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Abstract

Although delay discounting, the attenuation of the value of future rewards, is a robust finding, the mechanism of discounting is not
known. We propose a potential mechanism for delay discounting such that discounting emerges from a search process that is trying
to determine what rewards will be available in the future. In this theory, the delay dependence of the discounting of future expected
rewards arises from three assumptions. First, that the evaluation of outcomes involves a search process. Second, that the value is
assigned to an outcome proportionally to how easy it is to find. Third, that outcomes that are less delayed are typically easier for the
search process to find. By relaxing this third assumption (e.g. by assuming that episodically-cued outcomes are easier to find), our
model suggests that it is possible to dissociate discounting from delay. Our theory thereby explains the empirical result that
discounting is slower to episodically-imagined outcomes, because these outcomes are easier for the search process to find.
Additionally, the theory explains why improving cognitive resources such as working memory slows discounting, by improving
searches and thereby making rewards easier to find. The three assumptions outlined here are likely to be instantiated during
deliberative decision-making, but are unlikely in habitual decision-making. We model two simple implementations of this theory and
show that they unify empirical results about the role of cognitive function in delay discounting, and make new neural, behavioral, and
pharmacological predictions.

Introduction

Both human and non-human animals discount future rewards,
preferring smaller rewards delivered sooner over larger rewards that
will only be available after a delay (Madden & Bickel, 2010). In both
human and non-human animals, the ability to wait for a larger reward
is positively related to self-control abilities (Mischel & Underwood,
1974; Baumeister et al., 1994; Peters & Büchel, 2011) and inversely
related to addiction liabilities (Ainslie, 2001; Bickel & Marsch, 2001;
Odum et al., 2002; Perry et al., 2005; Anker et al., 2009; Heyman,
2009; Stanger et al., 2011). Most theories suggest that the temporal
discounting of future rewards is related to issues of uncertainty, risk,
and investment (Samuelson, 1937; Sozou, 1998; Redish & Kurth-
Nelson, 2010); however, the mechanisms underlying the temporal
discounting of future rewards remain unresolved.
In non-human animals, discounting functions are usually mea-

sured through direct choices of actual rewards, often through the
use of adjusting delay tasks (Mazur, 1997), in which selecting
smaller-sooner or larger-later rewards changes the delay to the
larger-later reward. Modeling adjusting delay tasks is possible using
reinforcement-learning models that adjust decisions based on
feedback (Kurth-Nelson & Redish, 2009). Most human experi-

ments, however, have measured discounting rates through
questionnaires and single-trial events, in which discounting deci-
sions are made in novel situations, often without any immediate
feedback (Madden & Bickel, 2010). Modeling decision-making in
novel conditions requires discounting functions that can arise from
imagined futures.
Discounting experiments generally find reasonable fits to hyper-

bolic discounting functions, in which the value of the future reward
is discounted by 1 ⁄ (1 + delay) (Madden & Bickel, 2010). Although
this fit is often very good, other functions have been proposed,
including exponential (Schweighofer et al., 2006), exponential with a
bonus for immediate rewards (Laibson, 1997; McClure et al., 2004),
and the sum of multiple exponentials (Sozou, 1998; Kurth-Nelson &
Redish, 2009). These models all assume that the value of a delayed
reward is a simple function of the delay to that reward, following
simple delay-dependent assumptions of risk, uncertainty, and
investment in economic (Samuelson, 1937; Sozou, 1998) and
reinforcement-learning (Sutton & Barto, 1998; Redish & Kurth-
Nelson, 2010) models.
Discounting functions, however, are also modulated by cognitive

and representational factors. For example, subjects with increased
cognitive resources tend to show slower discounting rates. As a trait,
higher cognitive skills are correlated with better self-control and
slower discounting rates (Mischel & Grusec, 1967; Mischel &
Underwood, 1974; Burks et al., 2009). As a state, cognitive resources
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can be modulated by training working memory (presumably increas-
ing cognitive resources), which slows discounting (Bickel et al.,
2011), or by imposing a cognitive load (presumably decreasing
cognitive resources), which speeds discounting (Vohs & Faber, 2007).
Representationally, discounting rates depend on the episodic nature of
the potential options in a questionnaire – if the delayed option is
primed with an episodic cue, then subjects are more likely to select it,
leading to a decrease in the rate of decay of the discounting function
(Peters & Büchel, 2010; Benoit et al., 2011). Similarly, subjects prefer
options presented with round numbers ($7 instead of $7.03), showing
slower discounting functions when the delayed option is presented in
round numbers ($7.03 now vs. $20 next week) and faster discounting
functions when the immediate option is presented in round numbers
($7 now vs. $20.03 next week) (Ballard et al., 2009). Ebert & Prelec
(2007) report that the time sensitivity of discounting functions is
susceptible to manipulations of attention, and that these manipulations
differ between near-future and far-future options. These results
suggest that there are other factors besides time involved in the delay
discounting phenomenon; standard economic and reinforcement-
learning models do not capture these modulatory effects (Daw,
2003; Glimcher, 2008).

Current theories of decision-making systems suggest that there are
multiple systems that can drive decision-making (Daw et al., 2005;
Redish et al., 2008; van der Meer et al., 2012; Montague et al., 2012),
including both deliberative and non-deliberative (habit) systems.
Deliberative decision-making in particular has been proposed to
depend on search processes that proceed through potential futures
(Johnson & Redish, 2007; van der Meer et al., 2012) and ⁄ or the
creation of imagined expectations (episodic future thinking) (Atance
& O’Neill, 2001; Schacter et al., 2007).

Here, we propose that discounting arises from a cognitive search
process that is trying to identify rewarding situations in the future. We
suggest that temporal discounting emerges from the correlation
between delay and the ease of identifying future rewarding situations.
As cognitive processes underlie the computation of value, the
modulation of discounting by representation and cognitive resources
emerges directly from the search process.

Theory

We present a theory of discounting in deliberative decision-making.
The key to deliberative decision-making (sometimes referred to as
‘model-based reinforcement learning’) (Kaelbling et al., 1996; Sutton
& Barto, 1998) is the ability to evaluate potential future outcomes on
the fly, permitting flexible behavior in the face of changing
contingencies or changing motivational states (Doya, 1999; Suri,
2002; Daw et al., 2005; Niv et al., 2006; Balleine & Ostlund, 2007;
Johnson et al., 2007; Hill, 2008; van der Meer et al., 2012). Several
authors have proposed that this evaluation process involves the
episodic projection of oneself into the future to vicariously sample
potential outcomes and thereby establish a subjective value (Buckner
& Carroll, 2007; Gilbert & Wilson, 2007; Johnson & Redish, 2007;
Schacter et al., 2007; van der Meer & Redish, 2009; van der Meer
et al., 2012).
Even in situations in which one is told the reward that one will

receive (e.g. if you are offered $100 next week), one needs to determine
the world situation next week in order to evaluate the usefulness (the
subjective value) of that $100 next week. The subjective value of that
$100 next week is very different if one expects to win the lottery
tomorrow. Thus, from a neural decision-making systems point of view,
this situation still has to be evaluated in order to establish a subjective
value for it. We suggest that while holding on to that semantic
association of $100 next week (which modulates both the search
process and the situation ⁄ reward association mapping), the agent
projects an episodic self-representation forward in time. The ability to
construct a vivid, associated forward projection will determine how
easily one can evaluate the subjective value of that $100.
The exact mechanisms of this episodic projection in the brain are

likely to be very complex. There is likely to be a combination of
explicit search through a graph of states using causal models at mixed
levels of abstraction (Newell & Simon, 1972; Rich & Knight, 1991;
Nilsson, 1998; Smith et al., 2006; Botvinick & An, 2009); attractor
networks settling into representations (Hertz et al., 1991) or following
energetically-favorable pathways encoded by experienced sequences
(Johnson & Redish, 2007); and application of correlational and
associational knowledge. A complete theory of these processes is
beyond the scope of this article. However, we propose that episodic
construction has some essential properties that give rise to temporal
discounting and allow us to make qualitative neural, behavioral, and
pharmacological predictions about discounting. We therefore first
present the essential properties and then present two instantiations of
this theory (one based on abstract search processes and one based on
settling processes of attractor networks). We show the same qualitative
results in each instantiation: temporal discounting of delayed rewards,
and modulation of discounting by the representation of outcomes and
by cognitive resources.

Assumption 1

Construction can be viewed as a search process (Winstanley et al.,
2012). Neurophysiologically, we suggest that search occurs through
the activation space of the neural network that represents episodes. It
follows a trajectory from the present toward a representation of a
future outcome (Tolman, 1939; Buckner & Carroll, 2007; Johnson &
Redish, 2007). As noted above, this is likely to be very complex, but
ultimately, the representation starts from the present, and must reach a
future outcome in order to value that outcome. For example, the search
may involve multiple hierarchical levels, perhaps through cognitive
chunks (Newell & Simon, 1972; Botvinick & An, 2009), but each step
probably occurs through the settling of dynamic attractor models, such

Table 1. Parameters used in model 1 (abstract search)

Search time 5000
Number of searches 1000
Reward radius 0.5
Default basin depth 1
Inverse friction F 0.9
Thermal noise ~n Uniform distribution over the

range ()0.5, 0.5) in each dimension
Inertia m 0.1

Table 2. Parameters used in model 2 (Hopfield)

Size of the set of patterns 15
Search time limit 250
Number of units 80
NT, number of trials 1000
N, noise in weights Uniform distribution

over ()0.05, 0.05)
ep, strength of pattern
when not directly modeled p

1

Cognitive effects in delay discounting 1053

ª 2012 The Authors. European Journal of Neuroscience ª 2012 Federation of European Neuroscience Societies and Blackwell Publishing Ltd
European Journal of Neuroscience, 35, 1052–1064



as content-addressable memories, which in itself is mathematically
akin to a search process (Hertz et al., 1991). Of course, the topology
of the neural activation space may look quite different from the
topology of the representation space, but we assume that there is some
degree of homology. In general, if something is farther away, there are
more steps to go through, even though these steps may be in a variety
of different spaces.

Assumption 2

The search process values rewards proportionally to how easy they
are to find. The search process attempts to find rewards in the future,
but in most real-world situations, and even in many experimental
tasks, it is not feasible to fully search out every possible outcome.
Naturally, the search process can only value rewards if it can find
them. An all-or-nothing effect may be partially smoothed out by
multiple searches (whether discrete or continuous, i.e. evolving a
distribution through the search space). These multiple searches may
occur serially (Johnson & Redish, 2007) or in parallel (Botvinick &
An, 2009). From the point of view of making adaptive decisions,
valuing rewards proportionally to how easy they are to find may
reflect that easy-to-search-to rewards are also statistically easier to
obtain in the real world. This is expected to be a consequence of the
fact that the learning mechanisms that create the representation space
through which the search operates tend to associate things that are
linked in the real world.
Neurophysiologically, it is likely that evaluation occurs through a

downstream brain network that has learned to associate which kinds of
situations are valuable and which are not, probably involving the
orbitofrontal cortex (Padoa-Schioppa & Assad, 2006; Zald & Rauch,
2006; Schoenbaum et al., 2009) and ventral striatum (Pennartz et al.,
2009; Roesch et al., 2009; McDannald et al., 2011; van der Meer &
Redish, 2011). If we assume that the classification process is locally
smooth, then rewards will be more valued if they are easier for the
episodic projection to find, because having a representation closer to
something that has been learned to be rewarded will be more
subjectively valuable.

Assumption 3

Multiple factors influence how easy a reward is to find, including the
temporal distance to the reward and the ease of constructing the future
representation. As events are generally continuous through time, there
is an inherent overlap between ‘now’ and any given future, which
decays with a regular time-course (Rachlin, 2004; Howard et al.,
2005). Previous researchers have suggested that this creates a
separation between current and future ‘selves’ such that future selves
are farther away than one’s current ‘self’ (Ainslie, 1992, 2001; Trope
& Liberman, 2003; Rachlin, 2004). Thus, we assume that the ease of
construction of a future outcome is correlated with the delay to the
outcome. However, because the fundamental cause of temporal
discounting in our theory is that more distant rewards are more
difficult to find, it is possible to modulate discounting by creating
situations where these are dissociated. One interesting example is
when outcomes are made easier to find by altering the energy
landscape around them. We will show, for example, that in an
attractor-network instantiation of this theory (model 2, below),
increased interconnection strength of a memory (producing a deeper
basin of attraction) allowed the network to find that memory faster and
more reliably, leading to slower discounting. We argue that increased
interconnection strength is a feature of vivid representations. There-

fore, boosting the vividness of the outcome leads to slower
discounting, as observed experimentally (Peters & Büchel, 2010;
Benoit et al., 2011).
Neurophysiologically, assumption 3 is met because it is easier for

the projection to reach temporally-nearer outcomes because they also
tend to be nearer in feature space. The distance in ‘search space’ is
the ease of constructing that future (Schacter & Addis, 2007;
Schacter et al., 2008). Situations that are more separated in time tend
to be more separated in feature space because everything in the world
is changing, and by the nature of learning in associative networks,
situations that are more separated in feature space are likely to be
more separated in activation space. Of course, the topology of the
activation space is determined by the dynamics of the network, and
things may be topologically closer or further than their distance in
raw activation space. We assume that there is a finite time available
for searching, so the search cannot simply run forever until it finds all
outcomes. Experimentally, discounting is often measured with
questionnaires, where the experimenter asks the subject’s preference
between, e.g. $100 today or $1000 in 1 year. In this case, even
though the subject ‘knows where the reward is’ (e.g. $1000 in
1 year), his or her episodic representation must still follow a
trajectory from the present to that outcome in order to perceive it as
valuable. We suggest that the broader space of possibilities (‘where
will I be in a year?’) leads to a decrease in the expected value of that
delayed outcome. In summary, this theory constitutes a novel
explanation for the mechanism of delay discounting – rewards that
are temporally near will be more likely to be found and will be
valued more highly. We now present two models that instantiate,
respectively, the generic assumptions and their mapping on to
episodic construction.

Materials and methods

Model 1: Abstract search

This model simulates the process of estimating the value of a situation
by identifying the future rewards that will be available.
Searches in model 1 were performed in the real number plane,

R2. Searches always started from the origin. Certain locations within
the representation space were defined as rewarded. For simplicity, we
assumed that rewards are either present or not (i.e. they were not
probabilistically delivered). Multiple searches were performed, and the
value produced by the model was defined as the number of searches
that found a reward, divided by the total number of searches. Delay to
a reward was modeled as the Euclidean distance (following assump-
tion 3); thus, a reward available after five time-steps would be located
five units from the origin.
Search dynamics proceeded by being updated through standard

particle motion equations, stochastically following an imposed energy
gradient

~xðt þ 1Þ ¼~xðtÞ þ Dt � ~VðtÞ ð1Þ

~Vðt þ 1Þ ¼ F � ~VðtÞ þ m � ðrS þ~nÞ
� �

ð2Þ

where ~xðtÞwas the location of the particle at time t, and ~VðtÞwas the
velocity at time t. The inverse friction (slipperiness) F was set to 0.9
for all simulations. The thermal noise ~n was isotropic; it was
independently drawn at each time-step from a uniform distribution
over the range ()0.5, 0.5) in each dimension. The inertia m was held at
0.1 for all simulations.
The energy gradient was defined by the surface
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S ¼
X

i

Bi ð3Þ

where each Bi is one basin. Basins were defined by the following
equation

Bi ¼
Diffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðx� xiÞ2 þ ðy � yiÞ2 þ 4Þ
q ð4Þ

where Di defined the depth of basin i, and (xi, yi) defined the center of
the basin. Qualitatively similar results were found with a number of
different basin shapes. These parameters were chosen as being robust
in order to allow examination of the effects of other parameters on the
system. Di was set to 1 unless it was being explicitly manipulated. In
Fig. 1, the number of basins was zero, so the energy landscape was
flat. In Figs 2 and 3, the number of basins was one and this basin was
centered on the reward. In Fig. 3, there was a basin centered on the
reward and also other basins centered at uniformly random locations
within ()50, 50) in each dimension.

If, at any time-step, the search came within 0.5 Euclidean distance
of a reward, the search terminated and returned with a positive value
saying that the reward was found. If the search reached its maximum
duration (held to 5000 time-steps for all simulations in which it was
not explicitly manipulated) without finding reward, the search
terminated and returned with a value of 0. On each trial, 1000
independent searches were performed. The subjective value was taken
to be the proportion of searches that found a given reward. Parameters
used for model 1 are listed in Table 1.

Model 2: Hopfield network

This simulation used a standard Hopfield network (Hopfield, 1982;
Hertz et al., 1991). Each unit i had a state si of 1 or )1. A set P of
randomly defined patterns was encoded in the weights of the network.
They were defined as

wij ¼ N þ
X
p2P

pipj ð5Þ

where pi is the ith bit of pattern p, and N is a noise contribution, drawn
from a uniform random distribution centered about zero. The weights
were symmetric, so wij = wji. New random patterns were used on each

trial to reduce the systematic bias that would arise from any particular
configuration of patterns (in other words, the weights were regenerated
from scratch on each trial).
One of the encoded patterns was defined as the target, to simulate

where reward was located. The other patterns were non-targets.
On each trial, the activation state of the network was initialized to a

pattern that was generated by starting from the target pattern and flipping
H bits. The delay on that trial was defined as H, the Hamming distance
between the starting position and the target. The network was then
updated asynchronously until either (i) the search time limitwas reached,
or (ii) the target pattern was reached. Exactly one unit was randomly
selected for update on each time-step. The new state of this unit i was

si  
�1 if

P
j

sjwji < 0

1 otherwise

(
ð6Þ

where j indexes the set of units. Thus, on each time-step one unit
was selected for update, but that unit may or may not have changed its
state on that time-step, depending on whether it already had the same
sign as the weighted sum of its inputs.
NT trials were run at each delay of each condition, and the fraction

of these trials in which the network reached the target pattern was
reported as the subjective value.
The depth of the basin for a particular pattern was manipulated by

multiplying the contribution of that pattern to the weights by a
constant.
In experiments where the pattern strength of the target pattern was

varied, the weights were calculated as

wij ¼ N þ
X
p2P

eppipj ð7Þ

where ep is the strength of pattern p. ep was always set to 1 for all non-
target patterns, but could be > 1 for target patterns. Parameters used
for model 2 are listed in Table 2.

Results

Model 1: Abstract search

This simple model instantiates the three assumptions of our theory in
the simplest way: there is an abstract search process, which follows a

Search 1 (does not find target)
Search 2 (finds target)
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Fig. 1. Discounting arises from a set of simple assumptions about search. (A) Examples of two random searches on the plane. Black plus sign at origin indicates
start of searches. Black circle indicates location of reward. (B) Subjective value (defined as the fraction of searches that find the target) is smaller when the delay
(defined as distance between start of search and target reward) is larger.
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trajectory through an abstract space. This space could correspond to
anything from neural activation space to sensory feature space to a
high-level hierarchical rule space. For this model, the search space is
the real plane with a Euclidean distance metric.

In Fig. 1, we used random diffusion as the search dynamics. This is
the simplest possible search dynamics, and simply illustrates that the
phenomenon of discounting arises from our three theoretical assump-
tions. Many other forms of search dynamics would produce the same
results.
In Figs 2 and 3, we added the simplest possible extra assumption –

that the search process has some non-random dynamics that favor
particular subsets of the space. Again, we implemented this with the
simplest possible instantiation – a gravity-like attraction to radially
symmetric energy basins. This gives an example of how the
assumption of adding non-random dynamics can produce a change
in discounting (slower discounting to outcomes in regions of the
representation space that are favored by the dynamics).
Starting from the current location [without loss of generality defined

to be (0, 0)], we allowed a large number of serial searches to evolve
along random trajectories. Examples of these trajectories are shown in
Fig. 1A. Delay was modeled as the Euclidean distance. As a
consequence, more delayed outcomes were discounted relative to less
delayed outcomes (Fig. 1B).

Effect of changing basin depth

In order to encode memories within our representation space, we
defined an energy function over the space, distorting the two-
dimensional space with basins. The random diffusion of the search
was modulated by a gravity-like effect based on the shape of the
energy function (Hertz et al., 1991) (Fig. 2A). Deeper and broader
basins were more likely to be found, meaning that changes in the basin
shape will have profound effects on the discounting function. Searches
probabilistically gravitate towards basins, meaning that searches are
more likely to find targets at the bottom of deeper basins before the
search’s maximum search time expires. This mitigates the effect that
distance (which stands in for delay) has in making it more difficult to
find the target, thus effectively slowing the apparent discounting rate
(Fig. 2B).
It is interesting to note that, under some conditions, the discounting

functions produced by this model have an initial ‘plateau’, e.g. in the
purple curve in Fig. 2B; the value remains near 1 until the delay
reaches about 20. It is a fundamental prediction of the search + basins
theory that, when the search starts within some radius of an
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Fig. 2. Discounting is slower when the representation of the outcome is more energetically favorable. (A) Examples of two searches through an energy landscape
(indicated by gray shading) with one basin, which is centered at (20, 0). The reward is located at the center of the basin. (B) The attenuation of subjective value with
increasing delay (i.e. discounting) is less pronounced when the basin is deeper. Note that the dark blue trace is the same as Fig. 1B.
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Fig. 3. Discounting is slower when more time is available to search, and this
effect is greater when the outcome is more energetically favorable. (A) As
maximum search time increases, the discounting function becomes shallower,
meaning that the same delay produces less reduction in subjective value. (B) In
each panel, discounting curves are shown for a range of different basin depths.
As search time is increased from the top panel to the bottom panel, the
separation between the curves increases, meaning the effects of search time and
basin depth on the curves are supra-additive. The middle panel is the same as
Fig. 2B.
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energetically favorable state, it is almost guaranteed to collapse to that
state, minimizing the difference between small delays within that
radius. Depending on the shape of the energy space, this effect could
range from large to unnoticeable.

Effect of changing maximum search time

Finding a reward, particularly a distant reward, takes time. Presum-
ably, a search can only proceed for a limited time before the agent will
give up on the search. Therefore, to model this limitation, the available
time for a given particle to find a reward was limited. If the particle did
not find a reward within that limited number of steps, it returned a
value of 0 or ‘no reward found’. Increasing the search time available to
the particle increased the likelihood that the particle will find a distant
reward, effectively slowing the apparent discounting rate. Figure 3A
shows how changing the search time changes the discounting
function.

When we systematically varied both the maximum search time and
the basin depth, we found a non-linear interaction between these two
parameters (Fig. 3B), such that the extent to which a deeper basin
slowed the discounting function became much larger when there was a
greater maximum search time. This is a novel prediction – that the effect
of episodicity, as in Peters & Büchel (2010), should become more
pronounced in subjects with more cognitive resources (e.g. following
working memory training). It arose in the model because, if the basin
gradient was much less than the thermal noise, extra search time had
relatively little effect (the expected time to reach a given point was
exponentially increasing with its distance). However, if the basin
gradient was non-negligible relative to the thermal noise, then extra
search time allowed the search to follow the gradient into the basin.

Effect of increasing the number of distractor basins

In Fig. 3, there was only one basin, and it was centered on the
rewarding target. We also tried adding other, non-target basins in the
energy landscape, such that they contributed to the overall gradient,
but reaching their center did not impart a reward. This simulates the
effect of other coherent situations encoded by the representational
system. We found that increasing the number of basins caused the
model to discount faster (Fig. 4A), because these non-target basins
could draw the search away from the rewarding target. In these
simulations, the depth of each basin was 1.

We also found that, as search time increased, the effect of changing
the number of basins became even more pronounced (compare

Fig. 4A and B). This is because, with many non-target basins, it
becomes very likely that the search process will fall into one of these
incidental basins between the starting point and the target, so that
additional search time would be wasted on sitting at the bottom of that
incidental basin.
This makes the novel prediction that increasing cognitive resources

should have little effect on discount rates when there are many other
targets encoded in the search space.

Model 2: Hopfield network

One interesting instantiation of our search assumptions is a settling
attractor network representing an episodic future imagination process.
In this section we show that a settling attractor network model exhibits
the same discounting behavior as we showed for an abstract search
process in the previous section. The model here consisted of a standard
Hopfield network, with NP patterns encoded in the weights (Fig. 5A).
One of the patterns was defined as the rewarding target.

Hopfield network discounts delayed rewards

We modeled the process of evaluating the subjective value of a future
outcome. The system starts from a present state and projects forward
to imagine a future state. Delay to the future outcome was modeled as
the Hamming distance between the starting state and the outcome
state. To generate a starting state for the units that was Hamming
distance H from the rewarding target, we flipped a random H bits of
the pattern representing the rewarding target.
After the units were initialized to a starting state, the network was

allowed to run with asynchronous updates until either the network’s
state matched the rewarding target, or the maximum number of
asynchronous update steps (search time limit) was reached.
As we varied the delay, the subjective value calculated by the model

decreased roughly exponentially (Fig. 5B).

Effect of changing basin depth

We were also interested in the effect of varying episodicity, or the
strength or vividness of a future representation.We assume that themore
vivid an outcome is, the stronger are the connections that encode it.
In a standard Hopfield network, the connection weight between two

units is the sum (across encoded patterns) of the product of the states
of those units in that pattern. In our simulations, we permitted a
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particular pattern to have stronger connections, by multiplying that
pattern’s contribution to the weights by a constant > 1.
When we boosted the vividness of the rewarding target (leaving all

other encoded patterns the same), this had the effect of increasing the
likelihood of the network settling on to the rewarding target, even
when the starting state of the network had a large Hamming distance
from the rewarding target. Therefore, boosting vividness slowed the
discount rate of the model (Fig. 6).

Effect of changing maximum search time

To simulate the effect of changing the amount of cognitive
resources available for construction, we varied the total number of
time-steps that the model was permitted to try to settle on the
rewarding target. Increasing the available search time slowed the
discounting rate of the model (Fig. 7A), because with more time-
steps it was less likely that the search would time out before settling
on the rewarding target.
As in the abstract search model, the effect of changing search time

interacted with the effect of changing basin depth. The gap between
the discounting curves at 1.0 basin depth and 1.4 basin depth grew
larger as more search time was available (Fig. 7B). This supra-additive
effect occurred because, with a deeper basin, it became more likely
that search time was the limiting factor in valuation. In other words,
with a deeper basin, it was likely that even searches starting at a large
Hamming distance from the rewarded target would eventually find the
rewarded target; a larger search time allowed them to do so.

Effect of increasing the number of distractor basins

Auto-associative memories may encode many or few stored repre-
sentations. Encoding more representations in the same network
generally produces a more complex energy landscape with more
local minima. We were interested in how the other patterns encoded in
the network would interact with the search process to the rewarding
target, so we varied the number of patterns NP encoded in the Hopfield
network’s weights.
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Increasing the number of encoded patterns caused discounting to
become faster (Fig. 8A). As the number of encoded patterns
increased, it became more likely that the network would either settle
to one of the non-target patterns, or get trapped in a local minimum
that did not correspond to any encoded pattern. It may have also made
the paths through the space more tortuous, decreasing the likelihood
of finding the rewarding target before the search time limit was
reached.

The effect of the number of encoded patterns also interacted with
the effect of changing the maximum search time (Fig. 8, compare A
and B). With 20 encoded patterns, the discount curves for 250 search
time and 500 search time were nearly identical. However, with a
smaller number of encoded patterns, the discount curve for 500 search
time was much slower than the discount curve for 250 search time.
This is because, as more non-target basins crowded the space, it
became more likely that movement in any direction away from the
starting point would quickly fall into a non-target basin, negating the
benefit of any further searching.

Correspondence to specific experimental results

Changes in the episodic cueing of the potential options

Peters & Büchel (2010) and Benoit et al. (2011) examined the effect
of manipulating episodic cues to the delayed choice in a questionnaire
task, comparing the effect of asking for a preference for larger-later
(delayed) over smaller-sooner (immediate) choices when the delayed
option was marked by a simple time (e.g. ‘26€ after 35 days’) or by an
explicit (and correct) future cue (e.g. ‘35€ after 45 days during your
future vacation in Paris’). Delayed options in the episodic cases were
more likely to be preferred, implying a decrease in the discounting rate
(Peters & Büchel, 2010; Benoit et al., 2011). We modeled this effect
as an increase in the depth of the basin, under the assumption that
more easily retrieved episodic memories would be at deeper spots in
an attractor network (Kohonen, 1980; Hertz et al., 1991). As can be
seen in Figs 4 and 8, increasing the depth of a basin has the effect of
increasing the likelihood that a searching particle would find it, and
thus decreasing the discounting rate to the episodically-marked future
event. In a sense, this increase in depth can be interpreted as a change
in the temporal attention being paid to the future event (Ebert &
Prelec, 2007). Recently, Radu et al. (2011) found that changes in how
classical discounting questionnaires are framed produced changes in
discounting rates, and, by studying discounting related to both future
and past events, concluded that the changes provided additional

attention to the temporally-distant event. The changes in basin depth
shown in Figs 2 and 6 model this effect.

Changes in cognitive abilities and cognitive load

Several researchers have noted that subjects with higher cognitive
abilities show slower discounting functions than subjects with lower
or impaired cognitive abilities. For example, Burks et al. (2009)
correlated experimentally determined discounting rates through ques-
tionnaires with intelligence as measured by the Raven’s matrices non-
verbal IQ test, the Hit-15 ability to plan task, and a quantitative
literacy test. They found that increased cognitive intelligence as
measured by these parameters (all of which were correlated with each
other) correlated with both increased consistency between delays (later
delays were more likely to be discounted more than earlier delays) and
slowed discounting rates. Franco-Watkins et al. (2006) suggest that
cognitive load leads to decreased consistency, whereas Baumeister
et al. (1994), Hinson et al. (2003), Gailliot et al. (2007), and Vohs &
Faber (2007) suggest that cognitive load leads to impulsivity.
We can interpret the state of increased cognitive load and the trait of

decreased cognitive skills as reductions in the available resources that
can be applied to a search. We simulated this with reduced search
times. As can be seen in Fig. 3, decreasing the maximum time before a
search gives up increases the discounting rate (speeds discounting),
with an especially pronounced effect when the basin around the
reward is deeper. Of course, manipulating the available search time is
just a very crude proxy for a host of mechanisms that are probably part
of the whole picture of cognitive resources. For example, the ability to
add more associations might make searches easier by reducing the
topological distance between points in the representation space. The
general argument is that, by improving the search ⁄ construction
process, it is more likely that the deliberative decision-making process
will be able to find, and therefore value, delayed rewards.

Changes in working memory abilities

Recently, Bickel et al. (2011) examined the effects of training
working memory on discounting rates and found that working
memory training produced dramatic decreases (slowing) in discount-
ing rates. In contrast, a control cohort that received the same training,
but with the answers given, thus not requiring working memory (and
producing no working memory improvements), showed no significant
changes in discounting rates. Presumably, some aspects of working
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memory are required to hold on to a search in progress (Baddeley,
1986; Kliegel et al., 2008), and thus we can hypothesize that the
maximum search time is related to working memory. As with changes
in cognitive abilities and cognitive load, this discounting-as-search-to-
reward model suggests an explanation for the decreased discounting
rates through modulations in the parameters, most likely to be the
length of time that a search can proceed before it is abandoned. As can
be seen in Fig. 2, providing increased potential search time leads to a
slowing of discounting functions.

Relationship to neurophysiology

The discounting mechanism proposed here depends on the depth of
the basin of attraction of representations during the imagination of
future representations (i.e. during episodic future thinking). Episodic
future thinking is known to depend on the hippocampus and prefrontal
cortex (Addis et al., 2007; Hassabis et al., 2007; Schacter et al., 2007;
Buckner, 2010), brain structures that are often modeled as auto-
associators with attractor dynamics (Wilson & Cowan, 1972; Zhang,
1996; Redish, 1999; Durstewitz et al., 2000). Our theory suggests that
the dynamics of these brain structures involved in episodic future
thinking will translate directly into discounting rates during deliber-
ative decision-making, in that more easily imagined futures will be
discounted less than futures that are more difficult to imagine. From
this correspondence, we can make several predictions.

Prediction 1

Episodic discounting rates will depend on the ability to access
prefrontal representations. Extensive research in self-control has
suggested that cognitive resources, in particular self-control-related
resources, depend on limited resources that are probably related to
glucose availability in prefrontal cortical structures (Gailliot et al.,
2007; Vohs & Faber, 2007). Our theory that discounting in
deliberative decision-making depends on the ability to imagine future
outcomes suggests that discounting rates will depend on this self-
control-related resource and can be manipulated through the presence
or diminishment of these prefrontal glucose resources.

Prediction 2

Subjects who are unable to episodically imagine futures may still
show temporal discounting, but that temporal discounting will not be
modulated by cognitive resources or the representational nature of the
options. Discounting probably arises from a number of processes,
likely to be different for different decision-making systems. Although
subjects with damage to the prefrontal cortex or hippocampus may still
show discounting due to other processes (such as simple associations),
the evidence that subjects with hippocampal or prefrontal damage
cannot accomplish episodic future thinking (Addis et al., 2007;
Hassabis et al., 2007) implies that any discounting functions that they
do show will be immune to cognitive resource and representational
manipulations. A recent study by Kwan et al. (2011) found that an
amnesic patient showed linear discounting rates, whereas controls
showed hyperbolic discounting rates.

Prediction 3

The depth of the basin affects discounting rates. Several models
(Seamans & Yang, 2004; Yamashita & Tanaka, 2005; Redish et al.,

2007; Durstewitz et al., 2010) have suggested that the basin depth in
prefrontal and hippocampal representations depends on dopaminergic
tone, with low tonic levels of dopamine implying shallow basins and
fragile representations, and high tonic levels of dopamine implying
deep basins and rigid representations. This suggests an inverted U in
discounting rates as a function of dopaminergic tone, with overly low
tonic dopamine leading to difficulty in finding rewards, speeding up
discounting rates, and overly high tonic dopamine leading to difficulty
in moving through space, also speeding up discounting rates. This
may also produce discounting effects as a function of genetic variation
in dopamine single-nucleotide polymorphisms (SNP) (Frank et al.,
2007, 2009).

Discussion

We propose that the discounting of expected rewards with time is due
to a combination of three theoretical ideas: (i) that model-based
reinforcement learning entails a search through the future [planning
(Johnson & Redish, 2007), episodic future thinking (Buckner &
Carroll, 2007)], (ii) that temporally-delayed rewards are more difficult
to find [because they are more contextually separated (Rachlin, 2004;
Howard et al., 2005) and thus farther away in the representation space],
and (iii) that one calculates expected value as a function of the ability to
find rewards [thus taking into account expected risk and hazard (Sozou,
1998; Redish & Kurth-Nelson, 2010)]. In this article, we show that this
simple model can provide explanations for the effects of cognitive and
executive functions on discounting rates, including the effects of
cueing episodicity of the future reward (Peters & Büchel, 2010; Benoit
et al., 2011), inherent cognitive abilities (Franco-Watkins et al., 2006;
Burks et al., 2009), compromising cognitive abilities, such as provid-
ing a cognitive load (Vohs & Faber, 2007) or depleting cognitive
resources (Baumeister et al., 1994; Hinson et al., 2003; Gailliot et al.,
2007), and training cognitive abilities (Bickel et al., 2011).
Although the extent to which deliberative (model-based) decision-

making depends on vivid episodic construction of future events is not
completely clear (Schacter et al., 2007; Daw et al., 2011; Simon &
Daw, 2011; van der Meer et al., 2012), we assume here that subjects
briefly project themselves into the future to evaluate the subjective
value of the outcomes. When a concrete representation of the outcome
is not critical (perhaps because things are represented as abstract
states) (Trope & Liberman, 2003), our theory reduces to a search
through a Markov decision process (Smith et al., 2006), and we would
predict that, although cognitive skills are still relevant because they are
needed to efficiently search through the graph (Huys et al., 2012), the
episodic modulation would have diminishing importance.

Search takes time

One of the key points in any model of deliberative decision-making is
that the deliberative process takes time (Gold & Shadlen, 2002;
Johnson & Redish, 2007; Ratcliff & McKoon, 2008; Krajbich et al.,
2010; van der Meer & Redish, 2010). Forcing decisions to terminate
early produces more inconsistent results (Gold & Shadlen, 2002;
Ratcliff & McKoon, 2008), but can also lead to falling back on
inherent biases and changing discounting functions (Simonson &
Tversky, 1992; Lauwereyns, 2010). In the two models, limitations on
search time are used as a proxy for available cognitive resources. This
makes sense because increased cognitive resources should allow a
larger exploration of the representation space. However, the implica-
tions of our search-to-find-reward model on forcing decisions to
terminate early depend on whether the searches are performed in
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parallel or serially. If the searches are performed serially (Johnson
et al., 2007), then early stopping would be modeled by decreasing the
number of searches performed, which decreases consistency. If the
searches are performed in parallel (Botvinick & An, 2008), then early
stopping would be modeled by decreasing the maximum time
available to each search, which increases impulsivity. However, one
has to be careful with interpreting the model in this way because
forcing decisions to terminate early may also drive an agent to access
different decision-making systems. Decision-making in mammalian
systems arises from multiple decision-making processes, which use
different information-processing algorithms, including Pavlovian,
deliberative (model-based) and habit (model-free) (Daw et al., 2005;
Huys, 2007; Redish et al., 2008; van der Meer & Redish, 2010; van
der Meer et al., 2012; Montague et al., 2012). Any experiment
designed to test this prediction, however, will need to ensure that the
manipulation is not pushing the agent from one system to the other
(Bechara et al., 1998, 2001). Different training regimens lead to the
selection of different strategies (Restle, 1957) that depend on different
brain structures (Barnes, 1979; Packard & McGaugh, 1996; Yin &
Knowlton, 2004) and different computations (Daw et al., 2005; van
der Meer & Redish, 2010). One prediction of the theory presented in
this article is that discounting will be more stable and less influenced
by cognitive phenomena when an agent is primarily accessing non-
deliberative decision-making systems (such as Pavlovian or model-
free situation-action systems).

How much of delay discounting is really about delay?

The search-to-find-reward theory proposed here suggests that what
appears to be delay discounting is not an inherent consequence of
delay itself, but rather of the ability of a search process to find reward
(which may often be correlated with delay). This implies that value
can be dissociated from delay by manipulating the ease of imagining
the future outcome (Peters & Büchel, 2010), which would change the
ease with which a search process can find that outcome. The
difference in discounting functions seen between an amnesic patient
(linear) and controls (hyperbolic) (Kwan et al., 2011) may well be
due to the inability of the amnesic patient to constructively imagine
future outcomes, being dependent instead on semantic associations
(Hassabis et al., 2007; Kwan et al., 2011), analogous to the
difference seen between recognition and recall (Eichenbaum et al.,
2007).

Delay and probability discounting

It is important to note that the probability of reward delivery in an
experiment is not the same thing as ease of finding reward in a search
through future outcomes. Species do show probability discounting
(Madden & Bickel, 2010; Myerson et al., 2011), as one would expect
(Stephens & Krebs, 1986; Glimcher, 2008). The two functions are
correlated in pigeons (Green et al., 2010), but one needs to account for
the inherent non-linearity of risk-aversion for gains and risk-seeking
for losses (Kahneman & Tversky, 1979) in order to relate the two
functions (Rachlin, 2006; Myerson et al., 2011). Nevertheless, there
remain subtle differences in probability and delay discounting
functions that are not easily reconciled (such as different relationships
to the amount of reward) (Myerson et al., 2011). As we do not know
the animal’s representation of the space of situations in which
probabilistic rewards are delivered (Redish et al., 2007), it is not
necessarily true that a high probability of reward delivery translates
directly into ease of finding reward.

Symmetric discounting and the symmetry between episodic
memory and episodic future thinking

Yi et al. (2006) asked subjects the very strange question ‘which would
you rather have had, a smaller amount in the recent past or a larger
amount in the more distant past?’ As the large amount would have been
available earlier, economically, all subjects should always have chosen
the larger, earlier choice. This is not, however, what subjects did;
instead, they showed a similar discounting function, preferring tempo-
rally-nearby choices and discounting values into the past. In a similar
study looking at past discounting in smokers, smokers discounted the
past more than non-smokers, in alignment with the smokers’ faster
future discounting rates (Bickel et al., 2008). Our search-based model
of discounting explains this effect through the distance to that episodic
past memory outcome. In our model, discounting does not depend
intrinsically on actual delay, but rather the ease of finding the outcome.
Theories of episodic memory suggest that episodic memories are
‘rebuilt’ anew each time (Loftus & Palmer, 1974) and are akin to
‘episodic past thinking’ using similar mechanisms to ‘episodic future
thinking’ (Buckner & Carroll, 2007). Our search-based model of
discounting would thus suggest similar rates between forward and
backward discounting. In fact, the discounting rates between past and
future gains were strongly linearly correlated for both non-smokers and
smokers (Bickel et al., 2008). This suggests that more powerful
episodic memories should show slower discounting functions than less
powerful episodicmemories.Whether the same cognitive effects seen in
discounting of future rewards (Vohs & Faber, 2007; Peters & Büchel,
2010; Benoit et al., 2011; Bickel et al., 2011) will also occur in the
reflected discounting of past rewards remains unknown, but that would
be a prediction of our hypotheses. New evidence examining the
difference between attention to future and past events seems to support
this hypothesis (Radu et al., 2011).

Hierarchical planning

Agents engaged in episodic future thinking rarely progress through a
direct sequence of states leading to that episodic future. For example, a
postdoc deciding between faculty jobs is unlikely to include all paths
to reach those two jobs (‘First, find a moving truck. Second, drive to
city X...’). Instead, the postdoc is likely to simply construct that future
outcome (‘Imagine, I’m now a new professor at university X. I’ll
interact with person Y. I’ll get grad students like those I saw in person
Z’s lab...’). The specific path that needs to be taken to achieve the
outcome is likely to be considered only if it affects the cost of reaching
that outcome. There has been a lot of work integrating planning and
the identification of hierarchical subgoals in reinforcement learning
(Barto & Mahadevan, 2003; Botvinick & An, 2009; Ribas-Fernandes
et al., 2011), but an actual model including subgoals is beyond the
scope of this article as it would depend on the specific nature of those
subgoals. Nevertheless, our search-to-find-reward model suggests that
the discounting rate seen will depend not on the total time to reach a
reward, but rather on the ability to imagine that reward episodically.
This predicts that more complex paths to reward will speed up
discounting rates and less complex paths to reward will slow them
down. In a sense, discounting rates will depend not on the actual time,
but on the number of subgoals and substeps to reach that reward and
the difficulty in finding the solution to each of those subgoals.

Summary and conclusion

In this article, we note that temporal discounting of future rewards
occurs even in single-trial experiments (such as with questionnaires)
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and in novel situations (as in real-world deliberations). We therefore
propose a model in which discounting arises from a correlation
between time to a reward and the ability to find that reward in a search
or settling process. This theory provides a ready explanation for the
influence of cognitive phenomena on discounting functions and makes
a number of predictions. Specifically, it predicts that the influence of
these cognitive phenomena will be primarily seen when accessing
model-based, deliberative decision-making systems and that the
discounting function will depend not on the absolute delay to a
reward, but on the ease of finding that reward in an episodically-
imagined future.
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Peters, J. & Büchel, C. (2011) The neural mechanisms of inter-temporal
decision-making: understanding variability. Trends Cogn. Sci., 15, 227–239.

Rachlin, H. (2004) The Science of Self-Control. Harvard University Press,
Cambridge, MA; London.

Rachlin, H. (2006) Notes on discounting. J. Exp. Anal. Behav., 85, 425–435.
Radu, P.T., Yi, R., Bickel, W.K., Gross, J.J. & McClure, S.M. (2011) A

mechanism for reducing delay discounting by altering temporal attention. J.
Exp. Anal. Behav., 96, 363–385.

Ratcliff, R. & McKoon, G. (2008) The diffusion decision model: theory and
data for two-choice decision tasks. Neural Comp., 20, 873–922.

Redish, A.D. (1999) Beyond the cognitive map from place cells to episodic
memory. MIT Press, Cambridge, MA.

Redish, A.D. & Kurth-Nelson, Z. (2010) Neural models of delay discounting.
In Madden, G.J. & Bickel, W.K. (Eds), Impulsivity: The Behavioral and
Neurological Science of Discounting. American Psychological Association,
Washington, DC, pp. 123–158.

Redish, A.D., Jensen, S., Johnson, A. & Kurth-Nelson, Z. (2007) Reconciling
reinforcement learning models with behavioral extinction and renewal:
implications for addiction, relapse, and problem gambling. Psychol. Rev.,
114, 784–805.

Redish, A.D., Jensen, S. & Johnson, A. (2008) A unified framework for
addiction: vulnerabilities in the decision process. Behav. Brain Sci., 31, 415–
437.

Restle, F. (1957) Discrimination of cues in mazes: a resolution of the place-vs.-
response question. Psychol. Rev., 64, 217–228.

Ribas-Fernandes, J.J.F., Solway, A., Diuk, C., McGuire, J.T., Barto, A.G., Niv,
Y. & Botvinick, M.M. (2011) A neural signature of hierarchical reinforce-
ment learning. Neuron, 71, 370–379.

Rich, E. & Knight, K. (1991) Artificial Intelligence. McGraw-Hill, New York.
Roesch, M.R., Schoenbaum, G., Singh, T., Leon, B.P. & Mullins, S.E. (2009)

Ventral striatal neurons encode the value of the chosen action in rats deciding
between differently delayed or sized rewards. J. Neurosci., 29, 13365–13376.

Samuelson, P.A. (1937) A note on measurement of utility. Rev. Econ. Stud., 4,
155–161.

Schacter, D.L. & Addis, D.R. (2007) Constructive memory: the ghosts of past
and future. Nature, 445, 27.

Schacter, D.L., Addis, D.R. & Buckner, R.L. (2007) Remembering the past
to imagine the future: the prospective brain. Nat. Rev. Neurosci., 8, 657–
661.

Schacter, D.L., Addis, D.R. & Buckner, R.L. (2008) Episodic simulation of
future events: concepts, data, and applications. Ann. N. Y. Acad. Sci., 1124,
39–60.

Schoenbaum, G., Stalnaker, T.A., Takahashi, Y.K. & Roesch, M.R. (2009) A
new perspective on the role of the orbitofrontal cortex in adaptive behaviour.
Nat. Rev. Neurosci., 10, 885–892.

Schweighofer, N., Shishida, K., Han, C.E., Okamoto, Y., Tanaka, S.C.,
Yamawaki, S. & Doya, K. (2006) Humans can adopt optimal discounting
strategy under real-time constraints. PLoS Comput. Biol., 2, e152.

Seamans, J.K. & Yang, C.R. (2004) The principal features and mechanisms of
dopamine modulation in the prefrontal cortex. Prog. Neurobiol., 74, 1–58.

Simon, D.A. & Daw, N.D. (2011) Neural correlates of forward planning in a
spatial decision task in humans. J. Neurosci., 31, 5526–5539.

Simonson, I. & Tversky, A. (1992) Choice in context: tradeoff contrast and
extremeness aversion. J. Mark. Res., 29, 281–295.

Smith, A., Li, M., Becker, S. & Kapur, S. (2006) Dopamine, prediction error
and associative learning: a model-based account. Network, 17, 61–84.

Sozou, P.D. (1998) On hyperbolic discounting and uncertain hazard rates.
Proc. Roy. Soc. London B Bio. Sci., 265, 2015–2050.

Stanger, C., Ryan, S.R., Fu, H., Landes, R.D., Jones, B.A., Bickel, W.K. &
Budney, A.J. (2011) Delay discounting predicts adolescent substance abuse
treatment outcome. Exp. Clin. Psychopharmacol., in press.

Stephens, D.W. & Krebs, J.R. (1986) Foraging Theory. Princeton University
Press, Princeton, NJ.

Suri, R.E. (2002) TD models of reward predictive responses in dopamine
neurons. Neural Netw., 15, 523–533.

Sutton, R.S. & Barto, A.G. (1998) Reinforcement learning an introduction.
MIT Press, Cambridge, MA.

Tolman, E.C. (1939) Prediction of vicarious trial and error by means of the
schematic sowbug. Psychol. Rev., 46, 318–336.

Cognitive effects in delay discounting 1063

ª 2012 The Authors. European Journal of Neuroscience ª 2012 Federation of European Neuroscience Societies and Blackwell Publishing Ltd
European Journal of Neuroscience, 35, 1052–1064



Trope, Y. & Liberman, N. (2003) Temporal construal. Psychol. Rev., 110, 403–
421.

Vohs, K.D. & Faber, R.J. (2007) Spent resources: self-regulatory resource
availability affects impulse buying. J. Consum. Res., 33, 537–547.

Wilson, H.R. & Cowan, J.D. (1972) Excitatory and inhibitory interactions in
localized populations of model neurons. Biophys. J., 12, 1–24.

Winstanley, C., Robbins, T.W., Balleine, B.W., Brown, J.W., Büchel, C.,
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