A. David Redish

---

 

A. David Redish, Ph.D.

Professor
Department of Neuroscience

University of Minnesota

 

Email: redish AT umn.edu

 

Address: 6-145 Jackson Hall / 321 Church St. SE / Minneapolis MN 55455

Phone:  (612) 626-3738

 

Office:  MCB 4-142

---

 

Redish_TheMind_2New book published by Oxford University Press:

The Mind within the Brain: How we make decisions and how those decisions go wrong

 

 

 

 

---

Now announcing MClust-4.0.  Free, open-source spike-sorting.

 

 

---

Studying the dynamics of brains and behavior

My lab has two main research objectives. The first is to further our understanding of how multiple learning and memory systems interact to produce behavior. The second is to apply the theories that arise from the neurophysiology and computational modeling to explain dysfunctional and broken behavioral-control systems, as occurs in addiction. To meet these objectives, the lab combines multi-electrode neural ensemble recordings from awake, behaving animals with complex computational analysis techniques that enable measurement of neural dynamics at very fast time scales (e.g. msec).  The lab also builds computational models at all scales (single-neuron compartmental models to large-scale systemic models to abstract algorithmic models) to connect the multiple levels of neurophysiology and behavior. Modern neuroscience sees the brain as an information-processing device. Understanding how the brain processes information requires understanding the representations used by the network of neurons that compose the brain. However, representations in the brain are distributed: each cell carries only a small portion of the total information. I am interested in questions of how neural structures work together to create systems able to accomplish behavioral tasks.

More specifically, we have ongoing projects in

-          the dynamics of neural ensemble activity in multiple systems (hippocampus, dorsal, ventral striatum, orbitofrontal cortex) during learning,

-          the interaction between multiple learning systems (such as hippocampus and striatum) in the ability to accomplish complex tasks,

-          computational models of addiction and other disorders.

 

 

---