
the delay was unknown and the specific video was always
novel), we suspect that subjects utilized imaginative processes
shaped by prototypical information (e.g., by imagining a typ-
ical instance of what a category event would be; Kane, Van
Boven, & McGraw, 2012): “What offer might be available at
the next gallery? How might I respond to a high versus low
delay for that kind of video? Will I enjoy another kitten video
as much as the last kitten video?” The notion of episodic
prospection during deliberation also fits with recent findings

that model-based choices involve prospective neural signals
(Doll et al., 2015).

In contrast to prospection, retrospection (or episodic mem-
ory) entails the use of past memories to execute current deci-
sions (Zentall, 2010). Many researchers have argued that
imagining the future depends on recalling the past (Addis,
Wong, & Schacter, 2008; Busby & Suddendorf, 2005;
Kwan, Carson, Addis, & Rosenbaum, 2010; Mullally &
Maguire, 2014). Recalling the past and imagining the future
also evoke similar neural processes (Addis, Wong, &
Schacter, 2007; Buckner & Carroll, 2007; Schacter et al.,
2012), and in the visuospatial context, both visual memory
and visual imagery may depend on similar regions, including
occipital–temporal sensory areas (Slotnick, Thompson, &
Kosslyn, 2012). As compared to prospection, retrospection
may be more akin to retrieving than to reconstructing histor-
ical information (Kane et al., 2012). Given that subjects en-
countered a range of offers within each category (i.e., the
delays were random), deliberation on this task seems more
likely to have reflected flexible reconstruction processes rather
than solely the reactivation or replay of past experiences.

Our findings regarding regret-inducing situations indicated
the strongest representations of the current (vs. the next) loca-
tion. One might argue that this finding is not evidence of
prospection but instead of perception—that is, the mental rep-
resentation of a current event is considered perception (Gilbert
& Wilson, 2007). However, in our study we tested for delib-
eration at the choice point, at which subjects had a cue indi-
cating the type of video and delay but were not actually yet
experiencing the reward. This could mean that the representa-
tion of the current offer while at the choice point was still a
form of episodic prospection (as one was imagining the expe-
rience of a future reward available after enduring some cost);
we note, however, that simulation of future events is supported
by some of the same underlying processes that support per-
ception (Kosslyn, Ganis, & Thompson, 2001). We suspect
that decoding during the consumption phase, when subjects
were actually experiencing the video rewards, might be more
akin to perception.

Prospection and planning

Prospection is an umbrella term that encompasses a range of
future-oriented cognitions related to episodic simulation, in-
cluding planning and remembering intentions (Schacter et al.,
2008; Szpunar, Spreng, & Schacter, 2014, Fig. 1). Planning
broadly entails the identification and organization of steps
needed to achieve a specific goal, whereas episodic planning
refers to the identification and sequencing of steps toward a
specific autobiographical future event (Spreng, Gerlach,
Turner, & Schacter, 2015). Autobiographical planning, in par-
ticular, draws from self-relevant memory and goal-directed
planning processes, and the planning of specific
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autobiographical outcomes might evoke the same brain re-
gions involved in prospection and goal-directed cognition
(Szpunar et al., 2014). However, it is worth noting that con-
templating future plans can actually create a cost to ongoing
performance (Marsh, Hicks, & Cook, 2006; R. E. Smith,
2003); that is, actively maintaining future intentions can de-
plete current attentional resources. One way to reduce perfor-
mance interference would be by associating the intention with
a specific future context. Gollwitzer (1999) called this process
“implementation intentions,” or plans that connect intentions
with specific anticipated events—for instance, “if faced with a
delay above 15 s on a bike accident video, I will skip”—
versus broader goal intentions, such as “I intend to skip many
of the bike accident videos.” It is possible that implementation
intentions enhance performance because an intention is linked
with a specific mental representation about the future that can
later cue that intention (Schacter et al., 2008). Taken together,
prospection and planning might intersect in the realm of im-
plementation intentions. We theorize that the subjects in our
task formulated these plans across the session, as evidenced
by downward shifts in reaction times and diminished mental
representations at the decision time.

Comparisons with the rodent literature

We detected several behavioral and neural cross-species par-
allels with respect to deliberative decision making: First, the
reaction time patterns in humans were analogous to rodent
VTE behaviors during the Restaurant Row task (Schmidt,
Duin, & Redish, 2019; Steiner & Redish, 2014; Sweis,
Thomas, & Redish, 2018c), as indicated by longer reaction
times on offers just above threshold—that is, more difficult
choices. This pattern is also analogous to the slower response
latencies observed when humans make decisions with uncer-
tain outcomes (Satterthwaite et al., 2007), which fits with no-
tions that VTE reflects uncertainty that drives deliberation
(Redish, 2016). We again note, however, that this pattern
was more pronounced in the first half of the session for our
human subjects.

Second, hippocampal task-based activation scaled with
choice difficulty during decision making and consumption,
revealing a novel neural signature of deliberation that trans-
lates across species. Difficult choices also recruited the ACC
and MFG (including the dorsolateral prefrontal cortex) more
strongly during the decision phase. These areas are involved
in cognitive control and conflict monitoring, and they might
respond to the uncertainty and error potential of difficult trials
(Botvinick, Cohen, & Carter, 2004); previous research has
also implicated the ACC in decision difficulty during a forag-
ing task (Shenhav et al., 2014) and in tracking value in an
uncertain reward environment (Behrens, Woolrich, Walton,
& Rushworth, 2007). Moreover, the MFG is theorized to ini-
tiate VTE (Redish, 2016; Schmidt et al., 2019; Wang et al.,

2015). This follows from rodent findings that disrupting hip-
pocampal representations actually increases VTE, making the
hippocampus an unlikely candidate for initiating the VTE
process (Bett, Murdoch, Wood, & Dudchenko, 2015).
Instead, the rodent prelimbic cortex, arguably homologous
to aspects of human prefrontal cortex, might initiate this pro-
cess, given its role in outcome-dependent decisions and its
influence on goal-directed activity in the hippocampus (Ito,
Zhang,Witter, Moser, &Moser, 2015; Killcross & Coutureau,
2003; Spellman et al., 2015). Findings from nonhuman pri-
mates that the dorsolateral prefrontal cortex generates action
plans prior to action execution further support this theory
(Mushiake, Saito, Sakamoto, Itoyama, & Tanji, 2006). As
compared to decision making, consumption led to more acti-
vation in the lateral OFC for difficult trials. This aligns with
rodent findings that have implicated the OFC in
postdecisional outcome evaluation (Stott & Redish, 2014).
Overall, VTE might represent a cross-species mechanism that
underlies deliberation during foraging decisions.

One notable cross-species divergence comes from our re-
gret results. In humans, we found that regret instances led to
greater representation of the current location, whereas Steiner
and Redish (2014) found that in rodents such instances were
linked to better representation of the previous location—that
is, the counterfactual offer. One possibility is that experiences
of regret foster more present-focused deliberative processes in
humans, whereby humans become more attentive to the cur-
rent decision.

Conclusions

In the present study we employed a sequential experiential
foraging paradigm to evaluate episodic simulation during de-
liberative decision making in humans. Our results revealed
that visual cortices represented the current or foreground offer
during the decision phase, particularly following regret-
inducing experiences. Furthermore, humans demonstrated be-
havioral and neural signatures comparable to those of VTE,
which could suggest a common mechanism of decision mak-
ing that translates across humans, rodents, and monkeys.
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