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How Could We Get  Nosology 
from Computation?

Christoph Mathys

Abstract

Psychiatry has found it diffi cult to develop a  nosology that allows for the targeted 
treatment of disorders of the mind. The historic inability of the fi eld to agree on a no-
sology based on clinical experience has led it to retreat to diagnoses based on symptom 
checklists as laid down in the Diagnostic and Statistical Manual of Mental Disorders 
(DSM). While this has increased the reliability of diagnoses, hopes that biological 
fi ndings would lead to the emergence of mechanistically founded diagnostic entities 
have not been realized despite considerable advances in neurobiology. This article sets 
out a possible way forward: harnessing  systems theory to provide the conceptual con-
straints needed to link clinical phenomena with neurobiology. This approach builds on 
the insight that the mind is a system which, to regulate its environment, needs to have 
a model of that environment and needs to update predictions about it using the rules 
of  inductive logic (i.e., Bayesian inference). The application of the rules of inductive 
logic is called  Bayesian inference because  Bayes’s theorem is the most important con-
sequence of these rules, prescribing how beliefs need to be updated in response to new 
information. Importantly, while Bayesian inference is by defi nition consistent with the 
rules of inductive logic, it can still be false (to the point of being pathological), in the 
sense of leading to false predictions, because the model underlying the inference is 
inadequate. Further, it can be shown that Bayesian inference can be reduced to updat-
ing beliefs based on  precision-weighted prediction errors, where a prediction error 
is the difference between actual and predicted input, and precision is the confi dence 
associated with the input prediction. Precision weighting of  prediction errors entails 
that a given discrepancy between outcome and prediction means more, and leads to 
greater  belief updates, the more confi dently the prediction was made. This provides 
a conceptual framework linking clinical experience with the pathophysiology under-
lying disorders of the mind. Limitations of this approach are discussed and ways to 
work around them illustrated with examples. Finally, initial steps and possible future 
directions toward a nosology based on failures of precision weighting are discussed.
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Introduction

The State of Psychiatric Nosology

Before DSM-III, the state of  psychiatric nosology was widely seen as unsat-
isfactory. The main point of criticism was the lack of diagnostic reliability 
(e.g., Robins and Guze 1970). Given a dearth of biological or conceptual con-
straints on nosological speculation, clinical experience had to serve as the main 
guide in developing a nosology of the mind. Clinical experience came—and 
comes—in two forms: (a) each clinical practitioner has his or her own imme-
diate experience with patients, but (b) he or she is also acculturated into the 
thinking of the fi eld, whose collective clinical experience has been condensed 
into nosological categories that are passed on a s a traditional body of knowl-
edge. While neither of these sources of nosological insight is to be scoffed 
at, it is not surprising that, owing to the diversity of individual experience 
and nosological traditions, the  inter-rater reliability of  psychiatric diagnoses 
was low.  DSM-III was a conscious effort to address this problem by shifting 
the focus of diagnosis to lists of easily observable or reportable symptoms. 
However, despite decades of efforts, and despite an increase in the reliability 
of diagnoses (Clarke et al. 2013; Freedman et al. 2013; Narrow et al. 2013; 
Regier et al. 2013), the state of psychiatric nosology is still widely held to be 
dire (Craddock and Owen 2010; Kapur et al. 2012). Critics focus mostly on 
the missing biological foundation of the existing diagnostic categories (Hyman 
2012; Insel 2012; Owen 2014), and they express hope that directing research 
efforts toward the biological mechanisms underlying psychiatric disorders will 
enable a new,  mechanistically grounded nosology and uncover new targets 
for pharmacological treatment. In mitigation, one might say that the current 
system produces reliable categories that have been useful for clinical care up 
to a point, but that to make further nosological advances which can help guide 
neurobiological research, improve predictions regarding what treatments will 
be most effi cacious, and ultimately identify new treatment targets, computa-
tional approaches will be essential.

Constraints on Nosology from Systems Theory

There is relatively little appreciation for the fact that in addition to constraints 
on psychiatric nosology rooted in clinical experience and human biology, 
there are also constraints originating in  systems theory. While systems theory 
is complicated, these constraints are simple, which makes them an important 
guide to the interpretation of the clinical and biological patterns observed in 
disorders of the mind. My aim here is to explain these constraints, their impli-
cations, and their simplicity.

The main systems theoretic constraint, from which all others follow, is the 
 good regulator theorem (Conant and Ashby 1970): every good regulator of a 
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system needs to be a model of that system. This forms the basis of the reason-
ing in this article. Setting out from this theorem, I argue that any mind striving 
successfully to preserve its existence fi ts the description of a good regulator 
and therefore needs to be, in a well-defi ned sense, a model of its environment. 
To go about regulating its environment, the model (i.e., the mind) performs 
inference, learns, and selects actions in line with the laws of probability, or 
in other words, according to  Bayesian inference (Jaynes 2003). At the heart 
of Bayesian inference is  Bayes’s theorem (Bayes and Price 1763; Laplace 
1774). It prescribes the only way that, given a model, beliefs (i.e., probability 
distributions) can be updated in response to new information without violat-
ing the laws of probability. It is important to note that the word “belief” is 
used here as shorthand for “probability distribution of a state or parameter 
of the mind’s model of its environment.” Beliefs need not be conscious or 
even consciously accessible. In most cases, including almost all interesting 
ones, the equation governing probabilistic belief updates given by Bayes’s 
theorem has no closed-form solution, meaning that it is mathematically im-
possible to write down an equation giving the solution. For example, the very 
simple equation 2x = x + 1 cannot be solved for x in closed form (i.e., it cannot 
algebraically be transformed into an equivalent equation of the form x = …). 
However, solutions exist (x = 0 and x = 1), but short of guessing them, the lack 
of a closed-form solution forces us to fi nd them by using approximations, 
which always involve assumptions. Importantly, approximations do not di-
minish the complexity and richness of the models being used to perform infer-
ence. To the contrary, approximate methods allow us to perform inference us-
ing much richer models than would be the case if we were restricted to cases 
where closed-form inference is possible. I will show that if these assumptions 
underlying approximate inference are chosen in the right way, Bayesian infer-
ence can be reduced to the application of simple update rules that all have one 
canonical form:  precision-weighted  prediction errors. A  prediction error is the 
difference between actual and predicted input, and precision is the confi dence 
associated with the input prediction. Precision weighting of prediction errors 
entails that a given discrepancy between outcome and prediction means more, 
and leads to greater belief updates, the more confi dently the prediction was 
made. If the mind is a model of its environment and, in order to be a good 
regulator, has to take recourse to Bayesian inference, which is implemented 
as  belief updating by precision weighting of prediction error, then disorders 
of the mind can be described as  false inference based on broken precision 
weighting or prediction error processing. This gives us an additional set of 
constraints within which to develop a scientifi c psychiatric nosology. To be 
complete, any description of a disorder in such a nosology would have to ad-
dress three questions: Is this concept of a disorder able to explain the patterns 
seen in clinical practice? How do these patterns emerge from false inference 
in terms of precision-weighted prediction errors? In what way is the biologi-
cal machinery underlying belief updating broken? These questions illustrate 
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that, instead of complicating the picture, the additional constraints from sys-
tems theory simplify the task of relating clinical manifestations of disorders to 
underlying biological mechanisms because they serve as a conceptual bridge 
between them.

In what follows, I will sketch a tentative construction plan for this concep-
tual bridge. Its body will be formed by an elaboration of the preliminary sys-
tems theoretic reasoning given above, while the bridge ends will be formed by 
recent attempts to tie  false inference to psychiatric symptomatology (Edwards 
et al. 2012; Adams et al. 2013; Lawson et al. 2014; Quattrocki and Friston 
2014) and to pin down the neurobiology of belief updating (Bastos et al. 2012; 
Shipp et al. 2013).

Theory

The Good Regulator Theorem, Generative Models, and 
Inductive Reasoning

In systems theoretic terms, the mind of an organism is a system which, using 
its brain and other body parts, strives to survive by regulating a second system, 
its environment. This makes it subject to the good regulator theorem, as stated 
in the title of Conant and Ashby’s article: “Every good regulator of a system 
must be a model of that system” (Conant and Ashby 1970:89). The authors 
explain what this means in their abstract:

The design of a complex regulator often includes the making of a model of the 
system to be regulated. The making of such a model has hitherto been regarded 
as optional, as merely one of many possible ways.

They go on to construct a theorem which shows, under very broad conditions, 
that any regulator which is maximally both successful and simple must be 
isomorphic (i.e., of the same structure and equipped with the same properties) 
with the system being regulated. (The exact assumptions are given.) Making a 
model is thus necessary. The theorem has the interesting corollary that the liv-
ing brain, so far as it is to be successful and effi cient as a regulator for survival, 
must proceed, in learning, by forming a model (or models) of its environment.

This model of the brain’s (or rather mind’s) environment is a  generative 
model of its sensory input, u; that is, a model of how the environment gener-
ates u. For example, u could be a slight crackling noise somebody hears while 
speaking on the telephone. Generative models consist of two parts. The fi rst, 
called the likelihood, is the probability p u x ,ϑ( ) of input u given state x of the 
environment and parameter ϑ. The difference between state and parameter is 
simply that the state changes with time while the parameter is constant. In 
this example, there are many possible causes that could have generated this 
crackling noise, some of them more plausible than others. One possible cause 
is that the telephone has been bugged and the crackling is caused by a listening 
device. The state x would then be that of the telephone, bugged or not bugged, 
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while the parameter ϑ would govern how exactly the telephone being bugged 
(or not) translates into the crackling noise u. Note that both state and parameter 
are sets that can have many elements. The second part of the model is called 
the  prior distribution, or simply prior. This is the probability p x,ϑ( ) of state 
and parameter in the absence (usually before, hence prior) of input u. In a 
clinical setting, different patients can attach very different prior probabilities to 
telephones being bugged, to bugging leading to crackling, etc. Such a (possibly 
largely unconscious) view of how the environment generates sensory input is 
formally described by the joint distribution p u x p u x p x, , , ,ϑ ϑ ϑ( )= ( ) ( )|  of in-
put, state, and parameter; that is, by the product of likelihood and prior, which 
constitutes a full generative model.

Given a generative model and input u, the mind can then, in principle, cal-
culate the posterior distribution of state and parameter by the application of 
 Bayes’s theorem:

p x u
p u x p x

p u x p x dx d
, |

| , ,
| ', ' ', ' ' '

ϑ
ϑ ϑ

ϑ ϑ ϑ
( )=

( ) ( )
∫ ( ) ( )

. (7.1) 

This is the probability distribution of state and parameter given the input u, and 
the transition from p x,ϑ( ) to p x u,ϑ|( ) in response to u is a belief update in the 
sense that probability distributions constitute beliefs. Crucially, the update as 
given by Equation 7.1 is the only way to update the belief on x and ϑ that does 
not violate elementary requirements of  inductive reasoning (Cox 1946; Jaynes 
2003). Inductive reasoning is reasoning about uncertain quantities, as opposed 
to deductive reasoning, which deals with certain quantities. For example, if 
we know that every cat is an animal, we can deduce with certainty that A (an 
animal from the information) is a cat. However, if we at fi rst know nothing 
about A and are then told it is an animal, this merely increases the probability 
that A is a cat without making it certain. In other words, A being a cat becomes 
more plausible. This increase and decrease in the plausibility of statements as 
a result of new information is what inductive reasoning addresses. Cox (1946) 
showed that the only rational way to update beliefs about the plausibility of 
statements is by applying the known rules of  probability theory (e.g., Bayes’s 
theorem; cf. Flagel et al., this volume). He proved this by showing that the 
rules of probability can be derived from three basic desiderata concerning in-
ductive reasoning:

1. The plausibility of a statement can be represented by a real number 
(and the plausibilities of different statements compared this way).

2. Information that makes a statement more plausible increases the num-
ber associated with it.

3. Different ways to calculate the same plausibility should always give 
the same result.

From “Computational Psychiatry: New Perspectives on Mental Illness,”  
A. David Redish and Joshua A. Gordon, eds. 2016. Strüngmann Forum Reports, vol. 20, 

series ed. J. Lupp. Cambridge, MA: MIT Press. ISBN 978-0-262-03542-2.



126 C. Mathys 

This means that reasoning incompatible with the rules of probability implies a 
violation of Cox’s three desiderata (i.e., of common sense). This may seem like 
a restrictive constraint, but in reality it is anything but. According to the com-
plete class theorem (Robert 2007:411), under mild conditions, there is always a 
prior accounting for any given combination of posterior, likelihood, and input. 
This means that no conclusion that could be drawn from a given observation 
is impossible in the sense of violating the rules of probability. Bayesian belief 
updating in no way constrains the inferences the mind can make about its envi-
ronment. However, it constrains the way the mind is described. A full account 
of a belief update has only been given once the generative model it is based 
upon has been fully described; that is, once a likelihood and a prior have been 
specifi ed. While the good regulator theorem states that the mind will have to 
be a model of its environment,  Bayes’s theorem provides the framework within 
which to describe belief updating in accordance with the rules of  inductive 
reasoning but without constraining its substance.

In what follows, I will take a fairly didactic but technical walk through some 
of the formal aspects of Bayesian inference in the brain. In other words, we 
will look at the mathematical structure of how beliefs are encoded and updated 
and what this tells us about neuronal processes. Although this treatment is a bit 
mathematical, the end point of the analysis will be something that is central to 
a theoretical and neurobiologically grounded understanding of false inference 
in psychiatry. This is the central role of gain control or neuromodulation in the 
brain in weighting neuronal messages that are passed from one part of the brain 
to the other. Neuromodulatory mechanisms are invariably implicated in both 
the pathophysiology and pharmacology of psychiatric conditions (e.g., impli-
cating classical neuromodulators like  dopamine and  serotonin). Furthermore, 
this form of gain control implicates fast spiking inhibitory interneurons and 
synchronized neuronal activity of the sort that can be measured noninvasively 
using EEG and, potentially, correlated with symptoms of  false inference, and 
response to treatment.

Sequential Updating of a Time Series Mean

Before returning to Bayesian belief updating, let us fi rst look at ways to update 
the mean of a series of sequentially observed numbers. This might at fi rst seem 
a distraction, but will turn out to be fundamental.

Given N observations u u uN1 2, , ,…{ }, it is simple to calculate their mean  ̅un:

u
N

uN
n

N

n=
=
∑1

1

. (7.2) 

However, if u u uN1 2, , ,…{ } is a time series, keeping track of the mean as new 
observations arise requires all observations, if the calculation is to be made 
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according to Equation 7.2. Fortunately, there is a less memory-intensive 
way to achieve the same end. The following update equation can be applied 
sequentially:

u u u
n

un n n n++ = +
+

−( )11
1

1
. (7.3) 

Starting with  u̅1 = u1 and applying Equation 7.3 to all observations until  u̅n is 
reached, we get:

u u u
N
uN N N N= + −( )− −11

1 , (7.4) 

which gives the same result as Equation 7.2.
The sequential updating of Equation 7.3 has the advantage that it requires 

remembering only two numbers: the previous mean  u̅n and the number of pre-
vious observations n.

Since the update rule of Equation 7.3 is of fundamental importance, it is 
worth looking at its components. There is the previous mean  u̅n, representing 
the state of belief before the new observation un+1. Since the current state of 
belief corresponds to the best possible prediction for any new observation, the 
difference un+1–  u̅n between the new observation and the current belief is a 
 prediction error. This means that the update has the form:

new mean old mean weight prediction error,= + ⋅ (7.5) 

where the weight of the prediction error depends on how many previous obser-
vations there have been. The more observations that have already been made, 
the less a new observation will be able to move the mean.

Bayesian Belief Updating

A simple example of Bayesian belief updating is the case where the likelihood 
p u u| ;ϑ ϑ πε( )= ( )−N 1,  is  Gaussian (i.e., follows a normal distribution) with 
known precision (i.e., inverse variance) πε and the prior p xϑ μ πϑ ϑ( )= ( )−N ; , 1  
is also Gaussian with mean μϑ and precision πϑ. There is no time-varying 
state x here, the parameter ϑ is a simple scalar, and the prior hyperparameter 
{μϑ, πϑ} (i.e., the parameter governing the  prior distribution of the parame-
ter ) is taken to be known. The posterior now also turns out to be Gaussian: 
p u x u uϑ μ πϑ ϑ| ; | |( )= ( )−N 1, , where the updated precision and mean are: 

π π π

μ μ
π
π

μ

ϑ ϑ ε

ϑ ϑ
ε

ϑ
ϑ

|
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,

.

u

u
u

u
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= + −( ) (7.6) 
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Remarkably, the update of the mean has the same structure (i.e., that of Equation 
7.5) as the update of the mean of Equation 7.3. This similarity becomes even 
more obvious if we rearrange Equation 7.6 to read:

μ μ
π π

μϑ ϑ
ϑ ε

ϑ| /
.u u= +

+
−( )1

1 (7.7) 

This shows the correspondence between n, the number of previous observa-
tions in Equation 7.3, and the relative precision πϑ ⁄πε of the prior with respect 
to the likelihood. In both cases, this represents the weight of previous evidence 
relative to new information. In what follows, this relative weight will be called 
v to emphasize that it can be any positive number, whereas n was a natural 
number.

This update structure is not restricted to the simple Gaussian example used 
above. All  generative models we are ever likely to need to describe the brain 
(or equivalently, all generative models the brain is ever likely to need to de-
scribe its environment) will only involve exponential families of likelihoods 
with conjugate priors. These are families of likelihood distributions that can all 
be written in one canonical form, which is a generic representation of all fami-
lies. A conjugate prior is one that gives rise to a posterior of the same family 
when combined with a given likelihood. For example, the  Gaussian distribu-
tion is an exponential family, and it is its own conjugate prior. As we saw in 
Equation 7.6, this means that a Gaussian likelihood with a Gaussian prior leads 
to a Gaussian posterior. In addition to the Gaussian distribution, this includes 
the beta, gamma, binomial, Bernoulli, multinomial, categorical, Dirichlet, 
Wishart, Gaussian-gamma, log-Gaussian, multivariate Gaussian, Poisson, and 
exponential distributions, and many others. For all of these distributions, the 
Bayesian belief update has the following form:

′ = +
+

( )−( )ξ ξ
ν

ξ
1

1
T u , (7.8) 

where T(u) is a function of the input u called the suffi cient statistic, ξ is the hy-
perparameter governing the prior, and ξʹ is the updated hyperparameter, which 
governs the posterior.

In the case of exponential families with conjugate priors, this means that 
 Bayesian inference reduces to tracking the mean of the suffi cient statistics of 
observations. The weight of the prior in this update is determined by the posi-
tive number v, which can be interpreted as the number of observations pre-
ceding u, whose weight is 1. In light of Equation 7.7, v is the precision of the 
prior relative to that of the observation. Bayesian belief updating thus takes 
place by  precision-weighting  prediction errors on the suffi cient statistics of 
observations.

To conclude this discussion, I will give a few examples of a more techni-
cal nature. (Less technically inclined readers can skip this without missing 
anything essential.) In the case of a Gaussian model with unknown mean and 
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known precision (as in Equation 7.6), T(u) = u; if both mean and precision are 
unknown, T (u) = (u, u2)T. This generalizes to T (u) = (u, uuT)T for a multivari-
ate Gaussian. In the case of a gamma model, T(u) = (ln u,u)T. In the beta case, 
T(u) = (ln u, ln(1–u))T, and in the categorical case, T(u) = u. Between these 
models, situations are addressed where observations are on an unbounded con-
tinuum, on a continuum bounded on one side or on both sides, all multivariate 
generalizations of these, and situations where observations are categorical. In 
all of these models, and in many more cases, Bayesian inference reduces to 
Equation 7.8 (i.e., to mean updating).

Discussion

The Bridge Ends: Clinical Phenomena and Neurobiology

If the mind is necessarily a model of the environment it regulates, and if using 
a model to regulate the environment entails updating beliefs according to the 
laws of probability (i.e., according to the rules of Bayesian inference), and if 
Bayesian inference entails precision weighting of prediction errors, then disor-
ders of the mind will have to be interpretable in terms of precision weighting of 
prediction errors. Further, if the brain is the organ of the mind, then the brain’s 
physiology will also have to be interpretable in terms of precision weighting 
of prediction errors. This is how  systems theory can serve as a bridge between 
clinical manifestations of disorders of the mind and the disordered biological 
mechanisms underlying them, connecting them in a way that allows us to make 
sense of both.

Turning fi rst to the side of clinical manifestations, there have been many 
recent attempts to understand disorders of the mind in terms of precision 
weighting of prediction errors. Relating to psychosis, Adams et al. (2013) give 
a broad overview and explain many of the manifestations of  psychosis, such 
as  hallucinations,  delusions, catatonia, and  sensory attenuation defi cits, as the 
result of aberrant precision weighting of exteroceptive sensory input. For ex-
ample, patients with  schizophrenia show abnormalities in  smooth pursuit eye 
movements (Thaker et al. 1999). When following a dot as it moves smoothly 
back and forth, right to left, they are less able to predict where it will reappear 
after it has been occluded by a vertical bar for a short while. When the dot dis-
appears, patients slow down their eye movement more than healthy controls, 
forcing them to accelerate more to catch up with the dot once it reappears. 
Conversely, when the dot makes unexpected jerky movements, patients with 
schizophrenia are better able to follow it than healthy controls (Hong et al. 
2005). Aberrant precision weighting of prediction errors can explain this ap-
parent paradox. The observed effects are predicted by models where healthy 
controls rely more on top-down predictions from an internal model of dot mo-
tion to follow the dot, while patients rely more on the immediate bottom-up 
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input. This relative disregard by healthy controls of sensory input in favor of 
model-based predictions is called sensory attenuation, and the patients’ be-
havior is explained by a failure of  sensory attenuation. Specifi cally, when the 
precision weight on the prediction error regarding sensory input is high rela-
tive to that regarding the model-based prediction of dot position, then the eye 
will remain as if glued to the stimulus, enabling quick reactions to unexpected 
jerks, but losing its bearings whenever the dot disappears.  Failure of sensory 
attenuation can also explain other abnormalities in patients with  schizophrenia, 
for example resistance to the hollow-mask illusion and to the force-matching 
illusion. Furthermore, aberrant precision weighting leading to a failure of sen-
sory attenuation can explain the emergence of  delusions and  hallucinations (cf. 
Adams et al. 2013). This is because action (e.g., moving a hand or an eyeball) 
is impossible without sensory attenuation. When confronted with prediction 
errors, a biological agent existing under the constraints of the  good regulator 
theorem (i.e., trying to make good predictions) has two general ways to reduce 
them: it can either update its beliefs or act to change the environment so that 
sensory input matches predictions. For example, if we feel cold outside, we 
can go inside, thereby regulating our environment to conform to a temperature 
range that evolution has hardwired us to fi nd pleasant (i.e., that minimizes 
prediction error with respect to an unconscious model we have of how our en-
vironment will be) because it makes our survival and reproduction most likely. 
In this example, simply updating our beliefs about which kind of environment 
we will encounter would lead us to stay out in the cold, which would make 
our reproductive success less likely. However, starting to walk inside is also 
associated with prediction errors. If I have a correct proprioceptive model of 
 myself standing still, then the way to minimize  prediction errors about that is to 
keep standing still. For me to act, I need to attenuate proprioceptive prediction 
errors so that the prediction error about myself being in a cold environment 
can become dominant and trigger the action of going inside. If I am unable to 
attenuate my proprioception, I will either become catatonic or I will have to try 
to override the power of my proprioceptive prediction errors by ascribing my 
own intentions and predictions about sensory input to external forces. In other 
words, I will develop delusions or hallucinations (for details of these mecha-
nisms, see Adams et al. 2013; Brown et al. 2013).

A similar line of reasoning is applied by Lawson et al. (2014) and Quattrocki 
and Friston (2014) to the interoceptive domain, which allows them to describe 
many of the symptoms of  autism as a consequence of aberrant precision 
weighting. Edwards et al. (2012) are concerned with  hysteria (i.e., function-
al motor and sensory symptoms, sometimes described as “psychogenic” or 
“medically unexplained”). They use the precision-weighting framework in an 
effort to introduce more rigor (more precision, one might say) into the discus-
sion of a disorder whose mention has been all but banned, yet has stubbornly 
refused to go away.
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On the neurobiological side of the conceptual bridge, formal models of a 
hierarchical, precision-weighted message passing in the brain have been devel-
oped (Friston 2008; Bastos et al. 2012; Shipp et al. 2013). These efforts build 
on work dating back to Helmholtz (1860/1962), who was the fi rst to propose 
that the brain is a predictive machine that becomes active in response to input 
only insofar as the input is unexpected. This concept of the brain is theoreti-
cally reinforced by the  good regulator theorem, which prescribes the presence 
of a model, and it underlies the  Bayesian brain hypothesis (Dayan et al. 1995), 
which postulates that the brain uses Bayesian inference to make the predictions 
required in the Helmholtzian view. Neurobiologically, the Bayesian brain is 
taken to be implemented by  predictive coding (Rao and Ballard 1999; Friston 
2005, 2008), which postulates that bottom-up prediction errors and top-
down predictions are processed in the cortical neuronal hierarchy by a mes-
sage passing between different cortical layers at different hierarchical levels. 
Specifi cally, according to Bastos et al. (2012), there is a canonical cortical mi-
crocircuit (cf. Douglas and Martin 1991; Haeusler and Maass 2007) which re-
ceives forward connections into cortical layer 4, conveying precision-weighted 
prediction errors from lower levels of a message-passing hierarchy embodied 
in the hierarchical neuronal anatomy of the brain (Figure 7.1). These prediction 
errors are used to adjust predictions at the level in question and sent backward 
(i.e., down the hierarchy) from the deep cortical layers. In the superfi cial lay-
ers, backward connections from higher areas are received and compared to 
predictions. The resulting prediction errors are precision weighted and passed 
forward (i.e., up the hierarchy), where the same information processing occurs 
in a higher region.

Limitations

The perspective laid out here has its limitations. We pay a price for reducing 
Bayesian inference to the tracking of suffi cient statistics by foregoing the use 
of (a) any likelihoods that are not exponential families and (b) any but con-
jugate priors. These restrictions, however, are much milder than they might 
appear at fi rst sight.

I address the fi rst limitation by looking at an example by Daunizeau et al. 
(2010), where a likelihood from an exponential family clearly will not do. This 
likelihood needs to describe the probability of sensory, in this case retinal, 
input where the object presented in a black-and-white image is a house or a 
face. Applying principal component analysis to their sixteen images (eight of 
each kind), Daunizeau et al. (2010) recover two clusters representing houses 
and faces which can adequately be described by a pair of two-dimensional 
 Gaussian distributions in the fi rst two principal components (Figure 7.2). While 
this mixture is a simple and adequate likelihood for the situation at hand, it is 
not from an exponential family, which means that at fi rst sight, belief updates 
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based on this model cannot be formulated as precision-weighted prediction er-
rors. There is a way around this, however. The key is to formulate the problem 
hierarchically, with a prior on the probability of houses and faces, respectively. 
This allowed Daunizeau et al. (2010) to use  variational Bayesian methods1 to 
calculate  belief updates by separating the levels of the hierarchy using a mean 
fi eld approximation. Using a mean fi eld approximation in this context means 

1 Briefl y, variational Bayes is a method of model estimation that uses variational calculus to fi nd 
the posterior distribution of parameters by maximizing the model evidence instead of calculat-
ing the posterior directly (these terms are explained in Flagel et al., this volume).

Canonical microcircuit for predictive coding
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Figure 7.1   A proposed canonical microcircuit for  predictive coding (reproduced with 
permission from Bastos et al. 2012). This is a schematic representation of a cortical 
column with supragranular layers at the top, infragranular layers at the bottom, and 
granular layers in the middle. Pink: prediction error populations. Red: inhibitory con-
nections. Black: excitatory connections. Predictions (μ ̃) are encoded in supragranular 
excitatory and inhibitory interneurons and are passed to infragranular pyramidal cells. 
 Prediction errors (ξ) enter granular layers from regions situated lower in the hierarchy. 
Prediction errors that are passed on to the next higher hierarchical level are computed 
in supragranular pyramidal cells. Crucially, they are weighted by the precision (Π) of 
the prediction (g ̃) received from the higher level.
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optimizing the parameters by iterating through separate subsets of them while 
the distributions of those not currently being optimized are assumed known (for 
details, see Friston et al. 2007). Building on this, we were later able to show 
that the belief updates for this model—and much more complicated ones—can 
be reduced to precision-weighted prediction errors (Mathys et al. 2011). The 
principles that we used are entirely general and have since been applied to 
many more models (e.g., Iglesias et al. 2013; Diaconescu et al. 2014; Hauser 
et al. 2014; Vossel et al. 2014). The procedure is straightforward: formulate the 
model hierarchically using mixtures of exponential family distributions and 
use a mean fi eld approximation to separate the levels of the hierarchy, which 
then allows you to derive precision-weighted prediction error updates at each 
of the levels separately.

Apart from multimodality, there is another property which, at fi rst sight, 
exponential families seem unable to deliver. It is sometimes desirable to have 
a distribution with “fat tails” (or more formally,  positive excess kurtosis). Fat 
tails imply an increased probability of extreme values compared to a Gaussian 
of the same mean and variance. Distributions with fat tails are popular because 
the predictions they imply are conservative in the sense that they guard against 
underestimating the probability of extreme events. Examples of such distribu-
tions are Student’s t-distribution and the Cauchy distribution, neither of which 
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Figure 7.2 Projection of eight face and eight house stimuli onto their fi rst two prin-
cipal eigenvectors. Faces and houses form distinct clusters, and each cluster can be 
described by a two-dimensional  Gaussian. Stars represent the means of the Gaussians, 
ellipses their covariances. Reproduced with permission from Daunizeau et al. (2010).
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is an exponential family. The second limitation is the requirement of conjugate 
priors, and again the solution is a hierarchical approach. As the example from 
Daunizeau et al. (2010) shows, multimodal distributions, including priors, can 
be approximated using mixtures of distributions from exponential families. 
This allows for precision-weighted prediction error updating just as in the case 
of multimodal likelihoods.

Taken together, these limitations are not severe. All of them can be over-
come by using a hierarchical approach. It might, therefore, be that the brain 
has evolved its hierarchical organization to take advantage of the effective and 
effi cient predictive power of hierarchical models that are updated by precision 
weighting of prediction errors.

Nosologies Based on Aberrant Precision Weighting

Reducing the mind to precision-weighted  belief updating implies nosologies 
based on  false  inference, owing to maladaptive weighting of prediction errors. 
In these terms, each nosological entity has two sides: a clinical manifestation 
of a particular precision-weighting disorder and a neurobiological mechanism 
underlying it. Steps in this direction have already been taken: Adams et al. 
(2013) traced out a computational anatomy of  psychosis, and Lawson et al. 
(2014) and Quattrocki and Friston (2014) did the same with respect to  autism. 
To identify new targets for treatments, these efforts will have to be expanded 
and refi ned with the goal of going beyond traditional diagnoses of, say, schizo-
phrenia and autism, which lump together many disparate clinical phenomena 
and, we may suppose, pathophysiological mechanisms. The precision-weight-
ing framework will help accomplish this because it tells us which questions to 
ask for each clinical phenomenon: Where in the inferential hierarchy is preci-
sion weighting going awry to produce this? What neurophysiological mecha-
nism underpins the disordered precision weighting? Possible nosologies could 
be based on widespread aberrations in precision weighting originating in the 
neuromodulator systems of the brainstem and midbrain, equally widespread 
aberrations originating in the thalamus, or more localized aberrations originat-
ing in particular regions of the cortex or the  basal ganglia, etc.

The best example of such an approach to date has been Adams et al. (2013), 
where many of the symptoms of  psychosis are explained by a failure of  sen-
sory attenuation. Other pathologies will not be at the level of sensory input, 
but at other levels of the inferential hierarchy. For example, some symptoms 
of  posttraumatic stress disorder (PTSD) could be a result of aberrant precision 
weighting when inferring the different possible causes of events in the environ-
ment. A loud bang is a prediction error for all of us, but while most will assign 
little precision to any one of the many possible explanations, enabling us to 
wait for more information before reacting, a PTSD patient might have very 
high precision on a prediction of being under fi re. If this reaches such an ex-
tent that the patient is—unconsciously—constantly slightly surprised not to be 
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under fi re, a loud bang will be an opportunity for him to reduce this prediction 
error. Of course, this comes at the cost of a rather large prediction error about 
being in a safe environment. However, it depends on their relative precision, 
which of these contradictory predictions (“I am under fi re” vs. “I am in a safe 
environment”) dominates inference. Now that we have formulated the clinical 
side of the symptom in terms of precision weighting, albeit still in a very cur-
sory and informal way, this enables us to look at the neurobiological side and 
know which questions to ask and how to interpret what we see. Specifi cally, 
when we investigate which neural systems are activated in  PTSD patients in 
response to nonspecifi c stimuli that are over- or misinterpreted as  threats, we 
can interpret what we see in terms of precision weighting. This could then 
give us a handle on manipulating precision weighting pharmacologically or 
psychotherapeutically, while monitoring progress neurobiologically as well as 
clinically. Crucially, this could enable us to transfer our interventions to other 
domains and—because we know the general conceptual mechanism in terms 
of which to interpret the underlying biology—allow us to make predictions 
about the clinical changes we expect in other domains.

Summary

In summary, I argue that the mind can only exist as a successful regulator of its 
environment if it continually updates model-based predictions about its inter-
actions with that environment based on precision-weighted prediction errors. 
This is because the optimal way to make predictions is  Bayesian inference, 
which can be reduced to tracking of suffi cient statistics of observations under 
certain conditions. These conditions are that the likelihood be from an expo-
nential family and that the prior be conjugate. These conditions are not restric-
tive because multimodal and fat-tailed (or otherwise nonstandard) distributions 
can be built hierarchically from exponential family distributions and inverted 
level by level by means of a mean fi eld approximation. This amounts to a radi-
cal reduction of the mind to  belief updating by means of precision-weighted 
prediction errors. The advantage of this reduction is that it provides terms in 
which both clinical phenomena and their underlying neurobiology can be un-
derstood. This enables it to serve as a bridge between the two fi elds and allows 
for the interpretation of one fi eld’s fi ndings in terms of those of the other.
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