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This mini-symposium aims to integrate recent insights from anatomy, behavior, and neurophysiology, highlighting the anatom-
ical organization, behavioral significance, and information-processing mechanisms of corticostriatal interactions. In this sum-
mary of topics, which is not meant to provide a comprehensive survey, we will first review the anatomy of corticostriatal circuits,
comparing different ways by which “loops” of cortical– basal ganglia circuits communicate. Next, we will address the causal
importance and systems-neurophysiological mechanisms of corticostriatal interactions for memory, emphasizing the communi-
cation between hippocampus and ventral striatum during contextual conditioning. Furthermore, ensemble recording techniques
have been applied to compare information processing in the dorsal and ventral striatum to predictions from reinforcement
learning theory. We will next discuss how neural activity develops in corticostriatal areas when habits are learned. Finally, we will
evaluate the role of GABAergic interneurons in dynamically transforming cortical inputs into striatal output during learning and
decision making.

Introduction
The striatum receives input from a vast expanse of areas distrib-
uted across the cortical mantle, yet it is still poorly understood
how all of this input is transformed into outputs that regulate
behavior and cognition. Cortical projections to the striatum are
topographically ordered in a series of parallel anatomical “loops”
running from neocortex to the striatum, pallidum, thalamus, and
back to neocortex. These parallel macrocircuits have been linked
to different global functions: whereas a “limbic,” ventromedial
prefrontal–ventral striatal loop has been delineated to mediate
motivational and reward processing, other loops engage in sen-
sorimotor or cognitive processing (Alexander et al., 1990; Graybiel et
al., 1994; Voorn et al., 2004; Yin and Knowlton, 2006). Informa-
tion processed along these pathways is under the modulatory
control of dopamine released from fibers originating in the ven-
tral tegmental area (VTA) and substantia nigra pars compacta
(SNpc). Given the parallel organization of corticostriatal circuits,
the question arises how coherent behavior, requiring integration

of sensorimotor, cognitive, and motivational information, is
achieved. In this mini-symposium, we will first address the ques-
tion of how parallel corticobasal ganglia circuits may communi-
cate. Next we will ask how corticostriatal circuits are involved in
learning and memory formation. One approach to investigate
this topic is to zoom in on one corticostriatal subsystem in par-
ticular. Therefore we will examine the functioning of the hip-
pocampal–ventral striatal subsystem in learning to associate
places and contexts to outcomes, such as reward. We will subse-
quently focus on the “sensorimotor” subsystem, including the
dorsolateral striatum (DLS), in mediating habit formation. Re-
cent advances in associative learning and plasticity in corticos-
triatal circuits have been guided by theories of reinforcement
learning (Sutton and Barto, 1998). Hence we will compare theo-
retical predictions about dorsal and ventral striatum with results
from multineuron recordings in freely behaving rats. In addition
to differences in information processing between loops, we will
consider commonalities found across striatal subregions. One
such common element is the GABAergic fast-spiking interneu-
ron (FSI), which makes up only a tiny fraction of all striatal cells,
but powerfully modulates activity of striatal projection neurons,
called medium-sized spiny neurons (MSNs). We will review how
these interneurons contribute to transforming cortical input into
striatal output. Thus, by bringing together findings from neuro-
anatomy, in vivo electrophysiology, behavioral neuroscience, and
computational modeling, this symposium will highlight key ad-
vances in our understanding of corticostriatal functions in deci-
sion making and memory formation.
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Communication between corticostriatal systems via the
ventral mesencephalon
For integrating sensorimotor, cognitive, and motivational infor-
mation that is processed by different corticostriatal circuits, some
form of communication between parallel circuits appears to be
required. Such communication may take place via intrastriatal
collaterals of projection neurons and striatal interneurons (van
Dongen et al., 2005). Another route allowing information flow
from limbic to sensorimotor-related corticostriatal pathways is
via the projections from nucleus accumbens (NAc), which con-
stitutes the main portion of the ventral striatum, to the SNpc and
VTA and, subsequently, to dorsal, sensorimotor-related striatal
regions via dopaminergic fibers originating from the SNpc/VTA
complex (Nauta et al., 1978). Much attention has focused on
communication via a cascade-like spiraling circuitry connecting
ventromedial regions of striatum with ever more dorsolaterally
located striatal areas by way of an open loop with the substantia
nigra. This arrangement, described in the monkey (Haber et al.,
2000), may hold true also for the rat and allows for a serial rather
than parallel flow of information processing. The cellular popu-
lation in rat SNpc/VTA projecting to the striatum has been
shown to comprise at least two types of neurons. The first type
shows a mediolateral topographical organization in its projection
pattern, with medially located cells projecting to medial parts of
the striatum and laterally located cells reaching lateral striatal
regions, like a mirror image of the mediolateral topography in the
striatonigral axonal projections. The second type does not obey
such topography: (dorso)lateral striatal territories are reached
from a medial and dorsal position in SNpc and VTA (Maurin et
al., 1999).

The former population is probably involved in striatonigro-
striatal feedback loops (cf. Haber et al., 2000); the latter has non-
reciprocal relationships with the striatum and may establish di-
rect contacts between ventral and dorsal corticostriatal circuits.
Whether such is indeed the case was studied using neuroana-
tomical tract tracing and neurophysiological techniques. Rats
were simultaneously injected with an anterograde tracer (BDA
MW 10,000) into the medial shell region of NAc and a retrograde
tracer (Fluorogold) into DLS. A sensorimotor identity of the lat-
ter striatal area was confirmed by the presence of retrogradely
labeled neurons in somatosensory and motor cortex. Impor-
tantly, the retrograde tracer labeled neurons along the entire me-
dial to lateral extent of SNpc and dorsolaterally in VTA. Laterally
in SNpc, anterograde fiber labeling from the shell remained sep-
arate from retrograde cell labeling. However, in the dorsal parts
of medial SNpc and laterally in VTA, the distributional patterns
of retrogradely labeled cells and the anterogradely filled fibers
from the shell showed extensive overlap (Fig. 1). In these areas,
fibers and cell bodies in close proximity to one another suggested
the presence of synaptic contacts. Indeed, electrical stimulation
of the shell induced an inhibitory response in electrophysiologi-
cally identified dopaminergic neurons that were antidromically
driven from DLS and located in the very region of distributional
overlap. These findings provide for a short and direct route via
which limbic information can reach sensorimotor circuits.

Hippocampal–striatal communication in
contextual conditioning
Traditionally, corticostriatal feedback loops have been associated
with executing cognitive and motor functions in the mammalian
brain (Alexander and Crutcher, 1990; Chudasama and Robbins,
2006). A potentially important role that is not so readily attrib-
uted to the corticostriatal system is that in learning and mem-

ory. Extensive evidence suggests that certain subregions of the
neocortex and striatum receive convergent inputs from key
component structures of learning and memory systems such
as the hippocampus and amygdala, and are thus ideally placed
to play a regulatory role. However, the functional significance
of such a pattern of limbic innervations in the corticostriatal
system is yet to be demonstrated. Data from lesion and drug
infusion studies selectively targeting corticostriatal areas that
receive inputs from the hippocampus and basolateral amyg-
dala support the existence of separate streams of associative
information processing in the ventral striatum. Indeed, the
integrity of the NAc shell subregion and the activation of dopa-
mine D2 receptors (Setlow and McGaugh, 1999; Ito et al., 2008)

Figure 1. Schematic representation of frontal hemisections through the rat forebrain and
ventral mesencephalon. Axonal projections from the shell target cells in VTA and SNpc that
project either (back) to the shell, to the core, or to sensorimotor-related caudate–putamen
(blue-green). Fibers originating from the core reach areas in SNpr associated with axonal pro-
jections from SNpc to striatal sectors with inputs from anterior cingulate (blue) or prelimbic
(purple) cortex. The blue-green region in medial SNpc and dorsal VTA receives inputs from the
shell and contains retrogradely labeled cells after tracer injection in sensorimotor striatum. ac,
Anterior commissure; SNpr, substantia nigra pars reticulata.

12832 • J. Neurosci., October 14, 2009 • 29(41):12831–12838 Pennartz et al. • Corticostriatal Interactions during Learning and Memory



have been shown to be necessary for the processing of spatial
information that is also dependent on the hippocampus. In
contrast, the NAc core has been shown to be critical for the
processing of associations between emotionally significant
events and discrete pavlovian stimuli, which is also dependent
on the basolateral amygdala (Cador et al., 1989; Parkinson et
al., 2000; Ito et al., 2006, 2008).

There is some evidence for different subregions of the pre-
frontal cortex (PFC) supporting different domains of learning
and memory processes, with a number of studies reporting
marked impairment in spatial working memory (Ragozzino et
al., 1998; Kesner and Ragozzino, 2003) as a consequence of selec-
tive lesions of the prelimbic cortex. However, somewhat surpris-
ingly, this selective effect on spatial memory often fails to
manifest itself when the lesions are not just restricted to the pre-
limbic cortex, but extend to other parts of medial PFC (de Bruin
et al., 2001; Lacroix et al., 2002; Deacon et al., 2003), highlighting
the difficulty of separating mnemonic deficits from concomitant
non-mnemonic deficits such as attentional and behavioral flexi-
bility. Nevertheless, studies using disconnection lesions of
brain structures within the corticolimbic–striatal system to
investigate the functional connectivity between two brain areas
have established the importance of serial transfer of spatial infor-
mation between the prelimbic cortex and hippocampal CA1 re-
gion (Floresco et al., 1997) and ventral hippocampus (Wang and
Cai, 2006). For the first time, recent work has now demonstrated
a functional pathway between the rat hippocampus and NAc shell
in the control of conditioned appetitive behavior by spatial con-
textual information (Fig. 2) (Ito et al., 2008) that is clearly distinct
from another circuit between the NAc core and basolateral amyg-

dala, which is concerned with discrete
stimulus control over Pavlovian behavior
(Everitt et al., 1991). Importantly, inter-
ruption of neural processing between the
hippocampus and NAc shell was found to
cause disruption to the acquisition of
context-dependent retrieval of discrete
cue information, providing functional ev-
idence that the shell subregion may pro-
vide a site at which contextual and discrete
cue information may be integrated. In ad-
dition, new evidence has been obtained to
indicate that the dopaminergic innerva-
tion of the rat NAc plays a key role in
modulating learning and memory pro-
cesses. Using a novel paradigm in which
two types of sucrose-associated cues (spa-
tial vs nonspatial) are concurrently made
available to compete for control over con-
ditioned appetitive behavior, direct infu-
sions of D-amphetamine (which induces
elevation in extracellular dopamine levels)
into the NAc core and shell were found to
exert differential and selective effects upon
their conditioning rates. These results point
to the important role of the dopaminergic
innervations of the NAc shell and core in
regulating limbic information flow, and il-
lustrate differential, and even opposing,
roles of the NAc core and shell regions in
conditioned appetitive behavior under the
control of spatial cues.

Cross-structural replay of contextual and reward information
Although it is unclear how the consolidation of composite place–
reward memories is achieved, the strengthening of synapses in-
volved in coding spatial and motivational information is thought
to benefit from the spontaneous replay of recently acquired neu-
ral activity patterns that occurs in periods of quiet wakefulness
and slow-wave sleep following a behavioral event (Marr, 1971;
Buzsáki, 1989; McClelland et al., 1995; McNaughton et al., 2003).
Theories on memory consolidation propose that the hippocam-
pus initiates a state of information retrieval during postexperien-
tial, “off-line” periods such as sleep, and transmits this state to its
target structures (Marr, 1971; Buzsáki, 1989; McClelland et al.,
1995; Pennartz et al., 2002; McNaughton et al., 2003). Neuronal
reactivation, as observed during “off-line” periods in rats and
monkeys, occurs in several brain areas including the hippocam-
pus (Pavlides and Winson, 1989; Wilson and McNaughton, 1994;
Lee and Wilson, 2002), neocortex (Qin et al., 1997; Hoffman and
McNaughton, 2002; Euston et al., 2007; Ji and Wilson, 2007), and
ventral striatum (Pennartz et al., 2004). These areas appear to
replay a specific aspect of a composite memory trace correspond-
ing to the information processed during the awake experience.
Spatial– contextual information may be reactivated in the hip-
pocampus as reactivation pertains to cells with neighboring place
fields in a given environment (Wilson and McNaughton, 1994;
Kudrimoti et al., 1999; Diba and Buzsáki, 2007). In contrast, the
ventral striatum predominantly reactivates motivational infor-
mation (Lansink et al., 2008). Neurons that first expressed a
firing-rate change associated with expecting or consuming a liq-
uid reward showed stronger reactivation than neurons not show-
ing a modulation.

Figure 2. Effect of disconnection lesions of the hippocampus (HPC) and nucleus accumbens shell on cue and spatial condition-
ing. A, Schematic representation of asymmetric, unilateral excitotoxic lesions of the hippocampus and shell. B, Schematic diagram
of one chamber of the Y-maze apparatus (only one of the three trays and CS lights are represented here). C, Acquisition of place-cue
retrieval following core, shell, disconnection lesions, or disconnection sham operations. The difference score is the number of
approaches to CS� minus the number of approaches to CS�. D, Conditioned place preference performance expressed as the
percentage of time spent in each chamber. Data are from Ito et al. (2008).
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If replay across hippocampus and ventral striatum contrib-
utes to consolidation of place–reward associations, the different
pieces of information belonging to the same event should be
reprocessed coherently to prevent formation of erroneous asso-
ciations with other events. Simultaneous recordings from hip-
pocampal and ventral striatal neuronal ensembles in freely
moving rats indeed demonstrated cross-structural reactivation of
combined spatial and motivational information (Lansink et al.,
2009). Spatial information carried by hippocampal cells is reac-
tivated preferentially in advance of motivational information
processed by ventral striatal neurons during postbehavioral rest
(Fig. 3). This preferential order (“hippocampus first, ventral stri-
atum second”) could not be explained from a similar preferred
order in the behavioral phase. This is the only direct evidence to
date of a temporally leading role of the hippocampus in cross-
structural replay. Cross-structural replay appears compressed by
a factor 10 compared with the behavioral time scale of neuronal
activation. Hence, several seconds of “real-time” behavioral seg-
ments containing joint place–reward information are brought
together in a time frame of hundreds of milliseconds during
sleep. Thus, in joint replay activity of hippocampal cells that are
directly or indirectly presynaptic to the ventral striatum advances
that in striatal cells in a time window allowing long-term synaptic
modifications to occur (Markram et al., 1997; Abbott and Nelson,
2000). This capture of spatial and motivational information in
narrow time windows may offer a suitable mechanism for storage
of place–reward associations.

Testing computational models of reward learning against
corticostriatal physiology
Theories of motivated behavior have drawn much inspiration
from the field of reinforcement learning (Sutton and Barto, 1998;
Schultz, 2000; Daw and Doya, 2006). Temporal-difference rein-
forcement learning (TDRL) models, which learn the values of
available actions in specific situations (states) to maximize re-
ward, need to track actual reward receipt, state value, and predic-
tion error. An influential view is that cortical areas provide a state
signal, DLS associates states with actions, prediction errors are
signaled by midbrain dopamine neurons, and ventral striatum
encodes state value (Mishkin et al., 1984; Hikosaka et al., 1989;
Houk et al., 1995; Schultz et al., 1997; O’Doherty et al., 2004). In
such an “actor/critic” arrangement, the ventral striatum is not
involved in on-line action selection, but rather serves to train
action values located elsewhere, a suggestion supported by a re-
cent lesion study in the rat (Atallah et al., 2007) and consistent
with value-related signals found in human fMRI studies (Knutson
and Cooper, 2005; Preuschoff et al., 2006) (but see Hare et al., 2008)
as well as monkey recording work (Schultz et al., 1992; Cromwell
and Schultz, 2003). In the rat literature, reports of reward-responsive
neurons in ventral striatum are abundant, but these have generally
not yet been related to value [but see Taha and Fields (2005) and Ito
and Doya (2009)].

While a “critic” role for the ventral striatum is theoretically
attractive, work in rats has long established that the ventral stri-
atum is more directly involved in action selection (Mogenson et
al., 1980). A wide range of pharmacological, lesion, and recording
studies broadly supports the view that the ventral striatum plays a
key role in mediating certain motivated actions, such as respond-
ing to cues in autoshaping and Pavlovian-instrumental transfer
(Ikemoto and Panksepp, 1999; Cardinal et al., 2002; Nicola,
2007). These and other behaviors, such as outcome-dependent,
deliberative decision making (Balleine and Dickinson, 1998) can-
not be accommodated in the basic actor/critic TDRL model

(Dayan, 2002). More powerful “model-based” approaches rely
instead on the representation and evaluation of action outcomes
before they are chosen (Daw et al., 2005; Niv et al., 2006; Johnson
et al., 2007). Signals related to action outcomes have been iden-
tified in orbitofrontal cortex and hippocampus (Schoenbaum

Figure 3. Schematic representation of spontaneous cross-structural replay of place and re-
ward information. A, As a rat runs along a track, hippocampal neurons (HC1–HC4) are activated
at specific locations (blue ellipses), whereas a ventral striatal neuron (VS1) is firing before and
after reward (R) reception (red ellipse, yellow dot). B, Spike patterns during three task episodes
plotted alongwithhippocampal local fieldpotentials(HCLFP).Duringposttrackrestperiods, replayof
firing patterns takes place on an �10 times accelerated time scale. Hippocampal neurons are reacti-
vated shortly before the ventral striatal neuron. During pretrack rest, firing patterns were dissimilar to
those during track running. See the study by Lansink et al. (2009) for further details.
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et al., 1998; Johnson and Redish, 2007;Ramus et al., 2007), and
lesions of these areas impair flexible decision making requiring such
nonlocal information (Morris, 2007; Murray et al., 2007). Both or-
bitofrontal cortex and hippocampus project to ventral striatum, sug-
gesting that the latter may be involved in on-the-fly, internal
evaluation (Dehaene and Changeux, 2000; Niv et al., 2006; Johnson
et al., 2007) of afferent outcome representations. Such a scheme
could reconcile experimental evidence for value representations in
the ventral striatum with its direct involvement in action selection
via a role for evaluation in such settings.

Is there any evidence for the activation of ventral striatal re-
ward signals during decision making? Building on earlier work
(Peoples et al., 2004; Roitman et al., 2004; German and Fields,
2007), van der Meer and Redish (2009a) showed that neurons in
rat ventral striatum that responded to reward tended to fire dur-
ing deliberative decision making as well. Because this effect dis-
appeared with repeated experience and was also apparent during
“reversals” at different points on the maze, it cannot be straight-
forwardly explained by a cue-based account. A similarly dynamic
reward signal was present in ventral striatal local field potentials:
80 Hz oscillations not only ramped up to reward receipt, but were
also increased at the high-cost choice point (van der Meer and
Redish, 2009b). Further work is needed to determine whether
these representations of reward during decision making are re-

lated to value, and how their timing relates
to cortical and hippocampal outcome sig-
nals. Thus, ventral striatal gamma oscilla-
tions may provide a mechanism through
which integration of action outcome and
reward information could take place.

Corticostriatal interactions in
habit learning
Components of the neocortical– basal
ganglia loops are essential for learned ac-
tions to become habitual, and abnormal
activity within these loops is implicated
in a range of clinical disorders related
to action compulsion (as in obsessive-
compulsive spectrum disorders and drug
addiction) and action disability (as in Par-
kinson’s disease and Huntington’s dis-
ease) (Graybiel, 2008).

Corticobasal ganglia pathways associ-
ated with the sensorimotor striatum are
thought to be necessary for the transition

of instrumental behavior into habits, a process suggested to in-
volve the “chunking” of complex action sequences into units that
are rapidly executable, fluid, and robust to changes in outcome
contingency (i.e., stimulus–response based) (Dickinson, 1985;
Kimura, 1995; Voorn et al., 2004; Poldrack et al., 2005; Yin and
Knowlton, 2006; Graybiel, 2008; Balleine et al., 2009; Belin et al.,
2009). Graybiel and colleagues have identified neuronal firing
patterns in the rat sensorimotor striatum that may be a signature
of activity related to this learning and chunking process (Jog et al.,
1999; Barnes et al., 2005). Tetrode recordings of MSNs were
made in the DLS as rats were trained and then overtrained on a
conditional T-maze task. Initially, the average activity of task-
related DLS neurons was distributed throughout the maze-
running period as rats explored and learned task contingencies.
As performance improved and reached asymptote, DLS ensem-
ble spike activity was restructured and continued to evolve during
overtraining: the firing of task-related neurons became predom-
inant at the beginning and end of the maze runs and lessened
during midrun (relating perhaps to a decrease in firing to the
action sequence itself) (Tang et al., 2007), as though the behavior
were becoming chunked. In parallel, there was a decline in the
average firing of neurons not exhibiting phasic task-related re-
sponses. These patterns have been suggested as neural correlates
of the explore– exploit behavior of the animals undergoing pro-
cedural learning and habit formation. Subsequent extinction of
the overtrained behavior was slow, and there was a striking return
of firing to resemble patterns recorded during initial learning.
Reacquisition rapidly reinstated the task- and non-task-related
activity patterns recorded during overtraining. These results in-
dicate that habit formation and modification do not involve
turning on and off a striatal “habit system,” but rather a dynamic
repatterning of neural activity (Barnes et al., 2005).

Other regions of the brain have also been implicated in medi-
ating action chunking or habit formation, including cerebellar
circuits, sensorimotor and limbic cortices, and the substantia
nigra (Hikosaka et al., 2002; Aldridge et al., 2004; Faure et al.,
2005; Poldrack et al., 2005; Graybiel, 2008; Doyon et al., 2009).
The ventral part of medial PFC (termed infralimbic in the rat; IL)
has been shown in lesion/microinjection studies to be required
for stimulus–response habit formation and maintenance, and
neurons there to fire in relation to learned actions or associative

Figure 4. Schematic diagram of parallel cortical– basal ganglia loops contributing to habit formation and maintenance, involv-
ing the ventromedial prefrontal cortex (IL) within the limbic– cognitive loop and DLS within the sensorimotor loop. The pseudo-
color plot depicts task-related neuronal activity recorded in DLS during training on a T-maze task (modified from Barnes et al.,
2005). With overtraining and habit formation, firing patterns develop to accentuate the task start and end (red � greater
normalized firing frequency).

Figure 5. Striatal microcircuitry in the context of cortical– basal ganglia macrocircuits. Within
striatum (STR), FSIs (red) receive complex combinations of cortical inputs and participate in local
information processing by influencing nearby MSNs (blue). FSIs also receive a specific feedback input
fromglobuspallidus(GP)thatmayserveasamorebroadlydistributedcontrolsignal(Gageetal.,2008).
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signals (Coutureau and Killcross, 2003; Killcross and Coutureau,
2003; Mulder et al., 2003; Peters et al., 2005; Hitchcott et al.,
2007). It is not clear how this IL region interacts with the DLS in
promoting habitual behavior, as they are thought not to be di-
rectly connected, nor whether the IL and DLS serve redundant,
parallel, or complementary functions during habit learning. One
possibility currently being examined is that limbic– cognitive
corticostriatal pathways (involving IL) support repetition of
learned behavior or override cognitive goal-directed signals,
while sensorimotor pathways (involving DLS) directly represent
action chunks and stimulus–response rules (Fig. 4) (Coutureau
and Killcross, 2003; Graybiel, 2008; Balleine et al., 2009).

Role of interneurons in transforming cortical input to
striatal output
The striatum receives inputs from a very broad range of cortical
areas, but has far fewer neurons. How are the rich patterns of
cortical information transformed as they are compressed and
manipulated within striatal microcircuits? While some features
of cortical activity patterns are preserved during intrastriatal cal-
culations, the resulting representations by single striatal output
neurons appear to be quite different. For example, many medial/
ventral striatal neurons show strong entrainment to the hip-
pocampal theta rhythm (Berke et al., 2004). These cells are likely
components of a PFC– hippocampal–striatal macrocircuit im-
portant for the use of contextual information in decision making;
participation in theta rhythms may regulate communication
within this macrocircuit. However, even theta-entrained medial
striatal cells do not show the spatially linked firing rate change of
hippocampal “place cells”; rather, their firing rate is modulated
by nonspatial behavioral sequences (Berke et al., 2009).

One approach to deconstructing information processing
within striatal microcircuits involves examining the activity pat-
terns of distinct neuronal components. One such component, the
FSIs, comprises only �1% of striatal neurons (Luk and Sadikot,
2001). However, these cells have been argued to have a critical
role filtering out unwanted actions, and postmortem studies have
found a deficit in striatal FSIs in Tourette syndrome (Kalanithi et
al., 2005). Several groups studied putative FSIs in awake, behav-
ing animals, identifying them on the basis of characteristic brief
waveforms, tonic activity, and high-frequency discharges (Berke
et al., 2004; Berke, 2008; Gage et al., 2008; Schmitzer-Torbert and
Redish, 2008). In rats, FSIs show complex temporal sequences of
activity during choice tasks, and do not normally act as a coordi-
nated cell population with closely linked firing rates, even within
striatal microregions (Berke, 2008). Thus FSIs are likely involved
in the details of intrastriatal calculations, rather than providing a
relatively uniform control signal (Fig. 5). This was surprising, not
least because adjoining FSIs are electrically coupled together by
dendritic gap junctions (e.g., Koós and Tepper, 1999; Fukuda,
2009)—although recent simulations suggest that these gap junc-
tions do not normally synchronize the striatal FSI network
(Hjorth et al., 2009). While individual FSIs can show phase lock-
ing to a range of cortical–striatal rhythms, including �80 Hz LFP
oscillations provoked by rewards (Berke, 2005, 2009), such en-
trainment also appears to reflect particular combinations of cor-
tical inputs rather than a general feature of striatal organization.

Despite such idiosyncratic firing, there are some situations in
which FSIs do show more coordinated activity. Gage et al. (2008)
recorded from multiple basal ganglia and cortical regions simul-
taneously in a striatum-dependent choice task. Rats had to main-
tain their position in a nose-poke hole, listen for an instruction
tone, hold on for a further “go” signal, then make a rapid left or

right movement to receive reward. As they initiated their chosen
movement, there was a brief pulse of enhanced FSI activity, that
was not seen in other neuronal populations or in conjunction
with other movements. This FSI pulse may occur when there is a
transient need to suppress alternative highly practiced movements,
an interesting possibility in light of the Tourette syndrome findings.
FSIs receive a specific but poorly understood backprojection from
the globus pallidus (Fig. 5) (Bevan et al., 1998), and the population
firing rates of FSIs and pallidal cells were markedly anticorre-
lated. Thus it appears that FSI are receiving unique combina-
tions of inputs from cortex that may influence the fine timing
of MSN spiking, while receiving and broadcasting a simpler,
more coordinated feedback signal from globus pallidus.

Summary
Altogether, this mini-symposium will highlight a few of the key
advances in research on corticostriatal circuits. Whereas these
circuits were previously viewed as primarily operating in parallel,
recent findings emphasize the interactions between corticobasal
ganglia pathways via several modes of cross talk. The striatum
does not appear to operate merely as an “active filter” that con-
verts cortical cognitive, motor, or emotional information into
actions, but is deeply involved in learning and memory processes
itself, as illustrated by contextual conditioning paradigms, joint
hippocampal–ventral striatal replay during sleep and repattern-
ing of neural activity in DLS during overtraining. Activity of fast-
spiking interneurons supports the generation of the striatum’s
own, differentiated dynamics, which is nonetheless coordinated
with that in the cortex. Computationally, the dorsal and ventral
striatum have been cast into an actor– critic architecture, but
current systems neurophysiology suggests a more complicated
scheme that emphasizes action value representations.
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