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Abstract

Vast spectra of biological and psychological processes are potentially involved in the 
mechanisms of psychiatric illness. Computational neuroscience brings a diverse toolkit 
to bear on understanding these processes. This chapter begins by organizing the many 
ways in which computational neuroscience may provide insight to the mechanisms of 
psychiatric illness. It then contextualizes the quest for deep mechanistic understanding 
through the perspective that even partial or nonmechanistic understanding can be ap-
plied productively. Finally, it questions the standards by which these approaches should 
be evaluated. If computational psychiatry hopes to go beyond traditional psychiatry, 
it cannot be judged solely on the basis of how closely it reproduces the diagnoses and 
prognoses of traditional psychiatry, but must also be judged against more fundamental 
measures such as patient outcomes.

Introduction

The human mind is the most complex known phenomenon. Mental illness is, 
almost certainly, correspondingly complex. To treat mental illnesses effective-
ly, we need a deep understanding of its mechanisms, not just a description of 
its surface properties. Yet these mechanisms likely can only be described as 
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sophisticated interactions between many moving parts that both function and 
fail in complex, nonlinear ways. A promise of computational psychiatry is to 
provide the tools that are naturally suited for describing this complexity, so as 
to capture the essence of both function and failure.

Although computational methods address complexity, they should be 
viewed as a way of making things simpler, not more complex, by providing in-
sight and understanding that transcends what can be gleaned from experimen-
tal observation alone. In the end, this understanding should be communicable 
without equations. 

A recurring theme in this chapter is that computational tools can be applied 
at many different points within the science and clinical practice of psychiatry. 
A crucial mechanism may be at the level of protein folding and ion channel 
kinetics, but may equally be at the level of structure hidden within patterns of 
treatment response across patients. Computational psychiatry does not require 
reductionism but seeks to apply computational tools wherever they might yield 
insight, often with the result of linking domains of knowledge in a parsimoni-
ous way.

The Space of Computational Psychiatry

At play in psychiatric illness is the whole organism: from genes to molecules, 
cells, circuits, brain systems, behavior, and social infl uences. To begin to attack 
this host of processes with computational methods, fi rst we need to organize 
both the processes and the computational methods. On the computational side, 
the way that we think about the problem can be divided into levels of analy-
sis, called “computational,” “algorithmic,” and “implementation,” after Marr 
(1982). In this section we outline the levels of the organism and levels of analy-
sis, and then, within this organizational framework, show where computational 
methods can be applied to psychiatry.

Levels of Biology and Psychology

Biological processes relevant to psychiatry have been studied extensively 
across many levels of scale (Figure 5.1). The smallest level of scale relevant 
for biology is arguably the molecular. (Genes are often situated below mol-
ecules because their code is unpacked into molecules.) Proteins and protein 
complexes are the building blocks of biology, carrying out the various pro-
cesses that permit neurons, the cells of the nervous system, to develop, survive, 
signal, learn, grow, and senesce at the appropriate times and places. The cell, 
most centrally the neuron, is the next level of organization. The neuron (and 
perhaps the glial cell) forms the elemental information-processing unit, inte-
grating synaptic and other signals in its dendrites and soma and passing this in-
formation, transformed according to its own special calculations, downstream 
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via an axon to its various partners. Multiple neurons and their connections 
form circuits, which act cooperatively and dynamically to increase the com-
plexity and robustness of these neuron-based computations. Circuits combine 
to form distributed neural systems; activity in these systems guides behavior.

Psychiatric disorders can perhaps best be understood as spanning multiple 
levels of scale. For example, consider the case of the  22q11.2 microdeletion 
syndrome. Individuals with this microdeletion have cognitive and neuropsy-
chiatric defi cits and often meet criterion for schizophrenia (Karayiorgou et al. 
2010). At the genetic level is the root cause of the disorder, a 1.5 to 3 Mb 
deletion knocking out 2–3 dozen genes. In mice, at least, one of the many 
consequences of the microdeletion at the molecular level is the mislocaliza-
tion of an enzyme regulator in the axons (Mukai et al. 2015). At the cellular 
level, axon-branching defi cits can be seen in cortical projection neurons; at the 
circuit level, neural transmission is reduced between the  hippocampus and the 
 prefrontal cortex (PFC). At the systems level,  neural synchrony between the 
hippocampus and PFC is reduced (Sigurdsson et al. 2010), while at the behav-
ioral level, mice carrying the microdeletion have defi cits in  spatial  working 
memory (Stark et al. 2008).

Each of these individual defi cits exists within a given level of scale. Yet 
a thorough understanding of the syndrome requires integration across scales. 
Are these observations connected? Does the molecular level defi cit in enzyme 
localization cause the cellular level defi cit in axon branching? A computational 
approach has the potential to enable integration by demonstrating, in a math-
ematically rigorous way, how phenomena on one level impact phenomena on 
another. Thus, one can construct a formal, mathematically quantifi able model 
of the axon-branching process, incorporating the location of the enzyme in 
question as a variable, and then test the effect of mislocalization on branch-
ing. The model predictions can be used to predict the results of experimental 
manipulations to provide further evidence in support of causal connections 
across scales.

It should be noted that the linear organization of levels presented here is 
simplifi ed. There are fuzzy boundaries: between molecules and cells, there are 
organelles like mitochondria, macromolecular complexes such as the postsyn-
aptic density, and signal processing pathways. There are also backward causal 
connections: neuronal activity shapes gene expression, circuit connectivity 
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Figure 5.1  Levels of biology and psychology.
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induces cellular specializations (such as synapses that recruit further changes 
in gene expression), and behavior itself strongly infl uences activity and plastic-
ity across multiple levels. There are clear instances of level jumping: molecu-
lar changes can affect circuit formation and behavior, and systems activity can 
alter  gene expression patterns. Finally, environmental infl uences appear at ev-
ery level. Environment affects gene expression, neuronal growth and integrity, 
circuit plasticity, functional connectivity, and, of course, behavior.

These complexities notwithstanding, the differentiation of biological and 
psychological processes into levels of analysis can be useful as a means to 
identify how approaching a phenomenon at one spatial and temporal scale 
might inform understanding at other spatiotemporal scales. This differentiation 
can also serve as a starting point for the computational modeler in guiding the 
selection of a modeling approach that is appropriate to the type of phenomenon 
being studied.

Levels of Analysis in Computational Modeling

Next, we seek to organize the problem space of psychiatry from the point 
of view of how it can be described with computational models. David  Marr 
famously described three levels of analysis for computational neuroscience 
(Figure 5.2; Marr 1982). The “computational level” specifi es the goal of a sys-
tem. For example, a computer program might be charged with sorting a list 
of numbers in a descending fashion. There are, however, many strategies for 
tackling this problem, such as sequentially searching for the nth-largest number 
or repeatedly swapping pairs of numbers that are out of order. These strategies 
live at the “algorithmic level.” Finally, a given algorithm must ultimately be 
realized in software and hardware, with details such as where in memory to 
store the array. This is the “implementation level.” Computational models of 
brain and behavior can potentially link to psychiatry at all three levels.

Take, for example,  reward  learning in the brain: A reinforcement learner’s 
computational goal is to maximize their sum of future rewards. One (of sev-
eral) algorithm that attempts to achieve this goal is the actor-critic algorithm. 
Here, the critic learns to predict the expected value of particular environmental 
states, and errors in these predictions (i.e., reward prediction errors) are used 
in two ways: (a) to improve future estimates and (b) to adjust weights in the 
actor, which selects among available actions (for further discussion, see chap-
ters by Frank, Huys, and Montague, this volume). Those actions which yield 
the largest  reward  prediction errors in the critic are more likely to be selected, 
increasing experienced rewards. Implementation of this algorithm has been 
linked to the basal ganglia and dopaminergic system, with the ventral striatum 
 learning the predicted values of states, the dopaminergic neurons signaling re-
ward prediction errors (together with the ventral striatum, this is the critic), and 
the dorsal striatum playing the role of the actor (O’Doherty et al. 2004). One 
distinguishing feature of the  actor-critic model is that it predicts no preference 
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for actions that have yielded unexpected rewards over actions that avoid poten-
tial losses but have yielded no reward, since both have elicited  positive predic-
tion errors relative to a baseline of expected outcomes. Healthy controls and 
schizophrenia patients with high negative symptoms are well characterized by 
this pattern, whereas schizophrenia patients with low negative symptoms are 
better described by an alternative  reinforcement-learning model (Gold et al. 
2012; Palminteri et al. 2015).

A few words of caution are warranted. As with levels of biology, Marr’s 
levels are inevitably fuzzy. One person’s computational goal could be another 
person’s algorithm in service of a broader computational goal. Also, the use 
of the word “computational” in Marr’s levels is sometimes confusing. (A bet-
ter name might be the “problem” level; that is, which problem the system is 
designed to solve.) Throughout the rest of this chapter, we will use “compu-
tational” much more generally to mean the application of sophisticated math-
ematical and theoretical tools to complex biological systems. Finally, we note 
that Flagel et al. (this volume) distinguishes between “ normative” models and 
“process” models: the former is roughly equivalent to the computational level 
and the latter is roughly equivalent to algorithmic and implementation levels.

Any level of analysis can be applied to any level of biology. For example, 
we can ask what “goals” a gene network is set up to accomplish (e.g., main-
taining balance in expression levels of two proteins), what algorithm it uses 
(e.g., feedback inhibition), and how it is biologically implemented (e.g., bind-
ing of protein products to promotor regions).

One of the strengths of computational modeling is that it naturally draws 
out connections between levels of analysis by forcing us to think in detail 
about what algorithm achieves a computation, and how that algorithm may be 
implemented. These connections can lead to insights in psychiatry.

Different levels of analysis can and do inform each other. Sometimes 
biological implementation informs understanding of the algorithmic level. 
Biophysically detailed models can simulate the differential contributions of 
D1 and D2 striatal neurons and predict both neurophysiological recordings and 
effects of dopamine manipulations on behavior. The properties of these models 
can be summarized at the algorithmic level by a modifi ed  actor-critic called 
OpAL (“ opponent actor learning”) in which the actor is divided into two com-
ponents that, via nonlinear learning rules, come to specialize on representing 
the benefi ts of alternative actions (in D1 neurons) and the costs of these actions 
(in D2 neurons) (Collins and Frank 2014). This framework allows the model to 
simultaneously capture the effects of a variety of manipulations across levels 
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Figure 5.2 Levels of analysis.
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(including pharmacology,  genetics,  optogenetics, and behavior). This provides 
a clue as to the computational function of these opponent processes; indeed a 
normative analysis provided some evidence that they improve performance 
compared to classical reinforcement-learning algorithms. Thus, this example 
illustrates how algorithmic and computational considerations have informed 
interpretation of the biology and allowed for testable predictions, but also how 
mechanistic constraints can reciprocally inform the algorithmic level.

Principles for Applying Computation to Psychiatry

With this multidimensional spectrum of biology and computational approach-
es, what principles can guide our attack on psychiatric illness? The fi rst prin-
ciple, sometimes overlooked (Markram 2012), is that computational models 
must be targeted carefully to the questions we want to answer. A model can, 
by design, answer some questions but not others. For example, an architectural 
model of a building that is made of cardboard can be used to ask questions 
about general aesthetics, aspect ratios, and visual impact of the building, but 
not structural questions such as whether the roof will sustain a pool. The ques-
tions one would like to answer with the model should prescribe the level of 
description at which the model is designed, and what levels of description it 
can safely abstract over. For instance, if one would like to ask whether different 
methods for detoxifi cation (inpatient, outpatient, etc.) might be more or less ef-
fective in preventing  relapse to the addictive substance, a model at the level of 
systems and behavior might be more useful than one specifi ed at a biophysical 
level of detail. In contrast, if the goal is to develop targeted gene therapy, detail 
at the biophysical level may well be needed.

The second principle is that models can provide insight into complex 
systems, but the insight itself need not be complex. For instance, consider 
the hypothesis that  dopamine neurons implement a  reward  prediction error 
which is used for  reward-related  learning (Montague et al. 1996; Sutton and 
Barto 1998). This insight arose from theoretical models of  reinforcement 
learning, yet in the end, the principle that it revealed is quite simple. This is 
a strength of computational models, not a weakness. The gleaning of simple 
principles from complex neural and behavioral data is the goal. The model 
is a tool for sharpening our thinking and for formalizing hypotheses, not an 
end unto itself.

The third principle is that disease mechanisms and mechanisms of healthy 
function are both productive targets for computational methods in psychia-
try. Directly seeking to explain behavioral and genetic abnormalities in dis-
ease are obvious targets. However, applying computational methods to enrich 
our understanding of healthy function can also lead to translational results. 
For example, electrophysiological work that described dopamine effects on 
persistent neural activity in PFC (Seamans and Yang 2004) and the role of 
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dopamine on working memory-related persistent activity (Goldman-Rakic et 
al. 2004) informed computational models (Durstewitz et al. 2000; Durstewitz 
and Seamans 2002). These models, in turn, helped shape expectations about 
what D1 agonist pro-cognitive drugs might achieve (Rosell et al. 2015) and 
why  PFC D1 defi cits in  schizophrenia might be associated with  working mem-
ory dysfunction (Abi-Dargham et al. 2002).

The fourth principle is that both  postdiction (i.e., explaining existing data) 
and  prediction are useful. In some cases, models show how a simple set of 
principles can explain a broad range of existing data, which is valuable in 
clarifying our understanding and setting future directions. In other cases, mod-
els make novel, testable predictions that were diffi cult or impossible to make 
without the model. It is not uncommon to start by explaining a body of existing 
data and then make new predictions.

What Is the Toolkit That Computation Brings to Psychiatry?

In this section we outline the range of computational tools available to attack 
this problem space. It is useful to organize these tools both from the perspec-
tive of the biological or psychological systems to which they directly pertain 
as well as in terms of the mathematical framework from which they originate.

Organizing Computational Tools by Level of Biological Scale

 Computational tools may be distinguished by the level of abstraction and bio-
logical scale they address (outlined in Table 5.1), moving from models that 
address detailed biophysical or biochemical processes to those that describe 
behavioral principles at an abstract level.

Table 5.1 Organizing models by level of biological scale. The left column lists some 
broad classes of computational models that target different features of biological sys-
tems. The right column maps the levels of biology and psychology to which these mod-
els are most often linked.

Type of model Levels of biology
 Biophysical models Molecular

Cellular
Circuit

 Connectionist models Circuit
System 

 Reinforcement learning System
Behavior

 Bayesian inference Circuit
System
Behavior
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Biophysical Models

 Biophysical models attempt to faithfully capture real biological details, such 
as the temporal evolution of membrane potentials or the temporal and voltage-
dependent behavior of ionic conductances. The advantage of these models 
for psychiatry is that they provide a close link to pharmacology and  genetics 
by explicitly describing drug targets and gene products. Biophysical models 
exist at many levels of abstraction. At the most detailed level, a biophysical 
model may capture the whole spatial extent of neurons with all their axons and 
dendrites (compartmental models), with the gating behavior of a large array 
of ionic conductances, and perhaps even intracellular molecular cascades; in 
short, any biochemical or biophysical process that can be expressed in terms 
of differential equations (Koch and Laurent 1999). Intermediate-level models 
may reduce this structure to just a few spatial compartments (e.g., one for soma 
and one for dendrite) and retain just a few ionic currents essential for the ques-
tions at hand (e.g., Durstewitz and Gabriel 2007). At the most abstract level, 
a biophysical model may consist simply of one or a few differential equations 
for the membrane voltage and for variables which capture the lump effect of 
many ionic currents (e.g., Hertäg et al. 2012). In general, the most abstract 
is therefore the class of models most suitable for addressing questions about 
how, for instance, specifi c pharmacological agents or, more generally, genetic, 
molecular, or physiological factors impact on network dynamics, as variables 
measured experimentally at this level can be translated into the models with 
none or only few additional assumptions or simplifi cations. For instance, in 
Durstewitz et al. (2000), changes in several currents due to D1- or D2-class 
receptor activation as measured in vitro were implemented in compartmental 
models, which then were used in a level-bridging approach to investigate the 
implications of these current changes for network dynamics, and ultimately 
working memory and cognitive symptoms in  schizophrenia (Durstewitz and 
Seamans 2008; Frank 2015).

Connectionist Models

One key approach to understanding mechanism has been the use of  neural 
network models, also referred to as  connectionist or  deep learning models 
(McClelland et al. 2010). These models bridge between cells and behavior 
by explaining how groups of cells encode information in ways meaningful to 
behavior, and are often applied to circuit- or systems-level neural phenomena. 
A fi rst generation of neural network modeling, beginning as early as the 1960s 
but fl ourishing in the 1990s and 2000s, provided powerful insights into the 
computational mechanisms underlying complex patterns of clinical dysfunc-
tion in language disorders and certain forms of  dementia (Plaut and Shallice 
1993; McClelland and Rogers 2003). Neural networks were also applied, be-
ginning in this period, to account for impairments of  cognitive control and 
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working memory function in schizophrenia and other disorders, implementing 
some of the fi rst computationally explicit proposals concerning the role of  do-
pamine in psychiatric pathophysiology (Cohen and Servan-Schreiber 1992). 
Innovations in neural network methods combined with the advent of faster 
computers, capable of running large-scale simulations, have recently triggered 
a new wave of neural network research, allowing more direct validation of 
these models as accurate representations of neural  information processing 
(Afraz et al. 2014), and application to richer bodies of data. Another feature 
of this new wave of research is the development of  neural network models 
that also include constraints from biological data, while retaining close contact 
with behavioral phenomena (Hoffman and Cavus 2002).

A key feature of connectionist models is learning representations of the in-
puts that are useful for generating outputs. Even very complex representations 
learned by these models can be strikingly similar to real neurons (Yamins et al. 
2014), suggesting relevance for psychiatry. This may include examples such as 
disordered perceptual representations as in schizophrenia as well as disordered 
representations of abstract decision-related variables that could underlie many 
phenomena including  posttraumatic stress disorder (PTSD). These models can 
also potentially explore the  time evolution in psychiatric disorders and model 
the effects of treatments at a network level.

Reinforcement Learning

 Reinforcement-learning models quantify the dynamics of learning and de-
cision making over time. These models, often cast at the level of systems 
and behavior, can be used to specify precisely hypotheses about how infor-
mation obtained at one point in time affects beliefs and behavior at another. 
Reinforcement-learning models are concerned with learning to predict future 
rewards and punishments (as in Pavlovian or classical conditioning) and learn-
ing to select actions that would maximize future reward (as in operant or in-
strumental conditioning). The name “reinforcement learning” suggests an em-
phasis on learning dynamics; however, the models can also be used in steady 
state, after learning has achieved equilibrium, to make predictions and test 
hypotheses about decision making and  action selection in different situations. 
Importantly, by fi tting free parameters of these models to time series of behav-
ioral data, one can precisely quantify different aspects of learning and decision 
making in individual patients. Relevant parameters might include the learning 
rate for appetitive and aversive outcomes, the degree of exploration versus 
exploitation, and the extent to which patients generalize across instances and 
stimuli. These parameter values can, in principle, be used as a diagnostic tool 
to characterize the different ways in which  decision making can break down 
and to quantify individual differences (Moran et al., this volume). Indeed, re-
inforcement-learning parameters systematically vary as a function of disease, 
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genetics, and pharmacology in ways that match predictions from decades of 
systems neuroscience (Frank and Fossella 2011).

In terms of  Marr’s levels, one of the strengths of reinforcement models is 
that they link from the computational level of optimizing future reward, through 
the algorithmic level of  temporal difference learning, to the implementational 
level of dopamine-dependent plasticity in corticostriatal synapses (Barto 1995; 
Montague et al. 1996; Schultz et al. 1997). These neural and behavioral sys-
tems are also largely preserved in phylogeny, and thus reinforcement-learning 
models can be applied to humans and animals alike, even insects (Montague et 
al. 1995). The simplicity and transparency of these models allows one to give 
semantic interpretation to every construct of the model. However, one might 
argue that this is at the expense of allowing properties to “emerge” from the 
model in a way that sometimes occurs with models that embody more com-
plex dynamics. This aspect of  reinforcement-learning models can be seen as a 
feature rather than a fl aw. The fact that these models do not have many moving 
parts allows one to easily form an intuitive understanding of the behavior of 
the model even from simply observing the model equations. Thus these models 
are most useful for specifying and sharpening hypotheses regarding learning 
dynamics in both healthy and clinical populations.

It is important to note that although reinforcement learning is highly promi-
nent and promising for psychiatry, there are other classes of models, which we 
do not discuss here, that similarly provide  process models for behavior that 
are linked to neural substrates. These include sequential sampling models, of 
which  drift diffusion models are the most familiar (see Frank, this volume; 
Gold and Shadlen 2007).

Organizing Computational Tools by Mathematical Framework

 Computational tools could also be organized according to mathematical frame-
works and methodological toolkits. Specifi c computational models may, for in-
stance, rely on mathematical tools from areas such as probability and statistical 
theory,  nonlinear dynamics, or information theory. These areas of mathematics 
provide general frameworks for addressing computational questions at any lev-
el of abstractness or biological organization. Other mathematical frameworks 
that are applied across many levels of biology and psychology include statistics 
and machine learning,  dynamical  systems theory, and Bayesian methods as well 
as, to a lesser degree, information theory and  optimal control theory.

Machine Learning

 Machine-learning tools come out of statistics and computer science and were 
originally used mainly in the context of pattern recognition applications. In 
general, they use various types of mathematical principles and specifi c algo-
rithms to analyze data so as to make predictions about existing and future data. 
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Machine-learning tools can be either supervised (e.g., you have a specifi c cate-
gorical or dimensional variable guiding analysis) or unsupervised methods for 
characterizing data. Examples of supervised tools include support vector ma-
chines (Cortes and Vapnik 1995), which try to learn optimal decision boundar-
ies for predicting class labels. Some examples of unsupervised tools include 
factor analysis, independent components analysis, and clustering approaches. 
Common to these unsupervised methods is that they attempt to detect structure 
within or suitable reductions of the data space without explicit advance knowl-
edge of what that structure may be. All these approaches can be augmented by 
Bayesian methods to incorporate prior knowledge. These tools can either be 
used with a single type of data (e.g., behavior, neuroimaging, or genetic) or 
can be expanded to include several types of data or levels of data, such as in 
multimodal fusion approaches (Sui et al. 2012). Machine-learning tools can 
be used to identify novel structures in psychopathology, whether they might 
be dimensional, categorical, or a hybrid. For example, these tools could help 
identify categories or dimensions in high-dimensional data. They have already 
been used in this way in the psychopathology fi eld, as a means to develop new 
models of the meta-structure of psychopathology based on phenomenological 
data (Krueger and Markon 2006; Wright et al. 2012, 2013). They can also help 
to integrate  from one level of analysis to another (e.g., imaging to behavior, 
gene to imaging). In such cases, one could train on level A and predict on level 
B, without starting from strong hypotheses about how these transformations 
happen. For example, if we can identify structure directly in complex patterns 
of brain activity, this structure could inform our theories of the computations 
underlying behavior. As such, these general-purpose tools may help us identify 
additional types of data needed to understand the nature or mechanisms of 
such transformations. They can also help us to predict risk (Paulus et al., this 
volume) for the development of various forms of psychopathology based on 
different types of  biomarkers. Further, they might even be able to be used to 
identify biomarkers that predict the success of different treatments based on 
similar cases, where similarity metrics are determined by the specifi c machine-
learning method that is used. These tools can also be used more generally as 
data analytic tools for a variety of types of data (and are actively being used in 
this way), such as analysis of fMRI or connectivity data

For example, many risk factors for mental illness involve complex interac-
tions between  genes, the brain, and environmental infl uences which develop 
dynamically in naturalistic contexts (Kaddurah-Daouk and Weinshilboum 
2015; Michino et al. 2015). To address this, we need data that is not only “big” 
but also multimodal. Ongoing studies are currently collecting functional neu-
roimaging, real-time/real-life data collected via smartphone, and geographical 
mapping. Mapping can link real-time smartphone data to specifi c locations 
where we have data about neuropsychiatric risk factors, such as urbanic-
ity, pollution, sociodemographics, etc. Machine-learning techniques may aid 
the identifi cation of patterns that predict risk-related neuroimaging markers. 
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Further extensions of this concept in longitudinal study designs (accelerated 
longitudinal data acquisitions covering critical age ranges of neurodevelop-
mental disorders) may aid the identifi cation of the dynamics of the neural cor-
relates over time (discussed further below).

The current fi elds of genetics, genomics, and epigenetics provide abundant 
data for machine learning. Publicly available databases provide hundreds of 
thousands of control and patient subjects throughout the world,1 and these ge-
netic data are paired with categorical and continuous phenotypic data. For a 
smaller subset of individuals, there are also physiology and neuroimaging data. 
Computational methods across available big datasets will almost certainly al-
low deeper understanding of connections across levels of analyses from  genet-
ics, to  epigenetics, circuits and behavior.

Dynamical Systems

 Dynamical systems theory is a fi eld in mathematics that addresses systems de-
scribed by sets of equations which dictate the evolution of variables over time 
and/or space. It specifi cally addresses nonlinear systems for which some of the 
more conventional mathematical techniques (analytical approaches to equation 
solving) break down. A central concept in dynamical systems theory is that of 
a state-space (i.e., the space spanned by all dynamical variables of the system). 
A point in this space captures the current state of the system, and the evolution 
of this state across time is given by a trajectory meandering through this space. 
The course of this trajectory is determined by various geometrical properties 
of this space, like for instance the existence of attractor states, such as stable 
orbits (limit cycles), which give rise to nonlinear oscillations.  Nonlinear dy-
namics provides a set of tools to characterize the fl ow of these trajectories 
(and thus the system’s evolution in time and space) and analyze their behavior. 
Since essentially all neural and behavioral phenomena can be cast in terms of 
variables that evolve dynamically in time, nonlinear dynamics provides a very 
general framework for describing and analyzing computational models.

Dynamical systems may also provide ways of capturing phenomena that 
may be central to understanding the mechanisms of breakdown in psychiatric 
conditions. For example, NMDA receptor dysfunction has been implicated in 
 schizophrenia (Barch, this volume). We can begin to understand the mechanics 
of this dysfunction with  dynamical systems theory. As NMDA conductance 
steadily increases, both in real cells and in biophysically plausible models, 
the system suddenly jumps from quiescence into a bursting mode, then jumps 
again from regular bursting into chaotic irregular activity, and fi nally from cha-
os into regular steady single spiking (Durstewitz and Gabriel 2007). Although 
the changes in the underlying system parameter (NMDA conductance) are 

1 National Center for Biotechnology Information, http://www.ncbi.nlm.nih.gov/genome/ (acces-
sed June 15, 2016).
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gradual, the neuron’s spiking modes change abruptly. These abrupt jumps 
between different operating regimes are called “phase transitions.” There are 
also numerous examples of phase transitions at the level of neural populations 
(Durstewitz et al. 2010).

The idea of abrupt or critical transitions between operating regimes can 
also arise at very different levels of scale. For example, there may be enough 
 resilience in the brain and in behavioral or social coping mechanisms to allow 
underlying biological changes to occur without obvious psychiatric symptoms, 
until some critical point is reached and there is an abrupt shift to a different 
regime such as depression or  psychosis.

Bayesian Methods

 Bayesian inference describes how one can use  probability theory to infer the 
state of variables we are interested in, given prior knowledge and noisy obser-
vations. Bayesian approaches start with a hypothesis H, and some observed 
data O. For example, H could be the hypothesis that a patient has lung cancer, 
and O could be a positive blood test. It is relatively easy to measure P(O|H) 
(i.e., the probability of getting a positive blood test given that one has lung 
cancer), by measuring the proportion of the population with cancer that have 
positive blood tests. This can be used to compute, using  Bayes’s rule, the more 
important quantity of P(H|O); that is, the probability that a patient with a cer-
tain blood test result has lung cancer. According to Bayes’s rule, P(H|O) is 
proportional to P(O|H) ∙ P(H), where P(H) is the prior probability of having 
lung cancer (i.e., the prevalence of lung cancer in the general population). This 
general framework can also be used to include multiple observations or to pre-
dict new observations. It can also be used to build hierarchical representations: 
“H” can play the role of the observation, “O,” for another, higher-order model. 
Finally, Bayes’s rule can capture temporal  prediction or temporal evolution 
of a state, with P(H) corresponding to knowledge from the past and P(H|O) 
representing the new knowledge updated by observations. The utility of this 
framework for psychiatry is highlighted by Flagel et al. (this volume).

Bayesian models can be used as “normative” descriptions of brain function. 
 Bayesian belief updating represents the optimal solution to many problems 
under a very broadly applicable set of constraints. Thus, it is reasonable to 
posit that in many cases the brain may be attempting to calculate P(H|O) or 
some good approximation thereof. This may be true of the computations of 
individual neurons (e.g., if their fi ring rates encode beliefs about perceptual 
features, and their synaptic inputs encode new evidence about these features), 
circuits, systems, or the entire organism (e.g., how an individual reaches their 
beliefs about others’ intentions). This view is very powerful because it then al-
lows us to explore the mechanism by which the brain calculates beliefs based 
on observations, or how the calculation might go wrong (Huys et al. 2015b).
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The brain constructs highly hierarchical representations of its environment. 
For example, visual areas construct increasingly “meaningful” representations 
(from local contrast to contour, basic shapes, and objects) of the visual world. 
To do so, both feedforward connections (sending information from sensory 
area to “higher level” area) and feedback connections (sending information 
prior expectations to the sensory area) are essential. For instance, detecting a 
tree requires integrating feedforward sensory information (“green,” “tall,”etc.) 
with prior knowledge (“I am in a forest”). Since both feedforward and feed-
back connections are excitatory in the human brain, such highly recurrent ex-
citatory circuits could not work properly on their own. Sensory information 
would be sent up the hierarchy, generating expectation, then reverberated back, 
combined with themselves, then sent back up as if they were new sensory 
evidence, in an endless cycle. Such a system would suffer from an extreme 
amount of “circular inference,” making us “see what we expect” or “expect 
what we see.” It would also learn “fake” causal relationships between com-
pletely uncorrelated events, simply because their neural representations are 
correlated through the network dynamics. To function properly and generate 
an accurate belief system, the brain needs to combine excitatory (E) feedfor-
ward and feedback connections with strong, balancing inhibition (I), whose 
goal is to cancel all predictable (reverberated) excitatory inputs in the network. 
Such tight  E/I balance is a widely observed phenomena in cortex. It could be 
that imbalances in E/I (involved in a wide range of mental illness such as bipo-
lar disorder, schizophrenia, or autism) causes circular inference, leading to the 
formation of aberrant beliefs (overconfi dence,  hallucinations,  delusions, alien 
control). New experiments confi rm that the behavior of schizophrenic patients 
in probabilistic inference tasks was well described by such a “circular infer-
ence” hypothesis (Jardri and Denève 2013).

This method can also be used as a tool to organize and generalize from com-
plex, high-dimensional and noisy data in any domain. As such, Bayesian infer-
ence can provide a useful tool for diagnosis and treatment of mental illness. 
A well-known example is “Bayesian causal models,” widely used to interpret 
imaging data, but applicable, in general, to any type of data (for further detail, 
see Moran et al., this volume).

Bridging Levels

We have considered various levels of modeling and how they can be used to 
ask different sorts of questions, from biophysical to normative. We have also 
emphasized that no single level of analysis is suffi cient to make the connections 
between mechanism and behavioral symptoms relevant for psychiatric illness; 
the complementary values of each level implies that an-all-of-the-above strat-
egy is useful. Informally, one can also interpret modeling endeavors at one 
level in terms of the other. For example, a biophysical model of dopamine 
modulation of  attractor dynamics and fl exibility in PFC can be summarized by 
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analogous functions in connectionist networks and their application to cogni-
tive tasks (Cohen et al. 2002). More formally, one can also quantitatively map 
the properties of one model onto another. This affords a richer testable  pre-
diction that leverages the utilities of both levels (Frank 2015). Typically, two 
approaches are taken. The fi rst is to derive exact mappings. For example, Ma 
et al. (2006) showed how spiking models, including probabilistic population 
codes, can precisely implement Bayesian inference in a sensory cue combina-
tion task, building on work from Zemel et al. (1998), who developed the idea 
of spikes as encoding probabilistic information. Bogacz and Gurney (2007) 
showed how an optimal model of evidence accumulation during decision mak-
ing can be mapped onto the anatomy of the basal ganglia.

The second approach is not to assume that the mapping between levels is 
exact, but rather that it is approximate, and instead to fi t the behavioral output 
patterns of complex network quantitatively using a higher-level algorithmic 
description. This leverages the advantage of the algorithmic models: because 
the behavioral data can be fi t quantitatively with few free parameters and the 
same strategy (that these models use) can be applied when fi tting to empirical 
data, a determination can be made as to which of several alternative algorith-
mic models best describes the behavior of the system. Thereafter, an estimate 
can be made as to the impact of biological manipulations in the network on 
higher-level algorithmic parameters, which in turn can guide empirical experi-
mentation. For example, Ratcliff and Frank (2012) showed that the outputs of 
a network model of the basal ganglia are well approximated by  drift diffusion 
models (DDMs). In these models, evidence for each of two or more options 
is accumulated noisily over time until one option reaches a decision threshold 
and is chosen. Ratcliff and Frank also found that parametric modulations of the 
subthalamic nucleus (STN) affect the decision threshold (as opposed to other 
decision parameters), particularly in the face of choice confl ict. This prediction 
was tested empirically by recording and manipulating STN function and esti-
mating its impact on drift diffusion parameters, based on choices and response 
time distributions (and EEG data). Indeed, subsequent fMRI studies provided 
evidence that STN activity is related to decision threshold adjustment during 
choice confl ict (Frank et al. 2015).  STN manipulation in  Parkinson disease 
reduced the decision threshold for these choices (Cavanagh et al. 2011; Green 
et al. 2013), providing a novel interpretation for how  impulse control disorders 
can arise in these patients. This is just one example of how computations at 
one level can afford analysis at another, allowing falsifi able predictions. One 
can also further bridge these levels with  machine-learning tools to classify or 
cluster patients based on fi tted model parameters as well as to identify which 
parameters/mechanisms contribute most strongly to classifi cation (Wiecki et 
al. 2015).

Another example for the scale-bridging approach is provided by the “ dual-
state model” of  PFC dopamine function (Durstewitz and Seamans 2002). In 
this biophysically anchored theory, slice-electrophysiological observations on 
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the dopamine D1- and D2-class receptor modulation of a range of different 
voltage-gated and synaptic currents were linked through dynamical systems 
tools to alterations in  prefrontal  attractor dynamics, which in turn could be 
related to changes in  working memory function and cognitive fl exibility (see 
Frank, this volume).

Applying Computational Methods to the 
Evolution of Systems over Time

A central feature  of mental illness is that it is not static; it evolves both devel-
opmentally and in adulthood with  prodromal stages and subclinical anteced-
ents, through episodic or slowly changing patterns of symptoms, to remission 
and often relapse. Adding the dimension of time creates signifi cantly more 
complexity, which provides an entry point for computational methods.

As an example,  PTSD is unique among psychiatric disorders in that one 
key component of its etiology (i.e., the traumatic event) is known. What re-
mains uncertain is how the initial clinical manifestations of  acute stress (e.g., 
hyperarousal, re-experiencing, avoidance) may progress in some individuals 
to the constellation of symptoms and associated social dysfunction that char-
acterizes the disorder. It is noteworthy that only a relatively small proportion 
of individuals who are evaluated in the emergency room following a traumatic 
stressor (e.g., a motor vehicle accident or assault) are diagnosed with PTSD at 
6 months to one year following the trauma. A prime application of computa-
tional methods would be to enhance  prediction of symptom progression from 
acute stress reactions (as seen in an emergency room setting).

Another example pertains to the long-term course of depressive episodes 
of  major depressive disorder, which can be a highly recurrent illness marked 
by discrete illness episodes and periods of relative stability (Thase 2013). 
Depressive episodes can be sorted into categories based on specifi ers such as 
melancholic features (e.g., minimal  mood reactivity, early morning awakening, 
diurnal variation), atypical features (e.g., mood reactivity, hyperphagia, hyper-
somnia), and psychotic features (e.g.,  delusions,  hallucinations), which have 
state-dependent neurobiological correlates. However, individuals often switch 
unpredictably from one category to another between episodes (Oquendo et al. 
2004), which poses challenges in implementing treatment strategies for  relapse 
prevention. Moreover, proper  clinical decision making requires predictions. 
Issues such as how long to continue a medication after a patient achieves re-
mission, or whether to continue with a partially effective treatment or to switch 
to a new one are crucial for treatment providers. Computational models that 
take into account dynamics over time would be immensely helpful in making 
such decisions.

Change over time may be driven by spontaneous internal changes, but also 
by changing environmental factors, including treatments. Furthermore, internal 
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and external variables interact in complex ways. Individuals with depression, 
for example, are especially vulnerable to variations in  mood according to sea-
sons as well as to hormonal perturbations related to pregnancy, the postpartum 
period, menstrual cycle variation, and use of hormonal contraceptives.

The emergence of the complex neurobiology of chronic or recurrent mood 
disorders may be viewed as having progressed through a number of stages. 
Before the fi rst episode of depression, vulnerability exists at genetic, physio-
logical, and environmental levels (Lupien et al. 2011). Chronic and acute stress 
(allostatic load) perturb homeostatic mechanisms at multiple organismal and 
neural levels, such as mood, sleep, appetite, and  motivation (McEwen 2003). 
Factors contributing to the transition from “having a bad month” to developing 
“ depression” include elevations in circulating glucocorticoid and infl amma-
tory cytokines. These factors have numerous consequences for the brain. One 
mechanism that has received attention is the compromise of the glial capac-
ity to transport  glutamate, resulting in elevations in extrasynaptic glutamate 
levels. These elevations suppress point-to-point synaptic functional connectiv-
ity in circuits regulating mood by inhibiting glutamate release via stimulation 
of  presynaptic mGluR2 receptors and by causing the retraction of dendritic 
spines. In the long term, this reduces dendritic complexity due to excessive 
stimulation of extrasynaptic GluN2B-containing NMDA receptors and reduc-
tions in the level of trophic factors (reviewed in Krystal et al. 2013). The dis-
ruptions in structural and functional connectivity, combined with many other 
neuroplastic mechanisms (including alterations in reward and social learning), 
may make it impossible to “bounce back.”

Modeling Time

Data  which describe trajectories over time come in many forms and include 
both behavioral assessments and physiological markers. Can this multivariate 
time series of data be used to learn more about the mechanisms of the disease? 
Can practical predictions be made about the future disease course or the effects 
of treatments and interventions?

Formally, there are several useful general-purpose approaches. First,  au-
toregressive–moving-average (ARMA) models express current observations 
as a weighted linear combination of previous observations plus noise. Here, 
forward prediction is straightforward using the estimated weight parameters. 
Nonlinear variants of these models also exist, such as threshold or piecewise 
linear autoregressive models.

Second,  state-space models include latent (i.e., unobserved) as well as 
observed variables.  Latent variables capture underlying causes, such as neu-
ral activity, which cannot be directly measured but nonetheless have effects 
on the observed data. The time evolution of the latent variables can be de-
scribed mathematically as an ARMA process, or as a discrete set of states with 
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transition probabilities, or a combination thereof as in the class of switching 
 state-space models (Ghahramani and Hinton 2000).

Third, there is a large toolbox from   nonlinear dynamical (NLD) systems 
theory. NLD methods usually start from a state-space representation of the 
observed system. This is the space spanned by all the dynamical variables of 
the system (e.g., the fi ring rates of a set of recorded units). A point in this 
space specifi es the current state of the system, and the movement of this point 
through the space, as time passes, yields a trajectory. In physical and biological 
systems, these trajectories are described by geometrical objects within these 
spaces like “attractor states.” Based on such representations, NLD theory of-
fers various methods for prediction and assessing the effect of interventions in 
these spaces (Lapish et al. 2015).

Understanding the dynamics of mental illness is not only crucial for their 
diagnosis, management, and treatment but also for bringing some light to the 
underlying mechanisms. For instance, when episodes occur in an approximate-
ly periodic fashion (as, e.g., in bipolar disorder), they might be described in 
dynamical systems terms through an underlying periodic or chaotic oscillator. 
This, in turn, may offer a way to study when in the cycle it would be best to 
intervene therapeutically. An acute episode recruits compensatory processes, 
which persist after the episode is fi nished. However, these compensatory pro-
cesses themselves may be regulated through other feedback loops with the en-
vironment, as is common in biology, which in turn can cause another episode. 
In contrast, when episodes occur erratically without prior warning and sudden 
onset, compensatory processes might be better described through metastable 
states or bifurcation mechanisms giving rise to an instability. In this case, the 
healthy state is fragile (e.g., due to weakened  homeostasis). The brain state can 
be temporarily thrown out of this state, jumping to a pathological state.

Is There a Use for Computational Approaches without 
Understanding “Fundamental” Mechanisms?

Computational neuroscience brings  a powerful set of conceptual tools for un-
derstanding complex systems. However, we must be cognizant that we may 
never fully understand every level of mechanistic detail in the path from mole-
cule to behavior. Still, there are many ways in which computational approaches 
can be used to enhance our understanding of behavior as well as approaches to 
treatments and interventions.

It is tempting to look to the most detailed or microscopic level for the most 
“fundamental” understanding, but this is often a mistake. For example, a liquid 
only exists as the interaction between atoms. Some argue that the fundamental 
level for a given phenomenon is the most detailed level at which the phenom-
enon exists. Others argue that it is the level at which the phenomenon is most 
parsimoniously captured. There is broad agreement that for phenomena which 
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live mostly at higher levels, it is most useful to study them at these levels. 
Crucially, we do not know at which level most psychiatric illnesses are most 
usefully described and studied. Even if a gene conferring risk for an illness 
produces a malformed ion channel, it is possible that behavior at a cellular 
or circuit level (e.g., synaptic plasticity) might look essentially normal and 
that pathology may only appear when investigating properties of the brain at a 
higher level of organization.

Furthermore, the best level of description is related to the use that one makes 
of the description. If one is interested in  etiology, for instance, then genetics 
may be particularly important, but if one is interested in developing pharma-
cologic treatments, then an understanding of cells and circuits are important. 
Even with a single type of use, say medication development, and desired end-
point, to alleviate a disorder, different treatment mechanisms will be developed 
to target different levels of description (e.g., to correct an abnormal protein, to 
correct synaptic or circuit dysfunction, or to correct a behavior).

In this section we outline three ways that computation offers a benefi t with-
out necessarily reaching the most detailed level of explanation. First, some ap-
proaches allow us to characterize some aspects of mechanism without requir-
ing an understanding of fundamentals. Second, whether or not we can achieve 
 mechanistic understanding of the disease, it is useful to obtain mechanistic 
understanding of other related phenomena (e.g.,  recovery and  resilience). 
Third, we can eschew mechanism entirely and use computational methods to 
optimize treatment directly.

Characterizing Mechanism at a High Level

It is possible to extract knowledge and impact treatments using computational 
approaches, even without understanding the fundamental mechanisms behind 
the illness. We might have a very useful understanding of how the system be-
haves and misbehaves that is in some sense mechanistic, but without reference 
to deeper mechanisms. Neuroimaging, for example, can be used to identify 
which areas of the brain are activated during  hallucinations. These areas could 
then  be targeted with, say, a 1 Hz transcranial  magnetic stimulation (TMS), 
which decreases the activation of the targeted area, to reduce hallucinations 
over a time period of several weeks. In service of treatment, this leverages a 
partial understanding of brain regions and disturbances in excitability (balance 
of excitation and inhibition) that might be corrected, through TMS, without 
requiring a complete picture of the underlying neural signaling disturbances 
or the impact of the TMS on these disturbances (Hoffman and Cavus 2002; 
Hoffman et al. 2007). Likewise, there are very effective treatments at a purely 
behavioral level that rely on some understanding of mechanism (e.g., from 
psychology) at this level, without understanding anything about the brain.
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Mechanisms of Resilience and Recovery

Without fully understanding the original causes of a disease, we may begin 
to understand mechanisms of  resilience to the disease or  recovery from it. 
Resilience may simply constitute lower vulnerability to disease. On the other 
hand, resilience may be a more active phenomenon. Within a certain range, 
neural systems can return to their original homeostatic states. But if stretched 
too far, a system may “break,” resulting in a discontinuity, such as a patho-
logical response (e.g., PTSD,  anxiety disorder). However, in some cases, the 
organism achieves a new stable state that not only adapts to the current stressor 
but can better withstand subsequent stress, thus resulting in enhanced resil-
ience (Friedman et al. 2014). The mechanisms of this reactive resilience are 
still poorly understood, but represent a prime target for dynamical systems 
models that capture such multistability.

Likewise, mechanisms of recovery are sometimes quite distinct from mech-
anisms of pathology. Most psychiatric treatments do not fi x the underlying 
pathology (e.g., depression is not caused by a lack of electroconvulsive sei-
zures). However, models can potentially be used to understand the mecha-
nisms of treatment and recovery. An understanding of learning theory suggests 
ways to make  extinction permanent (e.g., fear in PTSD or phobia, compulsive 
behavior in obsessive-compulsive disorder, craving in addictive behaviors). 
Computational learning theory implies ways to optimize behavioral therapy 
or computer apps without understanding the underlying neural and molecular 
mechanisms of the original disorder.

Computational Methods to Optimize Treatment Directly

In some cases, we may temporarily abandon the quest for  mechanistic un-
derstanding of a disease process and use computational methods to analyze 
data directly and make predictions and recommendations about treatment. 
Advances here can be in the realm of  descriptive  nosology (see chapters by 
First, MacDonald et al., and Flagel et al., this volume), such as clustering of 
patients using computational algorithms based on current symptom/interme-
diate phenotype datasets, independent of underlying mechanistic knowledge 
(Borsboom et al. 2011; Borsboom and Cramer 2013). Computational ap-
proaches can also be very helpful in optimizing treatments and understand-
ing of outcomes: from optimal timing and dosing of medication, when to 
start/stop treatment, and even optimal organization of psychiatric treatment 
fl ow in clinics. All can be improved with computational modeling to op-
timize current processes, agnostic to the underlying mechanisms of func-
tioning of these approaches. This approach is being used, for example, to 
enhance treatment parameters with  electroconvulsive therapy (Deng et al. 
2013; McClintock et al. 2014).
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A striking and non-obvious observation (and perhaps a deep principle in 
computational psychiatry) is that applying analysis methods to data, without 
explicitly trying to model the mechanism, may actually help reveal the mecha-
nism of the disease. For example, suppose one were to attempt to model the 
trajectory of disease episodes in a patient with schizophrenia using a  hidden 
Markov model. The goal of this model might be to predict the next episode so 
as to guide treatment. Yet as part of the process of establishing an optimal model 
fi t to the clinical data, we may infer a number of states in the hidden Markov 
model. If this parameter is consistent between subjects, or consistently relates to 
some other important variables that have biological or psychological relevance, 
we may accidentally reap clues about the mechanism of the disorder itself.

Finally, notwithstanding the above, it is worth striving for a more funda-
mental mechanistic understanding. Because the mechanisms of hypertension 
are known, a physician usually will not prescribe another beta blocker if a 
patient is already on beta blockers; instead, the physician will try adding a 
drug with a different mechanism of action. Perhaps even more importantly, a 
deeper understanding of mechanism will help to achieve more complete remis-
sion and ultimately lasting recovery. This could be the difference between a 
treatment that works partially and temporarily versus a cure. Realistically, all 
of these approaches must be combined to create a versatile armamentarium.

How Can We Measure the Success of Computational Approaches?

In early  computational psychiatry, theoretical approaches were sometimes 
judged by how well they could reproduce traditional approaches (e.g., wheth-
er clustering model parameters could reproduce diagnostic categories in the 
DSM). Since computational psychiatry may soon exceed the usefulness of tra-
ditional approaches, this correspondence should not be used as a primary met-
ric. Instead we need to step back and think about how we can gauge, in a more 
fundamental sense, what is or is not working (Clementz et al. 2016).

Treatment Outcomes

In  a clinical sense, the ultimate gold standard is to improve outcomes for pa-
tients. In the ideal case, computational psychiatry could come to be very ex-
plicitly and directly part of treatment, so that changes in the prevalence or inci-
dence of the disease after the introduction of the techniques could be measured. 
Here we outline fi ve primary vehicles toward this end:

1. Computational approaches might inform basic research that subse-
quently leads to improvements in patient outcomes (e.g., by identifying 
critical neural circuits or components of cognition).

2. Computation might help predict risk status, thus enabling more in-
formed interventions. In bridging levels of biology, models may be 

From “Computational Psychiatry: New Perspectives on Mental Illness,”  
A. David Redish and Joshua A. Gordon, eds. 2016. Strüngmann Forum Reports, vol. 20, 

series ed. J. Lupp. Cambridge, MA: MIT Press. ISBN 978-0-262-03542-2.



98 Z. Kurth-Nelson et al. 

particularly well suited to develop an integrated understanding of risk 
factors across levels: from the known  genetic risk architecture of men-
tal illness (Gottesman and Gould 2003; Preston and Weinberger 2005; 
Cannon and Keller 2006; Meyer-Lindenberg and Weinberger 2006; 
Kendler and Neale 2010)  to known neurobiological, behavioral, and 
environmental factors. Relatedly, predicting risk may also serve a role 
in forensic psychiatry, which includes risk to others—an area that could 
potentially have a tremendous impact on society (Buchanan 1999; 
Freedman 2001; Loza and Dhaliwal 2005; Odgers et al. 2005; Dahle 
2006; Odeh et al. 2006; Hill et al. 2012; Chu et al. 2013).

3. Computation will reveal new treatments and treatment targets. 
 Biophysical models could be used to identify novel molecular targets, 
greatly facilitating screening for new drugs. At the circuit level, we can 
identify neural circuits for brain stimulation interventions based on an 
understanding of these circuits’ role in overall brain function, allowing 
us to fi ne-tune stimulation parameters (Gutman et al. 2009; Datta et al. 
2012; Rotem et al. 2014; Li et al. 2015; Senço et al. 2015). Similarly, 
models that identify particular behavioral variables, and defi cits in the 
same, might suggest novel types of psychotherapies aimed at address-
ing these behavioral pathways. For example,  reinforcement learning 
and other learning paradigms have already had a great deal of impact 
at the level of informing certain forms of  cognitive behavioral therapy; 
in particular,  prolonged exposure therapy, use of  virtual reality-based 
therapies, and the use of cognitive enhancers (such as d-cycloserine) to 
enhance the rate of extinction learning in combination with exposure 
(Conklin and Tiffany 2002; Rothbaum and Davis 2003; McNally 2007; 
Craske et al. 2008; Abramowitz 2013).

4. By understanding how individual treatments work, existing treatments 
can be repurposed to treat a different disease or to work more effec-
tively. In the models of  Parkinson disease discussed above, modeling 
suggested that the disease involves learned avoidance due to exagger-
ated learning in D2 neurons, and that this learning component can be 
rescued by  adenosine antagonists which block plasticity in these neu-
rons (Beeler et al. 2012). This may also explain the failure of such an-
tagonists in clinical trials wherein they were administered to Parkinson 
patients in the advanced stage: it predicts that these treatments will be 
most effective during very early stages of the disease to prevent aber-
rant learning.

5. A particular strength of computational approaches is identifying exact-
ly what data we need to collect to make effective predictions. We often 
have the potential to gather a huge array of data modalities about the 
patient from neuroimaging, cognitive tasks, questionnaires, genetics, 
hormone levels, etc., but we need better methods to determine which 
will actually provide the critical information to guide treatment.
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Making Scientifi c Progress

Finally, in some views, basic scientifi c progress is an end unto itself. Psychiatric 
disorders may even be seen as fortuitous because they shed light on how the 
healthy brain works. Early progress in neuroscience was accelerated by ob-
serving the consequence of gunshot wounds in particular areas of the brain 
(suddenly plentiful after World War I). Similarly, elucidation of the nature of 
dysfunction in psychiatric disorders may facilitate progress in the understand-
ing of fundamental brain mechanisms.

We wish, however, to end with a note of caution. The fi eld of computational 
psychiatry is still in its relative infancy, and the problem to be tackled is im-
mense. Thus, patience must be exercised, as we expect progress in fi ts and 
starts. The original promise of computational psychiatry may take decades to 
be fully realized.
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