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Because addiction is so hard to define, the DSM-IV defined drug
dependence and avoided the word addiction (DSM-IV-TR, 2000). However,
more recent studies have suggested that addiction-like behaviors can un-
derlie nondrug decision problems as well (Holden, 2001; Schüll, 2012;
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Robbins and Clark, 2015). But then we run into the problem of whether all
continued behaviors are addictions. Do we really want to say that Brett
Favre was “addicted” to football because he continued playing long after
the game had damaged his body? Do we really want to say that Osip
Mandelstam was “addicted” to poetry because he continued to write even
after Stalin had sent him to the Gulag (where he eventually died)? To avoid
this difficult definition, we will unask the question and instead concentrate
on specific decision-making errors and relate that to problematic behaviors
often categorized as addiction (Redish et al., 2008; Heyman, 2009, 2013;
Redish, 2013).

Current models of psychiatry suggest that psychiatric disorders should
be defined in terms of “harmful dysfunction” (Wakefield, 2007). This
definition includes a scientific component (dysfunction) and a sociologi-
cal component (harm). For example, illiteracy is harmful but is not usually
considered a brain dysfunction. (On the other hand, dyslexia is both
harmful and a brain dysfunction (Norton et al., 2015; Jaffe-Dax et al.,
2015).) Synesthesia is due to a brain dysfunction but is not generally
considered harmful (Cytowic, 1998). Treatment needs to be predicated on
fixing those things that are harmful, but the appropriate treatment de-
pends on the dysfunction. For example, most clinicians do not feel a need
to treat synesthesia, but both dyslexia and illiteracy need treatment. Both
of these problems require treatment, but because the causes are different,
treatments for illiteracy and dyslexia will likely need to be different. In
this chapter, we will make the case that addiction is a symptom, not a
disease, and that because the underlying causes (the underlying dys-
functions) for addiction are varied the necessary treatments must be
varied (Redish et al., 2008). We will make the case that rather than cate-
gorizing subjects in terms of their addiction (cocaine addiction, heroin
addiction, gambling addiction), we should be defining them in terms of
their decision-making dysfunctions (overvaluation, errors in expectation,
reactions to anxiety). Lastly, we will argue that treatments should be
guided by identifying the underlying dysfunction in an addict’s decision-
making circuitry to allow clinicians to individualize treatments.

A key concept thatwewill build this chapter on is that of a vulnerability or
failure modeda breakdown in a process due to a malfunctioning compo-
nent. These terms come from the field of reliability engineering where one
tries to identify the underlying breakdown that has caused a system-wide
failure. A flat tire, for example, is a failure mode of automobiles (and
bicycles) because a tire is a thin rubber tube filled with air. If that tube
becomes punctured, then the air leaks out and the car is no longer riding on
the normal air cushion. On the other hand, tank treads (which do not ride
on air) are not susceptible to going flat (although they are vulnerable to
being split). Just as cars and tanks have different failure modes that depend
on their underlying mechanisms, so too do decision-making systems.
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8.1 THE MACHINERY OF DECISION-MAKING

To understand how decision-making systems can go wrong, one needs
to understand the fundamental mechanisms by which they work. Ulti-
mately, decisions are about interactions with the world or changes in one’s
behavior that affect the world. For completeness, we will include both
actions as visceral changes (heart rate, thermal regulation, hormone
levels) as well as external, physical actions (pushing a button, lighting a
cigarette, going to some location, signing on a dotted line). By this defi-
nition, ultimately, all decisions entail taking an action. At the point where
we have defined decision as action selection, we are now in the domain of
computational information processingdall decisions are, ultimately, a
consequence of processing information about one’s present circumstances
(perception), information about one’s past (memory), and information
about one’s needs/goals (motivation); however, as we will see below,
these components do not have to be explicitly represented to be a part of
the processdsometimes they can be hidden within the process itself.

Importantly, how information is stored changes how easy it is to access
and how it generalizes to new situations (Redish and Mizumori, 2015).
For example, if you are looking for a specific book to cite on a topic, it will
be easiest to find if your bookshelf is sorted by a library catalog system,
such as the Dewey decimal or Library of Congress system, rather than if
you have sorted your books by size. However, if you are looking for a
book to level out the table with a short leg, then sorting by size is going to
get you to your target faster. This point is one of the main discoveries of
computer science in the last centuryddata structures matter (Cormen
et al., 1990).

In the sameway that data structuresmatter in a digital computer, so too
do the information processes that are being used to select an action.
Current taxonomies have suggested that there are four key action-
selection information processing systems that store (and generalize)
information differently (Rangel et al., 2008; van der Meer et al., 2012):
Reflexes, Pavlovian action-selection systems, Procedural decision-
making systems, and Deliberative decision-making systems. Each of
these systems uses different computational information processing
mechanisms through different brain structures and thus has different
failure modes (Montague et al., 2012; Redish, 2013).

• Reflexes select actions based on immediately available perceptions
and have stored an appropriate action in the spinal circuitry
(Sherrington, 1906; Eaton, 1984), which was learned by the species
through genetic variation and selection (a genetic learning
algorithm). Both the memory and the motivational components are
hardwired into the circuitry through genetically controlled wiring.
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• Pavlovian action-selection systems entail species-specific actions
that one learnswhen to release (Rangel et al., 2008; van derMeer et al.,
2012). At first, these relationships are hardwired (salivate when
presented with food), but with experience, one can learn to take these
actions in response to predictive cues (salivate when you hear the
dinner bell, Pavlov, 1927). Here, the motivational components remain
in the circuitry through genetic learning, but the predictive stimuli
can be learned (perception/memory) (Rescorla, 1988; Domjan, 1998).

• Procedural action-selection systems entail learning an arbitrary
action sequence that one can release in an appropriate situation
(hitting a fastball) (Squire, 1987; Mishkin and Appenzeller, 1987;
Saint-Cyr et al., 1988). Here the motivational components are cached
in the circuitry once learned, but they are learned through
individual experience. Importantly, Procedural systems require
learning in the perceptual system (situation recognition) that goes
well beyond stimulus recognition (such as learning to differentiate a
fastball from a curveball and being able to identify where and when
the ball will cross the plate, McClelland and Rogers, 2003; Redish
et al., 2007; Gershman and Niv, 2010).

• Finally,Deliberative action-selection systems entail an explicit
imagination, evaluation, and planning process by which one creates a
simulated (hypothetical) future (imagining the consequences of one’s
actions) and then evaluates that simulated future to select the best
action (Gilbert and Wilson, 2007; Buckner and Carroll, 2007; Johnson
et al., 2007). Interestingly, current models of imagination suggest that
the same perceptual systems are reused for imagination (Kosslyn,
1994; O’Craven and Kanwisher, 2000), which implies that deliberation
will depend on the same situation recognition processes as procedural
learning (Pearson et al., 2015). Similarly, current models suggest that
the deliberative process uses structures originally evolved to measure
current rewards and punishments (this cake tastes good, that wool
shirt is itchy) to evaluate the imagined worlds (Andrade and Ariely,
2009; Phelps et al., 2014). This explains why current emotional states
can affect one’s decisions about the future (like why you buy more
food at the grocery store when you are hungry).

8.2 ADDICTION AS FAILURE MODES OF
DECISION-MAKING SYSTEMS

A corollary of having multiple decision-making systems is that there
are multiple ways for those systems to fail. Failure can occur at multiple
targets in any given decision-making system, and each failure point can
generate a subtly different behavioral phenotype (Table 8.1).
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TABLE 8.1 Some Failure Modes of the Decision-Making System That Can Lead to
Addiction. Obviously Incomplete

Failure-Point Clinical Consequence

Changing allostatic set points (Koob and Le Moal,
2006; Koob and Volkow, 2010)

Physiological needs, craving

Cue-outcome associations elicit prewired visceral
actions (Damasio, 1994; Bechara and Damasio, 2002;
Bechara, 2005)

Incorrect action selection,
craving

Escape from negative emotions (Koob, 2009) Incorrect action selection

Mimicking reward (Volkow et al., 2002; Wise, 2005;
Dezfouli et al., 2009)

Incorrect action selection,
craving

Errors in expected outcomes (Goldman et al., 1999;
Jones et al., 2001; Redish and Johnson, 2007)

Incorrect action selection

Increased likelihood of retrieving a specific expected
action-outcome path (Redish and Johnson, 2007)

Obsession

Overvaluation of expected outcomes (Robinson and
Berridge, 2001, 2003)

Incorrect action selection

Overvaluation of learned actions (Di Chiara, 1999;
Redish, 2004)

Automated, robotic drug use

Timing errors (Ross, 2008) Preferences for unpredictable
events

Overfast discounting processes (Bickel and Marsch,
2001; Bickel and Mueller, 2009)

Impulsivity

Changes in learning rates (Franken et al., 2005; Gutkin
et al., 2006; Redish et al., 2008; Piray et al., 2010)

Excess drug-related cue
associations

Selective inhibition of the deliberative system
(Bernheim and Rangel, 2004; Bechara, 2005; Bickel
et al., 2008, 2012; Baumeister and Tierney, 2011)

Fast development of habit
learning

Selective excitation of the habit system (Everitt and
Robbins, 2005; Bickel et al., 2008; Keramati and
Gutkin, 2013)

Fast development of habit
learning

Misclassification of situations: overcategorization
(Redish et al., 2007)

Illusion of control, hindsight
bias

Misclassification of situations: overgeneralization
(Redish et al., 2007)

Perseveration in the face of
losses

Modified from Redish, A.D., 2013. The Mind within the Brain: How WeMake Decisions and How Those Decisions

Go Wrong, Oxford Univ. Press, Oxford, UK.
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Biological organisms, for instance, actively regulate crucial biological
parameters homeostatically (Mayr, 1998). Although at any given
moment there is a set value that the organism will attempt to maintain,
this set point can and does vary as a function of context (allostasis, Koob
and Le Moal, 2006). Drugs of abuse are capable of altering an in-
dividual’s natural set point and thus changing the biological needs of an
organism (Meyer and Mirin, 1979; Benowitz, 1996; Koob and Le Moal,
2006). Cessation of drug use can thus disrupt the new drug-induced set
point and result in withdrawal. These reflex-driven withdrawal symp-
toms would lead to highly negative sensations that require relief, which
can drive drug seeking from multiple decision systems, including both
Pavlovian and Deliberative. Importantly, however, there are other failure
modes that can also drive drug seeking long after withdrawal symptoms
have been eliminated; withdrawal and craving are dissociable (Childress
et al., 1988).

A secondwell-studied failure mode can arise from cues that have come
to predict upcoming drug administration, which can activate compen-
satory mechanisms in an addict. Heroin addiction offers a striking illus-
tration of this system at work (Meyer and Mirin, 1979): When an addict
prepares to administer the drug in the same setting that the drug is
typically taken, physiological mechanisms (enzyme changes, modulation
of receptor kinetics) will prepare the user’s body for an upcoming dose
and thus temporarily provide the individual with heightened tolerance.
However, if the drug is taken in a novel setting the user is liable to
overdose due to a failure of these compensatory Pavlovian mechanisms to
provide that conditioned tolerance. Similarly, alcoholics have reduced
alcohol-related coordination deficits in bars and other places where they
expect to drink than in nonalcohol-associated environments (such as of-
fices) (Hunt, 1998).

Because deliberative systems depend on evaluation circuits that
evolved to evaluate ongoing needs (Phelps et al., 2014; Redish, 2016),
expectations of future outcomes can depend on immediate needs. Thus,
the compensation processes that occur on cue delivery can drive positive
evaluations of drug-related outcomes (providing relief from the allostatic
shifts, Koob, 2009). Because the recall of memory from a search process
depends on recall and framing components (Redish and Johnson, 2007;
Winstanley et al., 2012), it can also be guided toward these reminded
outcomes. For example, video poker machines at the entrance to a grocery
store can cue a whole imagined scenario of potential game playing
(Schüll, 2012). This is a process termed “Pavlovian-to-Instrumental”
transfer (Kruse et al., 1983; Talmi et al., 2008).

Moving beyond cue associations, the ability to encode refined cached
action chains (i.e., habits) that are released in the appropriate situation is
crucial to many forms of expertise (Graybiel, 1995; Klein, 1999). Current
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theories suggest that this system entails the recognition of situations and
the release of cached actions (Daw et al., 2005; Dezfouli and Balleine,
2012; van der Meer et al., 2012). However, these learned situation-action
sequences are inflexible (because they evolved to respond quickly) and
can turn maladaptive but well-practiced behaviors into tenacious habits.
Whereas Pavlovian-to-Instrumental transfer can allow cues to increase
the likelihood of deliberative systems to drive behavior toward drug
seeking, a failure in the cached action system will make it such that, on
recognizing and categorizing a situation, an inflexible and automated
(potentially drug-related) action sequence will be released. For example,
a smoker who has made it a matter of mindless routine to light up a
cigarette first thing every morning (Tiffany, 1990) or the video
poker player who gets lost in the flow of the game (Schüll, 2012) are
two examples of these learned situation-action procedural mechanisms
gone awry.

Higher level cognitive dysfunctions are also major contributors to drug
abuse and relapse. To plan for the future, for example, an agent must
evaluate available actions and their expected outcomes (Redish, 2016).
Drugs of abuse often disrupt this planning and evaluation process, which
leads to distorted outcome expectations (Goldman et al., 1987, 1999; Jones
et al., 2001; Oscar-Berman andMarinkovic, 2003). The orbitofrontal cortex
and nucleus accumbens are both key structures implicated in outcome
evaluation (O’Doherty, 2004; McDannald et al., 2011; van der Meer et al.,
2012) and a failure to receive, process, or generate the appropriate signal
in these structures would negatively impact behavior because of a mis-
valuation of expected outcomes. Both orbitofrontal cortex and nucleus
accumbens are often disrupted in drug users (Carelli and Wondolowski,
2003; Schoenbaum et al., 2006; Kourrich and Thomas, 2009; Koob and
Volkow, 2010).

Many theories suggest that the evaluation of rewards in some systems,
particularly the Pavlovian and Procedural systems, is due to changes in
dopamine release (Montague et al., 1996; Schultz et al., 1997). Dopamine
signaling increases to unexpected rewards, and dopamine neurons shift
their firing to earlier cues that reliably predict those rewards (Schultz and
Dickinson, 2000). Correctly predicted rewards produce flat rates of
dopamine spiking, whereas expected but undelivered rewards produce a
decrease in dopamine signaling. These three components mean that
dopamine could signal “reward prediction errors,” which can be used to
train reactive decision systems such as Pavlovian or Procedural systems
by driving estimates of value in the direction of the predicted error
(Rescorla andWagner, 1972; Montague et al., 1996; Sutton and Barto, 1998;
Schultz and Dickinson, 2000). Redish (2004) noted that if a pharmaco-
logical agent (such as a drug) provided dopamine in a way that bypassed
the normal neural calculations, it would lead to addictive behaviors
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because the value would be driven to infinity. (Of course, neuronal rep-
resentations would have to renormalize value, which could explain why
nondrug rewards can lose their value in the face of extensive drug ex-
periences, Goldstein, 2000; Heyman, 2009.) Importantly, this would only
be one of many potential failure modes that could lead to addictive be-
haviors (Redish et al., 2008), and dopamine neurons signal other infor-
mation as well as prediction errors (Bromberg-Martin et al., 2010).
Nevertheless, the excess reward prediction error theory predicted that
drugs of abuse should not show Kamin blocking, a phenomenon whereby
predictive cues are not associated with already predicted stimuli (Redish,
2004). Interestingly, several subsequent experiments found that animals
do show Kamin blocking using cocaine delivery as a reward (Panlilio
et al., 2007; Marks et al., 2010). However, a further study found that while
most animals showed Kamin blocking in a nicotine access experiment,
the subset of animals that showed uncontrollable nicotine seeking did
not (Jaffe et al., 2014). This elucidates one of the main points of this
chapter: drug seeking can occur due to many potential failure modes;
different individuals may have different reasons for their drug seeking.
Treatment will need to identify the active failure mode to successfully
treat addicts.

The ability to mentally construct imagined futures and play out
competing scenarios to predict the anticipated value of a potential action
confers a great advantage when making important “one-time-only” de-
cisions (e.g., mentally simulating and comparing which of two job offers
to accept, Gilbert and Wilson, 2007; Redish, 2016). However, these
computational processes also have failure modes endemic to them. For
example, either a miscalculation of the anticipated outcome or a
misevaluation of a correctly anticipated outcome would lead to
dysfunctional decision-making. The former can drive obsession and
craving (Redish and Johnson, 2007), whereas the latter can drive decisions
that will lead to negative outcomes. These can be seen in the heroin user
looking for the orgasmic high of the first hit (Meyer and Mirin, 1979), the
gambler trying to recreate the one time they won big at the machine
(Lesieur, 1977; Custer, 1984) or the smoker underestimating the likelihood
of getting cancer (Weinstein et al., 2005).

The etiology of addiction is not always driven by deficits in reward
networks. Indeed, substance abuse has a high comorbidity rate with
neuropsychiatric states. Awell-studied example is that of alcoholism and
its relation to anxiety disorders and major depression. In alcohol reha-
bilitation clinics alone, 50% of patients are diagnosed with either an
anxiety disorder or major depression and these patients are twice as likely
as their noncomorbid counterparts to relapse after leaving the clinic
(Hobbs et al., 2011; Schadé et al., 2005). Although the comorbidity of
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psychiatric disease and substance abuse is established, the causal relation
between the two is a matter of debate. Intriguingly, a metaanalysis of
epidemiological surveys and field studies found that comorbidity of
alcoholism with anxiety was dependent on the type of anxiety disorder
that the patient haddwhile agoraphobia and social anxiety were found to
be risk factors for developing alcoholism, panic disorder and generalized
anxiety were found to result from alcoholism (Hall, 1990). It would appear
then that the causal relationship between anxiety and pathological alcohol
consumption is bidirectional: pathological anxiety is a risk factor for
alcohol abuse, but long-term alcohol use has the potential to induce
pathological anxiety (Kushner et al., 2000).

A common argument for anxiety driving alcohol abuse is that in-
dividuals suffering from pathological anxiety might resort to alcohol as
a means of self-medication (Quitkin et al., 1972). It has been suggested
that the pharmacological profile of alcohol is such that it alleviates
anxiety in a similar fashion as commonly prescribed anxiolytic com-
pounds such as benzodiazepines and barbiturates (Liljequist and Engel,
1984). In support of this view, it has been shown that cross-tolerance
occurs with alcohol and anxiolytics, thus highlighting a potential
shared mechanism.

In contrast to the anxiolytic effects seen with acute alcohol administra-
tion, chronic alcohol use produces long-term changes in GABAA inhibitory
receptors and in NMDA-sensitive glutamatergic receptors (Valenzuela and
Harris, 1997; Littleton, 1998; Hunt, 1998) and is anxiogenic (Coffman and
Petty, 1985; Tran et al., 1981). One explanation for why alcohol abuse could
result in the development of an anxiety disorder hinges on the effect
alcohol has on Deliberative and Pavlovian systems. Alcohol, for example,
specifically impairs hippocampal and prefrontal function (Hunt, 1998;
White, 2003; Oscar-Berman and Marinkovic, 2003), which could shift the
balance from Deliberative to more Pavlovian and Procedural systems.
Importantly, early alcohol use could depend on cognitive and social ex-
pectations (Goldman et al., 1987, 1999; Bobo and Husten, 2000), whereas
later use may depend on dysfunctions in Pavlovian and Procedural sys-
tems (Dickinson et al., 2002; Oei and Baldwin, 2002).

It is important to note that the various decision-making mechanisms
identified above interact to generate behavior. Failure in one system can
affect other systems (such as evaluation errors affecting deliberative
systems), but also a working system can be used to drive behavior when
another system is dysfunctional. For example, social factors certainly play
a part in the potential for alcoholism to induce anxiety, with social ram-
ifications of alcohol abuse such as divorce and unemployment undoubt-
edly acting as potent anxiogenic stressors. We will see additional
examples below.
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8.3 BEYOND SIMPLE FAILURE MODES

Neuropsychiatric symptoms often result in unhealthy and unsafe be-
haviors that themselves drive the expression of new symptoms (Borsboom
and Cramer, 2013). Symptoms that tend to cooccur can then causally in-
fluence one another (sleep loss/ fatigue/ loss of interest, etc.). As such,
an initial external event (e.g., a debilitating physical injury) is capable of
triggering a symptom network (e.g., injury/ stress/ depressed
mood/ insomnia/ impaired attention/ etc.). Once activated, a
symptom network might itself be diagnosed as a mental disorder. The
degree to which neuropsychiatric states are the result of internally driven
defects in the neural circuitry or the externally imposed ramifications of
initial symptoms is a topic of debate. As has often been found with
such scientific debates (e.g., nature vs. nurture), it is likely a combination of
the two.

8.4 RELIABILITY ENGINEERING

Broadly, reliability engineering refers to a collection of methods
designed to minimize the likelihood of a system failing. To address this
issue, one identifies the potential failures of the components and asks how
those potential failure modes would affect the function of the system as a
whole. This deductive, top-down approach is known as fault tree analysis
(MacDonald et al., 2016). In fault tree analysis, the relationship between
elements in the system and the ramifications of a failure in any one
element on the system as a whole are evaluated using probabilistic causal
networks (Pearl, 1988, 2009).

Applying this systems engineering outlook to the nervous system has
recently emerged as a valuable tool capable of providing insight into the
etiology of mental illnesses (MacDonald et al., 2016; Redish and Gordon,
2016). Specifically, by identifying the relationship between neural circuits
and the points at which they are susceptible to failure, reliability engi-
neering offers a toolbox of techniques for predicting the underlying cause
of a neuropsychiatric disease (Flagel et al., 2016). As a result, more
effective and individualized treatments can then be designed to address
an individual’s specific constellation of network failures that underpin
their specific neuropsychiatric phenotype.

Just as with any other clinical condition, neuropsychiatric disorders
are often identified on the basis of outwardly observable symptoms that
are thought to reflect an underlying physiological deficit. The unobservable
biological dysfunctions that generate the observable symptoms are known
as latent variables because, despite being the direct cause of the pathological
symptoms, they are hidden from view.
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The aim of generating a fault tree for a given neuropsychiatric disease
is then to identify all the distinct latent variables (and relations between
them) contributing to the disease state. With this tool, a clinician can
understand the pattern of potential dysfunctional components in the
system that could result in a given patient’s symptoms. Seeing as there are
multiple combinations of latent variable defects that can result in the same
symptomatology, an inductive principle that could be used to make
increasingly accurate predictions about the most likely cause of a given
disorder would be useful. Such a principle for making claims about un-
certain variables does in fact exist and can be found in the mathematical
rules governing Bayesian inference (Pearl, 1988, 2009).

8.5 IMPLICATIONS FOR TREATMENT

The goal of treatment is to reduce the harm underlying the “harmful
dysfunction” discussed in the opening of this chapter. For example, a
number of treatments have been aimed at attempting to reduce identifi-
able dysfunctions occurring in addicts, such as treatments to mitigate the
effect of heroin on the mu-opioid receptor in some heroin users (Meyer
and Mirin, 1979), treatments to slowly ramp down the changed set point
in some nicotine users (Hanson et al., 2003), as well as treatments that
make imbibing alcohol unpleasant (Wright and Moore, 1990), and treat-
ments to extinguish the cigarette-nicotine association with denicotinized
cigarettes (Johnson et al., 2004; Buchhalter et al., 2005). By identifying the
underlying failure modes, we can move toward personalized treatments
that attempt to address the individual dysfunctional mechanisms that are
active in any given user.

However, it is also possible to provide compensatory mechanisms that
can alleviate the harm, even without treating the dysfunction itself. For
example, eyeglasses reliably treat the harmful dysfunction of nearsight-
edness without actually repairing the dysfunctional lenses. Presumably,
the reason that organisms evolved multiple decision-making systems is
that they make more optimal decisions under different conditions. By
switching to the most effective system in a given situation, an organism
could outcompete other organisms trying to use a single information
processing algorithm for all situations. Just as we saw in the shelving
example above, where it was easier to find the next book in a series if it
was organized by author, if we had multiple indices that provided
pointers to where the book was, perhaps one index of subject classifica-
tion and another of size, then we could use the subject classification index
when we wanted to locate a book on a topic and the size index when we
needed a book to stabilize the table. Which decision-making algorithm
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will control behavior depends on a number of incompletely understood
factors, but one factor is the situation that one is in. This means that it
could be possible to change the situation and, as a result of this change
in situation, change one’s addictive behavior.

For example, one strategy for coping with addiction is to eliminate
exposure to cues that are known to trigger maladaptive behavior by
precommitment (Ainslie, 1992; Kurth-Nelson and Redish, 2012a). Crucial
to this method is the notion of shifting between decision-making systems
(Kurth-Nelson and Redish, 2010; Kurzban, 2010; Redish, 2013). By pre-
venting oneself from having the option to engage in addictive behavior
ahead of time, an addict can precommit to a choice (say via the Deliber-
ative system) that allows them to avoid placing themselves in tempta-
tion’s path (that might trigger a Pavlovian and Procedural action). For
example, an alcoholic might decide ahead of time to avoid walking down
the street that has a liquor store on the way home from work or a gambler
might avoid driving by a casino. (This can be difficult if there are video
poker machines in every store, even the grocery store, Schüll, 2012.) This
strategy of precommitment is a commonly employed and often effective
method for minimizing exposure to cues that trigger impulsive and
addictive behaviors. Fundamentally, it depends on the existence of mul-
tiple value functions, such as would occur with multiple, competing
decision-making systems (Kurth-Nelson and Redish, 2010).

A related strategy for overcoming compulsive behavior is known as
bundling (Ainslie, 1992; Kurth-Nelson and Redish, 2012b). Bundling en-
tails changing the space of potential outcomes, usually by looking beyond
a single choice. Effectively, bundling is a way of saying “doing this will
lead to that.” For example, an alcoholic acknowledging that there is no
such thing as “just one drink” realizes that if they choose to drink, they
will end up drinking to excess. This knowledge changes the value of the
two options (drink or do not) relative to having a third (now unavailable)
option of drinking “just one drink.” This simple reestimation of the space
of potential outcomes can help individuals step out of the vicious cycle of
distorted expectations and destructive behavior.

Another commonly employed method for breaking addictive behavior
is called contingency management (Higgins et al., 2002; Petry, 2011).
Contingency management introduces a reward system that serves as an
alternative to the reward that an addict would obtain from engaging in
their maladaptive behavior. Addicts, by remaining abstinent, earn prizes
or credits that can be used to purchase goods, and it has been shown that
this promise of future reward will often incentivize them to remain
abstinent.

Although current hypotheses describe the reasons for contingency
management’s success in terms of alternate reinforcers and lost oppor-
tunity costs (Higgins et al., 2004; Bickel et al., 2007; Packer et al., 2012),
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Regier and Redish (2015) did a comparison of expected decreases in drug
use relative to the actual alternative compensations provided in contin-
gency management. We found that contingency management worked
much better than expected.

One hypothesis to explain this surprising effectiveness of contingency
management is that the promise of earning a delayed reinforcer if the
addict remains abstinent nudges the individual into using deliberative
processes rather than more reactive processes. This hypothesis predicts
that contingency management success rates will be positively correlated
with the integrity of the abilities (such as executive function processes)
that underlie deliberation. This implies that cognitive tests that measure
the viability of an individual’s Deliberative system could be used to
determine whether a patient is a good candidate for contingency man-
agement treatment. Furthermore, if the patient’s Deliberative system was
also compromised, perhaps executive function training could be used
beforehand to prepare a patient for contingency management.

8.6 CONCLUSIONS

Multiple decision-making systems coexist and interact with one another
to generate complex behavior. These decision-making systems and their
interactions are vulnerable to distinct failure modes that can provide
multiple paths to addiction. A computational understanding of decision-
making circuitry offers the promise of a powerful tool that can be of
tremendous value to both researchers and clinicians. Clinically, a more
thorough appreciation of addiction mechanisms, from the underlying
computations that neural circuits perform to how deficits in those neural
circuits relate to clinical phenotypes, can inform the design of more effec-
tive treatments. A deeper understanding of which decision-making system
vulnerabilities give rise to which clinical phenotypes will lead to more
accurate methods for identifying, categorizing, and treating addictive
dysfunction in an increasingly meaningful and patient-specific fashion.
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