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Rats Value Time Differently on Equivalent Foraging and
Delay-Discounting Tasks
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All organisms have to consider consequences that vary through time. Theories explaining how animals
handle intertemporal choice include delay-discounting models, in which the value of future rewards is
discounted by the delay until receipt, and foraging models, which predict that decision-makers maximize
rate of reward. We measured the behavior of rats on a 2-option delay-discounting task and a stay/go
foraging task that were equivalent for rate of reward and physical demand. Despite the highly shared
features of the tasks, rats were willing to wait much longer on the foraging task than on the delay-
discounting task. Moreover, choice performance by rats was less optimal in terms of total reward received
on the foraging task compared to the delay-discounting task. We applied a suite of intertemporal choice
models to the data but found that we needed a novel model incorporating interactions of decision-making
systems to successfully explain behavior. Our findings (a) highlight the importance of factors that
historically have been seen as irrelevant and (b) indicate the inadequacy of current general theories of
intertemporal choice.
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All organisms face problems of intertemporal choice, and man-
aging tradeoffs between immediate and future consequences is a
critical consideration across nearly all domains. A woodpecker, for
example, must allocate search time between trees when foraging,
and an aspiring homeowner must balance saving for a house and
investing in retirement. For humans, dysfunction of intertemporal
choice is correlated with economic irrationalities (Plous, 1993) and
psychiatric disorders such as obesity, depression, and addiction
(Bickel, Jarmolowicz, Mueller, Koffarnus, & Gatchalian, 2012).
Thus, intertemporal choice refers to a general class of decision-
making problems, many of which have important consequences.
Here, we tested whether models of intertemporal choice could
account for such generality. To do so, we focused on behavior by
rats on two intertemporal choice problems from separate tradi-
tions: time management during foraging—a topic in behavioral
ecology—and the two-choice delay-discounting paradigm typical

of psychology, neuroscience, and economics. We operationalized
these problems to be as similar as possible, yet subjects valued
time very differently in the two tasks. Rats were willing to wait
more than three times longer on the foraging task compared to the
delay-discounting task. Moreover, purportedly general models of
intertemporal choice did not predict this difference.

Intertemporal choice is frequently conceptualized in terms of
delay discounting—the longstanding and influential idea that the
impact of future consequences on current choice is discounted, so
that the value of a future reward decreases as a function of the
delay until its receipt (Madden & Bickel, 2010). These models,
such as the hyperbolic discounting model, are frequently excellent
descriptions of how subjects choose between two mutually exclu-
sive options, one of which is worth more but becomes available
later in time than the other (Kirby & Maraković, 1995; Mazur &
Biondi, 2009).

Foraging theory approaches intertemporal choice from the
normative assumption that caloric intake is linked to evolution-
ary fitness, so organisms ought to maximize the rate of food
intake during foraging (Stephens & Krebs, 1986). Foraging
problems tend to involve choice between accepting or rejecting
encountered prey, or staying or leaving a site— usually called a
patch—that provides food. Foraging models have successfully
accounted for a range of data, from choice by insects, birds,
rodents, and primates, including humans (Carter, Pedersen, &
McCullough, 2015; Nonacs, 2001; Stephens & Krebs, 1986), to
behaviors that are fundamentally similar to foraging, such as
search through memory or visual displays (Hills, Jones, &
Todd, 2012; Wolfe, 2013).
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Despite their shared focus, some of the canonical findings from
delay-discounting and foraging literatures are contradictory. For
example, discounting models are almost exclusively concerned
with the delay until receipt of reward (the prereinforcer delay), and
the nonhuman animal literature clearly has suggested that other
timing components are essentially ignored (Mazur, Snyderman, &
Coe, 1985). In contrast, foraging models consider every moment
spent foraging, including travel time between food sources, to be
determinants of choice, and the foraging literature has generally
found this to be true (Nonacs, 2001; Stephens & Krebs, 1986).
Additionally, delay-discounting experiments typically find that
nonhuman animals are impatient, so that delaying a reward by a
single second might cause an animal to treat that reward as if it has
lost the majority of its value (Stephens, 2002). Such impatience
has been characterized as impulsivity or as being irrational, given
that it can lead to less reward received overall (Logue, Smith, &
Rachlin, 1985). However, many animals are clearly sensitive to the

future—as in caching behavior (Dally, Emery, & Clayton, 2006)—
and the fact that normative foraging models have had such success
flies in the face of the conclusion that animals cannot effectively
manage trade-offs between immediate and future gains.

Inspired by previous work that has compared economically
matched foraging and delay-discounting tasks (Stephens & Ander-
son, 2001) or that has tested whether behavior on delay-
discounting tasks might generalize to foraging tasks (Blanchard &
Hayden, 2015), we devised two tasks that allowed us to compare
intertemporal choice by rats making delay-discounting and forag-
ing decisions. These tasks were matched in terms of physical
features (method of reward delivery, physical demand) and out-
comes (reward amounts and delays). This design allowed us to test
quantitative predictions from purportedly general models of inter-
temporal choice. The tasks used were the spatial adjusting delay-
discounting (DD) task (Papale, Stott, Powell, Regier, & Redish,
2012) and the patch task (see Figure 1).

Figure 1. Delay-discounting (DD) task: Task flow (Panel A), maze (Panel B), and example sessions in terms
of the adjusting delay as a function of lap for a single animal faced with different starting delays (Panel C). Patch
task: Task flow (Panel D), maze (Panel E), and example sessions for the same animal as in Panel C (Panel D).
p � pellets; D � current delay to the larger-later reward; s � seconds; SS � smaller-sooner; LL � larger-later.
See the online article for the color version of this figure.
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Materials and Method

The DD task (see Figure 1A) entailed the rat running through a
central track then turning left or right toward a feeder zone (see
Figure 1B). One side provided a smaller-sooner reward (two 45 mg
food pellets after 1 s), whereas the other side provided a larger-
later reward (six 45 mg food pellets after a delay of D seconds).
The delay D to the larger-later reward was adjusted by the rat’s
choices—if the rat chose the smaller-sooner reward, D was de-
creased by 1 s (to a minimum of 2 s), whereas if the rat chose the
larger-later reward, D was increased by 1 s (no maximum). In
practice, rats titrated D to a preferred delay and then alternated
between the two options (Papale et al., 2012). Two example
sessions from the same animal but with different starting delays
are shown in Figure 1C.

The patch task (see Figure 1D) was run on the same maze as was
the DD task but with one side blocked off (see Figure 1E). When
the rat arrived in the feeder zone, two food pellets were delivered
after 1 s (equivalent to the smaller-sooner reward for DD). If the
rat stayed for an additional D � 1 s, four more food pellets were
delivered (so choosing to stay in the patch task was worth six
pellets in D s, identically to choosing larger-later in DD), and D
was increased by 1 s. If the rat left the feeder zone before D � 1 s,
no additional reward was delivered for that lap and D was de-
creased by 1 s (to a minimum of 2 s). This task includes two
defining features of patch foraging: a leave/stay-type choice and a
decreasing rate of reward as the animal stays in the patch (two
pellets in 1 s for the first delivery is greater than four pellets in D �
1 s as long as D is greater than 3 s). Behavior from two example
sessions is shown in Figure 1F.

The two tasks were run on the same physical maze, and the
return paths were either direct (the easy travel condition, 157 cm
travel, requiring an average of 6 s to run) or contained switchbacks
(the hard travel condition, 320 cm travel, requiring an average of
10 s to run). This manipulation was of primary interest because, as
mentioned, travel time is a critical component of foraging but
almost totally ignored in delay-discounting. Maze variations were
achieved by adding or removing walls (see the online supplemen-
tal material for more details).

Eight Brown-Norway rats (Harlan), ages 8–10 months, were
maintained on a 12-hr light–dark cycle. Subjects were food-
deprived to no less than 80% of their free-feeding weight. Water
was freely available in the home cage. After training (see the
online supplemental material), rats completed 48 experimental
sessions. Each session was a unique combination of task (patch or
DD), travel (easy or hard), side of adjusting-delay option (right or
left), and starting value for the adjusting delay (2, 5, 10, 15, 30, or
45 s). Starting delay was held constant for at least 4 days, whereas
the other factors varied randomly. Sample size was determined by
a power analysis on a pilot experiment (see the online supplemen-
tal material). All procedures complied with National Institutes of
Health guidelines for animal care and were approved by the
Institutional Animal Care and Use Committee at the University of
Minnesota.

Analyses were conducted in R (R Core Team, 2014). To test for
the effects of the task and travel manipulations, we calculated a
matched-session difference score for the outcome of interest (e.g.,
for the effect of task, the outcome variable from a patch session
was subtracted from the corresponding DD session that matched it

for rat, travel, side, and starting delay). We estimated marginal
posterior distributions for each difference using hierarchical
Markov chain Monte Carlo methods (Kruschke, 2015). The result-
ing posterior distributions are distributions of credibility over
candidate values for the true difference, where the most credible
value is given as the mode of that distribution. The values over
which 95% of credibility is spread represent the highest density
interval (HDI), or the candidate values for which one should have
the most confidence. When zero is outside of the 95% HDI, one
can take this as evidence that the true value can safely be consid-
ered nonzero (Kruschke, 2015). We also applied matched-sample
Wilcoxon signed-rank test as an alternative to the Bayesian
difference-based comparisons.

To determine whether some promising discounting or foraging
models could explain potential differences in time preference
between the two tasks, we applied several models using Matlab
(Mathworks, Natick MA). We examined two foraging models
(Stephens & Anderson, 2001): long-term rate, which holds that
decision-makers maximize reward rate on the basis of all time in
the trial, and time-to-reward, which specifies that decision-makers
maximize reward rate on the basis of only the prereinforcer delay.
We also fit the hyperbolic and exponential discounting models
(Madden & Bickel, 2010), which model subjective value as either
a hyperbolic or exponential function of prereinforcer delay with
discount parameters of k and �, respectively. In testing these
models, we assumed that rats defined the value of the options on
the basis of either the hyperbolic or the exponential model and then
chose the highest value option. We also tested two hybrid models.
The heuristic model (Blanchard, Pearson, & Hayden, 2013) is the
long-term rate model but set so that all nonprereinforcer delays are
multiplied by u, which takes a value between zero and one (when
u is one or zero, the heuristic model is equivalent to the long-term
rate and time-to-reward models, respectively). This model follows
from evidence that deviations from long-term-rate-maximizing
behavior is due to underestimating nonprereinforcer delays. Sec-
ond, we fit the TIMERR model (Namboodiri, Mihalas, Marton, &
Hussain Shuler, 2014), which holds that decision-makers track the
rate of reward over an integration window of T seconds into the
past (all reward received within the previous T seconds over T) and
then choose only options that increase that rate (see the online
supplemental material).

Results

If rats have time-based preference, the adjusting delay will
reflect it. When one option is preferred over the other, the adjust-
ing delay will move up or down as the rat chooses either the
adjusting option or the fixed option, respectively; however, when
the value of the two options are equivalent, the animal will
alternate between them, thereby holding the adjusting delay con-
stant. Work using the DD task (Papale et al., 2012) and our current
data (see the online supplemental material) indicate that rats spend
the first part of a session titrating the adjusting delay before
settling into an alternation pattern near the end (e.g., see Figures
1C and 1F). Such a pattern strongly suggests that the animals are
aware of the delays associated with the options and have specific
temporal preferences. We therefore took the average adjusting
delay for the final 20 laps of a session as the indicator of the rats’
time preferences (Papale et al., 2012). We examined four matched-
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session differences in this metric: First, we calculated the differ-
ence between patch and DD sessions (matched for rat, side, start-
ing delay, and travel condition). Second and third, we calculated
the difference for matched hard–easy travel for patch and DD
sessions separately. Fourth, we calculated the difference of the
second and third differences.

The rats titrated to very different delays on the matched patch
and DD sessions (see Figure 2). Rats titrated to an average delay
of 8 s (interquartile range [IQR] � [4, 11]) on the DD task but to
an average of 31 s (IQR [28, 33]) on the patch task (modal
difference � 23 s 95% HDI [22, 24]; Cohen’s d � 4.45, 95% HDI
[3.8, 5.3]; p � 2.2e-16). Behavior in both the DD and patch tasks
were affected by the travel manipulation (see Figure 2). Increasing
travel for the DD task changed the average final adjusted delay

from 6 s (IQR [3, 8]) to 10 s (IQR [6, 12]), modal difference � 3.4
s (95% HDI [2.4, 4.5]), p � 1.5e-6, whereas increasing travel for
the patch task increased the average final adjusted delay from 29
s (IQR [26, 32]) to 32 s (IQR [29, 34]), modal difference � 2.4 s
(95% HDI [1.6, 3.3]), p � 1.8e-8. It is important to note that the
effect of travel was similar between the two tasks, modal differ-
ence of differences � �1.1 s (95% HDI [�2.6, 0.4]), p � .13.

We examined whether rats’ success at acquiring food differed as
a function of task (see Figure 3). We applied the same matched-
pair-difference analyses described earlier to the number of 45 mg
food pellets received per session and found that rats tended to get
more food during DD sessions compared to patch sessions (see
Figure 3A): Rats received 289.3 pellets (IQR [256, 328]) on
average on the DD task and 260.4 pellets (IQR [236, 284]) on

Figure 2. Boxplots showing the average final adjusted delay for all patch and delay-discounting (DD) sessions
(Panel A) and patch and DD sessions split by travel (Panel B). Panel C: The effects for task, travel, and their
interaction represented by marginal posterior distributions. H � hard; E � easy; Avg. � average; adj. �
adjusted. See the online article for the color version of this figure.

T
hi

s
do

cu
m

en
t

is
co

py
ri

gh
te

d
by

th
e

A
m

er
ic

an
Ps

yc
ho

lo
gi

ca
l

A
ss

oc
ia

tio
n

or
on

e
of

its
al

lie
d

pu
bl

is
he

rs
.

T
hi

s
ar

tic
le

is
in

te
nd

ed
so

le
ly

fo
r

th
e

pe
rs

on
al

us
e

of
th

e
in

di
vi

du
al

us
er

an
d

is
no

t
to

be
di

ss
em

in
at

ed
br

oa
dl

y.

1096 CARTER AND REDISH



average on the patch task (modal difference � �28.9, 95% HDI
[�33.3, 24.4], p � 2.2e-16). The number of pellets received was
also affected by the travel manipulation (see Figure 3B): Increas-
ing travel for the DD task changed the average number of pellets
received from 323.1 (IQR [298, 348]) to 254.4 (IQR [228, 278]),
modal difference for DD � �68.9 (95% HDI [�75.6, �62.2]),
p � 2.2e-16, whereas increasing travel for the patch task decreased
the number of pellets received from 282.1 (IQR [257.5, 300.5]) to
239.4 (IQR [225.5, 256.5]), mode of the hard–easy difference for
patch � �42.2 (95% HDI [�46.7, �37.8]), p � 2.2e-16. More-
over, the effect of the travel manipulation differed for the two
tasks, such that the travel manipulation decreased the number of
pellets more so during DD sessions compared to during patch
sessions (modal difference of differences � 26.7, 95% HDI [20,
33.3]), p � 1.01e-9.

To test for possible explanations for the effect of task on time
preference, we fit the data with seven models (see the online
supplemental materials): long-term rate, time-to-reward, hyper-
bolic discounting, exponential discounting, the heuristic model,
TIMERR, and a novel added-value model. Theoretically, be-
havior by each rat ought to be described by a single parameter,
so we first assessed fit in terms of mean squared error after
finding the best fit parameter for each rat for each model.
Notably, fit of the parameterless long-term rate and time-to-
reward models was comparable to that of the single-parameter
models (see Figure 4A and Table 1), presumably because a
single parameter could not account for behavior in both tasks.
Therefore, we allowed parameters to vary across sessions (see
Figures 4B and 4C and Table 1). Not surprisingly, the single-
parameter models generally fit the data better than did the

Figure 3. Boxplots showing the number of pellets received for all patch and delay-discounting (DD) sessions
(Panel A) and patch and DD sessions split by travel (Panel B). The effects for task, travel, and their interaction
are represented by marginal posterior distributions (Panel C). H � hard; E � easy. See the online article for the
color version of this figure.
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parameterless models; however, large variation in best fit pa-
rameters existed (see Figure 5).

It follows from the logic of these purportedly general models
that varying fitted parameters ought to explain behavioral variation
on both tasks for a given pair of matched sessions. Instead, we

found that no model accounted for behavior on both tasks with the
same set of parameters: Fitting the models to patch sessions using
the best fit parameters from DD sessions produced poor fits (see
Figure 4B and Table 1), as did fitting DD sessions with the best fit
parameters from patch sessions (see Figure 4C and Table 1). Thus,

Figure 4. Model fit given as distributions of mean squared error across rats (Panel A) or sessions (Panels B
and C). Panel A displays fit when parameters vary between rats, whereas Panels B and C show fit when
parameters vary between sessions. We also calculated fit for patch sessions on the basis of best fit parameters
from the matched delay-discounting (DD) sessions (Panel B) and vice versa (Panel C). See the online article for
a color version of this figure.
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it would seem that none of the models were general enough to
account for our intertemporal choice data.

Foraging animals frequently err on the side of overstaying in
patches (Nonacs, 2001), and rats’ behavior has been modeled by
adding an “aversion to leaving” parameter to a standard foraging
model (Wikenheiser, Stephens, & Redish, 2013). Similarly, we
conceptualized impending, cued rewards as having some amount
of added value (Loewenstein, 1987; Redish, Schultheiss, & Carter,
2016). We modified the time-to-reward model so that the value of
the stay option in patch was the sum of its objective value and a
fitted parameter, �—a model we refer to as the “added-value
model.” Critically, we assumed the best fit parameter from this
model to be the same between the matched patch and DD sessions,
although no value was added to either option in the DD task. By
definition, then, this model showed zero task-based variation in
best fit parameters (see Figure 5). This model fit the data well for
both tasks, and because of its assumed asymmetry, it was the only
model to maintain fit when explaining the behavior during sessions
on one task with best fit parameters from the other (see Figure 4
and Table 1).

Discussion

We have identified a large effect on intertemporal choice—rats
value time completely differently when faced with foraging deci-
sions as opposed to decisions typical of delay-discounting (see
Figure 2). Our results suggest that current conceptualizations of
intertemporal choice are inadequate descriptions of this broad class
of behavior. Moreover, our data were best described by a novel
model that allowed for the stay option in the patch task to take on
additional value. One might suggest, as an alternative to our
added-value interpretation, an “added-cost” model in which sub-
jects are more aware of the cost of travel (e.g., increased time or
effort) on the patch task than on the DD task. In many ways, this
model would make identical predictions to those of the added-
value model; however, if added-cost led to increased staying on the
patch task, then one would predict an interaction between task and
travel: Assessment of cost ought to scale with the travel require-
ment, so if the difference in preference between patch and DD
were due to an added-cost parameter, then the travel manipulation

would have increased the average final adjusting delays more for
patch than for DD. This was clearly not the case (see Figures 2B
and 2C).

On the basis of work in multiple-decision-making-systems the-
ory (Rangel, Camerer, & Montague, 2008; Redish, 2013; Redish,
Jensen, & Johnson, 2008; van der Meer, Kurth-Nelson, & Redish,
2012), we propose that the added value in our model represents the
influence of a Pavlovian valuation system (Redish et al., 2016).
We use the term Pavlovian to describe a system based on situation-
recognition and associative processes that “release” species-
specific behaviors in the presence of immediate cues, such as
freezing at the sign of a predator. This use of the term Pavlovian
is different from the classical definition—that consequences are
not dependent on subjects’ actions (Bouton, 2007)—but it de-
scribes Pavlov’s (1927) observation of salivation elicited by an
association between a bell and food. This system is thought to
track the value of states (Dayan, Niv, Seymour, & Daw, 2006) or
to compute incentive salience (Berridge, 2012). For example, in
our patch task, the presence of stimuli that predict food would
increase the Pavlovian valuation of waiting in the feeder zone (i.e.,
that “state” is assigned more value because of its association with
reward). Such a process would increase choices to stay and thereby
drive up the adjusting delay on the patch task but would have no
effect on the DD task, in which choice occurs in a state devoid of
salient, immediately clear food cues.

The Pavlovian-valuation explanation may also explain the fact
that previous work has tended to find that deviations from opti-
mality by patch-foraging animals is due to overstaying (Nonacs,
2001). However, not all studies of foraging find overstaying (Bhatt
& Wasserman, 1987), suggesting that our Pavlovian-valuation
explanation may be moderated by species, experimental setup
(operant chamber vs. maze), or both. Similar points may explain
the difference between our finding that rats receive less food on the
patch task compared to the DD task and previous findings that
behavior by birds and humans is more optimal (i.e., better de-
scribed by long-term rate maximization) during foraging compared
to making DD-like choices (Carter et al., 2015; Stephens & An-
derson, 2001). Although we found that the long-term rate model fit
the data less well for DD sessions than for patch sessions (see
Figure 4)—the hallmark result in the aforementioned previous
work—these models were designed to explain behavior on funda-
mentally different procedures from ours (e.g., programmed rather
than subject-controlled intertrial intervals, fixed rather than adjust-
ing delays). Although the specifics of the current experiment make
interpreting further comparisons difficult, one possible explanation
for the differences between our results and previous ones is that
our design enhanced the influence of a Pavlovian system on
willingness-to-wait, and as a result of spending more time waiting
for food, subjects received less food on the patch task than on the
DD task.

Our primary findings have implications for the study of
decision-making more broadly. For example, it may be possible to
increase patience during choice in real-world intertemporal choice
(e.g., decisions about retirement investments) by reframing the
problem so that it shares features of foraging. Likewise, in cases in
which further time investment is undesirable, options could be
reframed to be more similar to the those in the DD task. Moreover,
the current task may function as an animal model of the endow-
ment effect (Kahneman, Knetsch, & Thaler, 1990; Morewedge &

Table 1
Model Fit: Median Mean Squared Error for Each Model With
Different Constraints on Best-Fit Parameters

Model Per rat

Parameters
from DD

Parameters
from patch

DD Patch DD Patch

Parameterless
Long-term .47 .54 .35 .54 .35
Time-to-reward .37 .39 .35 .39 .35

Single-parameter
Hyperbolic .37 .30 .34 .47 .27
Exponential .44 .28 .47 .51 .24
Heuristic .47 .26 .65 .51 .30
TIMERR .49 .44 1.00 .49 .31
Added-value .34 .39 .27 .39 .27

Note. The rate models are equivalent for patch sessions. This is due to the
design of the patch task. DD � delay discounting.
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Giblin, 2015) if the Pavlovian value that we propose is affecting
foraging also contributes to the value of owned items more than
purchasable ones, presumably because cues associated with owned
items are more salient. However, the clearest implication of our
results is that current models of intertemporal choice are not
sufficiently general to explain both foraging and delay-discounting
behavior.
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