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Laboratory studies of decision making often take the form of two-
alternative, forced-choice paradigms. In natural settings, however,
many decision problems arise as stay/go choices. We designed
a foraging task to test intertemporal decision making in rats via
stay/go decisions. Subjects did not follow the rate-maximizing
strategy of choosing only food items associated with short delays.
Instead, rats were often willing to wait for surprisingly long periods,
and consequently earned a lower rate of food intake than they
might have by ignoring long-delay options. We tested whether
foraging theory or delay discounting models predicted the behavior
we observed but found that these models could not account for the
strategies subjects selected. Subjects’ behavior was well accounted
for by a model that incorporated a cost for rejecting potential food
items. Interestingly, subjects’ cost sensitivity was proportional to
environmental richness. These findings are at odds with traditional
normative accounts of decision making but are consistent with ret-
rospective considerations having a deleterious influence on deci-
sions (as in the “sunk-cost” effect). More broadly, these findings
highlight the utility of complementing existing assays of decision
making with tasks that mimic more natural decision topologies.

Intertemporal decision making treats choices between delayed
outcomes and has been a topic of interest to economists, psy-

chologists, and neuroscientists for decades (1). In certain sit-
uations, both humans and other animals commit to options that
will only be realized long in the future, whereas in other settings,
delay seems to erode value much more quickly (2–5). A large body
of work has demonstrated that, when choosing between reinforcers
of approximately equal magnitude, decision makers often prefer
immediate to delayed outcomes (6–9). However, the fundamental
question of how subjects compute the trade-off between the delay
and magnitude of a given option remains poorly understood.
The delay discounting framework has long been invoked to

both characterize and interpret intertemporal choice behavior
(1). Discounting functions relate the decline of a reinforcer’s
subjective value with the length of time preceding delivery of that
reinforcer. Initially proposed as a normative account of decision
making between temporally remote outcomes, early discounting
models asserted a constant decrease in subjective value with re-
spect to delay (exponential discounting), ensuring temporally
consistent decisions (10). It is nowwell established that discounting
functions are often better described by hyperbolic curves (2, 11, 12)
and that the normatively correct discounting function depends on
the precise nature of the decision at hand (e.g., one-shot vs. re-
peated choices, probabilistic outcomes, etc.). Thus, although nei-
ther exponential nor hyperbolic discounting is universally optimal,
one or the other of these models has been consistently able to fit
data from myriad intertemporal choice experiments.
Intertemporal choice tasks most commonly take the form of

forced choices between concurrently available options (e.g., refs.
13 and 14), a scenario infrequently encountered in nature (15).
Foraging behavior is an alternative preparation for investigating
intertemporal choice in circumstances akin to those that animals
might encounter in natural settings (16). Searching for food is
a naturally motivated behavior that has likely been subject to
strong selective pressure through evolutionary time. Behavioral

ecologists have formalized foraging decisions in rigorous mathe-
matical models that provide a quantitative framework for assessing
the behavioral strategies that animals adopt (17–19). Like inter-
temporal decision making, efficient foraging involves striking a
balance between temporal costs and outcome value (8, 16, 19–21).
The attractive features of the foraging framework afford great
potential for integrating the behavioral ecological perspective with
neuroscientific and psychological investigations of behavior, an
approach that has proven fruitful previously (7, 22–26).
Wedesigned a behavioral task to test intertemporal choice in rats.

The task was constructed to mimic the natural topology of foraging
choices that animals face in thewild. Because it is rare for animals to
simultaneously encounter multiple potential food sources (15),
foraging for food is best described as a series of go/no-go or stay/
leave choices between foreground and background options (16, 19).
Upon encountering a potential food source, animals decidewhether
to pursue and exploit that item (the foreground option), or ignore it
and continue searching for other possibilities (the background). The
foraging-choice topology offers a naturalistic complement to
existing investigations of intertemporal choice, and provides
a means of testing the validity of delay discounting models in
multialternative, sequential-choice scenarios designed to ap-
proximate decision making in nature.

Results
In daily behavioral sessions, rats (n = 10) foraged for food pellets
on a circular path outfitted with three, equidistant food pellet
dispensers. Each feeder site was associated with a delay (long,
medium, or short) that remained fixed at that feeder site within
a session. Six combinations of delays were tested, with lengths
ranging from relatively short to relatively long. These sets of delays
defined six unique session types that varied in opportunity cost, or
environmental richness (Fig. 1). Upon approaching a feeder lo-
cation, subjectsmade a stay/go decision; if they remained at the site
until the delay period expired, food pellets were dispensed. Oth-
erwise, they were free to proceed to the next site at any time.
Following a decision to either stay or go, that site became inactive
until the rat returned to it on the subsequent lap around the track.
Each feeder delivered two food pellets. Preferences were mea-
sured by computing the fraction of encounters with each feeder site
in which rats waited for the delay period to expire and received
food [probability of waiting (pwait)].
We determined the strategy that maximized food intake rate

for each session type using the foraging theory prey selection
model. Following the development by Stephens and Krebs (19)
of Charnov’s (18, 27) formulation, each feeder location was
modeled as a unique prey type, with the location’s delay as
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a proxy for handling time. For our task, we found that the rate-
maximizing behavior was to always accept the short-delay option,
and always skip the long- and medium-length delays. Subjects
did not use this strategy. Although pwait generally decreased as
a function of delay length (Fig. S1A), subjects frequently ac-
cepted both the short- and the medium-length delay options and
in many cases were willing to wait for the longest delay (Fig. 2A
and Fig. S1B).
To quantify performance on the task, we computed the frac-

tion of the maximal rate rats earned within each session (the
achieved rate; i.e., how well rats performed on the task compared
with how well they could have performed by adopting the rate-
maximizing strategy). Once again following the intuition of the
diet selection model (19), we calculated the rate obtained for
a given strategy as follows:

R=
P3

i= 1 pwaiti
1+

P3
i= 1 pwaitidelayi

: [1]

The disparity between achieved and maximal rates was striking
(Fig. 2B). In some sessions, rats earned only 20% as much food
as they might have by skipping long- and medium-length delays.
At best, subjects achieved a food intake rate 25% lower than the
maximum rate. These behavioral strategies clearly deviated from
rate maximization.
We considered whether existing models of decision making

could account for the observed behavior. Thematching law (28, 29)
predicts that animals adjust their level of behavioral investment to
match the fraction of their total earnings (income) that each food
source provides. We computed subjects’ fractional investment in
each option and plotted it against the fractional income subjects
earned from that option; matching predicts points should be dis-
tributed along the unity line. Most observations did not conform to
this prediction (Fig. 3). Although some points fell close to the
matching prediction (particularly those of the medium delay op-
tion), the majority of data lay far from the diagonal. We also tested
whether other aspects of behavior (dwell time distributions, the
relationship between instantaneous leaving rates and overall in-
come) were characteristic of matching strategies but found that
they were not (Fig. S2), suggesting subjects were not matching.
We tested whether delay discounting could account for the

behavior we observed. According to exponential discounting, the
subjective value of a reinforcer falls exponentially with increasing
delay (10), whereas hyperbolic discounting asserts a more con-
cave relationship between these variables (1). We implemented
Q-learning reinforcement learning (RL) models (30) that per-
formed exponential (31) and hyperbolic (32) discounting, and

tested these models on a simulation of our foraging task. Through
trial and error, the simulated agents accumulated estimates of the
value associated with the available actions in a given situation
(the quality, or Q value of the state–action pair). The agent de-
cided whether to wait for food delivery by comparing the Q value
associated with staying at the current feeder with the Q value of
proceeding to the next site. We chose the RL approach because
simpler, static models require assumptions about the potentially
infinite ways in which subjects might have compared options. RL
models offer a simple, computationally tractable means of testing
delay discounting on our task.
Behavior in theRLmodels depended largely on twoparameters:

the discounting rate (γ) and the action selection inverse tempera-
ture (β). The γ parameter controlled the rate with which value fell
off as a function of delay, whereas the β parameter dictated the
agent’s value sensitivity (30). Small β values resulted in a strongly
value-sensitive agent that tended to exploit its knowledge of the
environment by strictly choosing actions with the largest Q value.
Larger β values favored exploration, occasionally selecting actions
with lower Q values. We tested the model over a wide range of
γ and β parameters, with the aim of determining whether any
combination of β and γ values could predict the behavior on
the task (Fig. S3).
We computed themean squared error (MSE) between observed

and model-predicted pwait values for each behavioral session (Fig.
4). Error levels were generally high, indicating a poor match be-
tween model-predicted and actual behavior. Moreover, the lowest
MSE values occurred in extreme regions of the parameter space,
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Fig. 1. (A) Rats foraged for food on a circular track equipped with three,
equally-spaced food pellet dispenser sites. Tones cued subjects to the delay
associated with each feeder location. (B) Task session types differed in the
lengths of delays. The delays determined the session’s environmental rich-
ness, or opportunity cost. When all delays were relatively short, opportunity
cost was high because the environment was resource rich. As delays in-
creased, opportunity cost fell, simulating a leaner environment.
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Fig. 2. (A) Observed pwait are plotted in black, and the rate-maximizing
pwait are shown in gray. Error bars indicate the SD (n = 10 rats, 4 repetitions
per subject of each session type). Subjects often waited for the medium and
long delays, although the rate-maximizing strategy in each case was to ac-
cept only the short-delay option. Data here are collapsed across session type.
Plots for each session type are shown in Fig. S1. (B) We computed the frac-
tion of the maximal rate of food intake subjects earned on the task (n = 240
sessions). The achieved rate was generally substantially lower than the rate-
maximizing strategy. At best, subjects earned nearly 25% less food than they
would have with the rate-maximizing solution.
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corresponding to agents that seem unrealistic from a behavioral
perspective; models with such large γ values show little sensi-
tivity to delay, in contrast with rats’ behavior on the task (Fig. 2
and Fig. S1). Together, the hyperbolic and exponential RL
models suggest that temporal discounting cannot explain rats’
behavior on the task.
The behavioral data suggest that rats were not maximizing their

rate of food intake as prescribed by the foraging theory prey model
(Eq. 1); nor were rats using a matching strategy, or discounting
delayed reward in accord with economic theory. To better un-
derstand how subjects arrived at the strategies they selected, we
developed a version of the foraging theory prey selection model
(19) that predicted the decisions we observed. Rats’ propensity to
wait for long- and medium-length delays was the fundamental
discrepancy between observed behavior and the prey model pre-
dictions; rats behaved as though there were some cost to rejecting
prey types. To capture this notion quantitatively, wemodifiedEq. 1
to include an aversion parameter A, representing an unwillingness
to reject potential food options upon encounter:

Rs =

P3
i= 1 pwaiti −

P3
i= 1

�
1− pwaiti

�
A

1+
P3

i= 1 pwaitidelayi
: [2]

Here, the subjective rate of food intake (Rs) decreases with
instances of prey rejection, in proportion to the A parameter.
Larger A values result in the model exhibiting greater aversion to
rejecting prey types. Hereafter, we refer to Eq. 2 as the “rejec-
tion-averse” rate equation, to contrast it with the standard rate
equation (Eq. 1).
Including the A parameter strongly impacted the task’s reward

structure. We used the rejection-averse rate equation to calcu-
late Rs for all possible strategies in all session types. Fig. 5 shows
how Rs varies across strategies, with increasing values of A. When
A is zero, the model reduces to the standard rate equation

prediction, with high-rate strategies concentrated in the behav-
ioral space of accepting only the short-delay option. However, as
A increases, a larger volume of strategy space yields relatively
high rates of food intake.
Given the large changes in task reward structure brought about

by the rejection-averse rate equation, when A > 0, behavioral
strategies should differ substantially from the predictions of the
standard rate model. Consistent with this idea, when A = 0,
subjects’ behavior (marked with black dots, Fig. 5) falls well
outside of the high-rate region, but as A increases, the profitable
region of strategy space shifts to encompass the behavior rats
showed on the task. This suggests that subjects may have been
behaving in accordance with the rejection-averse equation. To
test this idea, we assumed that subjects chose strategies according
to Eq. 2 and found the value of A that maximized the achieved
rate of food intake for each session. Rate-maximizing A values
were greater than zero (PA=0 = 4.25 × 10−42, sign rank test).
We compared the achieved rates of food intake (the fraction

of the maximal rate) subjects earned in each session, assuming
their behavior was guided by either the rejection-averse or the
standard rate equation (Fig. 6, “observed behavior”). Behavior
governed by the rejection-averse model earned a substantial
fraction of the maximum possible rate (achieved rate, 95 ± 5%).
As shown previously, however (Fig. 2B), behavior in terms of the
unmodified rate equation was quite poor (achieved rate, 47 ±
18%). This suggests that subjects might have computed their rate
of food intake in light of a subjective aversion to abandoning
potential food sources (Eq. 2) rather than the rate-maximizing,
cost-free perspective (Eq. 1).
Demonstrating that subjects’ behavior nearly maximizes Rs

(with the appropriate A parameter) shows that there exists
a subjective valuation system (i.e., Eq. 2) that can account for rats’
behavior on the task. However, the rejection-averse equation
contains one more parameter that the unmodified rate equation;
thus, when comparing the two models it is important to consider
whether any arbitrary behavioral strategy would likewise appear
optimal, given the correct A value (33). We fit A for the behavior
predicted by the exponential and hyperbolic discounting RL
models that most closely matched subjects’ actual behavior.
Achieved rates are plotted in Fig. 6 with respect to the rejection-
averse and standard prey selection frameworks. For both the
exponential and hyperbolic models, including the A parameter
increased the achieved rates associated with model behavior
(from 32 ± 11% to 52 ± 7% for the exponential model; from 55 ±
16% to 72 ± 8% for the hyperbolic model). However, in neither
case did the achieved rates approach those of observed behavior
under the rejection-averse assumption (PRobserved=Rexponential =
1.00 × 10−44; PRobserved=Rhyperbolic = 1.46 × 10−44; rank sum tests).
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Thus, although including the A parameter generally resulted in an
increased achieved rate, this increase did not drive the achieved
rates for all possible strategies to maximal values, suggesting that
Eq. 2 is not so inappropriately flexible as to maximize intake rates
for any strategy.
Interestingly, the A parameter fit to subjects’ behavior varied

across session types. The best-fitting A value correlated positively
with the opportunity cost of time, which differed across session
types (Fig. 7; Pcorr=0 = 7.77 × 10−33, R2 = 0.42). This correlation
suggests that rats’ sensitivity to rejection costs was not a static
quantity but was instead dynamically modulated by the reward
statistics of the environment. With increasing opportunity cost,
rats grew more averse to abandoning potential food items. This is
the reverse of the expected relationship between behavioral vigor
and opportunity cost (34, 35), but is consistent with parameter A
reflecting the opportunity lost getting to the reward (retrospec-
tive evaluation) rather than the opportunity gained or lost
leaving the reward site early (prospective evaluation).

Discussion
While performing a foraging task, rats chose behavioral strate-
gies that resulted in a large loss of food earnings compared with
the maximal possible intake rates. We tested models from for-
aging theory, psychology, and economics, but they could not
explain the behavior we observed. Importantly, delay discounting
models, for many years the dominant means of evaluating and
modeling intertemporal decisions, were unable to account for
the preferences subjects exhibited. To model subjects’ behavior,
we modified the foraging theory prey selection rate equation to
include a cost for rejecting potential prey items. This rejection-
averse model closely matched rats’ behavior (but not behavior
predicted by temporal discounting models), suggesting it might
capture an aspect of the decision-making process rats used on
the foraging task.

What is the nature of the perceived cost that influenced rats’ be-
havior on the foraging task?One possibility is thatA represents some
general movement or movement initiation cost. However, because
the physical dimensions of the foraging task apparatus were un-
changed across session types, any parameter related generally to
movement costs should be constant across session types, in contrast
to our findings (Fig. 7). This suggests thatA cannot be fully explained
by movement costs or other general energetic expenditures.
The A parameter fit to subjects’ behavior varied systematically

across session types and was positively correlated with the op-
portunity cost of the session. Opportunity cost quantifies the av-
erage value of time, given the density of reinforcement available in
the environment (34). When environmental resources are abun-
dant, opportunity cost (i.e., the cost of allocating time to an ac-
tivity) is high. When resources are scarce, less reward per unit time
is at stake, and opportunity cost is low. Our data conflict with the
normative prediction that increasing opportunity costs ought to
“invigorate” behavior (35). In sessions where the value of time was
greatest (high opportunity cost), subjects were most willing to wait
out long-delay options (high A values). Conversely, when oppor-
tunity cost was low (and subjects stood to lose little by accepting
low-rate items), rats’ aversion to rejecting feeder sites was lower.
These findings seem inconsistent with current thinking on how
opportunity cost ought to influence behavior (34, 35).
Because behavior driven by the rejection-averse rate model

diverged so strikingly from rate maximization, we considered
whether the A parameter might map on to some bias known to
affect human decision makers (25). One such bias is the sunk-
cost fallacy, an economic error in which willingness to continue
pursuit of an option is influenced by past investment in that
option, rather than anticipated future returns (36, 37). In eco-
nomic terms, considering sunk costs is irrational, as investments
committed to a course of action cannot be recovered. Never-
theless, in many cases decision makers show stronger preference
for options they have invested resources in, despite the poor
long-term consequences this might entail (37, 38).
How might the sunk-cost effect manifest on our task? Con-

sider the decision a subject faces upon arriving at the long-delay
feeder site: a forward-thinking, rate-maximizing rat would skip
that feeder, proceeding to a shorter delayed site instead, and
thereby enjoying a greater overall rate of food earnings. In contrast,
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0

25

50

75

100

P
er

ce
nt

 o
f o

pt
im

al
 ra

te

Exponential
model

Hyperbolic
model

Observed
behavior

without A
with A

Fig. 6. We computed the achieved rates of food intake (the fraction of
the maximal possible rate) for observed behavior and the best-fitting RL
models, using both the rejection-averse rate equation (Eq. 2) and the
standard rate model (Eq. 1). In general, the rejection-averse model out-
performed the standard rate model in terms of achieved rates. However,
the RL models’ rates did not approach actual behavior with the rejection-
averse assumption, suggesting Eq. 2 does not maximize Rs for any arbitrary
behavioral strategy.

4 of 6 | www.pnas.org/cgi/doi/10.1073/pnas.1220738110 Wikenheiser et al.

www.pnas.org/cgi/doi/10.1073/pnas.1220738110


a rat making its decision with respect to the cost already spent
getting to its current position would be more likely to wait out the
delay, despite the consequent decrease in overall food intake rate.
Thus, in our task, the extent to which subjects were sensitive to sunk
costs is indexed by how frequently they accepted feeder sites that
decreased their overall food intake. The A parameter, then, could
be considered a session by session measure of sunk-cost sensitivity
on the foraging task, where larger A values indicate a stronger in-
fluence of sunk costs on decision making.
The influence of sunk costs can also explain why A was positively

correlated with opportunity cost (contrary to normative pre-
dictions) (34, 35). In addition to energy, rats also invested time in
traveling between and waiting at feeders. Although the distance
between food options was fixed, perceived differences in the value
of time across session types would result in rats’ subjective valua-
tion of a consistent time investment increasing as opportunity cost
grew. When opportunity cost was high, the subjective behavioral
investment (i.e., the sunk cost) would have seemed greater. Thus,
for decision makers succumbing to the sunk-cost fallacy, reluctance
to abandon potential food items would grow with increasing op-
portunity cost, consistent with our observations (Fig. 7).
Why are decision makers swayed by retrospective investment?

An influential account (38, 39) suggests that sunk costs affect be-
havior because humans inappropriately overgeneralize an aversion
to wasting valuable resources. Although it is generally a good
strategy to avoid squandering valuable resources,misapplication of
the waste-aversion heuristic could lead to continued investment
in a doomed venture, because sticking with a losing option sub-
jectively validates previous investment. Complementary theories
have suggested that humans attend to sunk costs to maintain their
reputation (either to themselves or others) as self-consistent de-
cision makers that avoid wasting retrospective allocations, leading
to the puzzling scenario in which a misguided attempt to appear
rational leads to demonstrably suboptimal behavior (40–42). One
feature all these theories share is a critical role for complex social,
cognitive, or metacognitive explanatory mechanisms; accordingly,
these theories explicitly predict that animals either have cognitive
mechanisms similar to those responsible for the sunk-cost effect
in humans, or that they should be immune to biases induced by
sunk costs (38). The data presented here provide evidence that
retrospective considerationsmight influence the behavior of rats in
a manner consistent with the sunk-cost fallacy, suggesting that the

waste-aversion theory of human sunk-cost sensitivity (38, 39)
might have deep evolutionary roots, possibly reflecting evolu-
tionary elaboration of a simpler, learned correlation between
effort invested and return.
Other psychological factors may explain rats’ behavior on the

task. For instance, if subjects perceived uncertainty in food delivery,
waiting out long delays might have been informative, leading to
a better understanding of the task’s reward structure. Other species
actively seek reward-related information in a behavioral task, even
when this information cannot influence their earnings (43). A
similar effect in rats might account for their oversampling of long
delays. However, because the task was well learned, and there was
no evidence for within-session changes in strategies, it seems un-
likely that behavior was strongly affected by uncertainty.
Perceived uncertainty could also influence preferences in other

ways. If, for instance, rats perceived food at their current location
as somehow more likely to be delivered than food at future sites,
such beliefs could drive a heuristic where “a bird in the hand” is
valued more highly than hypothetical future reward, despite dif-
ferences in delay. Finally, it is possible that subjects were not
sensitive to reward rate and were instead tracking their food
earnings by some other, as-yet-unknown metric.
Interestingly, previous laboratory studies of foraging decisions

have found that behavior often approximates the optimal solution
to the decision problem at hand (reviewed in refs. 16 and 19). For
instance, birds selecting prey items from a conveyer belt (44), blue
jays making stay/go decisions between food patches (45), and
primates making virtual patch residence choices (24) all matched
the normative predictions of foraging theory models. Our exper-
iment differs from many previous investigations of foraging be-
havior in at least one critical aspect: rats performing our task were
required to physically move between spatially segregated feeder
sites to indicate their decisions. Our findings suggest that, at least
in some cases, virtual search costs (simulated by delays) may not
be equivalent to the actual energetic expenditures of moving
through an environment in pursuit of food.

Methods
Subjects. Male Fisher–Brown-Norway hybrid rats (n =10; Harlan), aged 10–
14 mo, were maintained on a 12-h light–dark cycle. Behavioral sessions
occurred at the same time daily, during the light phase. Rats were handled
7 d and acclimated to eating 45-mg sucrose pellets (Test Diet) before
beginning training. Subjects were food deprived to no less than 80% of
their free-feeding weight; water was always freely available in the home
cage. All experimental and animal care procedures complied with Na-
tional Institutes of Health guidelines for animal care and were approved
by the Institutional Animal Care and Use Committee at the University
of Minnesota.

Apparatus. Rats performed the task on an elevated, circular track (width,
10 cm; diameter, 80 cm). Food pellets (Research Diets), were delivered by
automated dispensers (Med Associates). An overhead camera recorded the
subjects’ position via a light-emitting diode (LED) “backpack,” a cloth strip
containing a battery-powered LED fastened around the rat’s body with
Velcro. Online position tracking was processed with a Cheetah 160 data
acquisition system (Neuralynx). The task was controlled by custom Matlab
(MathWorks) software.

Training and Task. Subjects were first trained to run clockwise around the
track for food at each feeder. Attempts to run counterclockwise were blocked
by the experimenter during training sessions (during task sessions, rats ran
only clockwise, so blocking was unnecessary). After rats ran 30 or more laps
for three consecutive sessions, the training phase was considered complete
and task performance began.

During each daily, 30-min session of the foraging task, rats could earn
sucrose pellets from the three feeder locations after a delay period. The delay
began when the subject entered a 15-cm zone centered on the feeder site.
Entry into this zonewas signaled by a tone sequence (200-ms pulses, repeated
once per second). The frequency of the tone was proportional to the site’s
delay, to inform subjects of the wait length. For two rats, tones decreased in
frequency with each pulse until food delivery. For the remaining eight rats,
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Fig. 7. We found the best-fitting A parameter for each behavioral session
(n = 240 sessions), and measured how the mean A parameter varied across
session types. A was correlated with the opportunity cost of time, which
varied across session types (P = 7.77 × 10−33, R2 = 0.42).
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the frequency was constant throughout the delay. No behavioral differences
were observed between the two conditions, so subjects were pooled for
analysis. Excluding the animals who experienced a decreasing tone did not
change the results presented here. Six combinations of delays defined six
unique session types. Rats experienced session types in pseudorandom order
(the same type was never repeated on consecutive days). Delays were
counterbalanced across feeder sites to ensure that delay distributions at
each location were equivalent across sessions.

Data Analysis and Modeling. All analyses and statistical tests were conducted
using Matlab. The exponential discounting RL model was implemented
after Watkins (31), and the hyperbolic discounting model was imple-
mented after Kurth-Nelson and Redish (32) (SI Appendix). With experi-
ence, such models learn the value of taking actions in various world states
(Q values for state–action pairs). Action selection in both models was
achieved via a soft-max algorithm (30) that compared the value associated

with staying at a feeder site (the discounted value at the current site) with
the value of proceeding to the next location (the delay plus travel time-
discounted value of the next site). The β parameter set agents’ value
sensitivity, whereas the γ parameter determined how quickly subjective
value decreased with delay (30).

For matching analyses, fractional investment was the sum of time spent
waiting at each site divided by the total time spent waiting at all feeder sites.
Similarly, fractional income was the number of pellets earned from each
feeder divided by the total number of pellets earned in the session.
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SI Appendix
Testing for Matching Behavior. In addition to the analyses reported
in the main text (Fig. 3), we examined several other aspects of
behavior for characteristics of thematching strategy. Onmatching
tasks, the distributions of visit durations (dwell times) for each
option are typically exponentially distributed. Because different
feeder sites in our task were associated with different delay
lengths, we normalized visit durations by each site’s delay length
to view all of the data on the same scale (Fig. S2A). In our task,
subjects sometimes waited for the delay period to expire, but in
other cases left the site before this time. Accordingly, the overall
distribution of visit durations had two peaks—one resulting from
trials in which subjects waited for food delivery and another
resulting from trials in which subjects left the site early. To fairly
consider whether visit durations were distributed exponentially,
we considered the complete set of visits (all trials), and also
separated trials based on whether subjects waited for food de-
livery (wait trials only) or left before earning food (skip trials
only). We computed survivor curves (1) for visit durations sep-
arated in this way and compared them with survivor curves cal-
culated for an exponential distribution with the mean matched to
the mean visit duration of the sample in question (Fig. S2B).
Examining these plots shows substantial divergence between the
empirical exponential survivor curves (dashed lines) and the visit
duration survivor curves (solid lines), suggesting that visit dura-
tions were not distributed exponentially.
To ensure that normalizing and pooling data did not affect our

analysis, we directly tested distributions of visit durations from each
site within each session for exponentiality using a Lilliefors test of
the null hypothesis that sample data derive from an exponential
distribution with an unspecified mean. Again, we separately con-
sidered visit durations from all trials, skip trials only, and wait trials
only. To ensure that enough samples were present to accurately
assess the distribution’s shape, only distributions with at least 10 or
more samples were tested. We found that, in the vast majority of
cases (all trials: 99%; skip trials only: 96%; wait trials only: 100%),
there was sufficient evidence to reject the null hypothesis that data
were distributed exponentially (P < 0.05). Together, these results
demonstrate that visit durations did not follow an exponential
distribution.
We also examined the relationship between the sum of the

average leaving rates (the reciprocal of the average dwell time

for each site in a session) and the sum of incomes for each site.
Matching predicts a linear relationship between these quan-
tities; however, we observed no clear relationship in our data
(Fig. S3).
Taken together, these analyses suggest rats did not use amatching

strategy while performing the foraging task.

Reinforcement Learning Models. We tested a wide range of β and γ
values; each parameter combination was simulated 10 times and
behavior (pwait) was averaged across repetitions. Travel time be-
tween feeder sites was fixed at 2 s, a time consistent with rats’ be-
havior on the task. For both models, the learning rate was fixed at
a moderate value (0.15), and behavior was examined after simu-
lating 2,000 time steps, when Q-value estimates had stabilized.

Exponential Discounting Reinforcement Learning Model. Delay was
discounted exponentially in the exponential model, following
SV = Mγd [SV = subjective value, M = reinforcer magnitude,
d = delay, γ (∈ [0, 1]) = discounting rate].

Microagents Hyperbolic Discounting Reinforcement Learning Model.
To model hyperbolic discounting, we used a previously described
Q-learning model (2) in which behaviorally relevant variables
were represented across a population of independent “micro-
agents.” Each microagent (n = 1,000) computed its own estimate
of Q values and discounted delayed reward exponentially, ac-
cording to its own, unique γ parameter. The “macroagent” av-
eraged Q values over the microagent distribution when making
decisions and exhibited hyperbolic discounting as an emergent
property of interactions within the population of microagents
(2). Action selection was achieved with the same soft-max al-
gorithm as in the exponential model (3). To change the delay
tolerance of the macroagent, we altered the distribution of mi-
croagent discounting rates by raising each value in the pop-
ulation to an exponent ranging from 0.01 to 100; distributions
skewed toward high γ values resulted in slower discounting,
whereas a preponderance of low γ values resulted in faster dis-
counting. Consequently, the macroagent, unlike the exponential
model, is not characterized by a single discounting rate; instead,
in Fig. 4 and Fig. S3, axes for the hyperbolic model display the
median γ value of the microagent distribution.
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Fig. S1. (A) The fraction of trials in which subjects waited for food (pwait) is plotted against delay length across all session types. Sigmoid curves were fit to
each subject’s data. Data from four individual rats are plotted at Left, and the curves for all subjects (n =10) are shown at Right. Rats varied in their delay
tolerances, but in general, pwait decreased with increasing delay. (B) The proportion of trials in which subjects waited out the delay period is plotted separately
for each session type. Error bars mark the SD (n = 10 rats, 4 repetitions per subject of each session type, for 240 sessions of data).
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Fig. S2. (A) One characteristic of the matching strategy is that dwell times (the time spent waiting at each feeder location) are distributed exponentially.
Dwell times for all sessions (normalized to the delay at each location) are plotted, with distributions separated based on whether the subject waited for food
delivery (wait trials, blue) or left the site before the delay period had passed (skip trials, red). (B) Survivor curves for dwell times (again normalized to the delay
at each location) are plotted for all trials, wait trials only, and skip trials only. The vertical gray line in each plot marks the time of reward delivery. The dashed
black line in each plot is the empirical survivor curve for an exponential distribution with the same mean as the dwell time distribution. For all three cases, the
data-derived survivor curves differ substantially from the curves expected for a matched exponential distribution. (C) In matching tasks, the sum of the average
leaving rates (the reciprocal of the average visit duration) at all potential food sites typically increases in proportion to the sum of the income across all food
sites. We did not observe a clear relationship between leaving rates and total income, suggesting subjects were not guided by a matching strategy on the
foraging task.
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