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SUMMARY

Decision-making studies across different domains
suggest that decisions can arise from multiple,
parallel systems in the brain: a flexible system
utilizing action-outcome expectancies and a more
rigid system based on situation-action associations.
The hippocampus, ventral striatum, and dorsal stria-
tum make unique contributions to each system, but
how information processing in each of these struc-
tures supports these systems is unknown. Recent
work has shown covert representations of future
paths in hippocampus and of future rewards in
ventral striatum. We developed analyses in order to
use a comparative methodology and apply the
same analyses to all three structures. Covert repre-
sentations of future paths and reward were both
absent from the dorsal striatum. In contrast, dorsal
striatum slowly developed situation representations
that selectively represented action-rich parts of the
task. This triple dissociation suggests that the
different roles these structures play are due to differ-
ences in information-processing mechanisms.

INTRODUCTION

A key insight from decision-making studies across different

domains is that decisions can arise from multiple, parallel

systems in the brain (O’Keefe and Nadel, 1978; Schacter and

Tulving, 1994; Poldrack and Packard, 2003; Daw et al., 2005;

Redish et al., 2008). One system, broadly characterizable as

‘‘model-based,’’ relies on internally generated expectations of

action outcomes, while the other, ‘‘model-free’’ system uses

learned (cached) values of situation-action associations. This

distinction between different decision-making systems has

been demonstrated behaviorally (e.g., stimulus-response versus

response-outcome learning [Balleine and Dickinson, 1998], as

well as response learning versus place learning [Packard and

McGaugh, 1996]), has been articulated computationally (Daw

et al., 2005; Niv et al., 2006), and maps onto dissociable brain
structures (Packard and McGaugh, 1996; Yin et al., 2004).

In rodent navigation studies, lesion and inactivation studies

have shown that the model-based system (as engaged by place

navigation) depends on hippocampal integrity, while the model-

free system (as engaged by response navigation) depends on

dorsal striatal integrity (Packard and McGaugh, 1996); ventral

striatum may play a role in both systems (Atallah et al., 2007).

Computationally, the model-based system is thought to rely

on world knowledge in order to generate specific expectations

about the outcomes of actions, which may range from antici-

pating the outcome of a simple lever press to mental simulation

or planning over extended spatial maps or Tower of London

puzzles (Shallice, 1982). While this process may be computa-

tionally expensive, it allows for adaptive behavior in novel situa-

tions and under changing goals. In contrast, a typical model-free

system associates actions with values, reflecting how well each

action has turned out in the past. This system is efficient but also

inflexible because cached action values reflect past experience

rather than current goals (Daw et al., 2005; Niv et al., 2006;

Redish et al., 2008). Thus, computational theories of decision

making have suggested potential information processing differ-

ences that capture the behavioral and anatomical distinctions

between model-based and model-free decision-making

systems. However, in order to reveal the mechanisms actually

used in the brain to specifically support these different deci-

sion-making algorithms, it is necessary to compare neural

activity between structures on a task that engages both systems.

The multiple-T task is a spatial decision task that engages

different decision-making strategies (Schmitzer-Torbert and

Redish, 2002). On this task, Johnson and Redish (2007) found

that ensembles of hippocampal neurons transiently represented

locations ahead of the animal, sweeping down one arm of the

maze, then another, before the animal made its choice. Such

‘‘lookahead’’ operations are a critical element of model-based

decision making. However, given that dorsal striatum can repre-

sent locations as well (Wiener, 1993; Yeshenko et al., 2004), an

important question is whether this property is in fact unique to

the hippocampus. Similarly, slow changes in dorsal striatal firing

patterns (Barnes et al., 2005) demonstrate reorganization that

could support gradual model-free learning. However, slow

changes have also been observed in the hippocampus (Mehta

et al., 1997; Lever et al., 2002), so in the absence of direct

comparison it is not clear if such effects are specific to how
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Figure 1. Behavior on the Multiple-T Task

(A) Diagram of a single Multiple-T configuration (‘‘RRLR’’). T1–T4 indicate

turns, with T4 the final, high-cost choice point. Food reward is delivered at

the reward sites (F1 and F2) when the rat crosses the active feeder trigger lines

(on the right side for this session, indicated by black lines in the diagram but not

present on the actual track used). Which side was rewarded (left or right choice

at T4) as well as the correct sequence of preceding turns (T1–T3) could be

varied from day to day. (B) Rats paused specifically at the final choice point

(CP/T4) during early laps. Plot shows normalized time spent in the two zones

indicated in (A); note the increase in time spent at the choice point (CP, red

line) absent from the control point (CT, blue line). Time in zones was normalized

by z-scoring the time spent in each zone on each lap relative to the distribution

of times spent over laps within each session. (C) Behavioral choice perfor-

mance. The proportion of correct choices over laps, averaged across

sessions, increased to >90% within ten laps. (Inset) Lap times continued to

decrease even when choice performance was stable. Times spent at the

feeder sites were excluded in computing lap times, such that the decrease

in lap times was not due to a change in immobility at the feeder sites. Shaded

area is S.E.M. over sessions.
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dorsal striatum operates. Finally, van der Meer and Redish (2009)

found ventral striatal firing patterns relevant to roles in both

model-free and model-based decision making, such as anticipa-

tory ‘‘ramping’’ and covert activation of reward-responsive

neurons at decision points. However, it is not known if dorsal

striatal neurons show ramping or reward activation at decision

points.

Thus, in order to determine which of these information pro-

cessing mechanisms are unique to these areas—a requirement

if we are to understand the neural basis of their distinct behav-

ioral roles—we compared the firing properties of dorsal striatal,

ventral striatal, and hippocampal neurons on the multiple-T

task. Because several of these analyses require large neural

ensembles, we used three different groups of animals, one for

each structure. The data sets used here include data used in

previously published work (dorsal striatum: Schmitzer-Torbert

and Redish [2004], ventral striatum: van der Meer and Redish

[2009], hippocampus: Johnson and Redish [2007]). However,

here we use a comparative approach applying the same, new

analyses to each structure, allowing direct comparisons and

the identification of a triple dissociation in information process-

ing mechanisms.

RESULTS

We recorded 1646, 2323, and 1473 spike trains from 98, 96, and

31 recording sessions from dorsal striatum, ventral striatum, and

hippocampus, respectively, as rats (n = 5 each for dorsal and

ventral striatum, n = 6 for hippocampus) performed the

multiple-T task (Figure 1A). On this task, three low-cost choice

points (T1–T3) with dead ends on one side were followed by

a high-cost choice (T4) between the left or right ‘‘return rail,’’

with only one side rewarded during any given session. Although

rats were trained on the task prior to electrode implant surgery,

both the rewarded side (left or right choice at T4) as well as the

correct sequence of preceding turns (T1–T3) could be varied

from day to day, such that the rats started out uncertain about

the correct choices at the beginning of each session. Rats

rapidly learned to choose the rewarded side, reaching asymp-

totic performance (>90%) within ten laps (Figure 1C) with each

group improving at a comparable rate (Figure S1A). Coincident

with this rapid performance increase, rats exhibited pausing

behavior at the high-cost choice point (T4) during early laps,

looking back and forth between left and right before making their

choice (a hippocampus-dependent behavior known as vicarious

trial and error, or VTE [Tolman, 1938; Hu and Amsel, 1995]).

Pausing was absent at a control choice point (T2; Figures 1B

and S1B). Following this initial VTE phase, choice performance

reached asymptote, yet lap times continued to decrease

(Figure 1C, inset), indicating a change in behavior beyond choice

performance (Schmitzer-Torbert and Redish, 2002). These

behavioral characteristics indicate the engagement of different

decision-making strategies within single recording sessions.

Differential Coding of Task Structure in Dorsal Striatum,
Ventral Striatum, and Hippocampus
As both striatum and hippocampus are known to contain

different cell types (Ranck, 1973; Kawaguchi, 1993), we sepa-
26 Neuron 67, 25–32, July 15, 2010 ª2010 Elsevier Inc.
rated putative projection neurons and interneurons based on

firing statistics (Barnes et al., 2005; Schmitzer-Torbert and

Redish, 2008). Consistent with previous reports, putative hippo-

campal pyramidal neurons tended to show spatially focused

firing fields (‘‘place fields’’ [O’Keefe and Dostrovsky 1971]), while

phasically firing neurons (PFNs; putative medium spiny neurons)

in both striatal subregions exhibited a wider range of firing corre-

lates, including maze-related activity and responsiveness to

reward (Lavoie and Mizumori 1994; Schmitzer-Torbert and
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Figure 2. Differences in Neural Coding between Dorsal Striatum

(Left Column, Red), Ventral Striatum (Middle Column, Green), and

Hippocampus (Right Column, Blue)

(A) Average firing rate of putative projection neurons (MSNs in striatum, pyra-

midal neurons in hippocampus) by location on the track (solid lines, T1–T4

choice points; dashed lines, reward sites). Note the difference in spatial firing

distributions, with dorsal striatum most active on the sequence of turns (S-T4),

ventral striatum showing a gradual ramping up, and hippocampus relatively

uniform apart from a sharp dip at the reward locations. (B) Frequency histo-

grams of the spatial location of peak firing rates. Both striatal subregions

show a clear peak at the reward sites absent in hippocampus, reflecting the

presence of reward-responsive cell populations. (C) Spatial decoding accu-
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Redish 2004; Barnes et al., 2005; Berke et al., 2009). In order to

examine differences between the three structures at the popula-

tion level, we plotted the average firing rates for putative pyra-

midal neurons or PFNs in each of the three structures over the

track (Figure 2A; interneurons, Figure S2B). Dorsal striatal

PFNs were most active on the sequence of turns (S-T4), espe-

cially between T3 and T4, and least active on the bottom return

rail (F2-S). Ventral striatal PFNs showed a ramping up of activity

through the turn sequence, dropping off sharply at the first

reward site. Hippocampal pyramidal neuron firing rates were

relatively uniform over the track (Levene’s test for uniformity,

see Table S1), although a decrease between the two reward sites

was visible, which may reflect effects of low running speed (pyra-

midal cells in hippocampus are sensitive to running speed

[McNaughton et al., 1983]). Because increases in population

firing rate at a given location can result from (1) an increase in

the number of cells that have fields there and (2) increased firing

rates at that location, we also plotted the distribution of peak

firing locations (Figure 2B). Both striatal subregions showed

a clear increase in the number of active cells at the reward sites,

reflecting a population of reward-responsive neurons absent

from hippocampus. In dorsal striatum, a decline in the number

of firing fields was visible after the navigation sequence, while

hippocampal firing fields were more uniformly distributed

(c2 test, see Table S1). These characteristics support a distinc-

tion in information processing in which dorsal striatum

emphasized the turn sequence (consistent with situation-action

encoding), ventral striatum showed a ramp (consistent with

representation of motivationally relevant information), and

hippocampus represented the track relatively uniformly (consis-

tent with a spatial, map-like representation).

The above comparison suggests underlying differences in

neural coding but does not reveal how informative these codes

are. To address this, we measured the extent to which neural

ensembles in the three structures contained information about

location on the track. A Bayesian ensemble decoding algorithm

was applied, which computes a probability distribution over the

track given the numbers of spikes fired by each neuron within

a given time window (Zhang et al., 1998; Figure S3). The average

probability (over all time windows) at the rat’s actual location

was used as a measure of decoding accuracy: it indicates

how good the ensemble is at representing the rat’s actual loca-

tion. Given the spatial modulation of firing rates on the track, we
racy, z-scored within each session to account for overall accuracy differences

(see panel D), plotted over position on the maze. Dorsal striatal decoding accu-

racy was best on the section of the navigation sequence that contained choice

points (T1–T4), as well as the reward sites, but poor on the (horizontal) top and

bottom segments. In contrast, ventral striatal decoding accuracy was rela-

tively good during approach of the reward sites, and hippocampus showed

more spatially uniform decoding accuracy. (D) Between structures, spatial

decoding accuracy changed differentially as a function of the number of cells

in the ensemble. Dorsal striatal ensembles were the most efficient (steepest

slope), while in ventral striatum, spatial decoding accuracy increased the least

with ensemble size (shallowest slope). (E) With learning, spatial decoding effi-

ciency (the slope of accuracy as a function of ensemble size, panel D) changed

differentially between the structures. Ventral striatum did not show a change in

efficiency, while dorsal striatum showed the largest increase. Error bars show

SEM over sessions.
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asked whether, at the ensemble level, certain parts of the track

could be decoded more accurately than others. To account for

differences in decoding accuracy between recording sessions

and structures (explored in the next section), we normalized

the decoding accuracy distribution over the track (Figure 2C).

Dorsal striatal decoding accuracy was best on the sequence

of choice points (T1–T4), as well as the reward sites, but poor

on the return segment (F2–T1). For hippocampus, the relatively

uniform decoding accuracy was in agreement with its spatial

firing rate distribution (Levene’s test for uniformity, see Table

S3). In contrast, ventral striatal decoding accuracy did not

change over the sequence of turns as the firing rate distribution

did. Thus, on the ensemble level, dorsal striatal decoding accu-

racy focused on the turn sequence on the track as well as the

reward sites, while hippocampal decoding accuracy was most

uniform, and ventral striatum highlighted the reward sites only.

Dorsal Striatum, but Not Ventral Striatum, Shows
a Strong Increase in Coding Efficiency within Sessions
The preceding analysis normalized differences in decoding

accuracy between sessions and structures. However, such

differences can be informative when comparing neural coding

properties between structures: we would like to ask ‘‘how

well’’ each structure represents location on the track. In distrib-

uted representations, decoding accuracy depends on ensemble

size (Zhang et al., 1998; Stanley et al., 1999; Wessberg et al.,

2000). Thus, comparing decoding accuracy between sessions

or structures with different ensemble sizes centers on the extent

to which accuracy increases as a function of ensemble size

(‘‘coding efficiency’’). We therefore used a neuron dropping

procedure (Wessberg et al., 2000; Narayanan et al., 2005) to

sample random subsets of ensembles (see Experimental Proce-

dures) in order to plot overall decoding accuracy as a function of

number of cells for the three structures (Figure 2D). Between

structures, spatial decoding accuracy changed differentially as

a function of the number of cells in the ensemble (two-factor

ANOVA, structure 3 ensemble size interaction, F(2;1) = 200.05;

p < 10�10). Dorsal striatal ensembles were the most efficient

(steepest slope; two-factor ANOVA for dorsal striatum and

hippocampus, structure 3 ensemble size interaction, F(1,1) =

7.72,p = 0.0058) while in ventral striatum, spatial decoding accu-

racy increased the least with ensemble size, and hippocampus

fell in between.

Previous studies have found slow changes (across days) in the

distribution of dorsal striatal firing rates on a different T-maze

task (Barnes et al., 2005). While within single sessions, we did

not find evidence for systematic changes in dorsal striatal firing

rates (Figure S2A), spatial decoding accuracy can vary indepen-

dently of firing rate (compare Figures 2A and 2C) raising the

possibility of reorganization with experience at the ensemble

level. Thus, we asked how spatial coding efficiency changed

over laps for the three structures. Decoding efficiency changed

differentially between the three structures (Figure 2E; overall

structure 3 lap interaction, F(2,1) = 11.84, p < 10�10): in ventral

striatum, there was no evidence of a change over laps, while

dorsal striatum showed the strongest increase. This analysis

relies on accurate estimation of the slope of decoding accuracy

as a function of the number of cells (verified in Figure S2C). To
28 Neuron 67, 25–32, July 15, 2010 ª2010 Elsevier Inc.
control for the possibility that behavioral differences between

the groups of animals influenced these results, we used

a multiple regression analysis to identify behavioral variables

that explained a significant amount of variance in decoding effi-

ciency and subtracted the best fits based on these variables

from the data (running speed, distance from an idealized path

through the maze, and proportion of correct choices; see

Figure S2B); this did not affect the pattern of results. Thus,

with experience, dorsal striatum showed the strongest increase

in coding efficiency, while hippocampus showed a modest

amount, and ventral striatum showed none. These results

suggest the presence of a dynamic reorganization process in

dorsal striatum that comes to reflect the structure of the task

with experience (Nakahara et al., 2002; Barnes et al., 2005;

Schmitzer-Torbert and Redish, 2008; Berke et al., 2009).

Hippocampus and Ventral Striatum, but Not Dorsal
Striatum, Show Forward Representations at the Choice
Point
Decoding provides access to representational content, allowing

analysis of not just how much information a given ensemble

contains but also of what that information actually is (Schneidman

et al., 2003). Johnson and Redish (2007) found that as rats

paused at the final choice point, hippocampal representations

of space swept ahead of the animal, down one arm of the maze

and then the other, before the rat made its choice. It is presently

not known if other areas in which spatial information is present,

such as dorsal striatum, exhibit a similar effect. To investigate

this, we applied the decoding algorithm to data from all three

structures, using a 20 ms time window. Note that unlike the anal-

ysis in Johnson and Redish (2007), this method is ‘‘memoryless,’’

treating each time window as independent. For all passes

through the final choice point, the proportion of the decoded

probability distribution that fell either ahead or behind the choice

point (Figure 3A) was plotted as a function of lap. While for all

three structures the decoding probability to the choice point itself

increased over the first ten laps (data not shown), for dorsal stria-

tum (top panel) decoding to both the behind and ahead zones

was marginally increased in this same period, indicating

a nonspecific improvement in decoding accuracy. In contrast,

ventral striatum and hippocampus showed a different pattern,

where decoding ahead of, but not behind, the animal was high

during early laps (two-factor ANOVA, lap-decoding zone interac-

tion, smallest F(1,1) = 4.69,p = 0.031). This is not compatible with

a nonspecific decoding improvement: instead, it suggests that

during early laps there is increased representation of locations

ahead of the animal. We did not find evidence for such events

in dorsal striatum, neither when averaged across sessions

(two-factor ANOVA, lap-decoding zone interaction, F(1,1) = 1.78,

p = 0.18) nor upon visual inspection of decoding during individual

passes through the choice point. Thus, even though dorsal stria-

tal position encoding is at least as good as that in hippocampus

on this task (Figure 2D), it did not selectively represent locations

ahead of the animal at the choice point.

To assess whether lookahead in hippocampus (and ventral

striatum) was specific to the final choice point, we repeated

the same analysis for passes through turn 2, a low-cost choice

point (Figure 3B). At this point, decoding ahead of the animal



vStr

 

forward
backward

20 400

.25

HC

 

de
co

di
ng

 p
ro

ba
bi

lit
y

  

lap

 

 

 

control (T2)

dStr

choice point (T4)

lap

A B

20 400

.25
20 400

.25

20 40
0

.25

20 400

.25

20 400

.25

Figure 3. Decoding Ahead of the Animal Is Specific to Hippocampus,

Ventral Striatum, and the High-Cost Choice Point

(A) For all passes through the final choice point (T4, black rectangle), the prob-

ability of decoding ahead of the animal (‘‘forward,’’ pink rectangle) and behind

the animal (‘‘backward,’’ yellow rectangle) was computed. Dorsal striatum

(dStr) showed a small and nonspecific increase in decoding accuracy: back-

ward and forward both decreased equally. In contrast, ventral striatum and

hippocampus showed an asymmetric pattern where, initially, decoding ahead

of the animal was high compared to decoding behind the animal. (B) This effect

was specific to the final choice point; compare the same analysis applied to

a control point (T2). Note also that while ventral striatum showed a lookahead

effect, its overall decoding accuracy was much lower than that in hippo-

campus or dorsal striatum (see Figure 2A). Error bars show SEM over sessions.

 

T4 F1 F2
 

0

10

 

T4 F1 F2
0

10

 

reward non-reward

dStr
EARLY

laps 1-10

dStr
LATE

laps 31-40

vStr
EARLY

laps 1-10

vStr
LATE

laps 31-40

z-
sc

or
ed

 fi
rin

g 
ra

teA B

C D

z-
sc

or
ed

 fi
rin

g 
ra

te

S S

Figure 4. Ventral Striatal, but Not Dorsal Striatal, Reward-Respon-

sive Cells Show an Increase in Firing Rate at the Final Choice Point

during Early Laps

Each panel shows average z-scored firing rates (over the spatial extent of the

track) for reward-responsive (blue) and non-reward-responsive (red) cells. As

reported in van der Meer and Redish (2009), during early laps (1–10), ventral

striatal reward cells showed elevated activity at the final choice point (T4)

compared to non-reward-responsive cells (A). No such difference was

apparent in dorsal striatum (B) or in either structure during later laps (C and

D). Plots were obtained by z-scoring each cell’s tuning curve using the mean

and standard deviation of firing rates over the full tuning curve bins spanning
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during early laps was much diminished, no longer reaching

significance for either hippocampus or ventral striatum (two-

factor ANOVA, lap-decoding zone interaction, largest F(1,1) =

0.25, p = 0.62). Thus, lookahead occurred specifically at the final

choice point, further supporting the notion that such processes

are not permanently-on epiphenomena but can be dynamically

engaged depending on task demands.

Covert Representation of Reward in Ventral Striatum,
but Not Dorsal Striatum
van der Meer and Redish (2009) showed that ventral striatal

reward-responsive neurons tended to be active at the choice

point during early laps, suggesting covert expectation of reward

congruent with model-based decision making. It is not known if

dorsal striatal representations of reward also show this effect.

To address this, we applied the same analysis to dorsal striatum,

plotting the average (z-scored) firing rate of reward-responsive
cells and non-reward-responsive cells over the maze (Figure 4).

Note that, because this analysis is designed to address firing

rates of reward and non-reward cells on the track in the absence

of reward, the normalization and analysis was restricted to firing

rates on the part of the track between the turn sequence start (S)

to past the final choice point (T4). For completeness, we have

included this analysis for hippocampal regions in Figure S4B,

even though these did not show the characteristic reward

response of the striatal regions (Figure 2B).

As reported in van der Meer and Redish (2009) for ventral stria-

tum, a two-way ANOVA with location on the maze (nine bins, from

the start of the first T to one-third of the way between T4 and F1)

and cell type (reward or non-reward) as factors showed a signifi-

cant interaction for early laps (1–10, F(8,1) = 4.0, p < 0.001) with

the reward cells having significantly higher activity in the T4 bin

(F(1,1) = 12.56, p < 0.001; see Figure S4A for full firing rate distribu-

tions and additional statistics). During late laps (31–40) there was

no such difference (F(1,1) = 0.22, p = 0.64). Thus, ventral striatal

reward neurons showed a relative increase in activity specifically

at the final choice point during early laps. In contrast, dorsal stria-

tal reward neurons showed no difference in activity at T4 during

early laps (F(1,1) = 2.47, p = 0.116); for late laps, there was a differ-

ence (F(1,1) = 5.77, p = 0.0163), but the non-reward cells were the

more active group. Thus, even though we found similarly promi-

nent reward-responsive activity in dorsal striatum compared to

ventral striatum, only ventral striatal reward cells showed covert

representation of reward at the choice point during early laps.
Neuron 67, 25–32, July 15, 2010 ª2010 Elsevier Inc. 29
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DISCUSSION

Hippocampus, dorsal striatum, and ventral striatum processed

information differently on this task, consistent with their different

roles in decision making.

Hippocampus as a Cognitive Map with Online Search
Hippocampal ‘‘place cells’’ are classically thought of as providing

a cognitive map that supports flexible route planning (O’Keefe

and Nadel, 1978). Such a map is an example of a world model

that could be used for internal generation of potential outcomes

during decision making. In support of this idea, Johnson and

Redish (2007) found that hippocampal ensembles transiently

represented possible outcomes at the final choice point of the

multiple-T task. We extend this result in several important

ways. First, we found that this ‘‘lookahead’’ is not a permanently

enabled property of hippocampus, as would be expected from

effects like theta phase precession (Maurer and McNaughton,

2007). Instead, lookahead was specific to the final choice point

(T4) and absent from a control choice point (T2). This supports

the idea that hippocampal lookahead can be dynamically

engaged during decision making. Critically, using the same anal-

ysis on the same task, we found no evidence for lookahead in

dorsal striatum, even though dorsal ensembles could represent

location as well as or better than hippocampal ensembles on

this task (Figure 2D). This demonstrates that lookahead is not

a general, brain-wide phenomenon shared by all task-relevant

representations but in the current dataset is restricted to brain

systems known to play a role in ‘‘model-based’’ decision making.

Dorsal Striatum as a Situation-Action Associator
We found that dorsal striatal firing, field, and decoding distribu-

tions were skewed toward the turn sequence of the task, as

well as reward locations and cues predicting reward delivery

(Figure 2). The turn sequence and reward cues together deter-

mine the structure of the task, i.e., how the actions the rat takes

map onto motivationally relevant outcomes. Models that learn

what action to take in what situation in order to maximize reward

(such as temporal-difference reinforcement learning) need to

represent this information (Sutton and Barto, 1998). Thus, dorsal

striatum selectively represents those task aspects which

computational accounts suggest are important for gradual,

model-free learning. This is congruent with previous suggestions

about the role of dorsal striatum as indicated by inactivation,

recording, and imaging studies (Poldrack and Packard, 2003;

Balleine et al., 2007; Redish et al., 2008). However, in our

comparative approach, we can additionally show what dorsal

striatum does not represent. It does not represent locations

ahead of the animal at decision points, as hippocampus does;

neither does it covertly represent rewards, as ventral striatum

does. Although a population of dorsal striatal neurons responded

to reward-predictive cues, these were not neurons that were

activated by the rewards themselves (Figure 3B), consistent

with a developing representation of cue-action value associa-

tions. Thus, dorsal striatum does not appear to employ model-

based internal generation of possible outcomes.

Dorsal striatum did not represent all locations equally, even

though animals executed similar actions at those locations, sug-
30 Neuron 67, 25–32, July 15, 2010 ª2010 Elsevier Inc.
gesting that that dorsal striatum learns to disregard task-irrele-

vant aspects with experience (such as the maze segment from

the reward sites to the start of the turn sequence, which is

constant and does not contain decision points). The gradual

increase in coding efficiency further supports such reorganiza-

tion with experience, consistent with reports from Graybiel and

colleagues (e.g., Barnes et al., 2005), although we show this

effect within session (instead of across days) and using an

ensemble measure (which addresses spatial information content

rather than firing rates alone). Taken together, these results

support the notion that dorsal striatum learns to represent situa-

tion-action associations as proposed by computational

accounts of model-free, habitual, or response-driven decision

making. It explicitly does not share properties important for

model-based decision making, even though the same analysis

reveals such properties in other structures on the same task.

It may be surprising that dorsal striatum appears to contain

more information about location on the track than hippocampus,

whose relatively uniform distribution of place cells is well suited

to spatial representation. However, on this task, spatial location

is an important element of task structure (whether to turn left or

right depends on location; reward locations are fixed). As such,

dorsal striatum would be expected to represent spatial informa-

tion on this task. Others have also observed that dorsal striatal

firing patterns contain information about spatial location (Wiener,

1993; Yeshenko et al., 2004). However, this does not mean that

dorsal striatal representations are intrinsically spatial. In fact,

studies on tasks where reward locations were explicitly dissoci-

ated from space (Schmitzer-Torbert and Redish, 2008) or where

multiple locations were equivalently associated with rewards

(Berke et al., 2009) found that dorsal striatum did not represent

space well. More generally, these considerations serve as

a reminder that it is important to consider both task structure

and ensemble-level properties when making inferences about

representational content.

Ventral Striatum as an Evaluator of Actual and Expected
Situations
As shown by van der Meer and Redish (2009), ventral striatal

reward neurons tended to reactivate at the final choice point

during early laps. We show here that even though dorsal striatum

has a similarly sized population of reward-responsive neurons,

by the same analysis on the same task dorsal striatal neurons

do not show this effect. This serves, first, as a particularly infor-

mative control that strengthens the original finding by illustrating

that it is not due to nonspecific behavioral features such as

simply pausing at the choice point. More importantly, this differ-

ence in information processing mechanisms in dorsal and ventral

striatum maps onto the conceptual difference between situation-

action representations and action-outcome representations:

while dorsal striatal neurons learned to respond to reward-

predictive cues, these neurons did not respond to actual

rewards. This suggests a potential role for ventral striatum in

model-based decision making.

Ventral striatum is generally acknowledged as an important

structure in mediating motivated or goal-directed behaviors.

A popular suggestion is that it acts as the ‘‘critic’’ component of

a reinforcement learning system (Atallah et al., 2007). Anticipatory
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ramp cells seen in primate and rodent studies could be interpreted

as an instantiation of a critic-like value signal (Schultz et al., 1992;

Lavoie and Mizumori, 1994; Miyazaki et al., 1998). The ramp

nature of this signal suggests a certain motivational relevance.

On our task, it is clear that ventral and dorsal striatum have very

different information processing properties. Dorsal striatum lacks

the population firing rate ramp of ventral striatum, while ventral

striatal decoding accuracy was poor compared to dorsal striatum

and hippocampus. This suggests that ventral striatum represents

global quantities related to value or motivation, which may fluc-

tuate throughout a session, resulting in poor decoding accuracy.

Thus, our results imply that ventral striatum may carry multiple

motivationally relevant signals: a global ramp that may serve as

the valuesignal inmodel-free learningsystems,butalso the covert

representation of reward important for model-based systems.

Synthesis
In conclusion, we observed multiple dissociations in information

processing between dorsal striatum, ventral striatum, and hippo-

campus. While hippocampal neural ensembles encoded future

paths during pauses at the choice point, dorsal striatal ensem-

bles did not. While ventral striatal reward-related cells showed

activity during pauses at the choice point, dorsal striatal

reward-related cells did not. In contrast, dorsal striatal ensem-

bles slowly developed a more accurate spatial representation

than hippocampal ensembles on the action-rich navigation

sequence of the task, and dorsal striatal non-reward-related

cells slowly developed responses to high-value cues.

These differences reveal the different computations these

structures are performing to accommodate their roles in model-

based and model-free decision making: Hippocampus provides

a cognitive map of the environment, which can dynamically repre-

sent potential future paths.During pausesat choice points, ventral

striatal reward representations are reactivated, as an expectation

of future reward outcome. Ventral striatum also develops an

activity ramp through the task, which may provide a motivationally

relevant signal. Dorsal striatum does not represent expectancies

or show a firing rate ramp, but instead develops stimulus-action

representations with experience. These data bridge the behav-

ioral and lesion data with computational/theoretical models of

decision making, directly linking distinct behavioral roles with

unique information processing mechanisms at the neural level.

EXPERIMENTAL PROCEDURES

Subjects

Sixteen male Brown Norway-Fisher 344 hybrid rats (Harlan, IA), aged 8–12

months, were food deprived to no less than 85% of their free-feeding body

weight during behavioral training; water was available ad libitum in the home

cage at all times. All procedures were conducted in accordance with National

Institutes of Health guidelines for animal care and approved by the IACUC at

the University of Minnesota. Care was taken to minimize the number of animals

used in these experiments and to minimize suffering.

Multiple-T Task

The Multiple-T task apparatus, a carpet-lined track elevated 15 cm above the

floor, consisted of a turn sequence of three to five T-choices, a top and

a bottom rail, and two return rails leading back to the start of the turn sequence

(Figure 1A). The specific configuration of the turn sequence could be varied

from day to day. Two feeder sites at each of the return rails could deliver
two 45 mg food pellets each (Research Diets, New Brunswick, NJ) through

computer-controlled pellet dispensers (Med-Associates, St. Albans, VT),

released when a ceiling-mounted camera and a position tracking system

(Cheetah, Neuralynx, Bozeman, MT, and custom software written in MATLAB,

Natick, MA) detected the rat crossing the active feeder trigger lines. Only one

set of feeder sites (either on the left or the right return rail) was active in any

given session. For presurgery training, rats ran 3-T and 5-T mazes with the

turn sequence changed every day; once rats were running proficiently after

surgery, recording sessions were run on 4-T mazes in a sequence of seven

novel/seven unchanged/seven novel configurations, for a total of 21 sessions

per rat. Novel sequences consisted of session-unique sequences (Figure 1A

shows the ‘‘RRLR’’ sequence). 98, 96, and 31 recording sessions from dorsal

striatum, ventral striatum, and hippocampus, respectively, were accepted for

analysis: for the hippocampal recordings we obtained good ensemble sizes

only for a few days out of the 21 day protocol. However, the proportions of

Novel/Familiar sessions were comparable to those in the other data sets (20

novel/11 familiar, compared to 68/30 for dorsal and 68/28 for ventral striatum).

Furthermore, all analyses reported are within-session only, so the number of

sessions should not affect the results. Rats were allowed to run as many

laps as desired in each 40 min recording session. Data collection was as

described previously (Schmitzer-Torbert and Redish, 2004; Johnson and Re-

dish, 2007; van der Meer and Redish, 2009).

Surgery

Following pretraining, rats were chronically implanted with an electrode array

consisting of 12 tetrodes and two reference electrodes that could be moved in

the dorsal-ventral plane (‘‘hyperdrive,’’ Kopf, Tujunga, CA). Structures were

targeted by centering the hyperdrive on stereotactic coordinates relative to

bregma: AP +1.2, ML ± 2.3–2.5 mm for ventral striatum, AP +0.5, ML ± 3.0

mm for dorsal striatum, and AP�3.8, ML ± 4.0 mm for hippocampus (subfield

CA3) as described previously (Schmitzer-Torbert and Redish, 2004; Johnson

and Redish, 2007; van der Meer and Redish, 2009).

Spatial Decoding

We used a Bayesian spatial decoding algorithm, designed to provide an esti-

mate of the animal’s location given ensemble spiking activity at any given time

in the session (Zhang et al., 1998). For each time window, this method takes

the spike counts from each cell i and computes the posterior probability of

the rat being at location x given spike counts si, p(xjs). We used a time window

of 200 ms (for the analysis in Figure 2) or 20 ms (for the analysis in Figure 3)

and a uniform spatial prior. To obtain the decoding accuracy measure, for

each time window, the probability of decoding to the animal’s actual location

was taken from the decoded probability distribution for that time window; the

pattern of results did not change when slightly wider windows of three and five

bins around the animal’s actual location were used. This ‘‘local probability’’

was then averaged for each actual location on the track; this was done to mini-

mize the contribution of long periods of inactivity at the reward sites when aver-

aging over time windows alone. (This method is identical to that used in

Schmitzer-Torbert and Redish [2008] and in van der Meer and Redish

[2009].) Only recording sessions with at least 20 simultaneously recorded cells

were used and only cells that fired at least 25 spikes in the session were

included. For the slow timescale analysis, using a time window of 50, 100, or

150 ms did not change the pattern observed (data not shown).

Further experimental procedures, including cell classification, track lineari-

zation, and spatial distribution analyses, can be found in the Supplemental

Information.

SUPPLEMENTAL INFORMATION

Supplemental Information includes full Experimental Procedures, four figures,

and three tables and can be found with this article online at doi:10.1016/j.

neuron.2010.06.023.
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Supplementary Figures  

Figure S1 (related to Figure 1) 

 A: Behavioral performance over laps broken down by recording target group 

(dStr: dorsal striatum, vStr: ventral striatum, HC: hippocampus) and blocks of 

maze configurations. Performance was defined as the proportion of correct 

choices at the final choice point. A two-factor ANOVA with group (dorsal striatum, 

ventral striatum, hippocampus) and lap as factors revealed a significant main 

effect of group (F(2) =4.69,p =0.009) and lap (F(1) = 475.91,p < 10−10) but no 

significant interaction (F(2,1) = 0.59,p =0.55). B: Pausing behavior over laps 

broken down by recording target group (dStr: dorsal striatum, vStr: ventral 

striatum, HC: hippocampus) and blocks of maze configurations. For each lap, the 

time spent in the “control” (CT, turn 2 on the maze) and “choice point” (CP, turn 4 

on the maze) zones (see Figure 3) was divided by the lap time for that lap. The 

resulting proportion of lap time numbers were then z-scored against the 

distribution of proportions over all laps in the session. Note that all groups 

showed clear increases in time spent at the choice point, but not the control point, 

during early laps.  



 



 



Figure S2 (related to Figure 2) 

 A: Average firing rate for all phasically firing neurons (PFNs) for dorsal striatum 

(dStr) and ventral striatum (vStr), or putative pyramidal neurons for hippocampus 

(HC) over the linearized track as a function of lap. B: as A, but for high-firing 

neurons (putative interneurons). C: The relationship between ensemble size 

(number of cells) and decoding accuracy was well fit by a line. For each session, 

we employed a “neuron dropping” procedure and fit a line by obtaining decoding 

accuracy values for each multiple of 5 neurons (i.e. 10, 15, 20 etc. up to the 

actual number of recorded neurons in the data) by randomly subsampling 

ensembles from the full ensemble. Thus, a single session with 43 neurons 

contributes 7 data points (of sizes 10, 15, 20, 25, 30, 35 and 40) with each data 

point an average of 50 randomly drawn subsets, to the line fit. Shown here are 

the distributions of R2 linear regression values for all ensembles in the data set; 

note that the number of ensembles is much larger than the number of sessions 

because this analysis was done for each block of 5 laps separately (for Figure 2). 

D: To control for the possibility that behavioral differences between groups of 

animals could account for the differential change in decoding efficiency over laps 

between structures (Figure 2, reproduced in the left panel), we used a multiple 

regression analysis designed to identify behavioral variables which accounted for 

some amount of variance in decoding efficiency. Thus, for each 5-lap block in 

each session, we computed the animal’s average running speed, its average 

distance from the idealized “perfect” path through the maze, and the proportion of 

correct choices. Of those, only the first two were found to be significant predictors 

of decoding accuracy over the full dataset (adjusted R2 :0.116,F = 48.47,p < 10−10; 

coefficient for running speed: −4.57 x 10−5,t = −8.88,p < 10−4; for distance from 

the idealized path: −3.92 x 10−5,t = −5.00,p < 10−4; laps correct not significant, t = 

−1.00,p =0.32). We then subtracted the fits based on the regression coefficients 

(middle panel) to obtain a corrected plot (right panel) which had similar structure 

to the original plot (structure x lap interaction: F(2,1) = 16.24,p < 10−10). Thus, this 

analysis suggests that overt behavioral differences between groups were 



significant predictors of decoding efficiency, they could not account for the 

differences observed between structures.  



Figure S3 (related to Figure 3) 

Schematic representation of the decoding procedure. Within a given time window 

(grey box, top panel) each cell in the ensemble fires some number of spikes; in 

this example with two cells, cell 1 fires 3 spikes and cell 2, 0 spikes. From cell 1’s 

tuning curve over the track (fi(x), computed for the full session) and a Poisson 

assumption about spiking statistics (Zhang, 1998), we can infer the likelihood of 

observing 3 spikes at each location on the track. In the case of cell 1, the tuning 

curve indicates that this cell tends to be active around turn 3 (T3) and after the 

second reward site (F2); thus, given the observation of 3 spikes, these locations 

would be more likely than others (where hardly any spikes were ever fired). 

Similarly, cell 2 tends to be active on the left side of the track, such that 

observing 0 spikes would bias our estimate to the right side. By assuming that 

the cells are independent, estimates from each cell can then be combined to 

yield the ensemble decoded probability distribution over the track (right panel, 

black line). If we then observe the rat is actually at the location indicated by the 

red line, decoding accuracy is simply the value at that location.  



Figure S4 (related to Figure 4) 

A: Comparison of the normalized firing rate distributions at the final choice point 

(T4) for reward-responsive cells (top row) and non-reward-responsive cells 

(middle row) for ventral striatum (left) and dorsal striatum (right). The difference 

of the two distributions (reward minus non-reward) shows a bias towards high 

firing rates for reward neurons in ventral striatum (bottom left; Mann-Whitney U 

test for equal medians, p =1.68 x 10−5) but not for dorsal striatum (bottom right; p 

=0.42). B: Hippocampal putative pyramidal neurons did not show a difference in 

firing rate at the final choice point between reward-and non-reward responsive 

cells during early (left) or late (right) laps.  





Supplementary Tables  

Table S1 (related to Figure 2) 

As shown in Figure 2, dorsal striatum, ventral striatum, and hippocampus had 

different distributions of firing rates over the track. However, we were also 

interested in differences in uniformity of these distributions. To test for this, we 

first normalized each individual cell’s firing rate distribution over the track to a z-

score, and then averaged these to obtain an average, normalized firing rate 

distribution for each structure. Normalized in this way, a relatively uniform firing 

rate distribution would have many values close to zero, whereas a nonuniform 

distribution would have many values away from zero. Thus, the variance of this 

distribution can be taken as a measure of uniformity. To test for differences in 

uniformity of firing rates over the track, we 

used Levene’s test for unequal variances, 

which does not assume normal distributions. 

The above tables show both the results of 

the overall and pairwise Levene’s tests, as 

well as the actual firing rate standard 

deviations over the track (the uniformity 

measure).  



Table S2 (related to Figure 2) 

To test for differences in the distribution of firing fields over the track, a chi-

squared goodness-of-fit test was applied, comparing the observed distribution of 

peak firing locations (one data point for each cell) against the expected (uniform) 

distribution. Note that the use of the chi-squared test instead of the Levene’s test 

for unequal variances was forced by each cell only contributing a single point on 

the track (the maximal firing location of the field, instead of a distribution of firing 

rate over the track, as in Table S1). 

 



Table S3 (related to Figure 2) 

To test for differences in uniformity of decoding accuracy over the track, Levene’s 

test for unequal variances was used, as in Table S1.  

 

 



Full experimental procedures  

Cell categorization. We divided spike trains into cell type classes based on 

firing statistics. Following previous reports (Berke et al., 2004; Schmitzer-Torbert 

and Redish, 2004; Mallet et al., 2005; Barnes et al., 2005; Schmitzer-Torbert and 

Redish, 2008), both dorsal and ventral striatal neurons were categorized as 

phasic firing neurons (PFNs, putative medium spiny projection neurons), high-

firing neurons (HFNs) and tonically firing neurons (TFNs), based on their firing 

properties, as described previously by Schmitzer-Torbert and Redish (2008). If 

the proportion of interspike intervals larger than 2 seconds was larger than 0.4, 

spike trains were categorized as PFNs; if not, then the amount of post-spike 

suppression (time to half the maximal value in the autocorrelogram, a measure of 

how “bursty” the cell is) was used to distinguish between TFNs and HFNs. For 

dorsal striatum, 1178 of 1646 neurons (71.6%) were classified as PFNs, 435 

(26.4%) as HFNs and 33 as TFNs (2.0%). For ventral striatum, mostly recorded 

from the nucleus accumbens core and the ventral caudate-putamen, 2063 of 

2323 (88.8%) were PFNs, 238 (10.3%) HFNs, and 22 (0.9%) TFNs. Consistent 

with a previous report (Berke et al., 2004) a chi-squared test confirmed the 

relative proportions of PFNs and HFNs to be significantly different between 

dorsal and ventral striatum (df = 1, χ2 = 191.63,p < 10−15). Following standard 

practice (Ranck, 1973; Markus et al., 1994; Csicsvari et al., 1999) hippocampal 

spike trains (recorded from subfield CA3) were categorized into putative 

pyramidal cells (average firing rate ≤ 2 Hz), and inhibitory interneurons (average 

firing rate >2 Hz). We recorded 1141/1473 (77.5%) putative pyramidal neurons 

and 332 (22.5%) interneurons.  

Reward-responsiveness. To test for a reward response, the cell’s actual 

average spike count after each feeder trigger (window: 1-5 s after feeder trigger) 

was z-scored relative to the distribution of spike counts obtained from 100 time 

windows of the same length, but obtained from random times taken throughout 

the session. This is a measure of the significance of the reward response relative 

to a bootstrap of expected variability from spiking statistics alone. A cell was 



classified as reward-responsive if its reward z-score for either or both feeder fires 

was larger than 2.  

Firing rate maps. To construct the firing rate maps in Figure 2a, the two-

dimensional position of the rat on the maze was first mapped to the closest point 

on a one-dimensional, idealized path (the typical path taken through the maze by 

the rat), in order to allow averaging of neural data across different paths taken on 

different maze configurations (Schmitzer-Torbert and Redish, 2004; van der 

Meer and Redish, 2009). All data further than 10 cm away from the idealized 

path was excluded from further analyses, so all error laps were excluded from 

analysis. Tuning curves for each cell as a function of location on the maze were 

constructed for each lap separately and then averaged across sessions. For this 

analysis, in order to avoid uneven sampling across laps, only sessions in where 

rats ran at least 50 laps were included for analysis; of those, only the first 50 laps 

were examined.  

Cell-averaged, unnormalized firing rates, as used in the above analysis, may be 

subject to distortions such as those caused by a small number of highly active 

neurons, repeated recordings of the same neuron, unequal distributions of 

neurons between animals, and others. To address this issue, we performed the 

same analysis with (1) firing rates for each neuron normalized by its peak (spatial) 

firing rate, and (2) firing rates for each neuron z-scored over space, as well as 

averaging over (a) cells, (b) sessions, (c) animals, and (d) cells which were not 

recorded during more than one session. The results reported for the raw firing 

rate, cell-averaged analysis above were robust against these control analyses 

(data not shown).  

Decoding. The analysis comparing coding efficiency across structures (Figure 

2d) was repeated for the navigation sequence segment of the track only, in order 

to exclude potential disproportionate contributions of striatal reward neurons 

and/or hippocampal sharp wave events occurring at the reward sites, the results 

were unchanged (data not shown). Thus, for dorsal striatum, each additional cell 



improved spatial decoding by the largest amount, whereas for ventral striatum, 

adding cells had the smallest effect, and hippocampus was in between.  

Statistics on spatial distributions. To test for differences in the uniformity of 

each structure’s average firing rate over the track, we first normalized each 

individual cell’s firing rate distribution over the track to a z-score, and then 

averaged these to obtain an average, normalized firing rate distribution for each 

structure. Normalized in this way, a relatively uniform firing rate distribution would 

have many values close to zero, whereas a non-uniform distribution would have 

many values away from zero. Thus, the variance of this distribution can be taken 

as a measure of uniformity. To test for differences in uniformity of firing rates over 

the track, we used Levene’s test for unequal variances, which does not assume 

normal distributions. The same analysis was used for the distribution of decoding 

accuracy over the track, where each session yielded a distribution which was 

similarly normalized by a z-score before averaging. To examine differences in the 

distributions of firing fields over the track, the same analysis could not be used, 

because in this case each cell yields a single point (a location on the track) 

instead of a distribution which can be normalized. Thus, to assess deviations 

from uniformity in this case, we used a chi-squared goodness-of-fit test against a 

uniform distribution. 
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