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Review

The brain is an information-processing machine evolved 
to make decisions: it takes information in, stores it in 
memory, and uses that knowledge to improve the actions 
the organism takes. At least three distinct action-selection 
systems have been identified in the mammalian brain: a 
Pavlovian action-selection system, a deliberative action-
selection system, and a habit action-selection system (see 
Box 1).1 In this review, we analyze these decision sys-
tems from an information-processing standpoint. We con-
sider their similarities, differences, and interactions in 
contributing to a final decision. The Pavlovian action-
selection system learns about stimuli that predict motiva-
tionally relevant outcomes such that Pavlovian stimuli 
come to release actions learned over an evolutionary tim-
escale (Dayan and others 2006). Although diverse stimuli 
can participate in Pavlovian learning, the available 
actions remain limited (e.g., salivate, approach, freeze; 
Bouton 2007). Deliberative action-selection is a complex 
process that includes a search through the expected con-
sequences of possible actions based on a world model. 
These consequences can then be evaluated online, taking 
current goals and/or motivational state into account, 
before selecting an action (Niv and others 2006). 

Although deliberation is very flexible, it is computation-
ally expensive and slow. The habit system entails an arbi-
trary association between a complexly recognized 
situation and a complex chain of actions (Sutton and 
Barto 1998). Once learned, such cached actions are fast 
but can be hard to change.

This review consists of three parts. In part 1, we dis-
cuss each of the three decision-making systems, with an 
emphasis on the underlying information-processing steps 
that differentiate them. In part 2, we discuss specific brain 
structures and what is known about their individual roles 
in each of the systems. In part 3, we discuss some of the 
implications of the multiple decision-making systems 
theory. Evidence suggests that all three decision-making 
systems are competing and interacting to produce actions 

435128 NRO18410.1177/107385841143
5128van der Meer et al.The Neuroscientist
2012

1University of Waterloo, Waterloo, Canada
2Wellcome Trust Centre for Neuroimaging, University College London
3University of Minnesota, Minneapolis, Minnesota

Corresponding Author:
David Redish, University of Minnesota, 6-145 Jackson Hall, 321 Church 
St. SE, Minneapolis, MN 55455 
Email: redish@umn.edu

Information Processing in  
Decision-Making Systems

Matthijs van der Meer1, Zeb Kurth-Nelson2, and A. David Redish3

Abstract

Decisions result from an interaction between multiple functional systems acting in parallel to process information in 
very different ways, each with strengths and weaknesses. In this review, the authors address three action-selection 
components of decision-making: The Pavlovian system releases an action from a limited repertoire of potential actions, 
such as approaching learned stimuli. Like the Pavlovian system, the habit system is computationally fast but, unlike the 
Pavlovian system permits arbitrary stimulus-action pairings. These associations are a “forward’’ mechanism; when a 
situation is recognized, the action is released. In contrast, the deliberative system is flexible but takes time to process. 
The deliberative system uses knowledge of the causal structure of the world to search into the future, planning actions 
to maximize expected rewards. Deliberation depends on the ability to imagine future possibilities, including novel 
situations, and it allows decisions to be taken without having previously experienced the options. Various anatomical 
structures have been identified that carry out the information processing of each of these systems: hippocampus 
constitutes a map of the world that can be used for searching/imagining the future; dorsal striatal neurons represent 
situation-action associations; and ventral striatum maintains value representations for all three systems. Each system 
presents vulnerabilities to pathologies that can manifest as psychiatric disorders. Understanding these systems and 
their relation to neuroanatomy opens up a deeper way to treat the structural problems underlying various disorders.
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in any given task. We address the question of how they 
interact in the discussion.

Throughout this review, we concentrate on data from 
the rat because (1) concentrating on a consistent organism 
allows better comparisons between systems and (2) it is 
the best studied in terms of detailed neural mechanisms 
for each of the systems. However, these same systems 
exist in humans and other primates, and we connect the 
rat data to primate (human and monkey) homologies 
when the data are available.

Action-Selection Systems in the 
Mammalian Brain
Pavlovian Action-Selection

Pavlovian action-selection arises because hardwired 
species-specific actions can be governed by associative 
learning processes (Bouton 2007). Classically, uncondi-
tioned responses (URs) are physiological responses, such 
as salivation when smelling a lemon or a galvanic skin 

response following a shock, but they also include 
responses more recognizable as actions, such as approach 
to a sound, freezing in anticipation of shock, or fleeing 
from a predator. As organisms learn associative relation-
ships between different events (stimuli including con-
texts) in the world, originally neutral stimuli (i.e., not 
capable of evoking an UR) can come to release condi-
tioned responses: a bell that predicts food delivery trig-
gers salivation. The bell becomes a conditioned stimulus 
(CS), to which the organism emits a conditioned response 
(CR). The action-releasing component of this association 
depends on a circuit involving the ventral striatum, the 
amygdala, and their connections to motor circuits 
(Cardinal and others 2002; Ledoux 2002).

A distinguishing feature of Pavlovian responses is that 
they occur in the absence of any relationship between the 
response and subsequent reinforcement. For instance, 
pigeons typically peck at a cue light predictive of food 
delivery (CS), even though there is no reward for doing 
so. Moreover, this so-called autoshaping behavior can 
persist even if the experiment is arranged such that peck-
ing the CS actually reduces reward obtained (Breland and 

Box 1. Functional subsystems.

The concept of multiple functional systems should not be taken to imply that there are truly separable “modules”—
these systems depend on interactions among multiple brain structures, each of which is providing a different com-
putational component. A useful analogy is that of a hybrid gas/electric car: although there are two separate systems, 
which depend on dissociable components, both systems share many components. The car, for example, has only 
one drive train. Similarly, the car requires numerous other support systems between the two components, such as 
the steering system. We would therefore predict that while there will be dissociations in the information processing 
and effects of lesions between the systems (van der Meer and others 2010; Yin and Knowlton 2004), individual 
anatomy structures will also be shared between the systems, although they may provide different computational 
components to each system. For example, the ventral striatum seems to be involved in all three components, 
including providing mechanisms to reevaluate changes in Pavlovian value (McDannald and others 2011), covert 
representations of valuation during deliberative events (van der Meer and Redish 2009), and training up habit 
systems (Atallah and others 2007).

At least five functional subsystems can be indentified as playing roles in decision-making: Pavlovian action-
selection, habit-based action-selection, deliberative action-selection, and the motivational and situation-recogni-
tion support systems. Although our knowledge of the anatomical instantiations of these systems is still obviously 
incomplete and the roles played by each structure in each functional subsystem are still an area of active research, 
we can make some statements about components known to be important in each subsystem.

The Pavlovian system (pink, Figure 1) includes the periaqueductal gray (PAG), the ventral tegmental area 
(VTA), the amygdala (AMG), the ventral striatum (vStr), and the orbitofrontal cortex (OFC) (Ledoux 2002; 
McDannald and others 2011). The habit system (orange, Figure 2) includes the substantia nigra pars compacta 
(SNc), the dorsolateral striatum (dlStr), the ventral striatum (vStr), and likely the motor cortex (MC) (Cisek and 
Kalaska 2010; Yin and Knowlton 2004). The deliberative system (blue, Figure 3) includes the hippocampus (HC), 
the prefrontal cortex (PFC), the ventral striatum (vStr), and likely the ventral tegmental area (VTA) and the dorso-
medial striatum (dmStr) (Johnson and Redish 2007; Schacter and Addis 2011; van der Meer and Redish 2009; Yin 
and Knowlton 2004). In addition, decision-making involves several support structures, not discussed in depth in 
this review: a motivation system, likely including the hypothalamus (HyTM), the ventral striatum (vStr), and the 
insula and cortical visceral areas (Craig 2003; Sanfey and others 2003), as well as a situation categorization system, 
likely including most of neocortex (Redish and others 2007).
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Breland 1961; Dayan and others 2006). Thus, Pavlovian 
actions are selected on the basis of an associative rela-
tionship with a particular outcome rather than on the basis 
of the action being reinforced.

In rats, Pavlovian action-selection is illustrated by 
comparing sign-tracking and goal-tracking behavior: 
when a light signals the availability of food at a separate 
port, some rats learn to approach the light and chew on it 
(sign tracking), as if the light itself has gained some 

food-related concept in the rat’s mind. Obviously, the 
better decision would be to approach the food port when 
the light turns on (goal tracking). Which rats show sign 
tracking and which rats show goal tracking correlates 
with and depends on dopamine signals in the ventral 
striatum (Flagel and others 2011).

A convenient way of thinking about the mechanism 
underlying Pavlovian action-selection is that the relation-
ship between conditioned and unconditioned stimuli (CS 
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Figure 1. Pavlovian action-selection. (A) Anatomy of the Pavlovian action-selection system in rat (left) and human (right).  
(B) We can write Pavlovian action-selection as an association between stimulus (S) and outcome (O) that releases an action  
(a) associated with that outcome. (C) Seen from the point of view of temporal-difference reinforcement learning (TDRL), 
situations (indicated by circles in the top panel and corresponding colored locations in the bottom panel) are associated with 
inherent valuations. Animals approach stimuli with inherent value. (D) This becomes a problem in sign tracking where animals 
approach and interact with cueing stimuli rather than using those cueing stimuli to predict the location of goal tracking. 
Histological slices from www.thehumanbrain.info and brainmaps.org, used with permission. Abbreviations: PFC, prefrontal cortex; 
OFC, orbitofrontal cortex; MC, motor cortex; dmStr, dorsomedial striatum; dlStr, dorsolateral striatum; vStr, ventral striatum; HC, 
hippocampus; AMG, amygdala; PAG, periaquaductal gray; VTA, ventral tegmental area; SNc, substantia nigra pars compacta.
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and US) gives rise to a neural representation of (aspects of) 
the US, known as an expectancy, when the CS is presented; 
for instance, when the bell is rung, an expectancy of food 
is produced. To the extent that this expectancy resembles a 
representation of the US itself, the CR can resemble the 
UR, but Pavlovian CRs are not restricted to simply repli-
cating the UR. For instance, if the US is devalued (e.g., 
pairing food with illness), then the CR is strongly attenu-
ated, and different CRs can be produced depending on the 
properties of different CSs associated with the same US 
(Bouton 2007). Expectancies can have outcome identity–
specific properties (e.g., food vs. water) as well as more 
general properties (appetitive vs. aversive). These proper-
ties interact with current motivational state and the identity 
of the CS to produce particular CRs.

Furthermore, Pavlovian expectancies can modulate 
instrumental action-selection, an effect termed Pavlovian-
instrumental transfer, which entails an interaction 
between motivational components driven by Pavlovian 
valuation and other action-selection systems (Talmi and 
others 2008).

In summary, purely Pavlovian action-selection is 
characterized by a limited, hardwired “repertoire” of 
possible actions, arising from the interplay of an 
expectancy generated by the CS-US association, moti-
vational state, and actions afforded by the environment 
(Huys 2007). Critically, Pavlovian actions can be 
acquired in the absence of instrumental contingencies 
and can therefore be irrelevant or even detrimental to 
instrumental performance (Breland and Breland 1961; 
Dayan and others 2006). However, expectancies gen-
erated through Pavlovian relationships can powerfully 
modulate instrumental action-selection (Talmi and others 
2008).

Habit-Based Action-Selection
Purely Pavlovian decisions can only release of a limited set 
of actions. In contrast, the habit, or “cached-action,” system 
forms arbitrary associations between situations and actions, 
which are learned from experience (Figure 2). Computa-
tionally, cached-action system performance entails two 
deceptively simple steps: recognize the situation and release 
the associated action. The complexity in cached-action sys-
tems arises in the learning process, which must both learn a 
categorization to recognize situations and which action to 
take in that situation to maximize one’s reward.

There are models of both of these components  
that have been well integrated with neurophysiology. 
First, the situation-recognition likely happens through 
content-addressable mechanisms in cortical systems 
(Redish and others 2007). These systems are dependent 
on the presence of dopamine, particularly for stability of 

representations. (In the presence of dopamine, situation 
representations are stable. In the absence of dopamine, 
situation representations become less stable.)

Second, the association between situation and action is 
well described by temporal-difference reinforcement 
learning (TDRL) algorithms (Sutton and Barto 1998) 
driven by dopaminergic influences on dorsal (especially 
dosolateral) striatal systems (Box 2)—the association is 
trained up by the dopaminergic value-prediction error 
signal (Schultz and others 1997). When the value-predic-
tion error is greater than zero, the system should increase 
its likelihood of taking an action, and when the value-
prediction error is less than zero, the system should 
decrease its likelihood of taking an action. Thus, unlike 
Pavlovian systems, cached-value system decisions are 
dependent on a history of reinforcement; that is, they are 
instrumentally learned. Anatomically, these striatal sys-
tems include both go (increase likelihood of taking an 
action) and no-go (decrease likelihood of taking an 
action) systems, each of which is influenced by the pres-
ence or absence of a dopaminergic signal (Frank 2011).

The cached-action system can be seen as a means of 
shifting the complexity of decision-making from action-
selection to situation-recognition. Particularly vivid 
examples arise in sports. A batter has to decide whether to 
swing a bat; a quarterback has to decide which receiver to 
throw to. The action itself is habitual and fast. The hard 
part is knowing whether this is the right moment to take 
the action. This arrangement offloads the hard computa-
tional work to situation-categorization, which the human 
brain is extraordinarily good at.

An important prediction of this cached-action learned 
association is that the dorsolateral association neurons 
should represent situation-action pairs but only those 
pairs that are useful to the animal. From these descrip-
tions, we can make several predictions about these neural 
representations. (1) They should develop slowly. (2) They 
should only reflect the current situation. (3) They should 
only represent information about the world if that infor-
mation is informative about reward delivery. In the dis-
cussion of dorsal striatum (below), we see that all three of 
these predictions are correct descriptions of dorsolateral 
neural ensembles in the rat.

The limitations of cached-action systems reside in 
their inflexibility (Niv and others 2006). Although a 
cached-action system can react quickly to a recognized 
situation, modifying the association takes time and 
requires extensive experience.2 Furthermore, the cached-
action system is not aware of outcomes (for example, it is 
insensitive to devaluation); instead, a stimulus or situa-
tion leads directly to an action without consideration of 
the consequences. The deliberative system addresses this 
limitation.
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Figure 2. Habit-based action-selection. (A) Anatomy of the habit action-selection system in rat (left) and human (right).  
(B) We can write habit-based action-selection in terms of cached value, as an association between a situation (S), a potential action 
(A), and an expected value (E[V]) leading to a choice of action, or as cached-action, as an association between a situation (S) and an 
action (A). (C) Current theories suggest that habit action-selection occurs by learning action-values, Q(S,A) = E(V), given situation 
S and potential action A, which are learned through a comparison between observed and expected values—the value prediction 
error (δ). (D) Because cached-action selection is fast, it should not require time to process. As shown in the video (Supplemental 
Video S1), behavior becomes extremely stereotyped as the habit system takes over. Diagrams correspond to the late laps shown 
in the video.

Deliberative Action-Selection

Sometimes, one has to make decisions without having the 
opportunity to try them out multiple times. Take, for exam-
ple, a postdoc with two faculty offers, at very different uni-
versities in very different locations. That postdoc does not 
get the opportunity to try each of those two jobs and use any 
errors in value-prediction to learn the value of each offer. 
Instead, our intrepid postdoc must imagine him or herself in 
each of those two jobs, evaluate the likely rewards and costs 
associated with those offers, and then make a decision. This 
is the process of deliberation (Figure 3).

Deliberation requires knowledge of the consequences 
of one’s potential actions: a world model. Computational 

models have thus termed deliberative processes “model-
based” to differentiate them from cached-action pro-
cesses (“model-free”; Niv and others 2006). Historically, 
the idea that rats and other animals could deliberate was 
first proposed by Tolman in the 1930s (Tolman 1932), 
but without the available mathematical understanding of 
information processing, algorithm, or computational 
complexity, it was impossible to understand how a delib-
eration system might work. Tolman’s hypothesis that rats 
deliberated over options came from observations origi-
nally made by Meunzinger and Gentry in 1931 that under 
certain conditions, rats would pause at a choice point and 
turn back and forth, alternately toward the multiple 
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options, before making a decision (Muenzinger and 
Gentry 1931). This process was termed vicarious trial 
and error (VTE). VTE events occur after an animal has 
become familiar with an environment but when animals 
are still learning, when they must be flexible about their 
choices, and when they have to change from a learned 
habit (Tolman 1932). Tolman explicitly hypothesized 
that animals were imagining themselves in the future 
during VTE.

Imagining oneself in a future is a process called epi-
sodic future thinking (Atance and O’Neill 2001; Buckner 
and Carroll 2007) and requires an interaction between the 
hippocampus and the prefrontal cortex (Hassabis and 
Maguire 2011; Schacter and Addis 2011). It entails pulling 
together concepts from multiple past experiences to create 
an imagined future (Schacter and Addis 2011). Because 
this imagined future is constructed as a coherent whole, 
only one future tends to be constructed at a time (Atance 

Box 2. Temporal-difference reinforcement learning (TDRL) in three systems.

Current theories of reinforcement learning are based on the concept of the temporal-difference rule. The basic 
concept of this system is that an agent (a person, animal, or computer simulation) traverses a state-space of situations. 
In many simulations, this state-space is provided to the simulation, but real agents (animals or humans) need to deter-
mine the situations and their relationships. (What is the important cue in the room you are in right now?) Differences 
in the interpretation of that state-space can produce dramatic differences in decision-making (Kurth-Nelson and 
Redish 2012). Different forms of TDRL have been applied to each of the decision-making systems.
Pavlovian. “Blocking” experiments demonstrated that if an animal has learned that CS1 predicts a certain US, 

then pairing CS1+CS2 with the US does not result in a CR to CS2 subsequently presented alone (Bouton 2007). 
(However, if aspects of the US change, then the second CS will gain associations related to the observed changes; 
Bouton 2007; McDannald and others 2011.) Rescorla and Wagner (1972) proposed that Pavlovian learning requires 
a prediction error: a mismatch between what is expected and what occurs. Since in the blocking experiment, the 
US is fully predicted by CS1, no CS2-US association develops. In the 1990s, Sutton and Barto showed that this is 
a special case of the temporal-difference learning rule, in which one associates value with situations through a 
value-prediction-error signal (Sutton and Barto 1998). The temporal-difference rule maintains an estimated future 
reward value for each recognized situation such that prediction errors can be computed for any transition between 
situations, not just for those  resulting in reward. Neurophysiological recordings of the firing of dopamine neurons 
and fMRI BOLD signals of dopamine-projection areas have been shown to track the value-prediction-error signal 
in Pavlovian conditions remarkably accurately (D’Ardenne and others 2008). Flagel and colleagues have found 
that dopamine release in the core of the nucleus accumbens (the ventral striatum) of sign-tracking rats (but not 
goal-tracking rats) matches this value-prediction-error signal and that only sign-tracking rats (not goal-tracking 
rats) can use the CS as a subsequent CR for secondary conditioning (Flagel and others 2011).
Habit. In the TDRL literature, “habit” learning corresponds to the original temporal-difference rule proposed by 

Bellman in 1958 and introduced into the literature by Sutton and Barto (Bellman 1958; Sutton and Barto 1998). In 
the most likely formulation (known as the actor-critic architecture), one component learns to predict the value of 
actions taken in certain situations based on differences between observed value and expected value. That differ-
ence signal is also used to train up situation-action associations. It can be shown that under the right conditions of 
exploration and stationarity, this architecture will converge (eventually) on the decision-policy that maximizes the 
total reward available in the task (Sutton and Barto 1998); however, this can take many trials and is inflexible in 
nonstationary worlds (Dayan and Niv 2008).
Deliberative. In the TDRL literature, “deliberative” decision-making is based on the concept of model-based 

TDRL (Sutton and Barto 1998). Here, the agent is assumed to have a model of the causal structure of the world, 
which it can use to predict the consequences of its actions. From these predictions, the agent can evaluate those 
expected consequences at the time of the decision, taking into account its current needs and desires (Niv and others 
2006). This hypothesis predicts that deliberative decision-making will be slow (because it includes search, predic-
tion, and evaluation steps; van der Meer and others 2010) and that representations of hypothesized outcomes and 
covert representations of reward expectation will be detectable in structures critical for deliberative decision-
making. As is discussed in the main text, such predictive and covert representations have been found in the hip-
pocampus, ventral striatum, and orbitofrontal cortex (Johnson and Redish 2007; van der Meer and others 2010; 
van der Meer and Redish 2009; Steiner and Redish, Society for Neuroscience Abstracts 2010).
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and O’Neill 2001). That is, deliberation entails a serial 
search between options. Also, because this imagined 
future is constructed, it depends greatly on what aspects of 
that future event are attended to (Hill 2008). Attention 
appears again in the evaluation step because deliberative 
decisions tend to occur between options with very differ-
ent advantages and disadvantages. However, this makes 
the deliberation process flexible—by changing his or her 
attention to compare teaching and research opportunities 
or to compare lifestyles in the two cities, our postdoc 
could change the valuation of the two options, before hav-
ing to make the decision to take one of the two jobs.

As discussed below, we now know that during VTE 
events, hippocampal representations sweep forward seri-
ally through the possibilities (Johnson and Redish 2007) 
and both ventral striatal and orbitofrontal reward-related 

representations covertly signal reward expectations 
(Steiner and Redish, Society for Neuroscience Abstracts 
2010; van der Meer and Redish 2009). Interestingly, dor-
solateral striatal neurons (thought to be involved in 
cached-action systems) do not show any of these effects 
(van der Meer and others 2010).

Structures Involved in  
Decision-Making
In a sense, the agent itself is a decision-making machine; 
thus, the entire brain (and the entire body) is involved in 
decision-making. However, some of the specific aspects 
of the action-selection systems detailed above map onto 
distinct computational roles, mediated by dissociable 
decision-making circuits in the brain.

S1

S2

S

E(S1) E(V)a1

a2

S3

S4

a3

a4

E(S3) E(V)

E(S4) E(V)

searching through future possibilities

deliberative action-selection systems
take time, leave a rat “lost in thought”,

and show vicarious trial and error

Lap 2 Lap 4

s3

a1

a1

s1

s5

forward model identifies reward
at future potential situation S5

anatomy of the deliberative  action-selection system 

OFC

dmStr

dlStr

vStr

PAG

MC

H
yTM

OFC
dmStr

dlStr

AMG

PAG

MC

SNc
VTAH

yTM

A

SNc
VTA

rat human

vStr
AMG

PFC HC
HC PFC

HC

B

D

C

Figure 3. Deliberative action-selection. (A) Anatomy of the deliberative action-selection system in rat (left) and human 
(right). (B) Deliberation can be conceptualized as  a serial search through future possibilities, including expectations of potential 
situations (E[S]) and valuations performed online of those expecations (E[V]). (C) Computationally, this requires a forward 
model to search over. (D) In practice, this computation takes time and produces pausing and VTE behavior. As shown in the video 
(Supplemental Video S1), deliberative behavior is visible as pausing and head swings. Diagrams correspond to laps 2 and 4 shown in 
the video.
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Hippocampus
Tolman suggested that the brain uses a “cognitive map” 
to support decision-making. In his original conception, 
this map was a representation of both spatial relation-
ships (“If I turn left from here, I will be over there . . . ”) 
and causal relationships (“If I push this lever, good food 
will appear . . . ”) (Johnson and Crowe 2009; Tolman 
1932). The key to deliberative decision-making is the 

ability to create a representation of other places and other 
times (in the case of a coherent, rich representation; this 
is sometimes called mental time travel; Buckner and 
Carroll 2007; Schacter and Addis 2011). In humans, this 
ability depends on the hippocampus, whether those other 
places and other times are in the past (episodic memory; 
Cohen and Eichenbaum 1993) or the future (episodic 
future thinking; Hassabis and Maguire 2011).

(A) Hippocampus 
encodes 
a map

(C) on which 
animals 
can plan

(B) example 
place cells

(D) a “sweep” 
forward ahead 
of the animal?

(E) in humans, 
hippocampus is 
involved in both 
retrospective 
episodic memory 
and in prospective 
episodic future 
thinking

Figure 4. Hippocampal contributions to decision-making. (A) The hippocampus encodes a map of the environment 
through the activity across the place cells. (B) Two sample place cells from a choice-task. The animal runs north through the 
central stem, turns right or left at the top of the maze, and receives food on the right or left return rails depending on a complex 
decision-making criterion. (C) The existence of this map allows imagination and planning through the firing of cells with place 
fields away from the animal. (D) A sample planning sequence. The top panel shows the same maze as in panel B, with each spike 
from each cell that fires within a single 150 ms theta cycle plotted at the center of that cell’s place field. Colors indicate time in 
the single theta cycle. The bottom panel shows the firing of the same cells, ordered by their place fields around the maze, with 
the theta cycle in the local field potential beneath. (E) Remembering the past and imagining the future activates the hippocampus 
in humans. Subjects were instructed to initially imagine or remember an event (construction) and then to bring to mind as many 
details about that event as possible (elaboration). Compared to a control task, hippocampus was differentially active during both 
of these processes. Data in panels B and D from Gupta (2011), used with permission. Data in panel E from Addis and others 
(2007), used with permission of author and publisher.

 at Bio Medical Library, University of Minnesota Libraries on January 12, 2014nro.sagepub.comDownloaded from 

http://nro.sagepub.com/
http://nro.sagepub.com/


350		  The Neuroscientist 18(4)

In rats, the primary information encoded by the primary 
output cells of the hippocampus (excitatory pyramidal cells 
in CA3 and CA1) is the spatial location of the animal—these 
are the famous “place” cells (O’Keefe and Nadel 1978; 
Redish 1999; see  Figure 4). Hippocampal cells are also sen-
sitive to nonspatial information, but this nonspatial informa-
tion (such as the presence of a certain object, the color of the 
walls) modulates the place representation (Redish 1999).

We see below that dorsolateral striatal cells encode the 
information needed to get reward. Dorsolateral cells do 
respond to spatial information on spatial tasks but not on 
tasks in which the spatial location of the rat is not predic-
tive of reward (Berke and Eichenbaum 2009; Schmitzer-
Torbert and Redish 2008). In contrast, hippocampal cells 
show even better spatial representations when the task 
gets complicated, even when the aspect that makes it 
complicated is nonspatial (Fenton and others 2010; 
Wikenheiser and Redish 2011).

What are the properties that we expect the hippocampal 
map to have to be useful for deliberative decision-making? 

First, a map must be available as soon as possible. 
Deliberative decision-making is more flexible than habit 
and is generally used first when learning new tasks 
(Killcross and Coutureau 2003; Redish and others 2008). 
Thus, we would expect the hippocampal map to appear 
quickly, even if it must settle down to stability over time. 
Second, one will need multiple maps for planning in differ-
ent environments and with different reward distributions. 
Third, the map should go beyond a simple record of previ-
ous experiences; it needs to enable prediction of routes or 
outcomes that have rarely or not yet been experienced.

In fact, the hippocampal place fields have the appro-
priate representational firing patterns and the correct 
dynamics to be the map that is searched during delib-
eration. The place fields appear from the first entry into 
an environment (Hill 1978; Redish 1999), although 
they may take time to stabilize, and the stability depends 
on the need to attend to the task at hand and the pres-
ence of dopamine (Kentros and others 2004). In each 
environment, there is a random mapping from place cell 

Dorsolateral striatum associates 
situations with actions

On spatial tasks (MT), dorsolateral 
striatum encodes spatial information.  
On non-spatial tasks (T5), it does not.

AA B

Figure 5. Dorsolateral striatal contributions to decision-making. (A) The dorsolateral striatum associates situations with 
actions. On a spatial task, different situations recall different actions. (B) The dorsolateral striatal neural ensemble only encodes 
spatial information on spatial tasks. On the Multiple-T (MT) task, rats run through the central sequence and turn left or right for 
reward. The correct action is completely determined by the position of the animal on the maze. On the Take-5 (T5) task, rats 
must run five sides around a rectangle to get food. This means that the food location changes on each trial, which dissociates the 
position of the animal from the appropriate action. Because decoding quality (R2 correlation between decoded position and actual 
position) depends on the number of cells in the ensemble, the correct measure of the decoding quality is the slope as a function 
of the number of cells in the ensemble. Dorsal striatum reliably encodes spatial position on MT but not T5. In both cases, the 
striatal ensemble reliably encodes reward delivery information. Panel B from Schmitzer-Torbert and Redish (2008), reprinted with 
permission from the publisher.
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to place field such that each cell has a random chance of 
having a field in an environment and a random location 
(or locations) of preferred firing in each environment. If 
the distribution of goal locations within an environment 
is changed drastically, one sees a dramatic remapping of 
the place fields. Finally, the distribution of place fields 
within an environment is approximately uniform: 
although there is some evidence that place fields are 
smaller around goals, producing a concentration of 
place fields around goals (Hollup and others 2001), 
place fields do not accumulate around locations that 
require more complex action-selection information (van 
der Meer and others 2010).

So, what would deliberation and imagination look like 
on such a map? During deliberation, animals should 
pause at choice points, and one should see sequential, 
serial representations of positions sweeping ahead of the 
animal. These representations should preferentially occur 
at choice points and preferentially during deliberative 
rather than habitual events. This is exactly what is seen. 
As noted above, when rats come to difficult choice points, 

they pause and look back and forth, showing a behavioral 
phenomenon called VTE (Muenzinger and Gentry 1931; 
Tolman 1932). During these VTE events, the hippocam-
pal place cells with place fields ahead of the animal fire in 
sequence, first down one path, then down the other 
(Johnson and Redish 2007). These sequences start at the 
location of the rat and proceed to the next available goal 
(see Figure 4). These sequences are significantly ahead of 
the animal rather than behind it. They are serial, not par-
allel, and preferentially occur during VTE events at 
choice points (Johnson and Redish 2007). These are the 
neural correlates one would expect from a deliberative 
search process.

In line with these neural dynamics, hippocampal lesions 
impair the ability of humans to remember the past (epi-
sodic memory, Cohen and Eichenbaum 1993), to imagine 
the future (episodic future thinking, Schacter and Addis 
2011), and to plan beyond the present (Hassabis and 
Maguire 2011). Hippocampal lesions impair the ability of 
rats to navigate complex spatial environments (O’Keefe 
and Nadel 1978; Redish 1999) and to place new objects 
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Figure 6. Ventral striatal contributions to decision-making. (A) Value plays a role in deliberative decision-making in that 
it is a necessary step during deliberative events. (B) Ventral striatal reward-related cells show extra activity during deliberative 
events. Gray dots show the same MT task seen in earlier figures. Black dots show locations of the animal when this single cell fired 
its spikes. Note that most spikes are fired at the feeder locations (two locations each on the right and left return rails). But a few 
extra spikes occur at the choice point where deliberation occurs (arrow). The cell was recorded from a tetrode (four channels 
per electrode), so there are four waveforms for the single cell, one from each channel. (C) Value plays a role in habit decision-
making in that it is necessary to develop a continuous function that encodes the value of each situation. (D) Ventral striatal “ramp” 
cells show increasing activity to reward sites. (Animals are running the same task as in panel B. F1 = food site 1, approximately 
one-third the way down the return rail; F2 = food site 2, approximately two-thirds the way down the return rail.) Data in panel B 
from van der Meer and Redish (2009). Data in panel D from van der Meer and Redish (2011).
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within the environmental context (the schema of the world; 
Tse and others 2007), and they attenuate VTE events (Hu 
and Amsel 1995). Thus, the hippocampus implements a 
searchable map composed of relationships between spatial 
locations, objects, and contexts. The dynamics of hippo-
campal representations match the expectations one would 
see if the hippocampus was involved in planning.

Dorsal Striatum
The functional roles of the striatal subregions reflect the 
topographical organization of its inputs and outputs 
(Swanson 2000). A distinction is generally made between 
the dorsolateral striatum, interconnected with sensory and 
motor cortex, the dorsomedial striatum, interconnected with 
associative cortical areas, and the ventral striatum, intercon-
nected with hippocampal and frontal cortical areas; this 
subdivision should be understood as gradual rather than as 
clear-cut and abrupt. In addition, this connectivity-based 
subdivision should also be understood as having additional 
effects along the anterior-posterior axis (Swanson 2000; Yin 
and Knowlton 2004).

Lesion studies indicate a striking dissociation between 
dorsolateral and dorsomedial striatum, with dorsolateral 
striatum being important for the performance of habitual 
actions and with dorsomedial striatum being important for 
the performance of deliberative (goal-directed, going to a 
place rather than making a response) actions (Yin and 
Knowlton 2004). Strikingly, Atallah and others (2007) found 
that dorsolateral striatum was required for the performance, 
but not acquisition, of an instrumental S-A (habit) task.

Recording studies have tended to concentrate on the 
anterior dorsolateral striatum because lesion studies have 
found that the anterior dorsolateral striatum produced 
contrasting effects to hippocampal lesions on tasks that 
put place-directed (deliberative) strategies in conflict 
with response-directed (habit) strategies (see Figure 7). 
Studies in the anterior dorsolateral striatum find that 
cells learn to encode situation-action pairs such that the 
situation-correlations depend on the information neces-
sary to find reward (Berke and Eichenbaum 2009; 
Schmitzer-Torbert and Redish 2008). Cells in the ante-
rior dorsolateral striatum develop task-related firing with 
experience (Barnes and others 2005; van der Meer and 
others 2010). This task-related firing tends to occur at 
task components where habitual decisions needed to be 
initiated (Barnes and others 2005). There has not been 
much equivalent recording done in posterior dorsome-
dial striatum, although one recent study did find that in 
anterior dorsomedial striatum, cells developed task-
related firing more quickly than anterior dorsolateral 
striatum and that these cells showed firing related to 
decisions (Thorn and others 2010).

An influential model of the learning and performance 
of habitual actions in the dorsolateral striatum is that it 
provides situation-action associations in a model-free 
TDRL algorithm (see Box 2). This conceptualization sug-
gests that the dorsal striatum associates situation informa-
tion coming from cortical structures with actions as 
trained by the dopaminergic training signals.

Recording studies in anterior dorsolateral striatum 
have identified striatal activity related to the internal 
variables needed for the action-selection component of  
TDRL in both rat (Barnes and others 2005; Berke and 
Eichenbaum 2009; Schmitzer-Torbert and Redish 2008; 
van der Meer and others 2010) and monkey (Hikosaka 
and others 1989; Samejima and others 2005; Lau  
and Glimcher 2007). A particularly striking effect, 
observed in different tasks, is the emergence of elevated 
dorsolateral striatal activity at the beginning and end of 
action sequences (Barnes and others 2005; Thorn and 
others 2010) and the separation of action-related and 
reward-related activity in anterior dorsolateral striatum 
(Schmitzer-Torbert and Redish 2004, 2008). These 
results suggest network reorganization with repeated 
experience consistent with the development of habitual 
behavior. Comparisons of dorsolateral and dorsomedial 
striatal activity have yielded mixed results (Kimchi and 
Laubach 2009; Stalnaker and others 2010; Thorn and 
others 2010), but generally, these studies have compared 
anterior dorsolateral striatum with anterior dorsomedial 
striatum. It is not clear that these studies have directly 
tested the differences in information processing in differ-
ent dorsal striatal regions under deliberative and habit-
based decision-making.

Ventral Striatum
The ventral aspect of the striatum (encompassing the core 
and shell of the nucleus accumbens, the ventral caudate/
putamen, and the olfactory tubercule) is a heterogenous 
area anatomically defined through its interconnections 
with a number of “limbic” areas (Swanson 2000). 
Historically, ventral striatum has long been seen as the 
gateway from limbic structures to action-selection 
(Mogenson and others 1980). Critically, ventral striatum is 
a major input to dopaminergic neurons in the ventral teg-
mental area (VTA), which in turn furnishes ventral stria-
tum itself, dorsal striatal areas, prefrontal cortex, and the 
hippocampus with dopamine signals. The close associa-
tion with dopamine and convergence of limbic inputs 
renders vStr a central node in brain networks processing 
reward- and motivation-related information.

The close anatomical and functional association with 
dopamine (in terms of providing input to the VTA but also 
because of its dense return projection; Haber 2009) means 
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that major views of ventral striatum function are intertwined 
with dopamine function. One such idea is that the ventral 
striatum computes the value of situations (which includes 
rewards actually received as well as discounted future 
rewards expected; see Box 2) to supply one term of the pre-
diction error equation to the VTA. The VTA prediction error 
in turn serves to update ventral striatal representations of 
values of given situations as well as dorsal striatal represen-
tations of the values of taking actions. This casts the role of 
ventral striatum as supporting gradual learning from feed-
back, as is thought to occur in the “habit” system; experi-
mental support for this notion comes, for instance, from 
inactivation studies that find large effects on acquisition but 
small effects (if any) on performance (Atallah and others 

2007). However, recent demonstrations that the dopamine 
input to the ventral striatum is not homogenous (Aragona 
and others 2009) pose a challenge for a straightforward 
mapping onto TDRL’s conception of the error signal as a 
single value.

Ventral striatum is also importantly involved in the 
more immediate modulation of behavior—it mediates 
aspects of Pavlovian conditioned responding, including 
autoshaping (Cardinal and others 2002) and sensitivity to 
devaluation of the US (Singh and others 2010). It is also 
required for conditioned reinforcement (willingness to 
work to receive a CS; Cardinal and others 2002). Value 
representations in ventral striatum are also important for 
the deliberative and habit systems. Two neuronal firing 
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Figure 7. Striatal components. (A) Lesion studies differentiating anterior dorsolateral striatum from posterior medial 
striatum find that anterior dorsolateral striatum is critical for response and habit strategies, while posterior medial dorsal striatum 
is critical for place and deliberative strategies. Right-side panel modified from Yin and Knowlton (2004) with permission of author 
and publisher. (B) fMRI studies find that ventral striatum is active in Pavlovian and instrumental (deliberative, habit) tasks, while 
dorsal striatum is only active during instrumental (in this case, habit) tasks. Figures in panel B from O’Doherty and others (2004), 
reprinted with permission of author and publisher.
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correlates have been reliably found in ventral striatum: 
reward-related firing that occurs shortly after an animal 
receives reward (Lavoie and Mizumori 1994; Taha and 
Fields 2005; van der Meer and Redish 2009) and “ramp” 
neurons that increase firing as an animal approaches a 
reward (Lavoie and Mizumori 1994; van der Meer and 
Redish 2011).

For representations of potential future states—as 
required by deliberation and found in the hippocampus—
to be useful in deliberative decision-making, some kind 
of evaluation of the value of these imagined states is 
required. One possibility for such evaluation is that future 
states (represented in the hippocampus) function as a cue 
or state input for the online computation of ventral striatal 
values. Consistent with this possibility, recording studies 
in ventral striatum show close association with hippo-
campal inputs, including reactivation of reward neurons 
in sync with replay of hippocampal activity during sleep 
and rest (Lansink and others 2009) and reactivation of 
reward-related firing on movement initiation and during 
deliberative decision-making (van der Meer and Redish 
2009). Intriguingly, there is evidence that dopamine 
inputs to ventral striatum are particularly important for 
the performance of “flexible” approach behavior likely to 
require such an online evaluation process but not for the 
performance of a similar, but stereotyped, version of the 
task (Nicola 2010).

To train the habit-based situation-action association, 
one would also need a value signal, such as that provided 
by the TDRL value-learning system. Ventral striatal ramp 
cells show the right firing patterns to provide this signal 
(see Figure 6). Although ventral striatum is often neces-
sary for learning, it is not necessary for performance of 
habit-based instrumental decision tasks (Atallah and  
others 2007).

In sum, value plays a central role in Pavlovian, habit, 
and deliberative systems alike, and as a central node in 
reward processing, it appears that ventral striatum plays a 
role in all three systems. To what extent this role reflects 
unitary processing (the same computational role) or dif-
ferent processing for each system and how this relates to 
known heterogeneities, such as core/shell, are important, 
unanswered, current research topics.

Discussion
Decision-Making and Neuroeconomics

Neuroeconomics attempts to study decision-making start-
ing from the point of view of microeconomics, relating 
neuroscientific results to economic variables. The neuro-
economic view of decisions is that each available out-
come is evaluated to a scalar “value” or “utility,” and 
these scalars are compared, with a preference for choos-
ing higher-value outcomes.

The multiple systems theory postulates that each sys-
tem has its own decision-making algorithms, which com-
pete and interact to produce the actual decision. This 
seems to be at odds with the neuroeconomic view that 
there is a unitary evaluation of each outcome. One can 
imagine at least two different ways of reconciling these 
views. Perhaps neuroeconomic valuation is a descriptive 
approximation for the overall behavior that emerges from 
multiple systems interacting. Or, perhaps neuroeconomic 
valuation is used within some of the multiple decision-
making systems but can be violated when other systems 
take over (Figure 8). We suggest that the latter is the case.

Many of the experiments identifying neural correlates 
of value use habitual tasks and carefully eliminate 
Pavlovian influences. However, Pavlovian influences can 
undermine neuroeconomic valuation. For example, real 
options (such as a physical candy bar) are harder to reject 
than linguistically labeled options (Boysen and Berntson 
1995; Bushong and others 2010)—that is, it is easier to 
say “I will keep my diet and not eat that candy bar” when 
the candy bar is not in front of you. Similarly, pigeons can-
not learn to withhold pecking in order to get reward 
(Breland and Breland 1961), and cockerel chicks cannot 
learn to run away from food to get food (Hershberger 
1986). The unified neuroeconomic account would indi-
cate that once the animals have learned the task contingen-
cies, they should make the action that leads to the larger 
reward. Thus, it would follow from a neuroeconomic 
standpoint that the animals are simply unable to learn the 
task contingency, a possibility made less likely by the fact 
that, in the Boysen and Berntson (1995) experiment, the 
same chimpanzees could learn to point to an Arabic 
numeral to receive the larger pile of candy. The multiple 
systems theory provides the more satisfying account: that 
animals do learn the task, but when a food reward is within 
pointing distance, a Pavlovian UR (reaching/pointing) is 
released, which wins out over a more rational choice in the 
competition between systems.

Of course, the organism remains a unitary being—
eventually, there must be a decision made at the level of 
the muscles. An interesting (and yet unanswered) ques-
tion is whether the integration of the multiple decision-
making systems happens at the level of the brain, before 
action-commands are sent down to the spinal cord, or 
whether the final integration only happens at the level of 
the motor commands themselves. (Most likely, some 
integration happens at each stage.)

Computational Psychiatry
The ability to identify specific mechanisms of decision-
making provides a potential mechanistic language to 
address how decisions can go wrong (Huys and others 
2011; Maia and Frank 2011; Redish and others 2008). 
Psychiatry has historically been based on categorizations of 
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observable symptoms, which may or may not have direct 
relevance to underlying mechanistic causes (McHugh and 
Slavney 1998). The multiple decision-making systems 
theory provides a level of structure to connect information 
processing mechanisms in the brain with observable 
behavior. Now that we can talk about specific mechanisms, 
it becomes possible in this mechanistic language to 
describe various things that can go wrong.

Of course, this only works as long as the description 
still maps on to the way things are functioning. For exam-
ple, the pathology could be massive brain trauma  

or neurodegeneration to such an extent that “Pavlovian 
decision-making” is no longer a meaningful description 
of the biological system. But we suggest that many  
psychiatric disorders, including autism, borderline per-
sonality disorder, depression, and addiction are meaning-
fully described as parameter variations within multiple  
decision-making systems (Huys 2007; Kishida and others 
2010; Redish and others 2008).

In classic psychiatry, disease states are clustered by 
their distance in a symptom space, which arose historically 
by phenomenological description (McHugh and Slavney 
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Figure 8. Multiple decision-making systems and neuroeconomics. Three potential reconciliations between the multiple 
decision-making system theory and neuroeconomics. (A) Microeconomic valuation is a description of the overall behavior but is 
not applicable to neuroscience. (B) Each of the multiple decision-making systems proposes a valuation of a potential option, which 
is then compared and evaluated in a single evaluation system. (C) Each action-selection system proposes an action, which is then 
selected through some nonmicroeconomic mechanism. The mechanism can be some function of the internal confidence of each 
system, measured, for example, by the internal self-consistency of each system’s action proposal (Johnson and others 2008) or 
through explicit arbitration by another support system (such as prefrontal cortex; Rich and Shapiro 2009). The potential inclusion 
of reflexes as a fourth action-selection system, which clearly does not use microeconomic valuation in its action-selection 
algorithm, suggests panel C as the most likely hypothesis.
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1998). Additionally, the same binary diagnosis can be 
given for very different symptom combinations, because 
diagnoses are made when the number of symptoms present 
crosses a numerical threshold. For example, there are nine 
criteria in the fourth edition of the Diagnostic and 
Statistical Manual of Mental Disorders for borderline per-
sonality disorder, and there is a positive diagnosis when 
five or more of these criteria are met. Thus, two people 
could have only one criterion in common and receive the 
same diagnosis of borderline personality disorder (and 
likely be offered the same pharmacological treatment, 
when the underlying anatomical and neuromodulatory 
pathologies may be completely different). The superficial-
ity of the symptom space is analogous to diagnosing “chest 
pain.” A deeper understanding of mechanism reveals that 
either acid reflux or heart disease can cause chest pain. 
Likewise, computational psychiatry argues that psychiatric 
disorders ought to be classified based on their distance  
in “causal” or “functional” space and treated on the basis 
of an understanding of the links between the anatomy and 
physiology of the brain and the dimensions of this mecha-
nistic space.

In each decision-making system in the brain, there are 
parameters that, when set inappropriately, produce mal-
adaptive decisions—in other words, vulnerabilities 
(Redish and others 2008). Drug addiction, for example, 
has been partially modeled as a disorder of the habit 
(cached-action) system (Redish 2004). We saw that the 
phasic firing of dopaminergic neurons encodes the reward 
prediction error signal of TDRL (Schultz and others 
1997). Since many drugs of abuse share the common 
mechanism of boosting phasic dopamine firing to medi-
ate their reinforcing effects, it is logical that these drugs 
are pharmacologically manipulating the computations in 
the learning process to produce an uncompensable pre-
diction error such that the reward expectation following 
drug-seeking actions is perpetually revised upward. 
However, there are features of addiction that extend 
beyond habit. Addicts will sometimes engage in complex 
planning (deliberation) to obtain drugs (Heyman 2009). 
There are differences in how important the dopamine sig-
nal is to different users’ taking of different drugs (Badiani 
and others 2011). This suggests that addiction is also 
accessing vulnerabilities in the deliberative and other sys-
tems (Redish and others 2008).

Similarly, depression has also been suggested to have 
roots in deliberative decision-making processes (Huys 
2007). In deliberative decision-making, the agent attempts 
to make inferences about the future consequences of its 
actions. A key feature of depression is the sense of “help-
lessness”: a belief that the agent has little control over the 
future reinforcers it will receive. Thus, if we make the 
assumption of normative inference, we can predict the 
types of prior beliefs (perhaps genetically modulated) or 

the kinds of experiences that would lead an agent into 
periods of depression (Huys 2007).

Although we have not discussed the “support struc-
tures” of motivation and situation-categorization here, 
both systems can have their own failure modes, which 
can drive decision-making errors (Flagel and others 2011; 
Redish and others 2007). For example, both the cached-
action and deliberative systems require some form of 
dimensionality reduction of the input space to learn  
situation-action mappings (cached-action) or to search 
over (deliberative). Pathologies in this cognitive state 
classification system can also be described computation-
ally. It has been proposed that in problem gambling, 
agents classify wins as consequences of their actions but 
attribute losses to ancillary factors (Langer and Roth 
1975).

With an understanding of psychiatric conditions at this 
mechanistic level, we can start to make more reasoned 
predictions about what kinds of treatment will be most 
effective for each individual. The multiple decision- 
making theory takes us one step closer to that mechanistic 
level.
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Notes

1.	 Technically, a reflex is also a decision, as it entails the taking 
of an action in response to stimuli. The fact that a reflex is a 
decision can be seen in that a reflex only takes the action under 
certain conditions and it interacts with the other decision-
making systems (e.g., it can be overridden by top-down pro-
cesses). In the language of decision-making systems developed 
here, a reflex is a specific action taken in response to a trigger-
ing condition. Both the triggering condition and the action 
taken are learned over evolutionary timescales. The anatomy, 
mechanism, and specific stimulus/response pairs associated 
with reflexes are well understood and available in most pri-
mary textbooks and are not repeated here.

2.	 There is some evidence that this experience can be achieved 
without repeating the actual experience through a consolida-
tion process in which the experience is replayed internally 
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(Morris and others 1982; Redish and Touretzky 1998; 
Sutherland and McNaughton 2000). Computationally, learning 
through imagined repetition of a specific experience is similar 
to increasing the learning rate; however, if there is noise in the 
replayed memories, this can aid in generalization processes in 
the situation-recognition and association components 
(Samsonovich and Ascoli 2005).
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