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Abstract

Decision making is driven by multiple, somewhat independent systems within the

brain. One of these systems makes slow, deliberative decisions, and is thought to

be driven by a model-based neural algorithm, in that it learns an internal model

of the world which it uses to make decisions. Another system makes fast, habitual

choices, and is hypothesized to depend on a model-free neural algorithm, in that it

does not learn a model of the world, but simply stores state-action-reward associa-

tions. While the habitual system is relatively well-studied, the neural underpinnings

of the deliberative system are less clear. Specifically, it is not known how areas

comprising the deliberative system, such as prefrontal cortex and the hippocampus,

share information on fast timescales. Also, representations of contingency informa-

tion in prefrontal areas have previously been impossible to disambiguate from the

encoding of other time-varying information. In this thesis, we adapted for rats a task

which enabled the dissociation of model-based from model-free influence on choice,

and we found evidence for both model-based and model-free control. We also devel-

oped a simpler task which caused rats to repeatedly transition between deliberative

and habitual modes. On this second task, we found that both dmPFC and CA1

encoded information about task contingencies, while simultaneously representing un-

related time-varying information. Lastly, we examined interactions between dmPFC

and CA1 on fast timescales, and found that both areas represented prospective in-

formation simultaneously, but that the content of this prospective information was

not always identical between the two areas. Activity in dmPFC predicted whether

HPC would represent prospective information on broad timescales, and prospective

representation in HPC changed reward encoding in dmPFC on faster, sub-second

timescales. Our work begins to bridge the neural underpinnings of decision making

in rodents and the algorithms by which they select actions, confirms that the delib-

erative system represents contingency information, and uncovers asymmetries in the

transfer of information between dmPFC and HPC.
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Chapter 1

Introduction

How does the brain compute which actions will realize its goals? Understanding

the neural systems which perform decision-making is critical not just for better un-

derstanding the brain, but also for developing treatments and therapies for a wide

range of psychopathologies which arise due to problems in decision making, including

addiction, obsessive-compulsive disorder, and attention deficit-hyperactivity disorder.

Current theories suggest that there are multiple, somewhat independent subsys-

tems within the brain that contribute to decision-making (O’Keefe and Nadel, 1978a;

Adams and Dickinson, 1981; Sloman, 1996; Dayan and Balleine, 2002; Lieberman,

2003; Loewenstein and O’Donoghue, 2004; Balleine et al., 2008; van der Meer et al.,

2012; Kahneman, 2011; Redish, 2013; Dolan and Dayan, 2013). These systems are

thought to use different algorithms to select actions, and may be used at differ-

ent times, or even be active simultaneously and give rise to conflicting decisions.

Some research dissociates deliberative or goal-directed decision-making from habitual

decision-making systems (van der Meer et al., 2012; Redish, 2013), work in humans

separately identifies “model-based” and “model-free” influences on decision-making

(Gläscher et al., 2010; Daw et al., 2011), other research distinguishes place from re-
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sponse strategies (O’Keefe and Nadel, 1978a; Packard and McGaugh, 1996; Redish,

1999; Yin and Knowlton, 2004), other work separates associative from rule-based

systems (Sloman, 1996), others distinguish “fast” and “slow” systems (Kahneman,

2011), and still others identify reflexive from reflective processes (Lieberman, 2003).

A central theme to these dissociations is separating a fast, automatic, habit-like sys-

tem from a slow, intentional, deliberative system. Although there are likely more

than just two such systems (Redish, 2013), this thesis will focus on the deliberative

and habitual systems, which are thought to rely on “model-based” and “model-free”

neural algorithms, respectively.

The deliberative system is thought to employ a model-based algorithm to make

decisions. Model-based algorithms learn and store an internal model of the world,

and use this model to make more intelligent decisions (Doll et al., 2012). Model-based

algorithms tend to perform better in environments where either information is limited,

or when the environment is changing quickly (Gläscher et al., 2010; Daw et al., 2011).

However, because the use of the model-based algorithm relies on repeated simulations

of the internal model, decisions made with this system are comparatively slow, which

can be an important drawback in situations or environments where speed is required

(Keramati et al., 2011).

On the other hand, the neural system giving rise to habitual or procedural behav-

iors is thought to be supported by a model-free neural algorithm. Unlike model-based

algorithms, model-free algorithms do not learn a model of the world to store state

transition probabilities (thus the name!), and instead simply store associations be-

tween states, actions, and the resulting rewards. Essentially, these algorithms store

the expected value of taking any action in any given state, and update those expected

reward values as the agent performs those actions and experiences some amount of

reward as a result (Watkins, 1989; Rummery and Niranjan, 1994; Sutton and Barto,
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1998). Because this class of algorithms is association-based, instead of simulation-

based as with model-based algorithms, the computations required to make decisions

are very fast (Keramati et al., 2011). However, the drawback of this faster style of

algorithm is that they are relatively inflexible compared to model-based algorithms.

The state-action-reward associations in model-free systems are only able to be up-

dated as a result of direct experience, and so agents must repeatedly experience

sequences of events. Model-based algorithms, on the other hand, are able to dynam-

ically update valuations because they are able to synthesize knowledge of parts of an

environment to make more intelligent decisions, without having to directly experience

the entire chain of events sequentially (Doll et al., 2012).

However, most work dissociating model-based from model-free influence on deci-

sion making has been performed in humans, where measurements of information rep-

resentation on fast timescales is difficult. In rodents, where simultaneously recorded

ensembles of single units make possible the measurement of information representa-

tion on fast time scales, research has focused on separating deliberative neural systems

from those neural systems giving rise to habitual or procedural behavior. It is thought

that a model-based neural algorithm underlies the deliberative system, and a model-

free neural algorithm drives habitual behavior, but the accuracy of this hypothesized

parallel remains unclear.

The neural correlates of the habitual system have been well-studied both ex-

perimentally (Packard and McGaugh, 1996; Schultz et al., 1997; Jog et al., 1999;

Schmitzer-Torbert and Redish, 2004; Yin and Knowlton, 2004) and theoretically (Niv

et al., 2006; Frank, 2011), and are thought to involve dorsal striatal areas, along with

the rest of the basal ganglia, the thalamus, and motor and sensory cortices. In con-

trast, the neural underpinnings of the deliberative system appear to be more complex

and are less well-understood (Doll et al., 2012; van der Meer et al., 2012). In rodents,
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some work observes the representation of prospective information by ensembles in

the hippocampus (HPC) during deliberation at choice points (Johnson and Redish,

2007), which is thought to correspond to the simulation of the outcomes of candidate

actions using an internal model stored in part by the hippocampus. Furthermore,

neural activity thought to corresponding to the estimation of the value of these sim-

ulated outcomes has been observed in ventral striatum (van der Meer and Redish,

2010) and in orbitofrontal cortex (Rich and Wallis, 2016; Wallis, 2018). However, it’s

unclear how these valuations are then used to select between candidate actions, and

also where and how internal simulations of candidate action outcomes are initiated.

If model-based theories for the operation of the deliberative system are correct, then

presumably some brain areas are responsible for detecting the need for deliberative

control, instigating the internal simulation of outcomes associated with candidate ac-

tions, storing in working memory the estimated value of those simulated outcomes,

and after the value of multiple candidate actions has been estimated, using that value

information stored in working memory to make a decision as to which action to take.

Candidate brain regions for performing some or all of these roles include the

various subregions of the prefrontal cortex (PFC). The hippocampus (HPC) and

PFC, along with other structures, are thought to form an information-processing

loop where top-down contextual signals from PFC influence encoding in HPC, and

information retreival by HPC informs representations in PFC. This loop may also be

responsible for the initiation, simulation, and evaluation of candidate actions (van der

Meer et al., 2012). Various regions of the prefrontal cortex (PFC) have long been

thought to mediate executive function (Miller and Cohen, 2001; Dalley et al., 2004;

Kesner and Churchwell, 2011). The PFC, specifically the anterior cingulate cortex,

has been implicated in conflict detection (Haddon and Killcross, 2005, 2006; Marquis

et al., 2007; Dwyer et al., 2010), suggesting it may be responsible for detecting the
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need for deliberative control. Also, the PFC plays an active role in the storage and

recall of working memories (Tronel and Sara, 2003; Ragozzino and Kesner, 1998;

Delatour and Gisquest-Verrier, 1999; Cowen and McNaughton, 2007; Yoon et al.,

2008; Horst and Laubach, 2009; Euston et al., 2012; Preston and Eichenbaum, 2013;

Urban et al., 2014), which may also translate to the storage of internally simulated

outcome valuations. It is theorized that PFC may initiate the internal construction

of hypothetical situations (Hassabis and Maguire, 2009; van der Meer et al., 2012;

Wang et al., 2015).

Specifically, the dorsomedial prefrontal cortex (dmPFC) also represents informa-

tion about environmental contingencies or behavioral strategies (Balleine and Dickin-

son, 1998; Jung et al., 1998; Wallis et al., 2001; Ragozzino et al., 2003; Floresco et al.,

2008; Young and Shapiro, 2009; Hyman et al., 2012; Mante et al., 2013; Powell and

Redish, 2014; Ma et al., 2016). This contingency information, or hidden information

which must be learned through experience and stored in working memory and used

to make optimal decisions, is very similar in spirit to the abstract information about

the world thought to be required for implementing a model-based algorithm.

However, it is hard to parse out how much of this apparent contingency repre-

sentation is due to actual contingency representation, as opposed to an artifact of

representational drift over time. Most work examining latent contingency representa-

tions in prefrontal areas employ tasks where the contingencies are present in blocks of

trials or time. This is because if the contingencies were to be cued, it would be com-

pletely impossible to distinguish representations of contingency from representations

of sensory information. Unfortunately, in removing one confound, this block-like task

structure gives rise to a second confound: time.

Neural activity in both dorsomedial prefrontal cortex and hippocampus are known

to change slowly over time (Mankin et al., 2012; Hyman et al., 2012; Ziv et al., 2013).
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If then, neural activity is changing over time, then it is difficult to say whether dif-

ferences between neural activity across task blocks is due to encoding of information

specific to those blocks (of interest here, contingency information), or whether those

differences are due simply to some unrelated random drift over time. Studies attempt-

ing to disambiguate these two contributions to neural activity use decoding, ensemble

correlation, or clustering approaches to determine whether ensemble activity repre-

sents contingency information, for example Malagon-Vina et al. (2018). However,

these decoding approaches suffer from the aforementioned inability to disambiguate

contingency representation (when contingencies are presented in blocks of time) from

unrelated representational drift over time. Alternative approaches have been taken

which find sudden representational shifts coincident with contingency changes (Rich

and Shapiro, 2009; Durstewitz et al., 2010; Karlsson et al., 2012; Powell and Redish,

2016).

Assuming these brain areas are indeed representing abstract contingency informa-

tion, it is then also unknown how the timing of representational changes differ between

brain areas representing this information. For the case of dorsomedial prefrontal cor-

tex and the hippocampus, theories of a spatial working memory loop between the

two areas certainly suggest that contingency information would appear first in dor-

somedial prefrontal cortex, and then make its way into hippocampal representations,

but it is unclear how quickly this transfer of information occurs. Also, the presence

of unrelated representational drift over time further complicates any measurement of

timing differences, as it is unknown how the drift rates differ between hippocampus

and prefrontal cortex.

It is also less well studied how HPC and dmPFC share other types of information

(e.g. about reward, candidate actions, and location) on fast timescales. Theories of

the deliberative system indicate that prefrontal areas detect a need for deliberative
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control, instigate internal simulations of the outcomes of candidate actions, keep

track of the valuations of those outcomes, and use that information to decide which

candidate action to enact. Therefore, likely candidates for information being passed

between dmPFC and HPC include information about candidate actions, location,

and reward. Previous work has discovered that hippocampal ensembles represent

non-local spatial information which appears to correspond to internal simulations

of candidate actions (Johnson and Redish, 2007), and other areas such as ventral

striatum and orbitofrontal cortex represent value in ways suggesting they may be

estimating the value of these internally simulated outcomes (van der Meer and Redish,

2010; Rich and Wallis, 2016). But what instigates these internal simulations? If

dmPFC plays this role, then it should be possible to predict from activity in dmPFC

whether non-local information is about to be represented in HPC. Also, if dmPFC

is keeping track of predicted value of candidate actions, then when the outcomes

of these candidate actions are represented in HPC (which, in theory, cause value

representations in other areas corresponding to the estimated subjective value of those

simulated outcomes) should have an effect on reward encoding in dmPFC. However,

work involving simultaneous ensemble recordings in both dmPFC and HPC have not

yet investigated whether information encoding in these two areas occurs in this way

on fast timescales.

In this thesis we first examine the model-free and model-based influences on rat

behavior, and then further the representation of task-relevant information in dmPFC

and CA1, and how they may contribute to the model-based deliberative system.

• Chapter 2 describes a task we adapted which is able to distinguish the contribu-

tions of model-based from model-free influences on rodent decisions in spatial

mazes, and examines how rat decisions are explained by a combination of model-
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based and model-free influences, but finds that this spatial version of the task

was not optimal for measuring trial-by-trial influences on rat choice, due mainly

to its complexity.

• Chapter 3 introduces a different, simpler task we designed to study repeated

transitions between deliberative and habitual decision-making modes, and ex-

amines how behavioral correlates of deliberation correspond to rats’ uncertainty

as to the task contingencies.

• Chapter 4 develops an analysis to disambiguate the contributions of contingency

encoding from representational drift over time, demonstrates that both CA1

and dmPFC encode contingency information while simultaneously displaying

representational drift over time, and examines the timing of these changes.

• Chapter 5 investigates the representation of spatial and reward information

in dmPFC and CA1, and demonstrates that both areas represent prospective

spatial information simultaneously, while not always representing identical lo-

cations, and that activity in dmPFC predicts non-local representation by HPC

ensembles on broad timescales, while prospective activity in HPC effects reward

representations in dmPFC on fast timescales.

• Chapter 6 summarizes our findings and their significance, and discusses poten-

tial avenues and challenges of future work in this area.
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Chapter 2

Model-based and Model-free

Decision Making on a Two-Step

Task

The work discussed in this chapter has been previously reported in Hasz and Redish

(2018).

2.1 Introduction

Current theories suggest that decision-making arises from multiple subsystems within

the brain. Each system is thought to use different algorithms to select actions based

on external, and sometimes internal, information. However, literatures using different

experimental species have dissociated different types of decision-making systems in

different ways (O’Keefe and Nadel, 1978a; Adams and Dickinson, 1981; Sloman, 1996;

Dayan and Balleine, 2002; Lieberman, 2003; Loewenstein and O’Donoghue, 2004;

Balleine et al., 2008; van der Meer et al., 2012; Redish, 2013; Dolan and Dayan,
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2013).

Studies of rodent navigation through spatial mazes have revealed a dichotomy

between deliberative behavior and procedural behavior. Deliberative behaviors are

thought to arise from the use of some internal evaluation of the expected state of the

world, or “cognitive map” (Muenzinger and Gentry, 1931; Tolman, 1939; O’Keefe and

Nadel, 1978a). These deliberative behaviors are identified by the use of “place strate-

gies”, when rodents make decisions based on place or goal locations (Packard and Mc-

Gaugh, 1996; Schmidt et al., 2013; Gardner et al., 2013; Redish, 2016). Deliberation

is thought to involve an entire ensemble of brain areas, including the hippocampus,

other more associative brain areas such as prefrontal cortex and orbitofrontal cortex,

basal ganglia structures such as the ventral striatum, thalamic structures such as

nucleus reuniens, and more (Redish, 1999; van der Meer et al., 2012).

In contrast, procedural behavior is a much faster process thought to be driven

by habits. In rodents, procedural behavior is characterized by “response strategies”,

where animals make decisions based on relatively simple stimulus-action associations

(Packard and McGaugh, 1996; Yin and Knowlton, 2004). Unlike deliberation, pro-

cedural behaviors are thought to be driven primarily by motor cortical and basal

ganglia structures such as the dorsolateral striatum (Packard and McGaugh, 1996;

Jog et al., 1999; Yin and Knowlton, 2004).

On the other hand, studies in humans dissociate decision-making behavior based

on how subjects make choices consistent with those of “model-based” and “model-

free” learning algorithms (Gläscher et al., 2010; Daw et al., 2011; Gillan et al., 2011;

Wunderlich et al., 2012; Otto et al., 2013b,a; Eppinger et al., 2013; Skatova et al.,

2013; Schad et al., 2014; Gillan et al., 2014; Sebold et al., 2014; Otto et al., 2015;

Gillan et al., 2015; Voon et al., 2015; Deserno et al., 2015; Radenbach et al., 2015;

Sharp et al., 2015; Doll et al., 2016; Decker et al., 2016), though some of this work has
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been done in rats on simplified tasks (Miller et al., 2013, 2014, 2017). However, some

work suggests these simplified tasks used for rodents are unable to truly separate

model-based from model-free influences on decisions (Akam et al., 2013).

Model-free algorithms were originally developed in the context of machine rein-

forcement learning. Some early versions of these algorithms include “Q-learning”

(Watkins, 1989) and “SARSA” (Rummery and Niranjan, 1994). This class of al-

gorithm learns the expected value of taking any given action in any given state.

Essentially, the algorithm stores a lookup table of the expected reward associated

with state-action pairs. Values in this table are updated according to the rewards the

agent actually experiences, with the hope that over time they come to approximate

the true values associated with each state-action pair. At inference time (when the

agent needs to make a decision), the algorithm simply looks up the available actions

for a given state and their estimated values, and chooses the action with the highest

expected reward for that state. As this algorithm has constant time complexity (as-

suming the number of available actions is constant), it is very fast (Keramati et al.,

2011).

However, model-free algorithms suffer from an important limitation: because they

only update their reward expectations according to experiences the agent has already

had, this class of algorithm is inflexible and performs poorly when contingencies

change. That is, when state-action rewards remain relatively constant, but the re-

lationships between states change, model-free algorithms must re-learn the expected

rewards from “scratch”. This is because model-free algorithms do not contain any sort

of model of the world, but only associations between state-action pairs and reward.

Model-based algorithms, on the other hand, do store models of the world, and

therefore are able to use this information to handle more dynamic environments.

Early versions of these algorithms include the Dyna architecture (Sutton, 1991), and
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prioritized sweeping (Moore and Atkeson, 1993). Model-based algorithms are similar

to model-free algorithms in that they too learn the expected reward associated with

state-action pairs. However, they also build an internal model of the agent’s envi-

ronment which can be used to make more optimal decisions, especially in the face

of dynamic contingencies. Specifically, these models are usually instantiations of a

Markov decision process, and store the transition probabilities associated with each

state-action pair. That is, they learn not just the amount of reward the agent can

expect by performing a given action in a given state, but also how likely that action

is to cause the state to change to any other given state. This information can then

be used to evaluate on-line the tree of possible futures given different potential ac-

tions. This dynamic on-line evaluation of expected action outcomes allows an agent

to more dynamically compute expected rewards, even when a given action (or chain

of actions) hasn’t yet been observed by the agent to lead to large rewards. While

model-based algorithms allow for more flexibility and optimal learning, they are far

more computationally demanding. Especially in the case of a large number of possible

future states, the number of possible paths through those future states becomes vast,

requiring much more computation at inference time (Keramati et al., 2011).

Recent behavioral and magnetic imaging work studying human subjects has in-

vestigated how human decisions and neural activity may be related to model-based

and model-free algorithms. Much of this work employs a two-step task which is able

to dissociate between decisions made by model-based algorithms from those made

by model-free algorithms (Gläscher et al., 2010; Daw et al., 2011). Briefly, the task

involves two sequential binary choices, where the first choice probabilistically con-

trols which of two decisions will be presented for the second choice. Furthermore,

the rewards associated with actions taken at the second choice change over time.

This task is able to dissociate model-based from model-free decision making because

12



model-based algorithms are able to use knowledge of the task structure and transi-

tion probabilities to update reward expectations at the first choice, while model-free

algorithms are not. More details on the two-step task will be given in Section 2.2.

This body of work in humans has found evidence that human decisions on the

two-step task are consistent with those of model-based and model-free algorithms

(Gläscher et al., 2010). Furthermore, human brain areas such as the ventral striatum

and prefrontal cortex appear to activate in ways consistent with reward prediction

errors in model-based and model-free algorithms (Gläscher et al., 2010; Daw et al.,

2011). Further work finds that various factors and disorders can disrupt the bal-

ance between model-free and model-based influences on human decision making. For

example, obsessive-compulsive disorder appears to cause individuals to make deci-

sions which are more consistent with a model-free strategy (Gillan et al., 2011, 2014;

Voon et al., 2015). Also, subjects with alcohol dependence show weaker a influence

of the model-based system (Sebold et al., 2014), while the acute effect of alcohol

administration has been found to do the opposite (Obst et al., 2018). Individuals

displaying higher levels of cognitive control or those with more working memory ap-

pear more model-based, and individuals are unable to behave as model-based when

working memory is allocated elsewhere (Otto et al., 2013b,a; Schad et al., 2014; Otto

et al., 2015). Dopamine appears to play an integral role in either the balance between

the model-based and model-free systems, or the functioning of the model-based sys-

tem. Increased dopamine corresponds to more model-based-like behavioral strategies,

whether this increase in dopamine levels was experimentally increased via the admin-

istration of L-DOPA (Wunderlich et al., 2012; Sharp et al., 2015), or the amount of

naturally-occuring dopamine as measured by F-DOPA positron emission tomography

(Deserno et al., 2015) or genetic indicators (Doll et al., 2016). Age also has been

found to play a role in determining the balance between model-based and model-free
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strategies (Eppinger et al., 2013; Decker et al., 2016), and using model-based strate-

gies appears to defend against habit formation (Gillan et al., 2015). Stress leads to

a decrease in the ability to make model-based choices (Radenbach et al., 2015), and

some work has even found a relationship between an individual’s extrovertedness and

the balance between model-based and model-free influences on their choices (Skatova

et al., 2013).

How do the model-free and model-based algorithms relate to procedural and de-

liberative behavior and neural activity? The procedural system is hypothesized to be

driven by a model-free neural mechanism, in that it is not thought to actually use

any internal model of the world to make decisions, but rather caches the expected

best action for each given state.

Schultz et al. (1997) first provided evidence that neural activity in monkeys actu-

ally reflected internal variables of reinforcement learning models like the model-free

algorithm (Sutton and Barto, 1998). Specifically, they found that dopaminergic cells

in the ventral tegmental area (VTA) and the substantia nigra are tonically active,

and did not change their baseline firing rates when monkeys received as much reward

as they expected. However, when monkeys received unexpected rewards, there was

a burst in the activity of the dopaminergic cells, and when an expected reward was

omitted, there was a transient decrease in the firing rate of the dopaminergic units

(Schultz et al., 1997). This behavior is consistent with the “delta signal” used in

reinforcement learning algorithms (Sutton and Barto, 1998). This delta signal car-

ries information about the difference between the algorithm’s current estimate of the

reward associated with a specific state-action pair, and the actual amount of reward

that was received at that timepoint.

Dopamine release is known to affect plasticity of corticostriatal synapses, and in

the context of habitual behavior (Calabresi et al., 2007), specifically the projections
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from sensory association and motor areas carrying state and motor plan information

to dorsolateral striatal areas. The striatum, specifically the dorsolateral aspects of

the striatum, are important for forming habits (Yin and Knowlton, 2004), and show

bursts of activity at the initiation of habitual action chains (Jog et al., 1999). The

striatum plays a key role in the basal ganglia circuit which gates action initiation

and selection. Theories have suggested that changes in the amount of dopamine

released onto corticostriatal synapses control the strength of these synapses, and

therefore are able to tune how strongly an action is initiated (or silenced) upon input

representing specific situations from sensory association areas (Swanson, 2000; Niv

et al., 2006; Frank, 2011). This hypothesized system is very similar to the state-action

pair reward associations of the model-free algorithm, and thus it is hypothesized that

the neural system generating habitual behaviors implements a model-free algorithm,

or something very similar.

The procedural system makes decisions quickly, but these decisions are habit-like

and inflexible once learned. That is, for the procedural system, un-learning a decision-

making policy requires a large amount of training relative to the deliberative system

(Niv et al., 2006; Keramati et al., 2011; van der Meer et al., 2012). Although model-

free algorithms are not necessarily slower to change their policies than model-based

ones (this speed is primarily dependent on the learning rate), model-free algorithms

do suffer from the limitation that the agent must observe the reward outcomes of a

sequence of actions before updating their reward beliefs. In complex environments

where the contingencies change, but not necessarily the rewards associated with tak-

ing actions in (potentially latent) states, model-free systems require many more ex-

periences than do model-based systems to accurately update the estimated reward

associated with state-action pairs. Thus, procedural decision making is thought to be

driven by a model-free neural algorithm. Like such algorithms, procedural decisions
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do not quickly reflect changes in contingencies or state transition probabilities.

In contrast, the deliberative system is hypothesized to employ the model-based

neural mechanism: it is thought that the deliberative system stores and evaluates an

internal model of the world, based on contingencies or latent states, to estimate the

outcomes of potential actions. The storage of this internal model has been proposed

to reside in the hippocampus (Johnson and Redish, 2007; Redish, 2016) and perhaps

also in sub-regions of the prefrontal cortex such as orbitofrontal cortex (Wikenheiser

and Schoenbaum, 2016; Zhou et al., 2019). While the hippocampus has long been

known to play a role in memory (Scoville and Milner, 1957), more recently it has been

discovered that the hippocampus sometimes represents the potential outcomes of can-

didate actions while subjects deliberate (Johnson and Redish, 2007; Simon and Daw,

2011; Doll et al., 2015; Brown et al., 2016). The orbitofrontal cortex is also thought

to represent information about the “cognitive map” (Wikenheiser and Schoenbaum,

2016; Zhou et al., 2019), though it is unclear what aspects of environment represen-

tation and simulation occur in orbitofrontal cortex and which occur in hippocampus,

or how much of these roles are shared between the two structures. Prefrontal cor-

tex is important for working memory (Ragozzino and Kesner, 1998; Delatour and

Gisquest-Verrier, 1999; Cowen and McNaughton, 2007; Yoon et al., 2008; Horst and

Laubach, 2009; Urban et al., 2014), and plays a role in decision-making and generat-

ing goal-directed (as opposed to habitual) actions (Seamans et al., 1995; Killcross and

Coutureau, 2003; Matsumoto et al., 2003; Matsumoto and Tanaka, 2004; Hok et al.,

2005; St. Onge and Floresco, 2009). Furthermore, ventral aspects of the striatum rep-

resent reward-related information while hippocampus represents potential outcomes

of candidate actions (van der Meer and Redish, 2010), and so it is thought that dur-

ing deliberation the ventral striatum plays the role of a “critic” to the hippocampus’

“actor” (van der Meer et al., 2012). Taken together, this system has been hypoth-
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esized to perform internal simulations of a world model, and the evaluation of their

simulated outcomes, to decide which actions to take. This storage of action outcomes

in the context of environmental dynamics and hypothetical-based evaluation of action

optimality is very similar to the model-based algorithm, and therefore it is believed

that a model-based neural algorithm underlies deliberative decision-making and be-

haviors (Doll et al., 2012; Daw and Dayan, 2014; van der Meer et al., 2012; Redish,

2016).

This hypothesized internal model learns not only the expected reward for each

state-action pair in the environment, but also learns the relationships between states

- information the procedural (and putatively model-free) system does not represent

or use. That information is thought to be integrated on-line in order to make more

optimal decisions, even in completely new situations (Adams and Dickinson, 1981;

van der Meer et al., 2012). However, like with the model-based algorithm, one key

drawback of deliberation is that it requires more time and cognitive effort than the

procedural system, because it requires both the repeated simulation and the evalu-

ation of an internal model. It is hypothesized that the brain employs some sort of

trade-off between fast, inflexible procedural strategies and slow, more flexible delib-

erative strategies (Keramati et al., 2011).

In addition to using the identification of place strategies, deliberation has also

been identified in rodents by the presentation of a specific behavior termed “vicarious

trial and error.” Vicarious trial and error (VTE) is a behavior where rats pause at

choice points of a maze, and look back and forth down each path as if deliberating

over which path to take (Muenzinger and Gentry, 1931; Tolman, 1939; Redish, 2016).

VTE behaviors are thought to occur during internal deliberative processes: the eval-

uation of an internal model of the world, which corresponds to a model-based neural

mechanism (Redish, 2016).
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During procedural behavior rats do not display VTE, and their paths through the

choice points are instead highly regular and stereotyped (Packard and McGaugh, 1996;

Jog et al., 1999; Schmitzer-Torbert and Redish, 2002; van der Meer et al., 2012; Smith

and Graybiel, 2013; Schmidt et al., 2013). Again, the procedural system generating

this stereotyped behavior is hypothesized to employ a model-free learning algorithm

(O’Keefe and Nadel, 1978a; Jog et al., 1999; Yin and Knowlton, 2004; Frank, 2011;

Redish, 2016). Animals usually display deliberative behavior early in training, which

transitions to more stereotyped behavior with experience on a given task (Packard

and McGaugh, 1996; Gardner et al., 2013; Schmidt et al., 2013; Redish, 2016).

While the model-based system is hypothesized to correspond to the deliberative

system, and the model-free system to the procedural system, research has not actually

mechanistically linked the hypothesized underlying algorithms to neural activity or

behavior in rodents. The model-based/model-free dichotomy has been evaluated using

tasks which differentiate decisions based on the apparent presence of knowledge about

relations between states, information which only the model-based system stores (Daw

et al., 2011; Doll et al., 2012). In contrast, the deliberative/procedural dichotomy has

been evaluated using behavioral markers such as place/response strategies and VTE,

but have not tied these behaviors to model-based or model-free choices. Both of these

literatures have been very successful in dissociating two types of decision-making, but

it is unknown how they correspond to each other.

Furthermore, the existence of multiple decision-making systems within the same

agent raises the question of how an organism makes a single coherent action when

multiple systems are contributing to a decision, potentially in conflicting ways. That

is to say: how is an agent which consists of multiple decision-making systems, some of

which make different decisions at the same time, able to come to one single decision

which is eventually executed by the agent? Work in humans has assumed a subject-
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specific static weight between model-based and model-free influence (Gläscher et al.,

2010; Daw et al., 2011; Gillan et al., 2011; Wunderlich et al., 2012; Otto et al.,

2013b,a; Eppinger et al., 2013; Skatova et al., 2013; Schad et al., 2014; Gillan et al.,

2014; Sebold et al., 2014; Otto et al., 2015; Gillan et al., 2015; Voon et al., 2015;

Deserno et al., 2015; Radenbach et al., 2015; Sharp et al., 2015; Doll et al., 2016;

Decker et al., 2016). For example, according to this hypothesis the model-free system

contributes to all decisions with, say, 40% weight, and model-based with 60% weight.

This may not be the case – anecdotal and introspective evidence would suggest that

sometimes, one uses nearly entirely habitual control (say, when turning on a light

switch when entering a familiar room), while at other times one uses nearly wholly

deliberative control (say, when deciding which college to attend!), and at yet other

times it may be apparent that two systems are conflicting (for example when one is

fighting to break an addiction). In fact, some evidence suggests the influence of each

system can indeed change over time (Otto et al., 2013a; Lee et al., 2014).

But what drives this change in control? Some work suggests that uncertainty

within the model-based and model-free systems may determine that system’s influence

(Daw et al., 2005; Beierholm et al., 2011; Lee et al., 2014). Such an uncertainty-based

arbitration scheme causes decision-making systems that are more confident in their

decision to be used, while other systems which are unsure as to the optimal action

have less or no control of the agent during that decision. However, it is unclear

whether behavioral correlates of deliberation (such as VTE) or procedural learning

(such as behavioral stereotypy) correspond to uncertainty within the model-based or

model-free systems.

In Daw et al. (2005), the authors use approximate Bayesian versions of the model-

based and model-free reinforcement learning algorithms, which are able to express

uncertainty in their estimate of the value of taking an action in a given state. This is
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because the approximate Bayesian versions of the algorithms represent the expected

value of each state-action pair as a probability distribution across possible values,

instead of by a single scalar estimate, like the non-Bayesian versions of the reinforce-

ment learning algorithms. The uncertainty within a given system is then the variance

of that probability distribution of the value of a given state-action pair. If the distri-

bution is wide, then the algorithm is less certain as to the value of the state-action

pair, while if the distribution is sharp and the variance is low, the algorithm is highly

certain as to the value of taking that action in that state. It is important to note

that this form of uncertainty refers to the uncertainty in the estimate of the value

of individual state-action pairs, and not to the uncertainty as to which of several

competing state-action pairs has the higher value.

We adapted for rats a task which has often been used to dissociate model-based

from model-free decision-making in humans. In this chapter, we discuss the task

and how we have adapted it for rats, and evaluate rat behavior on our version of the

task. We also investigate how choice behavior of rats on our version of the task reflects

model-based and model-free influence, and link that behavior to the more traditionally

rodent deliberative and procedural behaviors like VTE. We also evaluate what role

uncertainty in each of the model-based and model-free algorithms may play in the

arbitration between those two decision-making systems.

2.2 The Two-Step Task

To investigate the extent to which rodent behavior can be explained by model-free and

model-based influences, how the influence of each algorithm corresponds to habitual

and deliberative behavior, and to elucidate how arbitration between these two systems

may occur, we adapted for rats the two-step task previously designed for humans
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which is able to dissociate model-based from model-free decisions (Daw et al., 2011).

Rodents are an ideal model species for studying the relationship between information

representation in the brain with model-based and model-free algorithms, because

large ensembles of single cells can be recorded simultaneously while rodents perform

decision-making tasks. Ensemble recordings are an invasive method which result in far

more precise measurements of what the brain is doing than, say, magnetic resonance

imaging. However, because of its invasiveness, this method is obviously unethical to

perform on human subjects, and rodents provide a more cost-effective solution than

nonhuman primates.

2.2.1 The original two-step task for humans

The human two-step task (Daw et al. (2011), see Figure 2.1) consists of a sequence

of two choices: C1 (choosing between A vs. B) and then C2 (choosing between C

vs. D) or C3 (choosing between E vs. F). Choosing option A in C1 usually (but not

always!) leads to choice C2, while choosing option B in C1 usually leads to choice

C3. Choosing C vs. D (in C2) or E vs. F (in C3) leads to probabilistically-delivered

reward, with different probabilities at C, D, E, and F. Another important feature

of the two-step task is that the reward probabilities drift slowly over time, so the

subject is constantly trying to find the best option and should not simply settle on

one option, but can use observations of reward as a signal that the option is a good

one to return to (at least for a while).

This human version of the two-step task is able to dissociate model-based from

model-free decisions because it creates conditions where the two decision-making algo-

rithms make different choices, mostly on laps following a rare transition (e.g. choosing

A at C1 leads to C3, a choice between E and F). This is because the model-based
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Figure 2.1: The two-step task for humans. (A) State structure of the task. A first
choice between two options leads probabilistically to one of two second-stage choices.
Each of the four second-stage choices have some cost of reward associated with them,
and those costs change over the course of the session. (B) This task dissociates model-
based from model-free choices. When an agent receives reward after a rare transition,
the model-free system is more likely to repeat the first-stage choice which lead to that
reward, while the model-based system is more likely to take the opposite first-stage
action on the next lap. Figure from Hasz and Redish (2018).

algorithm stores information about the relation between states (specifically, the state

transition probabilities), while the model-free algorithm does not store information

about relations between states (and so does not use the transition probabilities for

valuation).

To illustrate this difference, suppose a subject chooses A at C1, experiences a rare

transition and is presented with C3 (a choice between E and F), chooses E at the

second choice, and receives a large reward (Figure 2.1). A model-free agent would

be more likely to repeat the choice at C1 (choice A), because model-free learning

algorithms reinforce actions which have led to reward in the past, without taking into

account relations between states. However, the world model of the model-based algo-

rithm stores relations between states, and so has access to the fact that choosing B at

C1 is more likely to lead to the C3 choice, where E can then be chosen. Therefore, the

model-based algorithm would be more likely to choose B at C1 in this scenario, while
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the model-free algorithm would be more likely to choose A. In general on this task,

model-based and model-free agents value the two choices at C1 slightly differently.

2.2.2 Our spatial two-step task for rats

Our version of the two-step task for rats was a spatial maze with two sequential

left/right choice points (or “stages”), which corresponded to the two choice stages

in the human task (Figure 2.2). The second choice (C2/C3) was the same physical

location for both the C/D and E/F choices, but an audiovisual cue at the second

choice point informed animals whether they were in the C2 or C3 context. Choosing

left (A) at the first choice led to C2 80% of the time, and to C3 20% of the time.

Like the human task, those probabilities were reversed after choosing right (B) at the

first choice point. After choosing left (C or E) or right (D or F) at the second choice

point, rats were rewarded with food pellets. While the cost of reward in the human

task was the probability of receiving a reward at all, we used delay to food delivery

as the cost: high delay to food delivery corresponded to high cost rewards, while low

delays corresponded to low cost rewards. Like the human task, these delays varied

between C, D, E, and F. The delays were initialized randomly between 1 and 30s,

and changed slowly over the course of a session according to a Gaussian random walk

with a standard deviation of 1s/lap.

To indicate to the animal which second-stage context they were in, we presented

auditory and visual cues after the first choice was made. The auditory cue was a

beep pattern unique to each second stage, and the visual cue was white-on-black lines

or circles (depending on the second stage) displayed on three monitors around the

second choice point. From the pellet dispensers on either side of the maze, there were

return hallways to the start of the maze. There was another pellet dispenser at the
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Figure 2.2: The two-step task for rats. (A) State structure of the task is identical
to that of the two-step task for humans. (B) The spatial version of the two-step task
for rats. An initial Left/Right choice point (labeled “1”, corresponding to the first
choice in A), leads to a second-stage choice (labeled “2”). Which of the two second
stage choices is currently presented is indicated by an audio cue, and by a visual cue
on monitors (green boxes on outside of maze). Rats then wait some amount of time
before receiving food reward at feeder sites (red semicircles). Figure from Hasz and
Redish (2018).

start of the maze, where rats received one pellet per lap. Four one-way servo-actuated

doors were used to prevent the rats from moving backwards through the maze: one

on either side of the first choice-point, and one just before entry into the reward offer

zone. The maze was constructed using LEGO walls and a canvas floor. Rats were

allowed to freely run the task for the duration of sessions which lasted 45 min, and

earned their food for the day while running the task (∼ 10− 15 g).

Animal behavior on the task was captured with a video camera placed above the

maze. Custom Matlab software determined animal position from the video on-line;

controlled delays and monitors; controlled pellet dispensers and the one-way doors

via an Arduino, and recorded animal trajectory through the maze along with task
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events. Custom Matlab software was written to track animal head positions from

video off-line.

There were three phases of task training, each lasting 8d. For the first, there was

no delay to food delivery, no second-stage auditory or visual cues, and one option

was blocked at each choice point, leaving only one possible path through the maze.

Choices were blocked on sequential days such that all four paths through the maze

(LL, LR, RL, RR) were sampled equally. That is, the right side of the first choice

point and the right side of the second choice was blocked on the first training day,

then on the second training day the right side of the first choice and the left side

of the second choice were blocked, and so on. Eight pellets were dispensed at the

two feeder sites per reward on the first day of training, and the number of pellets

decreased by 1 pellet every two days for the duration of the training phase. A single

pellet per lap was dispensed at the rear feeder site.

For the second training phase, there were still no second-stage auditory or visual

cues, and one of the first-stage options was blocked, but both second-stage choices

were left open. Delay to food was set randomly between 1 and 10s on the first day of

second phase training, and the maximum delay increased by 2s/day for the duration

of the training phase. The delay values were allowed to change over the course of

the session according to the same Gaussian random walk used in the full task (but

not allowed to increase above the maximum delay for the day). Four pellets were

dispensed at each feeder site for the first four days of this training phase, and three

pellets for the last four days.

The third training phase was 8d of the full task, with no choices blocked, a max-

imum delay of 30s, and two pellets per feeder site.

One drawback to evaluating place and response strategies on traditional rodent

tasks, or even identifying VTE at single choice points, is that these behaviors are
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measured on a per-trial basis, and so it is impossible to determine how the decision-

making strategies might evolve over the course of single trials. Therefore, using

traditional rodent tasks it is difficult to evaluate whether animals deliberate over

single decisions independently, or whether they enter deliberative or habitual modes

over the course of an entire trial and make all decisions therein using that policy. A

further possibility is that deliberation at the initiation of a trial instigates an epoch

of procedural control, which remains for the rest of the trial. Essentially, the question

is on tasks where each trial consists of a complex sequence of decisions, whether

rats deliberate at each choice, or whether they “plan out” their entire trial from the

beginning and follow that plan procedurally. The two-step task provides a method to

access this question: by having multiple decisions per trial, we are able to evaluate

how rats’ decision strategies evolve over the course of single trials.

Furthermore, on traditional rodent tasks, the transition from deliberative to habit-

ual control is usually quantified only as a function of time. For example, by measuring

the strength of place/response strategies across trial within a session, or session within

a training regimen (Packard and McGaugh, 1996). Assuming automation increases as

a function of an animal’s experience with that specific action chain, then behavioral

stereotypy should increase not only with time, but specifically with the number of

actions or choices that the animal has performed. Again the two-step task allows us

to evaluate whether this is true without depending solely on time: because the re-

ward values change over time, sometimes rats will experience negligible differences in

reward contingencies from lap to lap, in which case they will in theory strengthen the

action chain leading to reward, while on other laps the reward value will have changed

significantly, and we can measure how the strength of their procedural automation

differs in these cases.

But most importantly, the two-step task enables us to measure model-based and
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A) Sessions per Rat

Rat Number of Sessions

1 48
2 50
3 50
4 50
5 53
6 53
7 53

Total 357

B) Laps per Rat

Rat Number of Laps

1 3313
2 3602
3 4079
4 3610
5 3594
6 3805
7 4478

Total 26481

Table 2.1: The number of sessions and laps run by each rat

model-free influences on rat choice behavior, while simultaneously measuring delib-

erative and habitual behaviors, and allows for neural activity and representations to

be related to model-based and model-free influence.

2.3 Rat Behavior on the Two-Step Task

Rat behavior on the spatial two-step task was collected from seven male Brown Nor-

way rats aged 6-15 months for at least 48 sessions each (357 sessions in total, Table

2.1A). Before behavioral training, rats were handled daily for 7d to accustom them to

the experimenter, then acclimated for 7d to eat the food pellets delivered during the

task (45-mg sucrose pellets), and finally trained to run through the one-way doors on

a separate maze for 7d. Rats were housed on a 12-hr light-dark cycle, and behavioral

sessions were run at the same time daily. Rats were food restricted to encourage them

to run the task, and maintained weight at >80% of their free-feeding weight. Water

was always available in their home cage. All experimental and animal care procedures

complied with US National Institutes of Health guidelines for animal care and were

approved by the Institutional Animal Care and Use Committee at the University of

Minnesota.
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Figure 2.3: Rats displayed a preference for low-delay feeders on the spatial two-step
task. (A) The proportion of delays experienced by the rats (colored solid lines, each
line is one rat), as compared to the proportions of delays which would be expected by
visiting feeders randomly. (B) The mean delay experienced by the rats (+/- SEM) as
compared to the mean delay which would be expected by visiting feeders randomly
(generated by a model-free simulation run with learning rates at 0). Delays have been
aggregated over all sessions from a given rat. Figure from Hasz and Redish (2018).

2.3.1 Rats made choices which led to short delays

Rats ran an average of 74.2±19.6 laps per session on the spatial version of the two-step

task (Table 2.1B). Not surprisingly, rats preferred reward offers with a low delay to

food delivery (Figure 2.3). We ran simulations of agents which made random choices

on the two-step task to determine the delays which would be expected by visiting

feeders randomly. That is, at each of the two choice points, the simulated agents

had an equal probability of choosing left vs. right. We simulated 10, 000 sessions of

this random-choice agent on the two step task, using 74 laps per session (the average

length of the rats’ sessions).

All rats had a visibly stronger preference for low delays than did the random choice

agent simulations (Figure 2.3). Mean delays experienced by the rats were significantly

less than the mean delay experienced by the random-choice simulations (two-sided
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Wilcoxon signed rank test, Nrats = 7, p = 0.0156, rat delays were 3.31 seconds lower

on average than simulation delays). This indicates that rats were able to learn the

task, by making decisions which led to lower-delay outcomes.

2.3.2 Rats displayed VTE at choice points

Vicarious trial and error (VTE) is a behavioral correlate of deliberation in rats, char-

acterized by a pause at a choice point, while simultaneously swinging of the head

back and forth between potential paths as if deliberating over which path to take

(Muenzinger and Gentry, 1931; Tolman, 1939; Redish, 2016). We used LogIdPhi, a

measure of pausing and head-turning, to measure VTE (Papale et al., 2012). The

LogIdPhi for a given choice point pass corresponds to the angular acceleration of the

rat’s head, integrated over a pass through the choice point. Therefore, it captures

both how long the rat hesitates at the choice point, and how quickly the rat’s head

is changing direction. When x and y are the position of the rat’s head,

LogIdPhi = log

(∫ zone exit

zone entry

∣∣∣∣ δδt atan2

(
δy

δt
,
δx

δt

)∣∣∣∣ δt) (2.1)

On a very small proportion of choice point passes, we were unable to compute

VTE due to a momentary lag in the rat position tracking system. At the first choice

point, this occurred on 13 laps (0.049% of laps). At the second choice point, this

occurred on 10 laps (0.038% of laps). We excluded these laps from our analysis.

We found that on our spatial two-step task, rats displayed varying levels of LogId-

Phi at the first choice point (Figure 2.4). There was a clear bimodal distribution of

LogIdPhi at the first choice point, where one peak with lesser LogIdPhi values cor-

responded to laps where VTE did not occcur (Figures 2.4A and 2.4C) and the other

peak with greater LogIdPhi values corresponded to laps where VTE occurred (Fig-
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Figure 2.4: Vicarious trial and error (VTE) at the first choice point. (A) An example
of a pass through the first choice point without VTE, and (B) an example of VTE at
the first choice point. Grey line is rat body position over the whole session, black line
is rat body position on example lap, and red or blue lines are rat head position at
the first choice point on the example lap. (C) Distribution of LogIdPhi values at the
first choice point over all laps, sessions, and rats. Blue line corresponds to LogIdPhi
value at the first choice point in the example lap shown in A, and the red line to the
example lap shown in B. Dashed line is the VTE/non-VTE threshold (see methods).
(D) LogIdPhi over the course of a session. Error bars indicate SEM. Stars indicate
laps for which LogIdPhi was significantly greater than that of laps 51 and greater.
Data has been aggregated over rats (N = 357, the total number of sessions). Error
bars show SEM. Figure from Hasz and Redish (2018).
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Figure 2.5: Correlation between VTE at the first and second choice points. (A) Cor-
relation coefficients per session for each rat individually. (B) Correlation coefficients
per session pooled across rats. Figure from Hasz and Redish (2018).

ures 2.4B and 2.4C). The amount of VTE was greater at the beginning of a session

(Figure 2.4D). When comparing each lap to laps > 50, there was significantly more

VTE at the first choice point for 8 of the first 10 laps. However, there was not signif-

icantly more VTE on laps 10-50 than on laps > 50 (Figure 2.4D, Wilcoxon rank sum

test, Bonferroni corrected for multiple comparisons, with pre-correction threshold of

p < 0.05).

2.3.3 VTE was correlated between within-lap decisions

The two-step task contains two left/right choice points within a single trial, which

enabled us to evaluate how deliberative behavior changed over the course of each trial.

We found that the amount of VTE at the first and second choice points on a given lap

were correlated (Figure 2.5, the median Spearman’s correlation coefficient between

LogIdPhi at the first and second choice points within a session was greater than 0,

two-sided Wilcoxon signed rank test, Nsessions = 357, p = 0.0337, median ρ = 0.0215),

although this correlation was very slight. Considered individually, 2 individual rats
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Rat Median ρ p

1 -0.0243 0.406
2 0.0430 0.0267
3 0.0834 0.00109
4 -0.0185 0.178
5 0.0216 0.661
6 0.0359 0.198
7 0.0270 0.982

Table 2.2: Spearman’s correlations between VTE at choice point 1 and choice point
2 for each rat. Shown are the median correlation coefficients (over sessions from that
rat) and the p-value of a Two-sided Wilcoxon signed rank test.

showed significant positive correlations, while no rats showed significant negative

correlations (Figure 2.5A and Table 2.2).

We also fit a mixed model to VTE at the two choice points, to determine if

there was a correlation between the amount of VTE at each choice point even while

accounting for rat- and session-specific differences in VTE. Specifically, the model

tried to predict zLogIdPhi (the z-scored LogIdPhi) at the second choice point from

zLogIdPhi at the first choice point on that same lap. The z-scored LogIdPhi was

simply z-scored across all rats, laps, and sessions for the first and second choice

points independently. These models included subject and session as random effects;

that is, they allowed levels of VTE to vary across subjects and sessions, but not in

a totally independent way. Our model included a fixed intercept, a fixed effect of

transition type on the current lap, a fixed effect of transition type on the previous

lap, a per-subject random effect, and a per-session random effect.

zLogIdPhi2,i ∼ N (β0 + βV TE × zLogIdPhi1,i +Rr + Ss, σe) (2.2)

where R and S are the random effects coefficients for rat and session, respectively.
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R ∼ N (0, σr)

S ∼ N (0, σs)
(2.3)

where

• zLogIdPhi2,i is the z-scored LogIdPhi value at the 2nd choice point on lap i,

• zLogIdPhi1,i is the z-scored LogIdPhi value at the 1st choice point on lap i,

• β0 is the fixed intercept of the model (baseline LogIdPhi),

• βV TE is the standardized coefficient (a parameter which captures the relation-

ship between the amount of VTE at the two choice points),

• Rr is rat r’s random effect (or adjustment coefficient), which accounts for the

possibility that some rats have different baseline levels of LogIdPhi,

• SS is session s’s random effect, which accounts for the possibility that rats have

different baseline levels of LogIdPhi on different sessions,

• σr and σs are the standard deviations of per-rat (R) and per-session (S) random

effects, respectively,

• σe is the standard deviation of the error, and

• N (µ, σ) represents a normal distribution centered at µ with standard deviation

σ.

Using this mixed model, we found a significant positive correlation between the

levels of VTE at the two choice points on single laps (Table 2.3). This suggests that

instead of deliberating at each single choice independently, rats may have entered a

deliberative mode for entire trials, where then each individual decision within that

trial was made using the deliberative system.
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Mixed Model of the correlation between VTE at the two choice points

Parameter 2.5% Estimate 97.5% t-statistic DF p

β 0.0570 0.0685 0.0801 11.7 26457 2.65× 10−31

σr 0.129 0.225 0.392
σs 0.341 0.369 0.401
σε 0.896 0.904 0.912

Table 2.3: Mixed Model of the correlation between VTE at the two choice points

2.3.4 Path stereotypy increased over the course of the session

In contrast to vicarious trial and error, path stereotypy is a behavioral correlate of

procedural decision-making (Packard and McGaugh, 1996; Jog et al., 1999; Schmitzer-

Torbert and Redish, 2002; van der Meer et al., 2012; Smith and Graybiel, 2013;

Schmidt et al., 2013). To measure path stereotypy, we used the inverse of the mean

distance between the path on a given lap and all other paths during the same session

of the same type (LL, LR, RL, or RR), re-sampled in time (Schmitzer-Torbert and

Redish, 2002). This resulted in a value which was larger when paths were more

stereotyped (similar to the average path), and smaller for irregular paths through the

maze. When a lap was the only lap of its type in a session, we could not calculate

path stereotypy (with no similar paths for which to compute the mean distance),

and so we excluded such laps from our analysis. These laps made up a very small

proportion of the total data (0.66%).

The stereotypy of rats’ paths also varied on our task (Figure 2.6). Unlike VTE,

there was a unimodal distribution of path stereotypy, where some laps were less

stereotyped (Figures 2.6A and 2.6C) and other laps were more stereotyped (Figures

2.6B and 2.6C). Also unlike VTE, path stereotypy increased steadily over the course

of a session, with 48 of the first 50 laps being significantly less stereotyped than

laps greater than 50 (Figure 2.6D, Wilcoxon rank sum test, Bonferroni corrected for

multiple comparisons, with pre-correction threshold of p < 0.05).
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Figure 2.6: Path stereotypy on the spatial two-step task. (A) An irregular, non-
stereotyped path, and (B) an example of a highly stereotyped path. The grey line is
rat body position over the whole session, and colored lines are the rat body position
on the example lap. (C) Distribution of negative log deviation from the average path
over all laps, sessions, and rats. Red line corresponds to the log deviation value of
the example lap shown in A, blue line to the example lap shown in B. (D) Negative
log deviation from the average path over the course of a session. Stars indicate laps
for which average path deviation was significantly greater than that of laps 51 and
greater. Data has been aggregated over rats (N = 357, the total number of sessions).
Error bars show SEM. Figure from Hasz and Redish (2018).
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2.3.5 VTE and stereotypy were related to choice repeats

Previous rodent research has found that animals transition from displaying delibera-

tive behavior to stereotyped behavior over the course of a session, or with experience

on a task. If this shift towards stereotyped behavior is due to procedural learning,

then a decrease in deliberative behavior and a corresponding increase in stereotyped

behavior should also be apparent as a function of the number of repeated choices

an animal makes, and not only as a function of time within the session or training

regimen. For the two-step task, we defined a “repeated choice” to be when a rat made

the same choice at both the first and second choice points as on the previous lap.

We found that VTE at the first choice point was negatively correlated with the

number of repeated choices rats made on the two-step task (Figure 2.7A, E, and H;

the per-rat median Spearman’s correlation coefficient between LogIdPhi at the first

choice point and the number of choice repeats was less than 0, two-sided Wilcoxon

signed rank test, Nrats = 7, p = 0.0156, median ρ = −0.205). On the other hand,

path stereotypy was positively correlated with the number of repeated choices (Figure

2.7D, G, and J; the per-rat median Spearman’s correlation coefficient between path

stereotypy and the number of choice repeats was greater than 0, two-sided Wilcoxon

signed rank test, Nrats = 7, p = 0.0156, median ρ = 0.274). We found no significant

correlation between VTE at the second choice point and the number of choice repeats

(Figure 2.7B, F, and I; the per-rat median Spearman’s correlation coefficient between

LogIdPhi at the second choice point and the number of choice repeats was not signif-

icantly different from 0, two-sided Wilcoxon signed rank test, Nrats = 7, p = 0.156,

median ρ = −0.0730).
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Figure 2.7: VTE and Path Stereotypy as a function of the number of repeated
choices. Raw levels of VTE at the first (A) and second (B) choice points, the ratio
of laps on which rats showed VTE (C), and path stereotypy (D) as a function of
choice repeats. For A-D, error bars show mean +/- SEM with N = 7, the number
of rats. (E-F) Per-rat correlation coefficients between the number of repeated choices
and VTE at the first choice point (E), second choice point (F), and path stereotypy
(G). (H-J) Per-session correlation coefficients between the number of repeated choices
and VTE at the first choice point (H), second choice point (I), and path stereotypy
(J). Figure from Hasz and Redish (2018).

2.3.6 VTE at the second choice was related to transition type

However, the amount of VTE at the second choice point did change depending on

whether the transition on that lap was common or rare. We fit linear mixed models

for VTE at the first choice point, for VTE at the second choice point, and for path

stereotypy, with transition type (common or rare) on the current and previous laps

as fixed variables, and rat and session as random variables. These models included

subject and session as random effects; that is, they allowed levels of VTE or path

stereotypy to vary across subjects and sessions, but not in a totally independent way.
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Our model included a fixed intercept, a fixed effect of transition type on the current

lap, a fixed effect of transition type on the previous lap, a per-subject random effect,

and a per-session random effect.

Yi ∼ N (β0 + Tti + TP ti−1 +Rr + Ss, σe) (2.4)

where R and S are the random effects coefficients for rat and session, respectively.

R ∼ N (0, σr)

S ∼ N (0, σs)
(2.5)

and

• Yi is the LogIdPhi value at the first choice point on lap i (or the LogIdPhi value

at the second choice point on lap i for the second choice point model, or the

path stereotypy value on lap i for the path stereotypy model) ,

• β0 is the intercept of the model (baseline LogIdPhi or path stereotypy value),

• T is the parameter capturing the fixed effect of rare transitions on the current

lap,

• ti is an indicator variable which is 0 when there was a common transition on

lap i, and 1 when there was a rare transition on lap i,

• TP is the parameter capturing the fixed effect of a rare transition on the previous

lap,

• ti−1 is an indicator variable which is 0 when there was a common transition on

lap i− 1, and 1 when there was a rare transition on lap i− 1,
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Mixed Model for LogIdPhi at Choice Point 1

Parameter 2.5% Estimate 97.5% t-statistic DF p

β0 3.979 4.168 4.357 43.28 26106 < 10−100

T -0.01987 0.009811 0.03949 0.6479 26106 0.517
TP -0.004464 0.02525 0.05496 1.666 26106 0.0958
σr 0.1424 0.2476 0.4307
σs 0.3734 0.4049 0.4390
σε 0.9622 0.9706 0.9790

Table 2.4: Mixed model of VTE at the first choice point, with transition type
on the current lap and previous lap as fixed effects, and rat and session as random
effects. The 2.5% column indicates the lower bound of the 95% confidence interval,
and the 97.5% column indicates the upper bound of the 95% confidence interval. DF
= degrees of freedom.

• Rr is rat r’s random effect (or adjustment coefficient), which accounts for the

possibility that some rats have different baseline levels of LogIdPhi or path

stereotypy,

• SS is session s’s random effect, which accounts for the possibility that rats have

different baseline LogIdPhi or path stereotypy values on different sessions,

• σr and σs are the standard deviations of per-rat (R) and per-session (S) random

effects, respectively,

• σe is the standard deviation of the error, and

• N (µ, σ) represents a normal distribution centered at µ with standard deviation

σ.

Laps which were the first in a session were not used in this analysis, as the transi-

tion type of the previous (nonexistent) lap was undefined. The degrees of freedom in

the mixed model for path stereotypy were different from the degrees of freedom in the

mixed models for VTE because on some laps path stereotypy could not be calculated
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Mixed Model for LogIdPhi at Choice Point 2

Parameter 2.5% Estimate 97.5% t-statistic DF p

β0 3.696 3.726 3.756 243.8 26106 < 10−100

T 0.01528 0.02556 0.03584 4.874 26106 1.100× 10−06

TP -0.009982 0.0003090 0.01060 0.05892 26106 0.9530
σr 0.01959 0.03678 0.06906
σs 0.1006 0.1095 0.1191
σε 0.3334 0.3363 0.3392

Table 2.5: Mixed model of VTE at the second choice by transition type

Mixed Model for Path Stereotypy

Parameter 2.5% Estimate 97.5% t-statistic DF p

β0 0.04815 0.05263 0.05712 23.00 25965 < 10−100

T -0.001344 -0.0008540 -0.0003650 -3.420 25965 6.276× 10−4

TP -0.001006 -0.0005160 -0.00002600 -2.064 25965 0.03900
σr 0.0033665 0.0058732 0.010247
σs 0.0095065 0.010264 0.011082
σε 0.015813 0.015951 0.01609

Table 2.6: Mixed model of path stereotypy by transition type

(when a lap was the only lap of that type in a session). Also the degrees of freedom in

the mixed models for VTE are different here than for the mixed model used between

VTE at the two choice points, because this model does not include laps which were

the first in a session.

There was a significant increase in the amount of VTE at the second choice point

following a rare transition (Table 2.5). VTE at the first choice point on the lap

following a transition did not significantly differ between common and rare transitions

(Table 2.4). Path stereotypy on a given lap, however, was significantly decreased when

there was a rare transition either on that lap or on the preceding lap (Table 2.6).
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2.3.7 VTE at the first choice was driven by multiple factors

To determine what may have been driving VTE at the first choice point, we fit a

mixed model of VTE at the first choice point, with random effects of rat and session,

and with fixed effects of the transition on the previous lap, whether the rat repeated

its previous choice, and the delay on the previous lap. This model included subject

and session as random effects, a fixed intercept, a fixed effect of transition type on

the previous lap, a fixed effect of delay experienced on the previous lap, and a fixed

effect of choice repetition (whether the previous choice was repeated or not).

Yi ∼ N (β0 + TP ti−1 +DPdi−1 + Cci +Rr + Ss, σe) (2.6)

where R and S are the random effects coefficients for rat and session, respectively.

R ∼ N (0, σr)

S ∼ N (0, σs)
(2.7)

where

• Yi is the LogIdPhi value at the first choice point on lap i

• β0 is the intercept of the model (baseline LogIdPhi value),

• TP is the parameter capturing the fixed effect of a rare transition on the previous

lap,

• ti−1 is an indicator variable which is 0 when there was a common transition on

lap i− 1, and 1 when there was a rare transition on lap i− 1,

• DP is the parameter capturing the fixed effect of the delay on the previous lap,

• di−1 is the delay in seconds on lap i− 1,
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• C is the parameter capturing the fixed effect of choice repetition,

• ci in an indicator variable which is 0 when the rat did not repeat its choice on

lap i, and 1 when it did,

• Rr is rat r’s random effect (or adjustment coefficient), which accounts for the

possibility that some rats have different baseline levels of LogIdPhi or path

stereotypy,

• SS is session s’s random effect, which accounts for the possibility that rats have

different baseline LogIdPhi or path stereotypy values on different sessions,

• σr and σs are the standard deviations of per-rat (R) and per-session (S) random

effects, respectively,

• σe is the standard deviation of the error, and

• N (µ, σ) represents a normal distribution centered at µ with standard deviation

σ.

We found that VTE at the first choice point was driven by a complex interaction

between these three factors (Table 2.7). Confirming our previous results, there was

not a detectable main effect of the transition on the previous lap, and there was a

significant negative correlation between VTE at the first choice point and repeated

choices. There was also a significant positive correlation between delay on the previous

lap and VTE at the first choice point. Several of the interaction terms and the three-

way interaction were also significant. Taken together, this suggests that VTE at the

first choice point reflects a deliberative process, where the interaction between many

task variables are being taken into account, instead of simply being driven by a single

task variable such as transition.
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Mixed Model for LogIdPhi at Choice Point 1

Parameter 2.5% Estimate 97.5% t-statistic DF p

β0 4.142 4.328 4.514 45.59 26110 < 10−100

TP -0.2222 -0.1086 0.005064 -1.873 26110 0.0611
C -0.5217 -0.4608 -0.3999 -14.83 26110 1.60× 10−49

DP 0.002559 0.00567 0.00878 3.573 26110 0.000354
TP*C 0.08108 0.2126 0.3441 3.168 26110 0.00153
TP*DP -0.0007716 0.005783 0.01234 1.729 26110 0.0838
C*DP 0.008183 0.0119 0.01562 6.272 26110 3.62× 10−10

TP*C*DP -0.02229 -0.01439 -0.006489 -3.57 26110 0.000358
σr 0.1358 0.2353 0.4077
σs 0.3282 0.3566 0.3874
σε 0.9514 0.9597 0.9678

Table 2.7: Mixed model of VTE at the first choice point. Transition type on the
previous lap, delay on the previous lap, and whether the rat repeated its choice
or not are fixed effects, and rat and session are random effects. A*B indicates an
interaction term between A and B. The 2.5% column indicates the lower bound of
the 95% confidence interval, and the 97.5% column indicates the upper bound of the
95% confidence interval. DF = degrees of freedom.

These results indicate that VTE at the first and second choice points may have

been partially driven by different factors. VTE at the first choice point occurred more

often when rats had just switched to a new choice pattern and interactions between

task variables, but was not detectably affected by the transition on the previous lap

alone. On the other hand, VTE at the second choice point occurred more often

after an unexpected transition, but was not detectably affected by choice repetitions.

We hypothesize that VTE at the first choice point arises more as a result of some

deliberative process, which in theory also decreases with the number of repeated

choices. Conversely, we hypothesize that VTE at the second choice point, when not

being driven by a deliberative mode, arises more as a result of the interruption of

a procedural process, which may lead to deliberation, because it is influenced more

strongly by unexpected transitions in the middle of a lap than by a change in choice

patterns.
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The correlation between VTE at the two choice points may seem inconsistent with

our interpretation that VTE at the second choice point is driven by an interruption

of a procedural process. However, we do not believe that VTE at the second choice

point is being driven entirely by such interruptions. Rather, we would hypothesize

that VTE at the second choice point likely co-occurs with VTE at the first choice

point when rats are in a deliberative mode, and that VTE at the second choice point

is only primarily driven by rare transitions when rats are in a procedural mode and

the unexpected transition interrupts their stereotyped behavior.

2.4 Rats Display a Mix of Model-based and

Model-free Decision-Making

Do rat choices on the two-step task reflect influences of model-based and model-

free decision making algorithms? First, we’ll explain in detail how these algorithms

actually work. Then, we’ll compare the behavior of simulations of model-based and

model-free agents on the two-step task to choice patterns of the rats. Finally, we’ll fit

these reinforcement learning algorithms to rat behavior in order to determine what

kinds of models best explain rat behavior on the two step task.

Each algorithm computed the expected value (or Q-value) of taking an action a,

in any given state, s. Our model of the two-step task included only two possible

actions in any state (“go left” or “go right”), and only three states: the first choice

point (C1, a choice between A and B), and the two possible second choice points (C2,

a choice between C and D; and C3, a choice between E and F, see diagram in Figure

2.2).

The next 3 subsections explain how each algorithm computes the expected value
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(or Q-value) of taking an action a, in any given state, s. The section after that

describes how the likelihood is computed for each algorithm from that algorithm’s

Q-values. This “likelihood” is the probability that the algorithm, with a given set of

values for its parameters, would make the same choices we observed the rats make

on the two-step task. Then, we compare simulations of these agents to rat behavior

on the two-step task, and use Bayesian inference and model comparison to determine

which model is most likely to explain rat behavior.

2.4.1 The model-free algorithm

For the model-free algorithm, we used the SARSA(λ) temporal difference learning

algorithm (Rummery and Niranjan, 1994), as was used in Daw et al. (2011). This

algorithm learns the expected value (QMF ) of taking a given action a, in any given

state s, by updating the Q values according to the delta rule:

QMF (si,t, ai,t) = QMF (si,t, ai,t) + αiδi,t (2.8)

where si,t is the state on trial t at stage i, and ai,t is the action taken in that state

on that trial. αi is the learning rate for stage i. There were only two stages on the

two-step task: decisions at the first stage (C1) used α1, and decisions at the second

stage (C2 or C3, see Figure 2.2) used α2. The reward prediction error, δi,t, was the

difference between expected and experienced reward on trial t at stage i:

δi,t = ri,t +QMF (si+1,t, ai+1,t)−QMF (si,t, ai,t) (2.9)

where ri,t is the reward experienced at stage i of trial t. For the first stage reward,

we defined r1,t = 0, because rats did not receive reward between the first and second
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choice points. For the second stage rewards, we defined the reward as the opposite of

the cost:

r2,t = dmax − d2,t (2.10)

where dmax is the maximum possible delay to food on our task (30 seconds), and d2,t

is the delay experienced on trial t (and explicit delays only occurred after a choice at

stage 2). This assumes that rats are aware of the maximum delay, which we believe

is a valid assumption, because rats were trained extensively on the task before the

experiment began. We also defined a third “virtual” state, where QMF (s3,t, a3,t) = 0,

because there is no further reward in a trial following food delivery. The algorithm

updates the first-stage state-action value based on the eligibility trace parameter and

second-stage reward prediction error at the end of each trial:

QMF (s1,t, a1,t) = QMF (s1,t, a1,t) + α1λδ2,t (2.11)

Note that with the SARSA algorithm the update for QMF (s1,t, a1,t) occurs twice

per trial: once after the first-stage choice (where the α1 learning rate is used), and

again after the end of the trial according to the eligibility trace parameter, λ (where

a learning rate of (α1λ) is used, as in equation 2.11.

2.4.2 The model-based algorithm

The model-based algorithm updates the state-action values of the second-stage states

( Q(a2,t, s2,t) ) in exactly the same way as the model-free system. However for the

first-stage state action values, instead of updating them according to the delta rule,

the model-based algorithm takes into account the transition probabilities and the best
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option at either second stage, and computes the first-stage action values at decision

time by:

QMB(sA, at) = p(sB|sA, at) maxa′∈{aA,aB}QMF (sB, a
′)

+ p(sC |sA, at) maxa′∈{aA,aB}QMF (sC , a
′)

(2.12)

where sA is the first-stage state, sB is one of the two second-stage states, sC is

the other second-stage state, and at is an action taken at the first stage of trial t.

p(sX |sY , at) is the transition probability from state sY to sX after taking action at at

sY . Because the rats were trained on the two-step task for over three weeks before we

started collecting the data to which these models were fit, we assumed the rats had

learned the transition probabilities by the end of training, and so our model did not

include the learning of the transition probabilities. Therefore p(sX |sY , at) was set to

either 0.8 for a common transition or 0.2 for a rare transition.

2.4.3 The constant-weight hybrid algorithm

This algorithm values actions according to some constant weight between the model-

based and model-free algorithm values. Essentially, the constant-weight hybrid algo-

rithm “runs” both the model-free and model-based algorithms simultaneously, and

then computes the value (QCW ) of taking some action a in some state s as the weighted

average between the state-action values of the model-free and model-based systems:

QCW (s, a) = wQMB(s, a) + (1− w)QMF (s, a) (2.13)

where w is a free parameter which determines the weighting between the model-

based and model-free systems. If w = 1 then the algorithm is purely model-based,

and if w = 0 then the algorithm is purely model-free. The model-based and model-
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free algorithms within the constant-weight hybrid algorithm are assumed to share

parameters, as in Daw et al. (2011).

However, note that this assumption may not actually be true: for example, the

procedural system is thought to have a far slower learning rate than the deliberative

system. It would be interesting for further work to examine if more complex models

which allow the two systems to have independent parameters better explain rat or

human behavior. Here, however, we stick to the parameter-sharing version of the

constant weight model, in order to most closely match the models used in Daw et al.

(2011).

2.4.4 Computing the likelihood of each algorithm

To transform each algorithm’s valuations of different state-action pairs (each algo-

rithm’s Q-values) into probabilities that the algorithm would make the same choice

as the rats did at stage i of trial t (we denote this probability by p(ai,t = a|si,t)), we

used a softmax for each algorithm, in the same way as in Daw et al. (2011):

p(ai,t = a|si,t) =
exp(βi[Q(si,t, a) + p× rep(a)])∑
a′ exp(βi[Q(si,t, a′) + p× rep(a′)])

(2.14)

where βi is an inverse temperature parameter that controls how stochastic the models’

choices are at each choice point, and the sum in the denominator sums over all

available actions, a′. As βi → 0, the choices become purely random, and as βi →∞,

the probability of choosing the action with the largest Q value approaches 1. We used

independent βi parameters for each stage of the task, and the i index of βi corresponds

to the stage. There were only two stages on the two-step task. Decisions at the first

stage (C1) used β1, and decisions at the second stage (C2 or C3, see Figure 2.2) used

β2.
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The p parameter accounts for an inclination to repeat the same action taken on

the last lap (p > 0), or to switch to the opposite action (p < 0), regardless of expected

action values. rep(a) was a function which evaluated to 1 if the rat repeated its action,

that is, performed action a at that stage on the previous lap (stage i, trial t − 1),

and 0 if it chose a different action. Therefore if the p parameter was positive, the

algorithm was more likely to repeat the previous choice, and if it was negative, the

algorithm was more likely to switch (choose the opposite choice from the previous

trial). The purpose of this p parameter was to capture perseveration behavior.

We initialized all Q values to the mean reward value at the beginning of each

session. The log likelihood of observing rat choices across all Ns sessions given an

algorithm was then computed by summing the log likelihood of each choice for each

stage, lap, session, and rat:

log(p(data|θ)) =

Nd∑
d=1

Nt∑
t=1

Ni∑
i=1

log (p(ai,t = a|si,t)) (2.15)

where θ is the set of all parameters for a given algorithm, Ni is the number of choice

stages in each trial t (for our task this is always 2: the first choice point, C1, and the

second choice point, C2 or C3, see Figure 2.2), Nt is the number of trials in a given

session (or “day”) d, and Nd is the total number of sessions across all rats.

2.4.5 Rat behavior compared to algorithm simulations

We ran simulations of model-free and model-based agents on the two step task, and

compared the choice patterns of the simulated agents to those of the rats. The

model-free and model-based simulations were generated by 10,000 simulated sessions

of model-free or model-based agents with 74 trials per session (the average number

of trials per session run by the rats). Parameters used for the simulations were
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α1, α2 = 0.5, β1, β2 = 3, p = 0.3, λ = 0 for both the model-free and model-based

agents.

On the two-step task, our simulated model-free agents were more likely to repeat

first-stage choices which led to low-delay (low-cost) rewards than those which led to

high-delay (high-cost) rewards, even if this reward occurred after a rare transition

(Figure 2.8A). However, model-based agents were more likely to show the opposite

pattern after rare transitions – that is, they are less likely to repeat first-stage choices

which led to low-cost rewards than those which led to high-cost rewards after rare

transitions (Figure 2.8B). The choice patterns of rats on the two-step task appeared

neither purely model-based nor purely model-free, suggesting a mix of model-based

and model-free behavior (Figure 2.8C), consistent with behavior seen in human sub-

jects (Gläscher et al., 2010; Daw et al., 2011).

2.4.6 Bayesian reinforcement learning model fits

To more rigorously evaluate model-based or model-free influences on rat choices, we

fit model-based and model-free algorithms to rat choices on the two-step task. We also

considered the constant-weight hybrid algorithm where choices were made according

to some fixed weight between model-based and model-free influence. Specifically, we

performed Bayesian inference with these models using Markov chain Monte Carlo

(MCMC) in Stan (Carpenter et al., 2017), and the Python programming language

interface to Stan, PyStan (Stan Development Team, 2017), to generate model param-

eter posterior distributions so that we could perform model comparison and inference

of the parameter values (Kruschke, 2014). Stan is a platform for Bayesian statisti-

cal modeling (http://mc-stan.org), in which models can be written using a simple

modeling language, and Stan performs MCMC sampling resulting in model and pa-
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Figure 2.8: First-stage choice repetition by delay for (A) model-free and (B) model-
based reinforcement learning simulations. Data has been aggregated over simulated
sessions. Error bars were omitted from A and B because SEM of the simulations
was negligible. (C) Rats show features of both model-based and model-free behavior.
Data has been aggregated over rats and sessions. Error bars show SEM with N =
the total number of laps with a given delay. Figure from Hasz and Redish (2018).
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rameter posterior probabilities. This allowed us to perform Bayesian inference as to

the values of model parameters, and model comparison using DIC scores.

We used vaguely informative priors for the Bayesian fits in Stan. Across all models,

the priors used were:

Parameter Prior
α1 Beta distribution with α = 1.2, β = 1.2
α2 Beta distribution with α = 1.2, β = 1.2
λ Beta distribution with α = 1.2, β = 1.2
β1 Exponential distribution with λ = 0.5
β2 Exponential distribution with λ = 0.5
p Normal distribution with µ = 0, σ = 10
w Beta distribution with α = 1.2, β = 1.2

Table 2.8: Priors used for reinforcement learning models

Each algorithm was fit in PyStan with 5 chains per algorithm, and 10,000 itera-

tions per chain (5000 warm-up and 5000 sampling). Chains which took longer than 96

hours to run were aborted and re-started. We used pooled (non-hierarchical) models,

such that the same parameter was used for each rat.

Note that each of the three models had a unique number of parameters, with the

constant-weight algorithm having the most:

Algorithm Number of Parameters List of parameters
Model-free 6 α1, α2, λ, β1, β2, and p
Model-based 4 α2, β1, β2, and p
Constant-weight 7 α1, α2, λ, β1, β2, p, and w

Table 2.9: Number of parameters per reinforcement learning model

Using naive model comparison methods, like comparing model likelihoods, could

cause models with more parameters to be deemed more likely due to overfitting.

Therefore, we used Deviance Information Criterion (DIC) scores to select the most

likely of these three algorithms (Spiegelhalter et al., 2002). DIC allows a more fair
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comparison of models with different numbers of parameters by penalizing models

which have a higher effective number of parameters. It is also well-suited for use with

models whose posterior distributions have been computed via MCMC, which is the

method we used. Given MCMC samples of parameter values θ (a vector of parameter

values), we compute the DIC score by:

DIC = D(θ̄) + 2pD (2.16)

where the effective number of parameters (pD) is computed by:

pD = D̄ −D(θ̄) (2.17)

D̄ is the average of the deviance, D(θ), over all the MCMC samples of θ:

D̄ =
1

Nsamples

Nsamples∑
i=1

D(θi) (2.18)

D(θ̄) is the deviance evaluated at the average of the MCMC samples of θ:

D(θ̄) = D

 1

Nsamples

Nsamples∑
i=1

θi

 (2.19)

and the deviance is computed by:

D(θ) = −2 log(p(data|θ)) (2.20)

where log(p(data|θi)) is the algorithm likelihood, as computed above (in section

2.4.4), given parameters θ for a MCMC sample. The deviance is technically

D(θ) = −2 log(p(data|θ)) + C, but C is a constant which cancels out when com-

paring different models. Algorithms are compared based on their DIC scores, where
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models with lower DIC scores are more likely to explain the data. Differences in DIC

scores greater than 7 suggest the algorithm with the higher DIC score has “consider-

ably less support” (Spiegelhalter et al., 2002) than the algorithm with the lower DIC

score.

The purely model-based algorithm was more likely than the purely model-free

algorithm to explain rat choices on the two-step task (DIC score difference of 94,

Tables 2.10, 2.11, and 2.13). In tables 2.10-2.13, MAP: maximum a posteriori param-

eter estimate; Mean: mean of the MCMC samples for that parameter; Std: standard

deviation of the MCMC samples for that parameter; DIC score: deviance informa-

tion criterion for that model; Log Post.: mean log posterior probability. However,

the constant-weight hybrid algorithm was more likely than the purely model-based

algorithm to explain rat choices on the two-step task (DIC score difference of 69,

Tables 2.11, 2.12, and 2.13). The fact that the constant-weight hybrid algorithm

had a far lower DIC score suggests that rat choices on the two-step task were driven

by some combination of model-based and model-free decision making, and were not

driven by either the model-based or model-free system alone. This is consistent with

many human studies which find that human choices on the two-step task display

both model-based and model-free influences (Gläscher et al., 2010; Daw et al., 2011;

Wunderlich et al., 2012; Otto et al., 2013b,a; Doll et al., 2016).

2.4.7 Discussion

Our findings are consistent with previous work in humans which finds that hybrid

algorithms are more likely to explain behavior than model-based algorithms alone,

and that the weights in these hybrid algorithms favor model-free decision-making

(Daw et al., 2011; Voon et al., 2015), though see Simon and Daw (2011) and Gillan
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Model-free

Parameter MAP Mean Std

α1 0.0710 0.0739 0.0120
α2 0.00165 0.00170 0.000551
β1 3.44 3.73 1.20
β2 3.64 3.93 1.28
p 0.380 0.387 0.120
λ 0.00200 0.00171 0.00140

DIC score: 51515 Log Post.: -25832

Table 2.10: Model-free algorithm fit to rat behavior

Model-based

Parameter MAP Mean Std

α2 0.000933 0.000920 0.000240
β1 7.29 7.87 1.98
β2 6.39 6.90 1.74
p 0.177 0.174 0.0451

DIC score: 51421 Log Post.: -25741

Table 2.11: Model-free algorithm fit to rat behavior

et al. (2015). However, some work in rodents on the two-step task finds that ro-

dent choices are primarily, but not necessarily exclusively, model-based or “planning-

driven” (Miller et al., 2013; Akam et al., 2013; Miller et al., 2014, 2017). This dis-

crepancy could have been caused by any of several factors, but we suspect differences

in how we implemented the two-step task for rodents was the main contributor.

There were some specific differences between our version of the two-step task and

that used by others. Unlike the human version of the two-step task (Daw et al., 2011)

and other rodent adaptations (Miller et al., 2017), we used delay to reward delivery

as the cost, instead of the probability of reward delivery. We also implemented the

full version of the two-step task, with costs which changed according to a random

walk, and no second stage choice cue. The more simplified version used in rodents

by Miller et al. (2017) had costs which switched between blocks of trials but stayed
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Constant Weight

Parameter MAP Mean Std

α1 0.0371 0.0360 0.0196
α2 0.00121 0.00129 0.000360
β1 6.16 6.55 1.84
β2 4.96 5.01 1.38
p 0.207 0.211 0.0593
λ 0.00144 0.00190 0.00207
w 0.675 0.647 0.0795

DIC score: 51352 Log Post.: -25735

Table 2.12: Constant-weight algorithm fit to rat behavior

Relative DIC scores

Model Constant Weight < Model Based < Model Free
DIC difference (most likely) 69 94 (least likely)

Table 2.13: DIC scores between reinforcement learning algorithms

constant throughout a block, and had a cued second stage choice.

We found that reinforcement learning models were difficult to fit to rat choices

on our task. The number of MCMC iterations required to obtain fits whose chains

converged was extremely high (∼ 10, 000), and attempting to fit multilevel models

(models with rat as a mixed effect) only aggravated this problem. Furthermore, the fit

learning rates of our reinforcement learning models were suspiciously low (see Tables

2.10 and 2.11). We suspect that the complexity of our version of the two-step task

for rodents, along with the use of delay to reward delivery as the cost, prevented the

rats from learning the task well enough to employ solely the model-based system, and

so relied also on the model-free system in order to make choices on the task. This

may explain why we found that a mix of model-based and model-free strategies best

explained rat choices on our task.

We also noticed that some rats preferred certain feeders over multiple days, re-

gardless of delay (data not shown here). It could be that Pavlovian decision-making
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or place preferences also played a role in some rats’ choices. This might explain in

part the relatively low values of the fit second-stage learning rates (see Tables 2.10

and 2.11). In the current analysis, we chose not to model side biases in order to

limit our models to the simplest set of model features which were able to capture

model-based vs. model-free choices. However, it would be informative in future work

to investigate and model the influences of other decision-making systems in addition

to only the model-based and model-free systems.

Hierarchical learning, or “chunking” of action sequences, is thought to occur when

multiple actions are chained together and are able to be released as a single action.

While action chains are usually thought to be driven by a model-free system, some

work suggests that model-based systems are capable of initiating action chains which

may appear driven by procedural learning (Dezfouli and Balleine, 2012, 2013; Dez-

fouli et al., 2014). In future work, it would be interesting to investigate if and how

the effects of hierarchical learning on the two-step task affect (or are affected by)

arbitration between systems.

Our task used the same two physical locations for the four second-stage end states.

Although the task included auditory and visual cues, some rats may have confused

the two second-stage end states which shared the same location (for example they

may have confused E and C, or D and F, see Figure 2.2B). This may have caused

some “bleeding” between the expected values of state-action pairs which led to those

states. Any confusion of states in this way would have been an error in situation

recognition, and would not necessarily have been occurring in the model-based or

model-free systems themselves. Situation recognition is thought to be carried out

by a separate system, one not intrinsic to the model-based or model-free systems

themselves (Redish et al., 2007; Fuhs and Touretzky, 2007; Gershman et al., 2015).

Therefore, any confusion between states would presumably affect both the model-
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based and model-free systems equally. For this reason we decided not to model any

bleeding of state-action values because we were interested only in differences between

the model-based and model-free systems.

We adapted the two-step decision task from Daw et al. (2011) for rats in order

to study behavioral correlates of model-free and model-based decision-making, but

another main advantage of a spatial version of the task is that it can also be used to

study neural correlates of model-free and model-based decision-making using electro-

physiological techniques in the rodent brain. Representation of state-action pairs and

“task-bracketing” in dorsolateral striatum have been hypothesized to initiate action

sequences which have been learned procedurally (Jog et al., 1999; Frank, 2011; Regier

et al., 2015b). On the other hand, model-based neural activity has been observed in

a variety of brain areas including hippocampus, ventral striatum, orbitofrontal cor-

tex, prefrontal cortex, and dorsomedial striatum (Johnson and Redish, 2007; van der

Meer et al., 2012; Daw and Dayan, 2014; Wikenheiser and Redish, 2015; Brown et al.,

2016), and inactivating the dorsal hippocampus in rats impairs model-based decisions

(Miller et al., 2017). The current behavioral analysis assumes that either the model-

based or model-free system is used to make a decision, but it would be informative

to record from the neural structures implicated in procedural learning and those in-

volved in deliberation in rats as they run the two-step task to determine if and how

the two systems operate concurrently. That said, this spatial version of the task was

difficult for rats to learn, and further work is required to create a spatial version of

the task for rodents which enables both the collection of a large number of trials per

session, and allows animals to better learn the task.

Also, Akam et al. (2015) suggest that certain model-free strategies can appear to

generate model-based choices on the two-step task. Therefore, if these systems may

not be able to be conclusively dissociated based purely on choice patterns, it will
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be important for further work to investigate neural activity in brain areas thought

to drive model-based or model-free decision making in order to truly disentangle the

contribution of each system.

By adapting for rats a decision task which is made up of multi-choice trials, we were

able to investigate how rats used model-free and model-based choice strategies on the

task, along with how the transition from deliberation to procedural automation occurs

over the course of single trials, and over the course of sequences of repeated choices.

We found that a mixture of model-based and model-free choice strategies was more

likely to explain rats’ choices on this task than either strategy alone. Furthermore, we

found that vicarious trial and error at the two choices within a trial were correlated,

which suggests that rats entered deliberative or procedural modes for whole laps.

Also, vicarious trial and error at the first choice in a trial corresponded to a complex

interaction between task variables and the number of repeated choices, suggesting a

deliberative process. Conversely, we found that vicarious trial and error at the second

choice in a trial corresponded to unexpected transitions, suggesting it was driven by

interruptions in a procedural process which triggered deliberation.

2.5 Uncertainty-based Arbitration between Deci-

sion Making Systems

In the previous section we identified that a mixture of model-based and model-free

influences appear to drive rat decisions on the two-step task. However, presumably

this weighting is not constant. If the hypothesis is correct that deliberation is driven

by a model-based mechanism, and procedural behavior by a model-free mechanism,

then we would expect that sometimes the model-free system is primarily in control,
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while at other times the model-based system is primarily in control. This is because

rats often display more deliberative behavior early in training (Figure 2.4D) or before

making many repeated identical choices (Figure 2.7A), while they display more pro-

cedural behavior with extensive experience on a task (Figure 2.6D) or after making

many repeated identical choices (Figure 2.7D).

But what drives this change in control? How are multiple decision-making sys-

tems within the brain arbitrated between? The animal is only a single agent which

obviously is only able to make one single coherent action, so how does the brain

decide which of the decision making systems to use, or if each come to a decision

independently, how does the brain combine their decisions into a single action plan?

Daw et al. (2005) hypothesize that uncertainty in each system is what decides

which system is used. That is, they propose that the system which is more confident

in its decision has more control over the animal’s or agent’s action. In that work,

the authors use approximate Bayesian versions of the model-based and model-free

reinforcement learning algorithms discussed in section 2.4. These algorithms capture

in their estimate of the value of taking a given action in a given state (the Q-values)

by representing the Q values as probability distributions, instead of point values as

in the previously discussed versions of the algorithms. The uncertainty of a given

system at any moment in time is the variance of the distribution representing the

expected reward associated with the state-action pair being experienced.

However, this form of uncertainty may not be the only type of uncertainty that

is relevant for a decision-making system. The flavor of uncertainty captured by the

models used by Daw et al. (2005) express only the uncertainty as to the amount of

reward expected from the action which was actually taken by the agent. However,

another type of uncertainty would capture the difference in the mean expected rewards

obtained from competing actions. A third type of uncertainty would capture both the
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difference between the mean expected rewards and the variance associated with those

estimates. We designed versions of the Bayesian reinforcement learning algorithms

which use each of these three types of uncertainty to arbitrate between the model-

based and model-free decision making systems.

To elucidate the extent to which model-free and model-based uncertainty predicts

which system is used to make a decision, and which type of uncertainty (if any) is

most important for arbitration, we fit uncertainty-dependent versions of the rein-

forcement learning algorithms which used different forms of uncertainty to weight the

contributions of the model-based and model-free systems on a decision-by-decision

basis.

2.5.1 Bayesian reinforcement learning algorithms

We simulated the approximate Bayesian versions of model-based and model-free re-

inforcement learning algorithms from Daw et al. (2005), given the same experiences

as the rats, in order to compute the uncertainty within each algorithm at each of

the rats’ decisions. Importantly, the models used to estimate uncertainty – the ap-

proximate Bayesian models from Daw et al. (2005) – were separate from the models

which were being arbitrated between (the non-Bayesian model-based and model-free

reinforcement learning algorithms, discussed in section 2.4). That is, the “uncertainty-

dependent algorithm” used the uncertainty of the approximate Bayesian models to

determine which of the non-Bayesian algorithms to use to make a choice. We did this

so that we could compute uncertainty in as similar a way as possible to the method

used in Daw et al. (2005).

We converted the delay to a “reward” value between 0 and 1 in order to match

the range of reward values in Daw et al. (2005). We assumed that by the time the
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experiment began (after > 8 days of training), the rats had learned the maximum

(dmax) and minimum (0) reward delays, and therefore felt it was valid to convert

the delay to a value between 0 and 1. For the approximate Bayesian versions of

the reinforcement learning models, we calculated reward, R, such that a reward of

1 corresponded to the lowest possible delay and a reward of 0 corresponded to the

highest possible delay:

R =
dmax − delay

dmax
(2.21)

The value of each state-action pair was modeled by a beta distribution, which

represents the probability that the reward of a state-action pair takes the value R,

R ∼ Beta(α, β) (2.22)

where α and β are the two shape parameters of the beta distribution. Note that

the α and β here refer to the two shape parameters of a beta distribution – not to

the reinforcement learning rate parameters (α1 and α2) or the inverse temperature

parameters (β1 and β2) as in other sections.

Importantly, we use the quantification of uncertainty from Daw et al. (2005), which

uses a beta distribution to model the underlying probability of binary outcomes. The

outcomes in our task are not binary, but continuous (delay in seconds). In order

to stay as close to the quantification of uncertainty used in Daw et al. (2005), we

normalized the continuous-valued delays between 0 and 1 (see above), such that we

could use the same quantification of uncertainty as used in Daw et al. (2005).
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2.5.2 Bayesian model-free algorithm

For each state-action pair’s beta distribution, we used a prior of α, β = 1. That is,

at the beginning of each session, we initialized α, β = 1 for each state-action pair.

This resulted in a uniform distribution between 0 and 1. This differed from Daw

et al. (2005), who used a prior of α, β = 0.1. The prior of 0.1 is used in Daw et al.

(2005) because it yields a beta distribution with highest density around 0 and 1, and

the authors argue that agents probably initially assume that the result of an action

is that there either is reward or there isn’t. This makes sense for their task because

they use probabilistic rewards: for their subjects, there always is a reward or there

isn’t. However our task is different in two ways: first, we use non-binary rewards

(delay), and second, rats have been trained on our task for 8 days before beginning

the experiment, instead of experiencing an experimental session only once, as is often

done with human subjects. Delays are initialized randomly at the beginning of each

session, so after training the rats should be at least somewhat aware that there is a

uniform probability of delay at the start of the task. That is, no one delay is more

likely than any other. Therefore, we initialize α, β = 1 because this results in a beta

distribution which is uniform between 0 and 1.

Upon reward delivery, the parameters (α and β) of the beta distribution for the

experienced second-stage state-action pair were updated with:

αMF
s′,a′ = αMF

s′,a′ +R (2.23)

βMF
s′,a′ = βMF

s′,a′ + (1−R) (2.24)

where (s′, a′) is the state-action pair that was experienced at the second stage (so s′
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is either C2 or C3), and R is the amount of reward experienced after taking action a′

in state s′ (a value between between 0 and 1, see definition above).

The shape parameters of the beta distribution for the experienced first-stage state-

action pair were then updated using the mean of the distribution for the experienced

second-stage state-action pair,

αMF
C1,a = αMF

C1,a + µMF
s′,a′ (2.25)

βMF
C1,a = βMF

C1,a + (1− µMF
s′,a′) (2.26)

where (s′, a′) is the state-action pair that was experienced at the second stage, (C1, a)

is the state-action pair that was experienced at the first stage (at choice C1), and

µMF
s′,a′ =

αMF
s′,a′

αMF
s′,a′ + βMF

s′,a′
(2.27)

The mean and variance of a model-free 1st-stage distribution was then

µMF
C1,a =

αMF
C1,a

αMF
C1,a + βMF

C1,a

(2.28)

(σ2)MF
C1,a =

αMF
C1,aβ

MF
C1,a

(αMF
C1,a + βMF

C1,a)
2(αMF

C1,a + βMF
C1,a + 1)

(2.29)

As in Daw et al. (2005), we use a decay factor (γ) which causes the state-action

beta distributions to decay toward their priors each timestep. At the end of each

trial, we decay each state-action distribution shape parameters by

αMF = αMF − γ(αMF − (αMF )0) (2.30)
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and

βMF = βMF − γ(βMF − (βMF )0) (2.31)

where (αMF )0 and (βMF )0 are the priors on the αMF and βMF parameters, respec-

tively (1 for both, for all state-action pairs). We use a decay factor of γ = 0.02, as

was used by Daw et al. (2005). This decay approximates a learning rate, in that in-

formation learned further in the past is weighted less than information learned more

recently.

2.5.3 Bayesian model-based algorithm

The model-based Bayesian reinforcement learning algorithm is similar to the model-

free Bayesian reinforcement learning algorithm except it takes transition probabilities

into account, in order to compute online the probability of reward for first-stage state-

action pairs. As with the model-free Bayesian reinforcement learning algorithm, we

used a prior of α, β = 1 for each state-action pair’s beta distribution. For second-stage

state-action distributions, the model-based state-action distributions were modeled

in the same way as in the model-free algorithm. That is, upon reward delivery, the

distribution for the experienced second-stage state-action pair was updated with:

αMB
s′,a′ = αMB

s′,a′ +R (2.32)

and

βMB
s′,a′ = βMB

s′,a′ + (1−R) (2.33)

In Daw et al. (2005), a Dirichlet distribution was used to model state transition
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probabilities, but we made the simplifying assumption that the rats had learned the

transition probabilities during training phase 3. So, we modeled the first-stage model-

based state-action beta distributions by

αMB
C1,a =

∑
i∈{C2,C3}

p(C1→ i|a) αMB
i,amax

(2.34)

βMB
C1,a =

∑
i∈{C2,C3}

p(C1→ i|a) βMB
i,amax

(2.35)

where state C1 is the first-stage state, and C2 and C3 are the two second-stage states,

and p(C1 → i|a) is the probability that performing action a at the first-stage state

leads to state i (where i is either C2 or C3). As with the non-Bayesian version of the

model-based algorithm, we assumed the rats had learned the transition probabilities

by the end of training, and so we set p(C1→ i|a) to either 0.8 for common transitions

or 0.2 for rare transitions. amax denotes the apparently best action in the given

second-stage state (the action with the highest mean expected reward),

amax = argmaxx∈{L,R}µ
MB
i,x (2.36)

The mean and variance of a model-based first-stage distribution was then

µMB
C1,a =

αMB
C1,a

αMB
C1,a + βMB

C1,a

(2.37)

(σ2)MB
C1,a =

αMB
C1,aβ

MB
C1,a

(αMB
C1,a + βMB

C1,a)
2(αMB

C1,a + βMB
C1,a + 1)

(2.38)

We decayed the model-based Bayesian reinforcement learning algorithm’s state-

action distributions toward their priors in exactly the same way as in the model-free
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Bayesian reinforcement learning algorithm (Eqs. 2.30 and 2.31), again using γ = 0.02,

as was used by Daw et al. (2005).

We did not use a step penalty parameter, although it was used in Daw et al.

(2005), because our task had only two stages, and so a state was never more than one

action removed from a terminal state. This parameter was used in Daw et al. (2005)

to penalize the variance of state-action pair beta distributions which had non-terminal

successor states (those which led to states which were not the end of a trial).

2.5.4 Value Uncertainty

To quantify uncertainty, Daw et al. (2005) used the variance of the beta distribution

representing first-stage state-action pair reward values (Figure 2.9A). We refer to this

type of uncertainty as “value uncertainty,” because it refers to uncertainty as to the

value of a specific state-action pair. So, the value uncertainty of the model-free system

on lap i (before making the first-stage decision on that lap) was

uMF
value(i) = (σ2)MF

C1,a(i) (2.39)

and the value uncertainty of the model-based system on lap i was

uMB
value(i) = (σ2)MB

C1,a(i) (2.40)

where the action a is the action the rat took at the 1st-stage choice on lap i.

2.5.5 Action Uncertainty

However, another conceivable way of formulating uncertainty would be to use the

uncertainty as to which action to take. That is, uncertainty as to what action in
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Figure 2.9: Three different types of uncertainty. (A) Value uncertainty, which
includes only the uncertainty as to the value estimate of the chosen option. (B)
Action uncertainty, which captures only the uncertainty as to which choice has the
highest expected value. (C) Decision uncertainty, which captures both mean and
variance differences in reward between potential options.

a given state has the highest expected reward (Figure 2.9B). We refer to this type

of uncertainty as “action uncertainty,” because it refers to uncertainty as to which

action has the highest expected reward, instead of to the uncertainty as to the value

of a specific state-action pair. To quantify action uncertainty, we used the entropy

between the means of the beta distributions representing the expected reward of

available actions in a given state. In the two-step task, there were only two actions

ever available in any state (left or right). So, the action uncertainty of the model-free

system on lap i was
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uMF
action(i) = H([µMF

C1,L, µ
MF
C1,R]) = −µMF

C1,L log2 µ
MF
C1,L − µMF

C1,R log2 µ
MF
C1,R (2.41)

and the action uncertainty of the model-based system on lap i was

uMB
action(i) = H([µMB

C1,L, µ
MB
C1,R]) = −µMB

C1,L log2 µ
MB
C1,L − µMB

C1,R log2 µ
MB
C1,R (2.42)

where C1 is the first-stage state, L is the action corresponding to choosing left, and

R is the action for choosing right.

2.5.6 Decision Uncertainty

Yet a third way of formulating uncertainty would be to use not just the means or the

variances, but to use the entire distribution to compute uncertainty as to what deci-

sion to make. Specifically, when the divergence between the reward beta distributions

for two available actions is low, uncertainty is high, and vice-versa (Figure 2.9C). We

refer to this type of uncertainty as “decision uncertainty,” because it refers to un-

certainty as to the entire decision when taking into consideration the full expected

reward distributions. We quantified decision uncertainty by taking the natural ex-

ponential function of the negative symmetrised Kullback-Leibler divergence between

the two beta distributions representing the expected reward value of available actions

in the 1st-stage state.

So, with

69



PMF = Beta(αMF
C1,L, β

MF
C1,L) and QMF = Beta(αMF

C1,R, β
MF
C1,R) (2.43)

the decision uncertainty of the model-free system on lap i was

uMF
decision(i) = exp

(
−DKL(PMF ||QMF )−DKL(QMF ||PMF )

)
(2.44)

and with

PMB = Beta(αMB
C1,L, β

MB
C1,L) and QMB = Beta(αMB

C1,R, β
MB
C1,R) (2.45)

the decision uncertainty of the model-based system on lap i was

uMB
decision(i) = exp

(
−DKL(PMB||QMB)−DKL(QMB||PMB)

)
(2.46)

where the Kullback-Leibler divergence (DKL) between two beta distributions was

computed with

DKL(Beta(α, β)||Beta(α′, β′)) = ln
(

B(α′,β′)
B(α,β)

)
+ (α− α′)ψ(α) + (β − β′)ψ(β)

+(α′ − α + β′ − β)ψ(α + β)

(2.47)

where B(x) is the beta function and ψ(x) is the digamma function.
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2.5.7 Uncertainty-based Arbitration

We fit to rat behavior three different uncertainty-based algorithms, each of which used

one of the aforementioned three types of uncertainty to arbitrate between the model-

based and model-free systems for decision-making. Like the constant-weight algo-

rithm, the uncertainty-based algorithms ran both the model-based and model-free al-

gorithms simultaneously. However, instead of the final state-action values being some

constant weighted average between the model-free and model-based state-action val-

ues, the uncertainty-based algorithm used the model-based state-action values if the

uncertainty of the model-free Bayesian reinforcement learning algorithm was greater

than that of the Bayesian model-based reinforcement learning algorithm on a given

lap:

QUB(i) =


QMB(i), if uMF (i) > uMB(i)

QMF (i), otherwise

(2.48)

2.5.8 Uncertainty models were difficult to fit to rats’ choices

Unfortunately, the fits of the uncertainty-based reinforcement learning algorithms

were extremely hard to fit to the rats’ choices on the two-step task. The MCMC

chains did not converge for any of the three models. Even taking only chains with

the best seemingly convergent log likelihoods (chains which seemed to have converged

on a single best log likelihood posterior density), the log likelihood was worse for the

uncertainty-based models than for even the model-free algorithm, which as seen in

section 2.4.6 was otherwise the worst-fitting algorithm. This suggests that while our

version of the two-step task was sufficient for determining the contribution model-

based and model-free influence overall or on average (section 2.4), it was insufficient
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for revealing the contributions of model-based and model-free influences on a trial-by-

trial basis, which would required for fitting these uncertainty-based models reliably.

As discussed in section 2.4.7, it seemed to be difficult for the rats to learn this

version of the two-step task. This could be due to any number of factors, but the

most likely culprits seems likely to be the low trial count per session, in combination

with the slow speed of the changing delays. A paucity of situations where the delay

values were suddenly different from what the rats were expecting (due to the overly

slow delay changes) would obstruct our ability to see a difference between the two

reinforcement learning algorithms. Those sudden unexpected changes in delay or

reward values are the situations where the predictions of the two systems differ, and

therefore the only times when our model would be able to parse out the influence of

uncertainty on the arbitration between the two models’ influences. So, it seems likely

that these problems prevented us from accurately capturing trial-by-trial differences

in the influence of different decision-making systems, and were therefore unable to

asses the influence of uncertainty on the balance between the two decision-making

systems.

However, both theoretical work (Daw et al., 2005) and experimental evidence

(Beierholm et al., 2011; Lee et al., 2014) suggest that uncertainty within the model-

based and model-free systems may indeed determine that system’s influence. For

future work using this task in rodents, we would suggest using a simplified version of

the task (Miller et al., 2013, 2014, 2017), or ensuring the random walk of reward values

are fast enough to allow algorithm fits to discern the differences between model-based

and model-free influences on behavior.

In order to better study the differences between habitual and deliberative behav-

iors, as well as the representations of more abstract task features usually associated

only with the model-based system, we next developed a different task. The goals of
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this task were for the task structure to be easier for rats to learn, for the rats to be able

to run far more laps within a single session, but for the task to still present rats with

a decision-making challenge that would engage both the habitual and deliberative

decision-making systems at different times, allowing us to study the differences and

dynamics between habitual and deliberative behaviors and neural activity. Therefore,

we designed a simpler contingency-switching task, which will be the focus of the next

chapter.
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Chapter 3

Contingency-Aware Behavior on a

Contingency Switching Task

3.1 The Contingency-Switching Task

The two main drawbacks of the two-step task were that rats were unable to run

enough laps for us to reliably fit models which captured variables changing on a

trial-by-trial basis (like uncertainty), and that the reward values changed too slowly

to create drastic differences between habitual and deliberative systems. To address

both these problems, we designed a variant of the multiple-T Left/Right/Alternate

(MT-LRA) task. This task variant allowed us to study the neural correlates of both

the deliberative and habitual systems, but in a way which would be easier for rats

to learn, and which had sudden, drastic changes in reward contingencies (unlike the

two-step task, which had slowly drifting changes in those contingencies).

The Multiple-T Left/Right/Alternate (MT-LRA) contingency-switching task was

a spatial reversal task where rats were required to adjust their behavioral strategies

after uncued rule changes. The maze consisted of several low-cost choice points fol-
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Figure 3.1: The MT-LRA contingency-switching task. (A) The MT-LRA task is
a spatial maze with a choice point where rats receive rewards dependent on making
choices consistent with the current contingency. (B) Contingencies are presented in
blocks of laps lasting 30±5 trials. (C) Example behavioral data from a single session.

lowed by a high-cost choice point between two actions: left or right (Figure 3.1A).

The maze was constructed using LEGO blocks on a white canvas. The configuration

of the low-cost choice points at the center of the maze was determined by a single

wall in the middle of the maze, which switched back and forth from the left to right

side randomly each day.

Each lap, if rats chose the action at the high-cost choice point which was consistent

with the current contingency, they received one unflavored 45mg food pellet at one

of two reward sites on the side of the maze, and an additional food pellet at the rear

of the maze. If their choice was inconsistent with the current contingency, no reward

was delivered and rats had to circle around to the start of the maze to initiate a

new lap. Two different auditory cues also signalled to the rats whether their decision

was correct or incorrect: a swept-frequency sinewave “chirp” from 1kHz to 3kHz for

correct, and two shorter 1kHz square wave tones for incorrect. The contingency on

any given lap was either Left (only left choices at the choice point lead to reward),

Right (only right choices), or Alternate (the opposite choice from the previous lap

75



was required for reward). Rats were allowed to run laps freely on the task for one

hour each day, and their daily food allowance came only from performing the task.

However, rats were fed extra food after running the task if their weight dropped

below 80% of their free-feeding weight. This post-feeding occurred after 0 out of 85

experimental sessions, and after 7 out of 212 training sessions (3%).

Rat behavior and neural activity has been studied on previous versions of the

MT-LRA task (Gupta et al., 2010; Blumenthal et al., 2011; Steiner and Redish,

2012; Gupta et al., 2012; Powell and Redish, 2014; Regier et al., 2015a; Powell and

Redish, 2016). However, these earlier versions of the task included only a single

contingency switch halfway through the task session, or no mid-session switch at

all (where contingency differences were only between sessions). The main difference

between our version of the task and previous iterations is that we modified the task to

include multiple uncued contingency changes per session (once per about 30 trials).

That is, the contingencies were presented in blocks: every 30±5 laps, the contingency

changed randomly to one of the other two contingencies (Figure 3.1B). This allowed

us to investigate the reliability of the contingency representations over time, and

separate the contributions of any unrelated slow representational changes over time

(which could be erroneously construed as contingency representation) from explicit

representations of the contingency identity.

How could slow representational changes be misconstrued as the encoding of task

contingencies? On the contingency-switching task – and in fact most tasks where

there are latent contingencies – those contingencies are presented in blocks of trials.

If the contingencies were cued, then the experiment would not so much be studying

the ability of animals to use working memory and the deliberative system to perform

the task, but simply stimulus-response behaviors. To really access how internal rep-

resentations of the world (in the form of working memory) are used to make decisions

76



by the deliberative system, we need a task where the contingencies are latent and an-

imals must figure them out for themselves and use their memory of the contingencies

to make decisions.

Unfortunately, this presents a problem when we wish to determine if the contin-

gencies are being represented by the brain: if the contingencies are always presented

in blocks of trials, then these contingency blocks are synonymous with blocks of time.

How then can we determine if the brain is representing the contingency as an ab-

stract rule, or if the brain is simply representing blocks of time – or perhaps other

information which is changing over time – in a way perhaps unrelated to contingency?

One way to disentangle the effects of time and contingency representation in the

brain is to use a task which has multiple, separated presentations of the same con-

tingency type, and then analyze the reliability of contingency representations across

time. This is why we altered the contingency switching task to use more than two

contingency blocks per session, to allow us to determine whether contingency repre-

sentations are stable across multiple presentations of that contingency, or whether the

apparent contingency representation is due simply to unrelated change in encoding

over time.

Because of the contingency definitions, switches between all contingency types

were not identical: switches from L or R blocks to any other type resulted in a 0%

reward probability, while switches from A to either L or R resulted in a 50% reward

probability (in the case where the new contingency was consistent with the opposite

of the choice the rat made on the previous lap, see Table 3.1).

Rat positions on the maze were tracked using a video camera placed above the

maze. Custom Matlab software determined animal position from the video, and

controlled the state of the task (the current contingency, food pellet release, the

presentation of audio cues, etc). The Matlab software also interfaced with an Arduino
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Contingency Reward rate under
switch type perseveration

L → R 0%
L → A 0%
R → L 0%
R → A 0%
A → L 50%
A → R 50%

Table 3.1: The reward probability under perseveration (taking actions consistent
with the old contingency type) for different contingency switch types.

Uno Rev3 which ran custom software and triggered the release of food pellets from

food pellet dispensers.

Rats were trained over the course of four weeks. Starting on the first week, rats

were deprived of the freely available food in their home cages, but continued to have

free access to water. Rats were handled and offered up to 15g of food pellets each day

for half an hour, to train them to eat the food pellets which would be available while

performing the LRA task. For the second week, rats performed a simplified version of

the task where the contingency was either Left or Right, and the contingency stayed

constant throughout each session but changed randomly from session to session. Rats

were rewarded with 2 food pellets per feeder at all feeder sites for the second week.

For the third week, again there were no within-session contingency switches, but all

three contingencies were possible (including Alternate), and only 1 food pellet was

delivered at the rear food delivery site. For the final week of training, only 1 food

pellet was delivered at all feeder sites, but the task was otherwise the same as during

week 3.

After training, rats were given free access to food for at least 3 days, and then

surgerized. After 3 days of post-surgery recovery, rats were again food deprived and

re-trained for 1-2 weeks on the final training phase of the task (all 3 contingencies

78



possible, but no within-session contingency switches, and 1 pellet per feeder). Fi-

nally, rats performed the full version of the task including within-session contingency

switches and neural recordings for 2-3 weeks.

3.2 Rat Behavior on the Contingency Switching

Task

We ran eight FBNF-1 rats aged 8-14 months at the beginning of behavior on the

contingency-switching task (4 male, 4 female), bred from Fischer and Brown Norway

rats. Only six of these had usable neural recordings (4 male, 2 female), so in this

section we report only behavioral data from those six rats which were used for the

neural analyses as well. Rats were housed on a 12 h light-dark cycle, and experi-

mental sessions were conducted at the same time each day during the light phase.

All experimental and animal care procedures complied with US National Institutes

of Health guidelines for animal care and were approved by the Institutional Animal

Care and Use Committee and the University of Minnesota.

Rats ran 137.7± 31.7 laps per session (mean ± standard deviation), and encoun-

tered 4.1±1.2 contingency switches per session. Rats made correct choices (rewarded

choices consistent with the current contingency) on 78 ± 3 percent of laps across all

three contingency types, which was significantly more often than chance (4347 correct

laps out of 5508, two sided binomial test vs 50%, p < 10−100). Rats performed less

well on laps during the Alternate contingency (Figure 3.2C), where they made correct

choices on only 62.9 ± 9.9 percent of laps, but their performance on laps during the

Alternate contingency was still significantly better than chance (1231 correct laps

out of 1874, two sided binomial test vs 50%, p = 1.4 × 10−42). Rats did not show
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Figure 3.2: Behavioral performance on the MT-LRA task. (A) Laps per session
(N = 6 rats). Filled circles indicate sessions which met the inclusion criteria (> 10
cells simultaneously recorded in both structures), and empty circles correspond to
sessions which were not used for neural analyses. (B) Percent correct by session. (C)
Performance by contingency (N = 40 sessions). (D) Performance aligned to switch,
split by contingency.
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Figure 3.3: Performance aligned to the previous switch (A) overall, and (B) split by
contingency. If rats were anticipating contingency switches, we would expect to see
more probing of choices which were inconsistent with the current contingency, which
would have led to a decrease in the proportion of correct trials as rats approached
the expected transition lap.

any behavioral signs of anticipating the switch, as their choices did not reflect an in-

crease in actions consistent with other contingencies as rats approached the expected

contingency switch lap (Figure 3.3).

The percentage of correct choices dropped on laps immediately following a contin-

gency switch, but then increased over the course of the following contingency block,

and plateaued well before the next contingency switch (Figure 3.4A).

To identify laps where rats updated their behavioral choices to be consistent with

the new contingency, we used a change point analysis from Gallistel et al. (2004). We

considered 20 laps on either side of a contingency switch, after which the contingency

in place was contingency X. We excluded laps which were before the previous switch,

or after the next switch (in cases where contingency blocks lasted < 20 laps). For

each lap i in this window around each switch, we computed whether rats’ choices were

consistent with the new contingency (the rat made a choice which would be correct

if X were the current contingency, ci = 1) or inconsistent with the new contingency

(the rat made a choice which would be incorrect if X were the current contingency,

ci = 0). We then applied the change point analysis from Gallistel et al. (2004) on c
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Figure 3.4: Rat behavior on the MT-LRA task aligned to contingency switches.
(A) Rat performance aligned to contingency switches. The vertical dotted line corre-
sponds to the last lap of the previous contingency block. (B) Rat behavioral change
laps aligned to contingency switches. The dotted line corresponds to the last lap of
the previous behavioral strategy. (C) VTE (measured by zIdPhi) aligned to contin-
gency switches. (D) zIdPhi aligned to behavioral change laps. Plots show mean ±
standard deviation, N = 6 rats.

to determine on what lap rats were most likely to have updated their choices to be

consistent with the new strategy. This change-point analysis (Gallistel et al., 2004)

indicated that rats updated their behavioral strategies to be consistent with the new

contingency within about 5 laps of a contingency switch (Figure 3.4B).

While at choice points, rats sometimes display vicarious trial and error (VTE),

a behavioral marker of deliberation (Redish, 2016), also see section 2.3.2 for more

detail. During VTE behaviors, rats pause and look back and forth down potential

paths, as if deliberating over which path to choose (Figure 3.5A). To quantify VTE, we

measured zIdPhi, the z-scored integrated angular velocity of head movement (Papale

et al., 2012). See section 2.3.2 for a more thorough definition of IdPhi.

To distinguish VTE events from non-VTE events, we fit a half-Gaussian distri-

82



bution to values less than the mode of the zIdPhi distribution. We then assumed

that zIdPhi values under a full Gaussian distribution with the same mean and stan-

dard deviation as the fit half-Gaussian corresponded to non-VTE events, and passes

through the choice point with greater zIdPhi values corresponded to passes on which

VTE occurred (Figure 3.5B).

As with many other studies which examine VTE (Steiner and Redish, 2012;

Schmidt et al., 2013; Stott and Redish, 2014), we observed low levels of zIdPhi on

most choice point passes and higher levels of zIdPhi on fewer laps (Figure 3.5B),

suggesting rats deliberated on the minority of laps. A decrease in the amount of

VTE over the course of a session is usually observed on other tasks (Papale et al.,

2012; Breton et al., 2015; Redish, 2016), but on our task zIdPhi did not decrease over

the course of the session (Figure 3.5C). This suggests that the presence of multiple

contingency switches, which continued to occur throughout the course of the session,

repeatedly forced rats to deliberate and prevented them from fully automating their

behavior on the task.

Although rats did not appear to automate over the course of an entire session,

they did automate over the course of single contingency blocks. On laps immediately

following a contingency switch zIdPhi increased, and then decreased throughout the

subsequent contingency block (Figure 3.4C). This suggests that rats deliberated after

contingency switches, but then automated as they learned the new contingency. How-

ever, this effect seemed to be mostly driven by switches to the Alternate contingency

(Figure 3.5D). The greatest levels of VTE were observed on laps where rats updated

their behavioral strategies to be consistent with the new contingency (Figure 3.4D,

the median zIdPhi was significantly greater on laps where a behavioral change oc-

curred than on other laps, two-sided Wilcoxon rank sum test, p = 2.7×10−5, N = 164

behavior change laps vs 5344 non-change laps).
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Rats also displayed post-error slowing on our task (Laming, 1968; Narayanan and

Laubach, 2008). Rats took significantly longer (around 1-2 seconds) to complete laps

when the choice they made on the previous lap was incorrect (Figure 3.6A, two-sided

Wilcoxon rank sum test, p = 0.031, N = 6 rats). Post-error slowing was especially

pronounced on laps where VTE occurred (Figure 3.6B), which suggests that rats

utilized a more conservative decision-making strategy following errors.

3.3 A Contingency-Aware Reinforcement Learn-

ing Algorithm

The fact that rats were proficient at performing the contingency switch task, and

quickly adjusted their behavioral strategies to be consistent with new task contin-

gencies within a few laps of contingency changes, indicated that the rats had some

concept of the reward contingencies, and used information about those contingencies

to guide their choices on the contingency switching task. In order to determine how

rats kept track of contingency information, updated those beliefs, and used that in-

formation to make decisions, we designed and fit a reinforcement learning model to

rat behavior on the contingency switch task.

In this section, we describe a contingency-aware reinforcement learning algorithm

which formalizes a decision-making strategy which explicitly keeps track of the con-

tingency probabilities, updates those beliefs after rewards (or reward omissions), and

uses those contingency beliefs to make decisions at the choice point. We also fit this

reinforcement learning algorithm to rat behavior in order to determine what algorithm

parameters best explain the rats’ choices. Like the reinforcement learning algorithms

fit to behavior on the two step task, this contingency-aware algorithm computed the
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expected value (or Q-value) of taking an action a, in any given state, s. Our model

of the contingency switch task included only two possible actions (“go left” or “go

right”), and only one state: the choice point.

Some reinforcement learning models are able to adaptively cluster many different

contexts into single contingency groups (Collins and Frank, 2013), and it is possible

rats learned the contingencies via similar mechanisms. However, we built contingency

knowledge into the algorithms under the assumption that if rats could learn the

contingencies and use that information to inform their choices, then they would have

learned the contingencies by the time the experiment started, since they were trained

extensively on the contingency switching task before data collection began (see section

3.1 for details of the training schedule).

Instead of updating the Q-values for each potential action, the contingency-aware

algorithm kept track of and updated the probability that each contingency was cur-

rently in place. That is, it stored P values for each contingency (the probability that

that contingency was the current contingency), and updated those P values according

to the agent’s experience on the previous two laps.

On each lap immediately after reward delivery or lack thereof, the algorithm’s

internal probabilities of each contingency were updated by

Pc = Pc + αδc (3.1)

where Pc is the algorithm’s expectation of the probability that contingency c (L, R,

or A) is currently in place. The α parameter is the learning rate, a free parameter.

For the left contingency, δ was computed by:
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δL =



1− PL if ai−1 = left and ri−1 = 1 and ai−2 = left and ri−2 = 1

1− PL if ai−1 = left and ri−1 = 1 and ai−2 = right and ri−2 = 0

1− PL if ai−1 = right and ri−1 = 0 and ai−2 = left and ri−2 = 1

1− PL if ai−1 = right and ri−1 = 0 and ai−2 = right and ri−2 = 0

−PL otherwise

(3.2)

where ai is the action taken on trial i, and ri is the reward experienced after taking

an action on trial i.

Conversely, for the right contingency, δ was computed by:

δR =



1− PR if ai−1 = right and ri−1 = 1 and ai−2 = right and ri−2 = 1

1− PR if ai−1 = right and ri−1 = 1 and ai−2 = left and ri−2 = 0

1− PR if ai−1 = left and ri−1 = 0 and ai−2 = right and ri−2 = 1

1− PR if ai−1 = left and ri−1 = 0 and ai−2 = left and ri−2 = 0

−PR otherwise

(3.3)

For the alternate contingency, δ was computed by:

δA =



1− PA if ai−1 6= ai−2 = and ri−1 = 1 and ri−2 = 1

1− PA if ai−1 = ai−2 = and ri−1 = 1 and ri−2 = 0

1− PA if ai−1 6= ai−2 = and ri−1 = 0 and ri−2 = 1

−PA otherwise

(3.4)
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The contingency-aware algorithm also contained a “forgetting” parameter (φ),

which decayed the P -values to the baseline value each lap:

∀c, Pc = Pc + φ(
1

3
− Pc) (3.5)

After P -value updating, these P values were transformed into a proper probability

distribution across contingencies via a softmax with temperature parameter βc:

Pc =
βcPc∑

c′∈{L,R,A} βc′Pc′
(3.6)

Then, the Q-value for each action was computed from these contingency proba-

bilities. For the left action, the Q value was updated with:

Q(left) =


PL + PA if ai−1 = right

PL otherwise

(3.7)

The right action’s Q value was updated with:

Q(right) =


PR + PA if ai−1 = left

PR otherwise

(3.8)

To transform the algorithm’s valuations of different actions (the Q-values) into

probabilities that the algorithm would make the same choice as the rats did on trial

i (we denote this probability by p(ai)), we used a softmax over the Q-values:

p(ai) =
exp(βv[Q(ai) + p× rep(ai) + b× type(ai)])∑
a′ exp(βv[Q(a′) + p× rep(a′) + b× type(a′)])

(3.9)

where βv is an inverse temperature parameter that controls how stochastic the models’

choices are at each choice point, and the sum in the denominator sums over all
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available actions, a′ (in the case of the contingency switch task, just left or right).

The p parameter accounts for an inclination to repeat the same action taken on the

last lap (p > 0), or to switch to the opposite action (p < 0), regardless of expected

action values. rep(a′) was a function which evaluated to 1 if the rat repeated its

action, that is, performed action a′ on the previous lap (trial i− 1), and 0 if it chose

a different action. Therefore if the p parameter was positive, the algorithm was more

likely to repeat the previous choice, and if it was negative, the algorithm was more

likely to switch (choose the opposite choice from the previous trial). The purpose of

this p parameter was to capture perseveration behavior.

Also, the b parameter accounts for side biases. The type(a) term evaluated to 1 if

action a was left:

type(a) =


1 if a = left

0 otherwise

(3.10)

Therefore, if the b parameter was negative, agents preferred choosing left, and if

it was positive, they preferred choosing right. If it was 0, there was no side bias.

We initialized all P values to 1
3
. The log likelihood of observing rat choices across

all Ns sessions given the algorithm and parameter values was then computed by

summing the log likelihood of each choice for each lap, session, and rat:

log(p(data|θ)) =
Nr∑
k=1

Ns∑
j=1

Nl∑
i=1

log (p(ai))) (3.11)

where θ is the set of all parameters, Nl is the number of laps in a session, Ns is the

number of sessions for a rat, and Nr is the number of rats.

To determine what algorithm parameter values best explained rats’ choices, we

performed Bayesian inference using Markov chain Monte Carlo (MCMC) in Stan
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Parameter 2.5% 50% 97.5% R̂

α 0.533 0.623 0.700 1.000
βc 5.41 7.17 10.8 1.000
βv 1.62 1.67 1.72 1.000
p -0.0202 -0.00766 0.00487 1.000
b 0.422 0.448 0.475 1.000
φ 0.00491 0.0752 0.255 1.000

Table 3.2: Contingency-aware algorithm fit to rat behavior. Percent columns indicate
the bottom (2.5%), middle (50%), and top (97.5%) of the inner 95% posterior credible
interval. The R̂ statistic measures MCMC chain convergence, and should be between
around 0.9 and 1.1 if MCMC chains have successfully converged.

(Carpenter et al., 2017). We used the Python programming language interface to

Stan, PyStan (Stan Development Team, 2017), to generate model parameter posterior

distributions so that we could perform inference as to the parameter values (Kruschke,

2014). The results of the fit are shown in Table 3.2.

3.4 VTE is likely related to Contingency Uncer-

tainty

How did vicarious trial and error correspond to the rats’ uncertainty as to the identity

of the current contingency? To estimate rats’ contingency uncertainty, we simulated

the contingency-aware algorithm (see section 3.3) using the maximum a posteriori pa-

rameter values from the fits to rat behavior. The simulations were presented with the

same choice and reward sequences as the rats, and from the algorithms we computed

contingency uncertainty on each lap i as the entropy of the contingency probabilities:

ui = H({PL(i), PR(i), PA(i)}) (3.12)

where H denotes the information entropy over the discrete set of contingencies:
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Figure 3.7: Contingency uncertainty aligned to the switch

H(X) = −
∑
x∈X

p(x) log p(x) (3.13)

Similarly to vicarious trial and error, the contingency uncertainty increased after

contingency switches and then decreased over the course of contingency blocks (Figure

3.7).

But were vicarious trial and error and contingency uncertainty truly correlated,

or was the similarity in their timecourses due simply to the recency of a contingency

change, or the time within a session, or other factors?

To address this question, we fit a multilevel model of vicarious trial and error at

the choice point of the contingency switch task. In this model, LogIdPhi (a measure

of vicarious trial and error, see section 2.3.2) was predicted by trial within a session,

the recency of a contingency switch, the contingency uncertainty (equation 3.12), but

also included a random effect of rat.

Yi ∼ N (β0 +Rr + Trti + Srsi + Urui, σe) (3.14)

where Rr is a random effects coefficient for rat r, and Tr, Sr, and Ur are per-rat

parameters drawn from population distributions corresponding to random effects of
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trial, switch recency, and uncertainty, respectively.

R ∼ N (0, σr)

Tr ∼ N (µt, σt)

Sr ∼ N (µs, σs)

Ur ∼ N (µu, σu)

(3.15)

where

• Yi is the LogIdPhi value at the choice point on lap i,

• β0 is the intercept of the model (baseline LogIdPhi value),

• µt is the mean effect of trial on LogIdPhi,

• ti is the trial number on lap i,

• µs is the mean effect of contingency switch recency on LogIdPhi,

• si is the number of laps since the last contingency switch on lap i,

• µu is the mean effect of contingency uncertainty on LogIdPhi,

• ui is the contingency uncertainty on lap i (equation 3.12),

• σe is the standard deviation of the error, and

• N (µ, σ) represents a normal distribution centered at µ with standard deviation

σ.

We found that uncertainty was likely related to vicarious trial and error at the

choice point of the contingency switch task. Although the center 95% credible interval

of the posterior distribution for the population mean of the uncertainty effect on
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LogIdPhi included 0, 96.3% of the posterior density was greater than 0 (Figure 3.8).

This suggests that the amount of VTE displayed by the rats was very likely related

to their uncertainty as to the current contingency.

All this suggests that rats indeed were keeping track of the task contingencies

and using that information to make contingency-informed decisions on the switch

task. But where in the brain was this information stored, and how was it retrieved

during deliberation? In the next section, we look at contingency representation in

the hippocampus and prefrontal cortex as rats run the contingency switch task, and

determine which aspects of neural activity can be explained by explicit representa-

tion of the contingency identities, and which other aspects are simply the result of

unrelated representational changes over time.
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Chapter 4

CA1 and dmPFC Encode Both

Contingencies and Time

4.1 Introduction

The deliberative system is thought to involve many different brain areas which col-

lectively represent abstract information about the environment, and which interact

to use that information to inform decision making during dynamic or difficult action

selection challenges. Along with other structures, the hippocampus (HPC) and the

prefrontal cortex (PFC) represent spatial information, information about more ab-

stract task contingencies, and other information which may be changing over time

(such as information related to motivational state, arousal, hunger, etc). But what

are the dynamics of the flow of information between these two structures, and how

can the representations of abstract contingencies be disentangled from other informa-

tion representation? In this chapter we investigate contingency representations in the

dorsomedial prefrontal cortex (dmPFC) and the first subfield of the cornu Ammonis

of the hippocampus (CA1), how representations in these areas change over time, and
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how encoding due to these two factors can be parsed apart.

The prefrontal cortex as long been thought to mediate executive function (Miller

and Cohen, 2001; Dalley et al., 2004; Kesner and Churchwell, 2011). It participates in

the storage and recall of contextual memories (Tronel and Sara, 2003; Euston et al.,

2012; Preston and Eichenbaum, 2013) and maintains that information in working

memory (Ragozzino and Kesner, 1998; Delatour and Gisquest-Verrier, 1999; Cowen

and McNaughton, 2007; Yoon et al., 2008; Horst and Laubach, 2009; Urban et al.,

2014).

Specifically, dorsomedial aspects of the prefrontal cortex (dmPFC) play several

different roles which support behavioral flexibility. In rodents, the dmPFC is com-

prised of three main subregions. From most dorsal to most ventral they are: the

anterior cingulate cortex (ACC), prelimbic cortex (PL), and infralimbic cortex (IL).

The dmPFC is important for conflict resolution, and especially when the conflicts

involve abstract or latent factors, as lesioning the dmPFC interferes with animals’

abilities to detect and inhibit inappropriate responses (Haddon and Killcross, 2005,

2006). ACC is traditionally associated with behavioral inhibition, though this re-

sponsibility appears to be somewhat distributed between subregions, as inactivation

of PL also impairs the control of contextually-dependent behaviors (Marquis et al.,

2007; Dwyer et al., 2010).

The dmPFC is also required for learning task contingencies and adjusting behav-

ioral strategies accordingly. Neurons in dmPFC encode abstract task rules (Balleine

and Dickinson, 1998; Jung et al., 1998; Wallis et al., 2001; Hyman et al., 2012), and

also appear to represent information about context (Mante et al., 2013; Powell and

Redish, 2014; Ma et al., 2016). Also, in rodents, inactivating dmPFC prevents animals

from updating their behavioral strategies to match changing task rules (Ragozzino

et al., 2003; Floresco et al., 2008; Young and Shapiro, 2009).
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Neural activity in dmPFC reflects changes in behavioral strategy (Rich and

Shapiro, 2009; Karlsson et al., 2012; Powell and Redish, 2016; De Falco et al., 2019).

However, it is unclear whether the dmPFC only encodes changes in behavioral strate-

gies or task contingencies, as opposed to actually carrying information about the

identity of the task rules (Durstewitz et al., 2010; Malagon-Vina et al., 2018).

Also, the dmPFC contributes to decision-making and generating goal-directed

actions. However, there are subregion-specific differences in these contributions to

goal-directed decision making (Seamans et al., 1995). Specifically the prelimbic and

infralimbic subregions have been found to be important for goal-directed behaviors,

and represent goal-relevant information (Matsumoto et al., 2003; Matsumoto and

Tanaka, 2004; Hok et al., 2005; St. Onge and Floresco, 2009). These areas may even

contribute to the balancing of habitual and deliberative influences on action selection

(Killcross and Coutureau, 2003).

Algorithmically, how might the dmPFC contribute to deliberation? Theoretical

work supported by some experimental work suggests that the dmPFC may control

internal simulations of possible actions and their outcomes, and use evaluations of

the internally simulated outcomes to inform action selection (Hassabis and Maguire,

2009; van der Meer et al., 2012; Wang et al., 2015).

On the other hand, while hippocampus (HPC) is traditionally thought to represent

spatial location and to play a central role in spatial navigation, the activity of neurons

in HPC also reflect cognitive, non-spatial information. The hippocampus has long

been known to be important for either storing or recalling episodic memories (Scoville

and Milner, 1957; O’Keefe and Nadel, 1978b; Cohen and Eichenbaum, 1993; Redish,

1999). In rodents, hippocampal representations have primarily been studied in the

context of “place cells”.

Hippocampal place cells are cells in the CA1 and CA3 subregions of the hippocam-
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pus which have high spatial selectivity (O’Keefe and Dostrovsky, 1971; O’Keefe and

Nadel, 1978b). That is, their tuning curves are tightly tuned to specific spatial lo-

cations: the cells spike at high rates when rodents are in a specific location, and are

nearly silent when the animal is in other locations. The size of hippocampal place

fields vary greatly, and differ depending on the environment, task, and context, but

in the dorsal hippocampus of rodents fields generally range in size between a few

centimeters to a meter.

However, the hippocampus also encodes other more abstract information which is

not purely spatial. For example, hippocampal place fields in rats depend on where the

rat intends to go – on spatial alternation tasks where rats run to one side of a figure-

eight maze on one lap, and then to the opposite side on the next lap, place field activity

on the central arm displays “splitter” behavior, where firing of the place cell in its field

is dependent on the side the rat is about to run to (Wood et al., 2000; Ferbinteanu

and Shapiro, 2003; Smith and Mizumori, 2006). Place fields are also modulated by

context (Hasselmo and Eichenbaum, 2005; Griffin et al., 2007; Zilli and Hasselmo,

2008; Kennedy and Shapiro, 2009; Ferbinteanu et al., 2011). Furthermore, place cells

sometimes even completely remap (randomly change their firing field locations) or

modulate the maximum firing rates of their fields depending on sensory cues (Sharp

et al., 1990, 1995; Leutgeb et al., 2005; Bahar et al., 2011).

Hippocampus and dmPFC, along with other structures, are thought to form a

processing loop where bottom-up information from HPC informs representations in

dmPFC, and top-down signals from dmPFC influence memory retrieval in HPC based

on context or strategy (Wang et al., 2015; Jai and Frank, 2015; Redish, 2016; Shin

and Jadhav, 2016; Eichenbaum, 2017).

How do the hippocampus and the dmPFC communicate? There are both direct

and indirect projections from HPC to dmPFC (Swanson, 1981; Ferino et al., 1987; Jay
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and Witter, 1991; Verwer et al., 1997; Delatour and Witter, 2002; Floresco and Grace,

2003; Hoover and Vertes, 2007), as well as bidirectional connections between dmPFC

and HPC via the nucleus reuniens of the thalamus and other thalamic nuclei (Vertes,

2002, 2004; McKenna and Vertes, 2004; Vertes et al., 2006; Di Prisco and Vertes, 2006;

Vertes et al., 2007; Hoover and Vertes, 2012; Cassel et al., 2013; Dolleman-Van der

Weel et al., 2017; Dolleman-van der Weel et al., 2019).

Contralateral lesion studies suggest that a PFC-HPC connection is required for

spatial working memory. These studies inhibited the PFC in one hemisphere, and

the hippocampus in the opposite hemisphere, and found that animals with these

contralateral “lesions” showed performance deficits on tasks requiring spatial work-

ing memory (Floresco et al., 1997; Wang and Cai, 2006, 2008; Barker et al., 2017;

Maharjan et al., 2018). While these experiments are not able to perfectly simu-

late the disruption of inter-area communication (HPC could project indirectly to the

contralateral dmPFC and vice-versa), the suggest that information transfer between

these two areas is important for maintaining and using spatial memories.

Electrophysiology experiments also support theories that there are interactions

between HPC and dmPFC during working memory tasks. Local field potential oscil-

lations in the dmPFC and hippocampus become synchronized during decision-making

requiring working memory, in the theta (6-11Hz), gamma (40-80Hz), and even per-

haps delta (¡4Hz) frequency bands (Siapas et al., 2005; Jones and Wilson, 2005b;

Sirota et al., 2008; Hyman et al., 2010; Colgin, 2011; Gordon, 2011; O’Neill et al.,

2013; Fujisawa and Buzsáki, 2011; Brincat and Miller, 2015; Place et al., 2016; Liu

et al., 2018), and dmPFC or HPC oscillations lead or lag each other depending on

whether the animal is recalling information at decision time or encoding information

during exploration (Place et al., 2016; Liu et al., 2018). Spike timing in PFC also

appears to synchronize with hippocampal theta rhythms, again especially at times
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when memory recall is required during decision making tasks (Hyman et al., 2005;

Jones and Wilson, 2005a; Sirota et al., 2008; Benchenane et al., 2010; Hyman et al.,

2011; Spellman et al., 2015; Zielinski et al., 2019).

Disrupting activity in PFC changes information representation in HPC (Hok et al.,

2013; Navawongse and Eichenbaum, 2013; Guise and Shapiro, 2017; Schmidt et al.,

2019). This effect is thought to be mediated by the nucleus reuniens (Dolleman-

van der Weel et al., 2009; Hallock et al., 2013; Xu and Südhof, 2013; Griffin, 2015;

Ito et al., 2015; Layfield et al., 2015; Linley et al., 2016; Hallock et al., 2016; Ito

et al., 2018; Viena et al., 2018; Mei et al., 2018; Maisson et al., 2018; Zimmerman and

Grace, 2018). Conversely, disrupting HPC outputs to the PFC weakens the encoding

of spatial working memories (Spellman et al., 2015).

How does information about environmental contingencies flow between prefrontal

cortex and hippocampus? Specifically, do representations in dmPFC reflect new con-

tingencies before, after, or at the same time as representations in HPC? Current

theories which posit that dmPFC exerts a top-down contextual influence on HPC

certainly lead to the hypothesis that updates in contingency or strategy representa-

tions would be seen in dmPFC before HPC. But even if representations of new rules

in dmPFC do precede those in HPC, the time scale of this lead is difficult to deduce:

it could be anywhere from tens of millisecond to minutes. Guise and Shapiro (2017)

examined the interaction between contingency representations by HPC and mPFC

ensembles on a task with rule switches. They provided convincing evidence that both

HPC and mPFC represent goals, and that some HPC activity is predictable from past

mPFC activity on trials after rule changes. However, the study did not investigate

the time course or latency of this interaction, nor did it identify specifically what

information in mPFC facilitated the prediction of HPC activity.

In addition to representing contingency or strategy information, ensemble activity
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in both HPC and PFC has been found to change slowly over time (Mankin et al.,

2012; Hyman et al., 2012; Ziv et al., 2013; Malagon-Vina et al., 2018). Some theories

suggest that this change over time provides a form of temporal context (Mensink and

Raaijmakers, 1988; Howard and Kahana, 2002), because events which occur close in

time would have similar representations or “timestamps” (Rubin et al., 2015), leading

to easier retrieval of temporally similar memories. The change of ensemble encoding

over time could also be due to the representation of other unmeasured factors such as

motivation or satiation. Alternatively, the change could simply be due to a random

drift in representations over time. While this representational drift appears to occur

in both HPC and dmPFC, it is unknown how quickly representations drift in each

structure relative to the other. Furthermore, drifting neural activity over time could

be misconstrued as task rule representation when the rules are presented in blocks of

time, and so it remains unclear how much of contingency or strategy representations

in block-structured tasks can be explained simply by representational drift.

In this chapter, we recorded from neural ensembles in dmPFC and dorsal CA1

simultaneously as rats performed the contingency switching task, in order to investi-

gate how the two areas represent task contingencies, information which is hypothe-

sized to only be used by the model-based system. We developed an analysis to dis-

ambiguate the contributions of contingency representation from the representation of

other non-contingency time-varying information. We determined that representations

in dmPFC and HPC encode task contingencies while simultaneously changing over

time in ways unrelated to contingency, and that contingency representation could not

be explained by this encoding drift. We also compared the time course of contingency

encoding changes between dmPFC and HPC as task rules changed, and compared

the rate of change of representations in both structures.
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4.2 Surgery and Neural Recordings

4.2.1 Surgery and targeting

After training on the contingency switch task (see section 3.1), rats were given free

access to food for at least 3 days, and then chronically implanted with a hyperdrive

containing 24 tetrodes (built in-house), and a separate drive containing a 32-site sili-

con probe (Cambridge NeuroTech, Cambridge, England). The hyperdrives contained

two bundles of 12 tetrodes each, targeting the CA1 region of dorsal hippocampus

bilaterally (3.8 mm posterior and ± 3.0 mm lateral from bregma). The hyperdrive

for one rat contained a single bundle of 24 tetrodes targeting the right hippocampus.

The silicon probes consisted of two 16-site shanks which were implanted 3.8 mm an-

terior to and 0.7 mm lateral from bregma at a 25 degree angle (targeting dmPFC on

the right hemisphere, such that the final target was 2.3 mm A/P, -0.7 mm M/L, and

3.9mm D/V, all coordinates relative to bregma). The hyperdrives and silicon probe

drives were made in-house, and protective shrouds around the drives and amplifier

boards were printed on a Form 2 3D printer (Formlabs, Somerville, MA).

Animals were anaesthetized with and maintained on isoflurane (0.5 − 2% isoflu-

rane vaporized in O2) for the duration of the surgery. Rats were placed in a sterotaxic

apparatus (Kopf, Tujunga, CA) and were given penicillin (Combi-Pen-48) intramus-

cularly in each hindlimb, and carprofen (Rimadyl) subcutaneously. Rats’ heads were

shaved and disinfected with Betadine (Purdue Rederick, Norwalk, CT) before making

an incision to reveal the skull. 3-5 jewlers’ screws were used to anchor the drives to

the skull, one of which was used as ground for the tetrodes, and a separate screw

used as ground for the probe.

Three craniotomies were opened: two for the bilateral tetrode bundles using a

surgical trephine, and one for the silicon probes using a burr. The dura was removed
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with forceps, the probe and tetrode drives were positioned with the sterotax, and

then silicone gel (Dow Corning, Midland, MI) was applied to the craniotomies. A

layer of MetaBond (Parkell, Edgewood, NY) and then dental acrylic (The Hygenic

Corporation, Cuyahoga, OH) was applied to secure the drives to the skull. After

surgery, the probes and tetrodes were turned down 640 µm. Rats were subcutaneously

injected with carprofen on the day of surgery and for 2 days after surgery, as well as

enrofloxacin (Enroflox) the day of surgery and for 5 days post-surgery.

4.2.2 Data acquisition and electrophysiology

Neural data from all rats was acquired on an Intan RHD2000 recording system (Intan

Technologies, Los Angeles, CA), using four RHD2132 amplifier boards (three for the

tetrodes and one for the silicon probe). The digitized signals were passed through a

24-channel commutator (Moog, East Aurora, NY) to allow the rats to move freely

throughout recording sessions. To synchronize behavior with the neural recordings,

timestamps were sent from the Matlab (Version 2017a, The MathWorks, Inc., Natick,

MA) software running the task to digital input ports on the Intan RHD2000 USB

Interface Board via an Arduino Uno.

Tetrodes were slowly advanced toward the hippocampal pyramidal layer, and the

probes toward dmPFC, over the course of around 2 weeks, as the rats recovered and

were re-trained on the task. The pyramidal layer was identified by the size of ripples

and the direction of sharp wave deflection, as well as spike bursts during these SWRs.

Signals were filtered and spikes and LFP signals were extracted using in-house

software written in Matlab and C. Spikes recorded on tetrodes in the hippocampus

were manually clustered using the MClust 4.4 software package (Redish, 2017). Only

well-separated clusters were kept and used for analysis. The median isolation distance
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Figure 4.1: Histology and electrode targeting. (A) Si probe recording locations
in dmPFC for each rat. (B) Example photo of a cresyl violet stained coronal slice
through PFC, showing the electrolytic lesion created to mark the recording location
(in Cg1 in this example). (C) Tetrode recording region (highlighted) was in the
pyramidal layer of dorsal CA1. (D) Example photo of a cresyl violet stained coronal
slice through HPC, showing an electrolytic lesion and electrode track. Anatomy
diagrams in (A) and (C) are from Paxinos and Watson (2006). IL, infralimbic cortex.
PrL, prelimbic cortex. Cg1, cingulate cortex area 1. M2, secondary motor cortex. M1,
primary motor cortex. fmi, forceps minor of the corpus callosum. hf, hippocampal
fissure. Py, pyramidal layer. cc, corpus callosum. DG, dentate gyrus.

was 21.2, and the median L-Ratio was 0.0899 (Schmitzer-Torbert et al., 2005). Spikes

recorded on silicon probes were sorted offline using Kilosort (Pachitariu et al., 2016)

into putative clusters, and then manually refined using Phy (Rossant et al., 2016).

4.2.3 Histology

After rats were finished running the experiment, both tetrode and silicon probe record-

ing locations were marked with electrolytic lesions. 10µA was passed through a chan-
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nel on each tetrode, and every fourth channel on the silicon probes, for 10s. At least

two days after the lesions were made, the rats were anesthetized with a pentobarbital

sodium solution (150 mg/kg, Fatal-Plus) and then perfused transcardially with saline

followed by 10% formalin. Brains were stored in formalin, and then in a 30% sucrose

formalin solution until slicing. Coronal slices were made through the hippocampus

and prefrontal cortex (sagittal slices were made instead in PFC for 4 rats) using

a cryostat, and the slices were stained with cresyl violet and imaged to determine

tetrode and silicon probe recording locations (Figure 4.1).

4.3 Ensemble activity represented both contin-

gency and temporal context

We recorded simultaneously from neural ensembles in CA1 and dmPFC using two

16-site silicon probes (in dmPFC) and 24 tetrodes (in CA1) per animal. For all
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neural analyses, we included only sessions where ≥ 10 cells were recorded in dmPFC

and ≥ 10 cells were recorded in CA1 simultaneously. During each of 40 sessions, we

recorded 20.6± 5.4 units in dmPFC and 26.9± 13.5 units in CA1 (Figure 4.2).

To determine the extent to which ensemble representations reflected contingency

encoding versus the encoding of other information which changed over time, we took

advantage of the fact that our task contained multiple contingency blocks of the same

type within a session. We analyzed the stability of contingency representations across

multiple presentations of the same contingency. Specifically, we examined ensemble

activity during the first presentation of a contingency of a given type (contingency

block Y1, Figure 4.3A), during a second presentation of that same contingency (con-

tingency block Y2), and during contingency blocks between the two (contingency

block(s) X, during which the contingencies were of a different type). If time-varying

information not related to contingency identity dominated the representations, en-

semble activity during Y1 and Y2 should have been more dissimilar to each other than

to ensemble activity during X, because they were further apart in time. On the other

hand, if the contingency identities were encoded and other time-varying information,

did not dominate the representations, then ensemble activity during Y1 and Y2 should

have been more similar to each other than to ensemble activity during X. Our dataset

contained N = 62 of these contingency epoch triplets, including a total of 4128 laps.

We used 20-fold cross-validated linear discriminant analysis (LDA) to project en-

semble firing rates in dmPFC and CA1 onto the axis which best discriminated neural

activity during Y1 from that observed during X (Figure 4.3A, on the horizontal axis),

and also onto the axis which best discriminated neural activity during Y2 from that

observed during X (Figure 4.3A, on the vertical axis). Projections were normalized

on both axes such that −1 corresponded to the mean of projections during the Y

epoch, and +1 corresponded to the mean of the projections during the X epoch. We
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Figure 4.3: Analysis of the stability of contingency representations. (A) Illustra-
tion of the representational stability analysis. (B-F) show kernel-density-smoothed
contour density plots of the LDA projections of neural activity on each lap of each
contingency pair used in the analysis (contingency pairs of the same type separated
by block(s) of another type). N = 62 contingency epoch triplets, including a total
of 4128 laps. Example simulations and shuffles in (B-D) used a matched number of
contingency epoch triplets, laps, and units. (B) LDA projections of simulated firing
rates containing only contingency information. (C) LDA projections of simulated
firing rates containing only time information. (D) LDA projections of randomly shuf-
fled neural activity in dmPFC. (E) LDA projections of neural activity in dmPFC,
and (F) CA1. (G) Cohen’s d between projections during X epochs and Y1 epochs
(green dotted bars) or Y2 epochs (purple dotted bars), as compared to projections
of shuffled neural activity (blue distributions). (H) Median LDA projection values
for neural activity during Y1 (green dotted bar), Y2 (purple dotted bar), or X (gray
dotted bar), as compared to simulations where firing rates contained only contingency
information (orange distributions), or simulations where firing rates were controlled
only by temporal drift (blue distributions). Dotted lines in (G) and (H) correspond
to the median projection across the whole dataset, and each sample making up the
distributions corresponds to the median of a shuffle or simulation with a matched
number of cells, laps, and contingency triplets.
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Figure 4.4: LDA projections in (A) CA1 and (B) dmPFC (as in Figure 4.3) for each
transition type separately, for contingency triplets with only one intervening block.
Y indicates the contingency type of the first and recurring contingency block, and X
indicates the intervening block type.

included only the last 20 trials of each contingency block, with the intent that this

included laps only after rats had learned the true contingency. This is similar to what

was done in Malagon-Vina et al. (2018).

This is not to say that we believe contingency representations and other repre-

sentations which change over time were combined solely linearly in both brain areas.

We used LDA not as a statistical tool, but to provide a metric of the separation of

ensemble firing rates between contingency blocks.
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To validate that this analysis was able to disambiguate contingency information

from other time-varying information, we first applied the analysis to simulated data

where firing rates represented only the contingency, and were otherwise time-invariant.

To generate firing rate simulations which represented only contingency and not time,

we randomly assigned each cell a firing rate for each contingency, and added a small

amount of noise. Again, this ensured that we generated “simulations” which had

the same number of cells and sessions as our actual data, as well as identical firing

rate distributions as our actual data, but had firing rates which represented only the

current contingency. Projections of these simulated firing rates during Y1 and Y2

overlapped, but were well-separated from projections of simulated firing rates during

X (Figure 4.3B). This is because the simulated activity during Y1 and Y2 were more

similar to each other than they were to simulated activity during X (by design).

We also applied this analysis to simulated data where firing rates represented

only time, and did not explicitly represent the contingency. To generate firing rate

simulations which represented only time and not contingency, we sorted the firing

rates of each cell across a given session, such that a random half of the cells steadily

increased their firing rates over the course of the session, and the other half decreased

their firing rates over the course of the session. This ensured that we generated

simulations which had the same number of cells and sessions as our actual data,

as well as identical firing rate distributions as our actual data, but had firing rates

which represented only the passage of time. Projections of simulated firing rates

representing only time information did not overlap at all, and projections during Y1

and Y2 were more dissimilar from each other than from projections during X (Figure

4.3C).

What would these projections look like if the inputs were purely noise? To generate

shuffled firing rates (Figure 4.3D,G), we shuffled the inter-spike intervals for each
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Figure 4.5: LDA projections for (A-C) dmPFC and (D-F) CA1 (as in Figure 4.3) for
(A and D) all blocks, (B and E) for only Y1/X/Y2 contingency block sequences where
X contained a single contingency block, and (E and F) for only Y1/X/Y2 contingency
block sequences where X contained two contingency blocks.

cell independently, and re-generated that cell’s spike times from the shuffled ISIs.

This maintained some firing rate statistics (i.e. the mean firing rate of each cell)

while removing any relationship to either contingency or time. The projections of

randomly shuffled neural activity had projections which extensively overlapped for

all three epochs (Figure 4.3D).

Projecting ensemble firing rates in dmPFC and CA1 onto LDA axes in this way

revealed that neural activity in both structures showed signs of both contingency

representation and a drift over time (Figure 4.3E,F). The separation between projec-

tions during either Y1 or Y2 and X was significantly larger than would be expected
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by chance (Figure 4.3G; 1000/1000 shuffles had lower Cohen’s d between X and both

Y projections, on both LDA axes in both structures). This suggests that neural

encoding changed between subsequent contingency blocks.

To determine whether this difference was due to an encoding of contingency iden-

tity, or simply due to an unrelated change in ensemble encoding over time, we com-

pared the projections of neural activity to the simulations encoding only contingency

information or only time information. LDA projections of neural activity during Y1

and Y2 were more similar to each other than the projections of simulations represent-

ing only time, and were more similar to each other than to the projections of neural

activity during X epochs (Figure 4.3H, 1000/1000 simulations had median projections

further from the other Y block than was observed in the neural data for both LDA

axes in both dmPFC and CA1). This suggests that the separation was in part due to

representation of the contingency identity. However, not all of the representational

change could be explained by contingency encoding: the LDA projections of neural

activity during Y1 and Y2 were more separated than were the projections of simula-

tions representing only contingency information (Figure 4.3H, 1000/1000 simulations

had median projections closer to the other Y block than was observed in the neural

data for both LDA axes in both dmPFC and CA1). This indicates that while con-

tingency identities were represented, there was also a change in the ensemble activity

over time which could not be explained by contingency representation.

To determine if any single specific transition type was primarily responsible for

these results, we repeated the LDA projection analysis for each of the six switch types

individually, but found that the vast majority of projections for each individual switch

type were similar to that of the pooled data (Figure 4.4). Also, to account for whether

the number of intervening contingency blocks was driving this effect, we repeated the

LDA projection analysis for contingency block triplets containing only 1 intervening

110



block, and those containing only 2 intervening blocks. The projections for each were

again consistent with the projections when using all the data, though the projections

for triplets with two intervening blocks were more separated, further suggesting the

presence of a drift over time (Figure 4.5). These results demonstrate that ensemble

activity in dmPFC and CA1 represented the abstract task rule or behavioral strategy,

while simultaneously changing their representations over time in ways unrelated to

contingency.

4.4 CA1 and dmPFC ensembles encoded the cur-

rent contingency

4.4.1 Bayesian decoding of contingency

To investigate how strongly dmPFC and HPC encoded the task rule, and when these

representations changed, we used Bayesian decoding to decode the current task con-

tingency (Left, Right, or Alternate) from ensemble firing rates in CA1 or dmPFC.

We used Bayesian decoding (Zhang et al., 1998) to decode both spatial position

and contingency from firing rates in either dmPFC or CA1 (Figure 4.6). We used

decoding time bins of 100ms, and a 16 × 16 grid for spatial location, and 3 bins for

the 3 contingencies. We used 100-fold cross validation to perform the decoding. To

compute the posterior probability of a given contingency on a given lap (as opposed to

only during a single time bin), we computed the cumulative log posterior probability

for each contingency across time samples during which the rat was on the central

segment of the maze during that lap.

Unlike the previous analysis, this Bayesian decoding analysis captured both spa-

tial information and contingency information, and did not simply depend on the
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Figure 4.6: Bayesian decoding of contingency representations in dmPFC and CA1.
(A) Decoding from dmPFC ensemble activity over an example session. Dots are
per-lap decoding posterior probabilities, and the colored bar at the top indicates
the imposed contingency. (B) Decoding accuracy from ensembles in dmPFC and
CA1. N = 40 sessions. Dotted line corresponds to chance. (C) Decoding aligned to
contingency switches for dmPFC, and (D) CA1. Dotted lines indicate the last lap of
the previous contingency block. (E) Decoding aligned to behavioral change laps for
dmPFC, and (F) CA1. Dotted lines indicate the last lap of the previous behavioral
strategy. (C-F) show mean ± SEM, N = 6 rats.
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Figure 4.7: Contingency decoding from ensemble activity in dmPFC and CA1.
Standard deviations above accuracy distributions resulting from shuffled spiketimes.

average firing rate of cells across a trial. Both dmPFC and CA1 encoded the current

contingency more strongly than chance (Figure 4.6B, two-sided Wilcoxon signed rank

test vs 1/3, p = 3.6× 10−8 for both dmPFC and CA1, N = 40 sessions). 35 out of 40

sessions for dmPFC and 26 out of 40 sessions for CA1 had decoding accuracy greater

than 3 standard deviations above the accuracy of decoding performed on shuffled

firing rates (Figure 4.7, 100 shuffles per session).

Contingency decoding from ensembles in dmPFC was significantly more accurate

than decoding from ensembles in CA1 (Figure 4.6B, two-sided Wilcoxon rank sum

test p = 0.0045, N = 40 sessions).

Within around five laps after a contingency switch, ensembles in both dmPFC and

CA1 began to represent the new contingency more strongly than the contingency from

the previous block (Figure 4.6C,D). On average, ensembles in dmPFC represented

the new contingency more strongly than the previous contingency before the animal

updated its behavior to be consistent with the new contingency (Figure 4.6E), while

in contrast this transition in CA1 was not different from the behavioral change point

(Figure 4.6F and 4.11B).
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4.4.2 Ensembles did not overtly remap

Did ensembles remap between contingency types? Other work finds that when envi-

ronments change drastically, place cells sometimes completely remap – that is, they

completely change their firing fields as if the animal was placed in an entirely new

environment.

To compare the amount of global remapping occurring between contingency types,

we measured the correlation of spatial tuning curves for the entire ensemble between

contingency blocks. For each contingency block, we computed the average firing

rate of each cell in each of 5 spatial bins along the central segment of the maze

(from lap start, at the rear of the maze, to choice point entry). We then took these

per-contingency-block firing rate vectors and computed the Pearson’s correlation co-

efficient between blocks (Figure 4.8). Global remapping would have led to much

lower correlation values between contingency blocks of a different type than between

contingency blocks of the same type.

However, neither ensembles in CA1 nor dmPFC appeared to be overtly remapping

between contingency types (Figure 4.8), suggesting the encoding of contingency may

have been via more subtle changes in firing rate, such as rate modulation.

4.4.3 Ensemble activity was more correlated within-

contingency

To measure the similarity between population activity before and after contingency

switches, we correlated neural tuning curves between pairs of laps around the switches

(Figure 4.9A,B). For each cell, we computed the firing rate in each of 5 spatial bins

along the central segment of the maze (from lap start to just before choice point entry).

For each pair of laps, we computed the Pearson correlation between the firing rate
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Figure 4.8: Ensembles do not appear to overtly undergo global remapping between
contingency types. Pearson correlation between spatial tuning curves during passes
through the maze’s central track of ensembles in (A) dmPFC and (B) CA1.

vectors for the lap (each of which had 5×Nc elements, where Nc is the number of cells

recorded on that day). We averaged windows of 20 laps on either side of contingency

switches to generate a switch-aligned average correlation matrices for both dmPFC

(Figure 4.9A) and CA1 (Figure 4.9B). We excluded laps before the previous switch

or after the subsequent switch from this analysis, such that the data in Figure 4.9

only reflected correlations between laps in identical or adjacent contingency blocks.

Ensemble firing rates in dmPFC and HPC were more correlated within contin-

gency blocks than between contingency blocks, and the appearance of this within-

contingency correlation appeared to occur more slowly after a contingency switch in

CA1 than in dmPFC (Figure 4.9).
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Figure 4.9: Ensemble correlations in dmPFC and CA1 aligned to the contingency
switch. (A) Switch-aligned correlation matrix of firing rates in dmPFC. (B) Switch-
aligned correlation matrix of firing rates in CA1.

4.5 Ensembles in dmPFC transitioned before CA1

ensembles

To quantitatively measure the timing of these representational transitions on a switch-

by-switch basis, we performed a change-point analysis on the ensemble firing rates

in dmPFC and CA1. We performed a clustering-based transition point analysis to

determine on what lap neural representations were most likely to transition from one

representation to another (Powell and Redish, 2016). We used K-means clustering

to cluster neural activity on each lap (again split into 5 spatial bins, only during the

central segment of the maze, as in the correlation analysis above) into 3 clusters (for

the 3 possible contingencies). We then applied the change point analysis from Gal-

listel et al. (2004) to the cluster IDs of each lap. Because K-means assigns clusters

stochastically, we repeated this analysis 1000 times for each session to obtain a prob-

ability distribution across laps within the session, which captured the probability of

neural activity transitioning from one state to another.

The firing rate vector for each lap contained not just each cell’s average firing rate

across the lap, but the average firing rate of each cell in each of 5 spatial bins across
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Figure 4.10: Representational transitions after contingency switches in both dmPFC
and CA1. (A) Transition probability for dmPFC and CA1 aligned to contingency
switches. Lines and shaded areas show mean ± SEM, N = 164 switches. (B) Median
difference of the transition probability distributions and bootstrapped 95% confidence
interval. N = 164 switches.

the central maze path from the beginning of a lap to the choice point. Because there

is a level of stochasticity inherent in k-means clustering (a different initialization can

result in a different clustering), we repeated the clustering and transition detection

procedure many times to obtain a probability distribution of ensemble transitions

over laps (Powell and Redish, 2016).

To compute the timing difference between dmPFC and CA1 (Figure 4.10), we took

the difference between the means of the transition probability distribution in dmPFC

and CA1 for each switch, and computed bootstrapped 95% confidence intervals on

the median.

This analysis revealed that representations in both dmPFC and CA1 ensembles

very likely underwent transitions within a few laps after contingency switches (Figure

4.10A). The transition in dmPFC occurred significantly ahead of the transition in CA1

(paired two-sided Wilcoxon signed rank test comparing the means of the per-switch

transition probability distributions, p = 0.039, N = 160 contingency switches). The

median lead by dmPFC was 0.69 laps (Figure 4.10B, 95% confidence interval between

0.045 and 1.5 laps). However note that our analysis was unable to resolve changes on

sub-lap timescales, so we were only able to determine that the transition in dmPFC
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Figure 4.11: The timing of representational transitions in dmPFC and CA1 relative
to behavior. (A) Means of ensemble transition probability distributions relative to
contingency switches for dmPFC and CA1. (B) Transition probability aligned to
the behavior change. Shown is mean ± SEM, N = 164 contingency switches. Inset
shows the mean neural transition lap relative to the behavioral change, with boot-
strapped 95% confidence intervals. N = 164 contingency switches. (C) Transition
probability split by new contingency in dmPFC. (D) Transition probability split by
new contingency in CA1.

preceded that in CA1, but not by exactly how much. Importantly, the repeated

clustering is not what provided statistical power for this analysis, but was used only

to ensure that the resulting mean cluster transition lap was less biased by the k-means

initialization. Rather, the timing difference between cluster transitions was evaluated

using Wilcoxon rank sum tests.

In both dmPFC and CA1, the neural ensemble transition was most likely to occur

on the lap when rats updated their behavioral strategies to be consistent with the new

contingency, but dmPFC ensembles were significantly more likely to transition before

the behavioral change, while the transition in CA1 did not occur at a significantly
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different time from the behavioral transition (Figure 4.11B). There did not appear

to be any major differences in the transition time course depending on the identity

of the new contingency in either dmPFC or CA1 (Figures 4.11C,D). However, in

both dmPFC and CA1 there was a correlation between the amount of VTE and the

probability of a neural transition (Two-sided Wilcoxon sign rank test p = 0.020 in

dmPFC and p = 0.0066 in HPC, N = 40 sessions, of per-session Spearman’s rank

correlation coefficients between zIdPhi and neural transition probabilities), suggesting

that these brain areas were more likely to update their contingency representations

on laps where rats deliberated.

4.6 Representations in dmPFC drifted faster than

in CA1

Comparing the projections of neural activity to simulations representing only time

(Figure 4.3) suggested that representations changed over time, but could not tell us

how quickly. To investigate the speed at which neural representations in dmPFC and

CA1 changed across time, without including changes due to the type of contingency,

we measured the Pearson correlation of ensemble spatial tuning curves between pairs

of contingency blocks of the same type, as a function of the time separating the blocks.

To compute the speed of correlation decay, we divided the correlation coefficient by

the number of laps which separated the centers of the two contingency blocks.

Ensemble activity was less correlated between pairs of contingency blocks which

were further apart in both dmPFC (Figure 4.12A) and CA1 (Figure 4.12B). The

ensemble correlation coefficient decreased by 6.7 × 10−4 per lap in dmPFC (Figure

4.12C, 95% confidence interval on the median was between −8.5× 10−4 and −5.3×
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Figure 4.12: The speed of the representational drift over time. (A) Correlation
between ensemble tuning curves as a function of how many laps separate the blocks
being correlated, in dmPFC and (B) in CA1. (C) The change in the correlation per
lap for both dmPFC and CA1. N = 62 pairs of contingency blocks of matching types.

10−5), while in CA1 the ensemble correlation coefficient decreased by 4.1×10−4 per lap

(Figure 4.12C, 95% confidence interval on the median was between −4.7× 10−4 and

−2.9×10−4). The decrease per lap in the correlation coefficient was greater in dmPFC

than in CA1 (Figure 4.12C, Two-sided Wilcoxon rank sum test p = 6.88 × 10−5,

N = 62 contingency pairs). This suggests that the change in the representation of

non-contingency time-varying information, or representational drift, occurred more

quickly in dmPFC than in CA1.

To validate that this drift was not due simply to the physical drift of our recording

electrodes over time, we compared the spike waveform self-similarity of identified

units across time to the similarity between different units, similar to the analysis

used by (Tolias et al., 2007) to validate stable recordings across days. We computed

the Euclidean distance of spike waveforms between the first and second halves of

the session during which that unit was recorded. We also computed the distances

between the average waveforms of each unit and waveforms of other, non-identical,

units within the same session. The distances between identified units across time

was far lower than the distances between each unit and different units (Figure 4.13).

This indicates that our recordings suffered minimally from electrode drift, and thus
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Figure 4.13: Distance of average spike waveforms from identified single units (blue)
between the first half and second half of the session during which that unit was
recorded. Also, the average spike waveform distance of unit pairs which were identified
as different units during the same session (orange). Identified units had waveforms
which were much more self-similar than to control unit waveforms, suggesting minimal
recording drift. This analysis is similar to, but not identical to, the analysis performed
in Tolias et al. (2007) to identify cell stability across days.

electrode drift was unlikely to explain our observation of firing rate changes over time,

suggesting that actual representational change accounted for the observed changes in

firing rate patterns across time.

4.7 Discussion

Dorsomedial prefrontal cortex is thought to exert top-down contextual control on

hippocampal spatial encoding, but the timecourse and dynamics of this interaction

are unknown. We recorded from ensembles in dmPFC and CA1 simultaneously on a

task with multiple rule switches, and found that both dmPFC and CA1 represented

task contingencies while concurrently representing other information which changed
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over time. Representations in dmPFC changed faster than in CA1, and dmPFC

began to represent new task rules before HPC. Our results suggest that top-down

information from dmPFC about contextual information, such as information about

task rules, appears first in dmPFC and likely alters representations in HPC. The fact

that the representational transition we observed in dmPFC preceded the transition

in HPC suggests that this information may not immediately be incorporated into

hippocampal representations, perhaps due to an inherent stability of hippocampal

representations.

Given the fact that firing rates do change over time, when inspecting the neural

encoding of information yoked to blocks of time, it becomes especially important to

perform some sort of representational stability analysis (Figure 4.3) to confirm that

the decoding of this information is not simply an artifact of representational drift.

The analysis we performed here is not the only option: any probabilistic classification

model can be trained to separate neural activity during one presentation of a given

contingency from activity during between epochs, and then tested to see how well

it classifies activity during a subsequent presentation of the contingency of interest.

We opted for linear discriminant analysis both for its simplicity and because it lends

itself to the more visually interpretable approach we took here (two dimensional

projections, as opposed to comparing classification metrics).

Although representations are known to drift over time (Mankin et al., 2012; Hyman

et al., 2012; Ziv et al., 2013), it is unknown what causes this drift, or what purpose

it serves. One explanation is that the drift we observed could have been simply

due to the representation of additional information which was changing over time,

such as signals related to satiety or motivation. However, theories of how the brain

encodes temporal context (Mensink and Raaijmakers, 1988; Howard and Kahana,

2002) suggest that drifting representations could facilitate the retrieval of memories
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which are closer in time, via associative dynamics. The temporal context model of

Howard and Kahana (2002) proposes that the drift is not random, but rather is driven

by the retrieval of recent contextual information.

In a related study, Malagon-Vina et al. (2018) observed on a rule-switching task

that strategy or rule representations in dmPFC differed between the first and later

repeated rule presentations. They concluded that a new rule representation occurs

each time a previously-presented rule occurs, suggesting that dmPFC may be encod-

ing only rule changes, and not the actual rule identity. While it may appear that

their conclusions are in conflict with our results that there are stable rule represen-

tations in dmPFC, we believe that our conclusions are actually consistent with those

of Malagon-Vina et al. (2018). We observed that while there is a stable representa-

tion of rule or strategy identity, there is simultaneously a drift in the representation

over time, due to any number of other factors (such as satiation or motivation). We

hypothesize that this representational drift over time - and not any inherent change

in contingency encoding - causes the apparent representation of rule identity to differ

between the first and repeated presentations of the rule, which may have led Malagon-

Vina et al. (2018) to conclude that a new representation is generated each time a rule

is repeatedly presented. Of course this is somewhat of a semantic issue: the ensem-

ble firing rates did indeed change between rule presentations. However, we find that

even with the change in representation over time, there remains within dmPFC a

consistent underlying representation of contingency.

Our data shows that both dorsomedial prefrontal cortex and hippocampus encode

contextual information about the current contingency, while simultaneously encoding

other information which changes over time throughout the task. Furthermore, our

results suggest that these context representations are more static in some brain areas,

such as hippocampus, while they are more dynamic in others, such as dorsomedial
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prefrontal cortex.
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Chapter 5

Interactions between dmPFC and

CA1 during Deliberation

5.1 Introduction

In the previous chapter we examined contingency representations in dorsomedial pre-

frontal cortex and hippocampus individually, and how those representations changed

between laps. We found that hippocampal representations of contingency took longer

to update than in dmPFC, a difference which was on the order of laps, not millisec-

onds. However, we know that information transfer between these two areas could

in theory occur much faster. Work examining the relationships between local field

potentials (LFPs) in these two areas finds coherence between the LFPs in PFC and

HPC, specifically in the theta frequency band (6-11Hz), which suggests interactions

on subsecond timescales (Siapas et al., 2005; Jones and Wilson, 2005b; Hyman et al.,

2010; Colgin, 2011; Gordon, 2011; O’Neill et al., 2013; Brincat and Miller, 2015).

Furthermore, there are both monosynaptic and polysynaptic projections from CA1

to dmPFC (Swanson, 1981; Ferino et al., 1987; Jay and Witter, 1991; Verwer et al.,
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1997; Delatour and Witter, 2002; Floresco and Grace, 2003; Hoover and Vertes, 2007),

as well as a bisynaptic and bidirectional connection between CA1 and dmPFC via

the nucleus reuniens and other thalamic nuclei (Vertes, 2002, 2004; McKenna and

Vertes, 2004; Vertes et al., 2006; Di Prisco and Vertes, 2006; Vertes et al., 2007;

Hoover and Vertes, 2012; Cassel et al., 2013; Dolleman-Van der Weel et al., 2017;

Dolleman-van der Weel et al., 2019), so it is entirely possible that these two areas are

able to transfer information within timescales on the order of tens of milliseconds.

However, as we saw in the previous section, contingency information does not

appear to transfer from dmPFC to HPC on timescales this fast. What then, if any,

information is shared between the two structures on faster timescales? Theories of

the deliberative system suggest that prefrontal areas initiate simulation of potential

actions, and then keep track of the estimated outcomes of those internal simulations.

These events are thought to occur on fast timescales, and so reasonable candidates

for information shared between dmPFC and CA1 on faster timescales include infor-

mation about candidate actions (choice), spatial information, and information about

reward or value. In this chapter we examine interactions between HPC and dmPFC

on these faster timescales, and specifically investigate how spatial information and

representations of reward are related between the two structures.

5.2 Coherence between dmPFC and CA1 Local

Field Potentials

If dorsomedial prefrontal cortex and hippocampus interact during decision-making,

we would expect this interaction to be reflected in a relationship between the local field

potentials in each structure. Previous work has shown that during working memory
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tasks the local field potentials in PFC and HPC become synchronized, specifically in

the theta frequency band, which is usually around 6-11Hz in rats (Siapas et al., 2005;

Jones and Wilson, 2005b; Hyman et al., 2010; Colgin, 2011; Gordon, 2011; O’Neill

et al., 2013; Brincat and Miller, 2015). Furthermore, the timing between oscillations

in dmPFC or HPC depends on whether the animal is recalling information at decision

time or encoding information during exploration (Place et al., 2016; Liu et al., 2018).

Some work also finds relationships in other frequency bands including gamma (30-

80Hz) and delta (∼2-4Hz). Gamma oscillations in the prefrontal cortex are phase-

modulated by the hippocampal theta rhythm (Sirota et al., 2008). Local field poten-

tials in the two structures have even been found to synchronize at gamma frequencies

(Spellman et al., 2015), and also at the far slower delta band (Fujisawa and Buzsáki,

2011). There appears to be especially strong theta coherence between prefrontal and

the hippocampus during moments of tasks requiring working memory (Colgin, 2011;

Gordon, 2011; Fujisawa and Buzsáki, 2011) such as at the choice points of spatial

tasks during decision making (Benchenane et al., 2010).

Here, we investigated coherence between theta oscillations in dorsomedial pre-

frontal cortex and local field potentials recorded from the hippocampal fissure. To

analyze power and coherence we used the Chronux software package for Matlab (Mitra

et al., 2018; Mitra, 2007). We found that local field potentials in both the hippocam-

pus and dmPFC displayed strong theta oscillations, peaked at around 8Hz (see Figure

5.1A for an example). We also observed a strong beta component of the LFPs (12-

25Hz), although this is difficult to parse out from simply a theta harmonic. It has long

been known that theta power in the hippocampus increases with running velocity in

rats. We found increased theta power during the run segments of the maze in not only

HPC but also in dmPFC (Figure 5.1C). We found strong coherence between dmPFC

and HPC in the theta band, and also in the beta band (Figure 5.1B,D). Again, we
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Figure 5.1: Examples of power and coherence between dmPFC and hippocampal
LFPs. (A) Example power spectrum in the hippocampal fissure and in dmPFC from
one session. (B) Example coherence between HPC and dmPFC for the same session.
(C) Example spectrogram across one lap for both HPC and dmPFC. Vertical dotted
lines indicate the start of the lap, choice point entry (“Choice”), and reward zone
entry (“Reward”). (D) Example coherogram across the same lap.

suspect this “beta-band” peak in power and coherence in our data is simply a theta

harmonic or due to the non-sinusoidal shape of theta oscillations.

Theta coherence between dmPFC and hippocampus was greater while rats ran the

central maze segment than before they began that lap (p = 1.8×10−5, Wilcoxon rank

sum test, N = 40 sessions, Figure 5.2A-C, and also see Figure 5.1D for an example).

However, theta coherence was greater still as rats passed through the choice point

of the maze (p = 9.5 × 10−5, Wilcoxon rank sum test, N = 40 sessions, Figure

5.2A-C). These findings are consistent with previous work which finds higher theta
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coherence between PFC and HPC at choice points on working memory-dependent

tasks (Benchenane et al., 2010).

Is coherence between HPC and dmPFC related to vicarious trial and error? If

the theory is correct that theta coherence between HPC and PFC arises because the

two structures are working together to retrieve information being held in working

memory, then we might expect to see an increase in coherence at choice points while

rats display VTE. On the other hand, rats pause during vicarious trial and error

events (Muenzinger and Gentry, 1931; Redish, 2016), and theta power is known to be

related to running speed, and therefore theta coherence might be lower during VTE

events simply because theta power is lower than it would be had the rat not paused.

We found that theta coherence between dmPFC and HPC decreases during passes

through the choice point where rats displayed vicarious trial and error (Figure 5.2D).

We also observed that rats’ velocity was lower during passes through the choice point

on laps which they made errors (Figure 5.2F). This is probably because rats displayed

post-error slowing on the contingency switch task (section 3.2), and were more likely

to display vicarious trial and error on laps after contingency switches (Figure 3.4C),

when they were also far more likely to be making errors (Figure 3.4A) due to not yet

having figured out the new contingency. While theta coherence between dmPFC and

HPC was lower at the choice point during passes where rats displayed VTE, it was

still higher than at other moments where rats paused, such as while waiting for food

reward (Figure 5.2D, compare pre- or post-lap coherence to that at the choice point

during VTE).

Some work reports there is greater synchrony between PFC and HPC in the

theta band following errors (Brincat and Miller, 2015). We found that indeed theta

coherence between dmPFC and HPC was significantly higher during the 5s after

reward zone entry following incorrect choices than following correct choices (p =

129



Pre Maze Choice Reward

0

0.5

1

Z-
sc

or
ed

 c
oh

er
en

ce

* * *

0

0.2

0.4

0.6

0.8

1

A
ve

ra
ge

 C
oh

er
en

ce

St
ar

t

C
ho

ic
e

R
ew

ar
d

Aligned Time
-0.4

-0.2

0

0.2

0.4

0.6

dm
P

FC
-H

P
C

 T
he

ta
 C

oh
er

en
ce Non-vte

VTE

St
ar

t

C
ho

ic
e

R
ew

ar
d

Aligned Time
-0.4

-0.2

0

0.2

0.4

0.6

dm
P

FC
-H

P
C

 T
he

ta
 C

oh
er

en
ce

C
ho

ic
e i

R
ew

ar
d i

St
ar

t i+
1

C
ho

ic
e i+

1

Aligned Time
-0.4

-0.2

0

0.2

0.4

0.6

dm
P

FC
-H

P
C

 T
he

ta
 C

oh
er

en
ce

Correct
Incorrect

C
ho

ic
e i

R
ew

ar
d i

St
ar

t i+
1

C
ho

ic
e i+

1

Aligned Time
0

20

40

60

80

100

120

V
el

oc
ity

 (p
x/

se
c)

Correct
Incorrect

A

X position

Y
 p

os
iti

on

B

C

D

E

F

Figure 5.2: Theta coherence between dmPFC and HPC. (A) z-scored theta coher-
ence during a 5s period before lap start (“Pre”), during running of the central maze
segment (“Maze”), during passes through the choice point (“Choice”), and during a
5s period after reward zone entry (“Reward”). N = 40 sessions. (B) Average co-
herence as a function of location on the contingency switch task maze. (C) z-scored
theta coherence as a function of linearized position through a lap. Vertical dotted
lines show lap start (“Start”), choice point entry (“Choice”), and reward zone en-
try (“Reward”). (D) same as in (C), split by whether VTE occurred on that lap.
(E) z-scored theta coherence over the course of two sequential laps, split by whether
the rat’s choice on the first lap was rewarded or unrewarded. Vertical lines indicate
choice point entry on the first lap (“Choicei”), reward zone entry at the end of the
first lap (“Rewardi”), start of the second lap (“Starti+1”), and choice point entry on
the second lap (“Choicei+1”). (F) Rat velocity over the course of two sequential laps,
split by whether the rat’s choice on the first lap was rewarded or unrewarded. Shaded
areas in C-F show mean ± standard error, N = 6 rats.

1.3 × 10−5, Wilcoxon signed rank test, N = 40 sessions). However, rather than an

increase in coherence following errors, a more accurate description is perhaps that

coherence decreases less following errors (Figure 5.2E). That is, upon reward zone

entry, theta coherence between HPC and dmPFC still decreased following errors, but

it decreased far more following correct choices. Also, this difference was not able

to be fully explained by differences in running speed: the running velocity of rats

following reward zone entry after errors was only slightly different than following
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correct choices (Figure 5.2F), while the coherence was drastically different (Figure

5.2E). Our results are consistent with previous work finding that coherence is greater

after errors (Brincat and Miller, 2015), but highlights that on this task this difference

is due to a lesser decrease in coherence following errors, and not because of a spike in

coherence.

5.3 Correlation between Non-local Spatial Repre-

sentations

In the previous section we found that theta oscillations in HPC and dmPFC were

coherent, but how was the information represented in these two areas related? We

performed cross-validated Bayesian decoding of location from ensemble spiking ac-

tivity in dmPFC, and also separately for simultaneously recorded ensembles in HPC.

Using the decoded spatial posterior distributions, we computed how far ahead of

or behind rats’ actual positions HPC and dmPFC represented, and how the spatial

representations in each area were related (Figure 5.3A).

Previous work has found that HPC represents locations further from the rat’s

actual location during vicarious trial and error (Johnson and Redish, 2007). Repli-

cating this previous work, we found that during passes through the choice point on

the contingency switch task, indeed HPC encoded positions further ahead of the

rat during VTE than during non-VTE choice point passes (p = 0.0156, one-sided

Wilcoxon signed rank test, N = 6 rats, Figure 5.3C). Similarly, the dmPFC also en-

coded positions further ahead of the rat during VTE at the choice point (p = 0.0469,

one-sided Wilcoxon signed rank test, N = 6 rats), though the size of this effect was

less prominent than that observed in HPC (Figure 5.3C). This suggests that both
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HPC and dmPFC represented prospective spatial information during deliberation.

However, simply because both areas represented prospective information during

deliberation does not necessarily mean they represented identical spatial information

at the same time. To determine whether spatial representations in dmPFC and HPC

were tightly locked on a fast timescale, we correlated the distance ahead or behind rats

being represented by ensembles over the course of single theta cycles. We found that

there was a small correlation between the relative position represented in HPC and the

relative position represented in dmPFC (a mean Spearman’s correlation coefficient

of 0.0458, which was significantly greater than zero, p = 0.0469, one-sided Wilcoxon

signed rank test, N = 6 rats, Figure 5.3B).

To determine whether these correlations were due to both areas representing goal

locations simultaneously, as opposed to simply being a result of minute positional

differences in the spatial representations across theta cycles, we analyzed the decoded

spatial locations by what zone was being represented. Because the Bayesian decoding

resulted in a decoding posterior across the entire maze, we were able to define three

zones of interest: the choice point, the reward zone on the left side of the maze, and

the reward zone on the right side of the maze (Figure 5.3D). To perform the following

correlations, we computed the sum of the decoding posterior within each zone (nor-

malized by area) per theta cycle. Encoding of the choice point versus either reward

zone was correlated between dmPFC and HPC (a median Spearman’s correlation

coefficient of 0.129, which was significantly greater than zero, p = 0.0313, Wilcoxon

signed rank test, N = 6 rats, Figure 5.3E). However the identity of the reward site

being encoded by dmPFC and HPC was not significantly correlated (p = 0.156,

Wilcoxon signed rank test, N = 6 rats, Figure 5.3F). The correlation coefficients for

choice point and either reward zone representation were greater than the correlation

coefficients for the identity of the encoded reward site (paired Wilcoxon signed rank
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Figure 5.3: Correlations between location encoding in dmPFC and CA1. (A) Exam-
ples of Bayesian decoding of spatial location was performed on ensemble activity in
dmPFC and CA1 using time bins corresponding to hippocampal theta cycles. Shown
are example decoded posterior distributions from four consecutive theta cycles. Green
dots indicate the actual position of the animal’s head. Red arrows indicate discrep-
ancies between the animal’s true location and the decoded location. (B) Correlation
coefficients of the distance relative to the rats true position decoded from ensemble
activity between dmPFC and HPC, for each session and for each rat. (C) Difference
in the average decoded position relative to the actual position of the rat at the choice
point between VTE and non-VTE passes. Higher values indicate positions further
ahead of the rat were represented during VTE passes. Units of the y-axis are laps (full
revolutions around the maze). (D) Examples of Bayesian decoding and how it was
used to compute the posterior probability of three different zones: the choice point
(green dotted box), the reward zone on the left side of the maze (red dotted box),
and the reward zone on the right side of the maze (blue dotted box). The top row
shows decoding from CA1, the bottom row shows decoding from dmPFC, and each
column shows decoding from the same theta cycle. (E) Correlation between dmPFC
and HPC encoding of the choice point vs either reward site. (F) Correlation between
dmPFC and HPC encoding of the reward site identity.
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test, p = 0.0313, N = 6 rats, Figure 5.3E vs Figure 5.3F).

These results suggest that while both the dmPFC and HPC may have been in

deliberative modes simultaneously, and both seemed to represent either local or

prospective information within the same theta cycles, that they were not necessarily

representing identical information at the same time. This is consistent with our re-

sults from section 4.5 concerning the timing of contingency representation transitions,

which taken together with these results suggest that information from dmPFC may

take some time to be incorporated into hippocampal representations, perhaps due to

an inherent stability of hippocampal representations.

5.4 dmPFC Predicts Non-local Spatial Represen-

tation in HPC

If dmPFC instigates internal simulations and evaluations of candidate actions, carried

out by the hippocampus and other structures, then neural signatures corresponding to

that initiation should be present in dmPFC ensemble activity. Therefore, it should be

possible to predict from ensemble activity in PFC whether hippocampus will represent

prospective information.

To determine whether activity in dmPFC carried information about whether HPC

was representing prospective information, we first used cross-fold Bayesian decoding

to decode the location represented by HPC on a per-theta-cycle basis. We categorized

hippocampal theta cycles while rats passed through the choice point as either “local”

(the top 10% of theta cycles with the highest posterior density in the choice point)

or “prospective” (the top 10% of theta cycles with the highest posterior density in

the reward zones – either the left or right reward zone, as in Figure 5.3E). Then,
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Figure 5.4: Predictions of prospective representation in HPC from activity in
dmPFC. (A) Area under the receiver operating characteristic curve per session for
the classifier predicting whether HPC is representing local or prospective spatial in-
formation, trained on dmPFC firing rates. (B) The AUROC relative to the AUROC
of models fit to shuffled dmPFC firing rates. The x-axis is the number of standard
deviations above the shuffle distribution. (C) AUROC of the classifier as a function
of when dmPFC firing rates were used to predict representation in HPC. Negative
values on the horizontal axis correspond to when dmPFC firing rates were used to
predict upcoming representation in HPC, and positive values on the horizontal axis
correspond to when dmPFC firing rates were used to predict past representation in
HPC. Line and shaded area shows the mean ± standard error, N = 40 sessions, while
the grey dots show the AUROC for each individual session. Horizontal dotted line
shows 0.5, corresponding to the AUROC expected from noise. (D) Same as in panel
C, but showing the standard deviations of the AUROC above the corresponding shuf-
fle distributions as in panel B. The horizontal dotted lines show the median of the
shuffle distribution and 3σ. (E) The AUROC relative to shuffle distributions for all
sessions combined.
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we trained a classifier (also a cross-fold Bayesian decoder) to predict from ensemble

activity in dmPFC whether simultaneous hippocampal activity was representing local

or prospective information. We measured the performance of the classifier using the

Area under the receiver operating characteristic curve (AUROC) metric. An AUROC

value of 0.5 indicates a classifier is performing at chance, while an AUROC value of

1.0 would indicate the decoder is correctly classifying every single theta cycle.

We found that this classifier trained on dmPFC activity performed well above

chance, with AUROC values generally in the 0.6 to 0.8 range (Figure 5.4A). To

ensure that the classifier was performing above chance, we repeatedly trained models

on shuffled dmPFC firing rates (we used 1000 shuffles per session). The performance

of the classifier trained on actual dmPFC firing rates was better than shuffles for

all but 3 sessions, and was significantly above the shuffle distributions for the vast

majority of sessions (Figure 5.4B).

However, the predictive power of dmPFC activity did not seem to be highly tem-

porally specific. We repeated the classification analysis, but using neural activity

from dmPFC at different time lags relative to the HPC theta cycle for which the

classifier was trying to predict. If, say, activity in dmPFC were causing the next

theta cycle in HPC to represent nonlocal information, but had no influence over hip-

pocampal representations during preceding or subsequent theta cycles, then we would

expect to see a sharp peak in the classifier’s performance at a lag of -1 theta cycle.

In contrast to that hypothesis, the performance of the classifier had a very broad

performance profile as a function of lag (Figure 5.4C,D,E). This result suggests that

if dmPFC influences hippocampal prospective representations, that the timecourse of

this influence may be very diffuse – on the order of seconds or more, and not on a

per-theta-cycle basis.
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5.5 Reward Encoding in dmPFC

Our results in the previous section suggest that dmPFC could play some role in influ-

encing hippocampal circuitry to enter into prospective modes, but it is also thought

that hippocampal activity has an effect on prefrontal representations. The prefrontal

cortex and the hippocampus are thought to form an information-processing loop,

where top-down inputs from prefrontal cortex influence the retrieval of information

from hippocampus, and that retrieved information informs prefrontal representations

of contingencies, states, and potential actions (Wang et al., 2015; Jai and Frank, 2015;

Redish, 2016; Shin and Jadhav, 2016; Eichenbaum, 2017). Generally, value-based de-

cision making is thought to occur by comparing estimated values for each potential

action, and taking the action with the highest expected value (Rangel et al., 2008;

Padoa-Schioppa, 2011). More specifically, theories suggest that prefrontal structures

may instigate internal simulations of outcomes of candidate actions by an internal

model via brain areas including the hippocampus (Johnson and Redish, 2007; Hass-

abis and Maguire, 2009; Wang et al., 2015), that the value of the outcomes of those

simulations are evaluated by other structures such as the ventral striatum (van der

Meer and Redish, 2010; van der Meer et al., 2012), and that the valuations of the

simulated outcomes of the candidate actions are used to select which action to per-

form.

If the prefrontal cortex uses estimates of reward or value associated with candidate

actions to perform action selection, then presumably it or other areas must keep

track of the candidate actions and the corresponding value estimates. However, there

are different ways in which this might play out algorithmically, and different brain

areas may play different roles in this process. One possibility is that the prefrontal

cortex uses a similar mechanism for value-based decision making as sensory areas
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do for sensory-based decision making, by integrating evidence until some decision

threshold is reached. These so-called “drift diffusion models” or “sequential sampling

models” have been found to explain both behavior and neural activity in sensory areas

during sensory decision-making tasks (Stone, 1960; Ratcliff, 1978; Hanes and Schall,

1996; Ratcliff and McKoon, 2008; Forstmann et al., 2016). However, it is unclear

whether the brain uses a similar mechanism for making value-based decisions, where

the properties of the options being decided between are entirely internal, as opposed to

sensory decision-making where those properties are external and directly observable.

Some work suggests that, at least behaviorally, reaction times during value-based

decision making tasks can be explained using drift-diffusion models (Krajbich and

Rangel, 2011).

However, an alternative possibility is that there is no slow integration process, but

rather the brain considers options serially and discretely, and makes a decision without

evidence accumulation per se. Recent work indicates that, at least in the orbitofrontal

cortex, value signals switch back and forth suddenly, suggesting that options are

being considered serially during value-based decisions (Rich and Wallis, 2016; Wallis,

2018). Yet a third possibility is that both of these mechanisms occur simultaneously:

certain brain areas could consider and evaluate options simultaneously, while others

accumulate evidence for each decision and trigger the corresponding action to be

taken when some decision threshold is reached.

Here, we investigated if and how the encoding of reward in prefrontal cortex is

affected by representations in hippocampus. We performed Bayesian decoding of

reward in dmPFC and also Bayesian decoding of position from activity in CA1,

while rats deliberated at the choice point of the contingency switch task. But does

dmPFC even encode whether animals received reward or not? We performed Bayesian

decoding on ensemble activity in dmPFC as rats entered the reward zone, and decoded
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Figure 5.5: Reward representation in dmPFC. (A) Accuracy of Bayesian decoding of
reward (vs the lack thereof) from dmPFC ensembles compared to decoding accuracy
of Bayesian decoding performed on shuffled firing rates. Lines show the median and
shaded areas show the 1σ percentile (∼ 68.3%) across N = 40 sessions. (B) z-scored
firing rates of individual units following reward zone entry, split by whether reward
was received on that lap or not. (C) Difference in z-scored firing rates between reward
and lack thereof. Panels B and C show the mean ± standard error across N = 824
units. (D) z-scored firing rates upon reward zone entry for individual example cells.
Color of the line in each panel corresponds to the colored dots in (E). (E) Difference
in z-scored firing rates between reward and lack thereof for all units. Greater values
indicate greater firing rates following reward than following a lack of reward, while
lesser values indicate a lesser firing rate following reward than following a lack of
reward. Note that the median is only slightly less than 0 (the averaging effect seen in
panel B and C), but that this difference is small compared to the spread of the entire
distribution.
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whether rats received reward on that lap or whether there was a lack of reward. The

task included an audio cue as to whether a choice was correct or incorrect upon reward

zone entry, and so rats had multiple sources of information as to whether their choice

was correct or incorrect (both the audio cue and the presence or absence of food

reward at the feeder site). The accuracy of reward decoding was significantly above

the accuracy of Bayesian decoding performed on shuffled firing rates between around

1-3 seconds after reward zone entry (Figure 5.5A). This indicates that dmPFC does

in fact carry information about reward, at least at the time of reward delivery.

How was this reward information represented? Firing rates were, on average,

significantly higher after an incorrect choice than after reward was delivered (Figure

5.5B,C). However, to say that firing rates decreased following reward receipt would

be a mischaracterization of the data, as the effect was mostly due to averaging.

While cells showed a decreased firing rate upon reward on average, there was a wide

distribution of responses to reward across individual units. Some cells’ firing rates

increased in response to reward while other cells had greater firing rates after incorrect

choices (Figure 5.5E, and see Figure 5.5D for examples of cells across the distribution).

This indicates that the reward encoding we observed in dmPFC was not simply due

to “reward cells” or cells which decreased their firing rate in the same direction upon

reward receipt, but rather that the representation of reward was due to encoding

across the entire ensemble. This is consistent with previous work which finds that

single units in prefrontal areas tend to have highly mixed selectivity.

Did prefrontal representations of reward change in response to the encoding of

non-local information in hippocampus? We performed Bayesian decoding of reward

from ensembles in dmPFC while simultaneously decoding location from ensembles in

HPC. The HPC decoder was trained on location and neural activity across the entire

session, with 100-fold cross validation, using time bins corresponding to hippocam-
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pal theta cycles. The decoder used for dmPFC was trained to decode reward vs the

lack thereof, using only epochs 1-3s after reward zone entry, which was the time dur-

ing which we found dmPFC to be most reliably encoding reward (Figure 5.5A), and

evaluated while rats were passing through the choice point. The time bins used for

dmPFC decoding were the same as those used for hippocampal decoding (theta cycles

of the hippocampal LFP). We split hippocampal theta cycles into those where hip-

pocampus was representing “local” spatial information and those where hippocampus

was representing non-local, reward zone information. “Local” theta cycles were those

where the decoded spatial posterior distribution had more posterior probability in

the choice point than anywhere else on the maze. In contrast, the “nonlocal” theta

cycles were those during which the reward zone had more posterior probability than

the rest of the maze combined (so, they were not just non-local in a broad sense,

but specifically those theta cycles during which hippocampus represented the reward

zone most strongly).

We found that, on average, during theta cycles during which HPC was represent-

ing the reward zone, there was not a significantly different amount of reward encoding

in dmPFC (Figure 5.6A). However, there was a significant change in the reward rep-

resentation. Reward encoding in dmPFC significantly increased during theta cycles

where HPC represented the reward zone (p = 0.0021, two-sided Wilcoxon signed rank

test comparing the change in decoded reward probabilities from the previous theta

cycle, N = 40 sessions). In contrast, dmPFC reward encoding did not change dur-

ing theta cycles where HPC represented only local information (p = 0.85, two-sided

Wilcoxon signed rank test, N = 40 sessions).

To determine the temporal specificity of this effect, we performed a lag analysis

similar to that used in Figures 5.4C and D. We looked at the change in reward

representation in dmPFC as a function of the number of theta cycles by which the
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Figure 5.6: Reward encoding in dmPFC and its dependence on goal encoding in
HPC. (A) Decoded reward probability from dmPFC as a function of hippocampal
theta cycles since the reference theta cycle, split by whether hippocampal ensembles
represented the goal location or the current location during the reference theta cycle.
(B) Same as in panel A, but theta cycles where HPC represented non-local informa-
tion have been further split by whether HPC represented the goal location the rat
ultimately chose on that lap (“Chosen”) or the opposite goal location (“Unchosen”).
(C) Change in the decoded reward probability as a function of lag (the derivative of
the reward signal in panel A). (D) Change in the decoded reward probability as a
function of lag (the derivative of the reward signal shown in panel B). Shown in all
panels is the mean ± standard error, N = 40 sessions.

reference theta cycle in HPC led or lagged the decoding time bin used for reward

decoding from dmPFC. Unlike the results in the previous section (Figures 5.4C and

D), we found that the change in reward representation in dmPFC was very tightly

locked to the theta cycle during which HPC represented the reward zone (Figure

5.6C). The only offset during which the reward encoding in dmPFC significantly

increased was when the same time bin was used for reward decoding from dmPFC and

location decoding from HPC (during which HPC represented the reward zone). Theta

cycles during which HPC represented only local information showed no systematic
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change in reward encoding in dmPFC, at any lag (Figure 5.6C). Although on average

the reward encoding in dmPFC increased by a greater amount on theta cycles during

which HPC represented specifically the reward zone on the side which the rat ended

up choosing on that lap, this was not significantly different between theta cycles

during which HPC represented the chosen vs the unchosen side (Figure 5.6D). Taken

together, these results suggest that hippocampal spatial representations may have a

fast, within-theta-cycle, effect on reward encoding in dmPFC.

143



Chapter 6

Discussion

We investigated choice strategies of rats on a two-step task and found that rats’

choices could be explained by a mix of model-based and model-free decision making.

Behavioral markers of deliberation such as vicarious trial and error were related to

the novelty of choice sequences on the task, while behavioral markers of habit like

path stereotypy increased with extended sequences of repeated choices. Vicarious

trial and error was correlated between the two choice points, suggesting that rats

may enter deliberative modes over the course of entire trials on multi-stage choice

tasks. However, we found that our spatial version of the two-step task was overly

difficult for rats to learn and was insufficient for providing enough data per session

to fit reinforcement learning models.

Therefore, we designed a new variant of the contingency switching task, to enable

the study of alternations between deliberation and habitual modes during decision-

making. Vicarious trial and error was related to rats’ uncertainty as to the task

contingencies on this new task. We also found that both CA1 and dmPFC encoded

the contingencies while simultaneously representing other information which changed

over time. Ensembles in dmPFC began to represent the new contingency before rats
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exhibited behavioral changes, while ensembles in HPC began to represent the new

contingency later only when rats updated their choices to be consistent with the new

contingency.

Lastly, we examined the relationship between hippocampal and prefrontal repre-

sentations on faster timescales, and found that they were related in complex ways.

Theta oscillations in the two areas were coherent, especially at choice points on the

contingency switching task, and especially following errors. While HPC and dmPFC

spatial representations were correlated in that they represented either local infor-

mation or prospective information together, the two areas did not appear to always

represent identical prospective information at the same time. Furthermore, activity

in prefrontal predicted whether hippocampus was representing local or prospective

information, but this relationship occurred across a very broad timescale, on the order

of seconds. On the other hand, representations of goal location in hippocampus ap-

peared to have very temporally specific effects on reward encoding in dmPFC, across

timescales on the order of a single theta cycle.

To further study the neural underpinnings of model-based and model-free influ-

ences on decision making, future work will have to develop and validate a version of

the two-step task which works well for rodents. Our full version of the task had some

major drawbacks, including the speed of the reward drift (which was too slow) and the

low number of trials rats were able to run on the task in a single session. Miller et al.

(2017) have developed a different version of the two-step task for rats which depends

on a simplified task structure, making it easier for rats to learn. Their version of the

task also employs fast, block-like switches in reward contingencies. Instead of slowly

drifting reward probabilities, reward probabilities on their version of the task switch

suddenly back and forth from 80%/20% to 20%/80% every 30 laps or so. This creates

a large, sudden change in the valuations of the model-based and model-free systems:
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the model-based system is able to update the valuation after the switch quickly, while

the model-free system takes longer, and because the difference in the valuations is so

large, the action probabilities of the two algorithms is large, allowing model fits to

more accurately captures differences in when each algorithm is likely to be driving

behavior. However, their version of the task uses a simplified task structure, and is

non-spatial, which prevents using that version of the task to investigate hippocampal

spatial representations. Furthermore, both our version of the two-step task and theirs

use proxies for cost. We use the time delay to food delivery as the cost, while they

use the probability of food delivery at all as the cost. This further complicates the

modeling process, as it is not known exactly how delay or probability correspond to

the amount of food reward in terms of valuation.

There are also improvements that can be made to the models being fit to animal

behavior on the two-step task. In the brain, the model-free and model-based systems

are thought to depend on different subsystems. Specifically, the model-free system

is thought to have a much slower learning rate (thus giving rise to the habitual or

procedural behavior which is inflexible once learned). However, in research investi-

gating algorithms where the model-free and model-based algorithms are combined

into a single agent, the two algorithms share learning rates (such as in the constant-

weight algorithm in section 2.4.3, also used in much if not all of the human work

(Gläscher et al., 2010; Daw et al., 2011; Gillan et al., 2011; Wunderlich et al., 2012;

Otto et al., 2013b,a; Eppinger et al., 2013; Skatova et al., 2013; Schad et al., 2014;

Gillan et al., 2014; Sebold et al., 2014; Otto et al., 2015; Gillan et al., 2015; Voon

et al., 2015; Deserno et al., 2015; Radenbach et al., 2015; Sharp et al., 2015; Doll et al.,

2016; Decker et al., 2016), or the uncertainty-based models described in section 2.5).

While parameter-efficient, and thus leading to better model comparison scores, this

is neurophysiologically unrealistic. Behavioral work strongly suggests that the two
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systems have drastically different learning rates: the deliberative system is thought to

have a very fast learning rate, while the procedural system is hypothesized to have a

comparatively slow learning rate. Future work should investigate using models where

the two systems have their own learning rates, allowing for better and more realistic

explanations of the algorithms driving animals’ choices. However, the two systems

are not completely independent. It is very likely that the two systems do share some

but not all information, which further complicates the modeling.

Another avenue for future research is to investigate how and why slow represen-

tational changes over time occur, and whether these changes are due only to random

drift, or systematic and predictable. One simple explanation for the observation of

representational drift is mixed selectivity, where the brain area in question repre-

sents not only the otherwise stable information (in our study, information about con-

tingency), but simultaneously represents information about other factors which are

changing over time. This changing information could be any combination of many

different factors, but some likely candidates include the representation of motivational

state, hunger or thirst, arousal, or awareness. However, some theories suggest that

a change in encoding over time is required for fast acquisition of memories in labile

states which solidify into stable representations to allow for the reliable storage of

those memories (Benna and Fusi, 2016), or perhaps due to the transfer of informa-

tion from less stable to more stable brain regions or sub-networks (Roxin and Fusi,

2013). This change from labile to stable representation may be causing changes in en-

coding differences which, having recorded only from a subset of the neurons involved,

we observe as representational drift. Other theories suggest that the brain explicitly

encodes temporal context so that memories which occurred closer in time can be more

easily co-retrieved (Mensink and Raaijmakers, 1988; Howard and Kahana, 2002). In

these theories, representational drift over time is explicitly built in to information en-
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coding, such that information encoded at similar time point share similar encoding.

In theory, in the presence of associative network dynamics, this time-based encoding

would facilitate the retrieval of memories which are closer in time. However, this the-

ory requires more experimental evidence, and from our results we cannot determine

whether drift is occurring due to dynamics similar to those described by this theory of

temporal context, due to the transfer of memories from labile to stable states, or due

simply to the encoding of other unrelated information which is changing over time.

The issue of representational drift also raises the question of how stable represen-

tations are even able to occur in the presence of representational drift over time. One

possibility is that specific stable representations are encoded by a certain subset of

neurons, while other neurons encode information which changes over time, giving rise

to observation of ensemble drift over time. However, this explanation seems unlikely,

especially in prefrontal cortex, where we know that cell activity exhibits highly mixed

selectivity, and single neurons are not often tuned specifically to single concepts. It is

also likely that this differs from brain area to brain area. For example, in hippocampus

it is much more likely that certain ensembles of neurons represent information stably

while others encode information that is changing over time. Although, some work

suggests it is truly a phenomenon which occurs across the entire ensemble (Mankin

et al., 2012). If so, future research will have to work out how stable representations

are even possible in the face of representational drift – or at least how downstream

structures parse out stable information from changing inputs.

If it is the case that representational drift occurs across entire ensembles while sta-

ble representations are simultaneously maintained, analytical tools to separate these

two factors will also have to be developed. Here, we used a linear discriminant analysis

based approach to separate contributions of stable representations (of contingency)

and drift over time. This method is preferable to training a probabilistic classifier to
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distinguish between Y1 and X, and then evaluating on Y2, because it allows us to see

the effect of drift. Using a regular classifier and comparing class probabilities cannot

distinguish between the situation where neural activity during Y2 is not different from

the neural activity during X, and the situation where it is more different from Y1 than

is the neural activity during X. Using the LDA analysis, we are able to distinguish

these two scenarios because the Y2 projections are more highly separated from Y1

projections in the case of drift (Figure 4.3C), whereas in the case of contingency rep-

resentations the Y2 projections are more similar to the Y1 projections than are the X

projections (Figures 4.3B,E,F).

While advantageous compared to previous methods, our linear-discriminant-based

approach is obviously not well-suited to extracting nonlinear information from en-

semble activity, nor does it explicitly model the simultaneous representation of stable

information and a non-stable representational drift over time. Perhaps a more prin-

cipled approach would be to use a model which explicitly accounts for these two

contributions to neural activity – some type of mixture model which includes a fast,

stable component, but also a slow, drifting component. This could be done, for

example, by a model which uses a hidden Markov model to model the stable com-

ponents which change quickly, in combination with a latent state space model which

models the slowly changing representational components. However, combining hidden

Markov models and state space models in this way can often lead to underdetermined

models (because either the hidden Markov component could change quickly while the

state space component changes slowly, or vice-versa, either situation being equally as

likely given certain parameter values). New mathematical approaches will have to be

developed which address this difficulty, in order to model the representation of stable

information with a simultaneous representational drift over time.

The work done here analyzed differences in the timing of switches in contingency
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representation between dorsomedial prefrontal cortex and hippocampus. Our inter-

pretation was that information about contingency from higher cortical areas such as

prefrontal cortex takes time to influence the more intrinsically stable representations

in hippocampus. However, our experiments are not able to determine a causal influ-

ence of contingency information in prefrontal areas on hippocampal representations.

To truly determine whether representations about contingency in hippocampal areas

arise due to inputs from prefrontal areas, future work will have to perform inactivation

studies which investigate the causal effect of prefrontal inputs to the hippocampus.

Some work inactivating the prefrontal cortex indeed finds disruptions in prospective

representations in the hippocampus during deliberation (Schmidt et al., 2019), but

similar experiments have yet to be performed which achieve directional selectivity on

fast timescales. The situation is further complicated by the distributed nature of the

deliberative network – for example inhibiting prefrontal afferents to the hippocampus

(or to the nucleus reuniens or other intermediary structures) does not preclude that

information arriving in the hippocampus via other routes, or even arising in different

brain structures (such as orbitofrontal cortex). So, future work will need to combine

temporally-specific inactivation methods (such as optogenetics) with analyses of the

timing of representational changes in the relevant structures in order to disambiguate

how different forms of contextual information reach the hippocampus from higher

cortical areas.

Similarly, our analyses were not able to parse out the directionality of information

flow during non-local representations. Here we found that non-local representations

in the dorsomedial prefrontal cortex and hippocampus were correlated, and that there

may have been a relationship between non-local representation in hippocampus and

reward encoding in prefrontal cortex. However, without causal manipulations, we

were unable to determine the directionality of these relationships. It could be that
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non-local representations in hippocampus cause corresponding reward encoding to

occur in prefrontal cortex, perhaps due to the activation of intermediate reward-

related structures like the ventral striatum (van der Meer and Redish, 2010; van der

Meer et al., 2012). Alternatively, it could be that representations of goal-related

information in prefrontal cortex, in concert with information about motivational state

in other brain areas, causes the hippocampus to represent potential paths toward the

goal being represented in prefrontal cortex. Finally, because of the bidirectional

nature of connectivity between HPC and dmPFC, the directionality of information

flow may be complex, or even not clearly directional. Though some work suggests

that the flow of information between prefrontal and hippocampal areas varies across

time and depends on task demands (Jones and Wilson, 2005b; Bähner et al., 2015;

Shin and Jadhav, 2016). To causally determine how prospective and goal-relevant

information flows between prefrontal and hippocampal areas, future work will need to

employ temporally-specific and perhaps even projection-specific causal manipulation

methods.

Finally, perhaps instead of trying to understand neural systems in terms of

old reinforcement learning models, the field should attempt to formulate more

neurophysiologically-driven theories of action selection, along the lines of theoreti-

cal work focusing on the habitual system, such as Frank (2011). Certain assumptions

of the model-based and model-free algorithms being used to explain animal behavior

simply do not align with knowledge of how the brain stores or recalls information. For

example, the model-free algorithm uses a “lookup table” for action selection: it stores

the expected reward (the Q-value) of every possible action in *every* state, and at

decision time, “looks up” the action with the highest expected reward (or, technically,

performs a softmax over action values). However, this is clearly more of an analogy

than realistic characterization of how the brain works. Instead, it is though that
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the dorsolateral striatum simply associates state information (coming from sensory

association cortical areas) with action information, encoded in its outputs to thala-

mus and later basal ganglia structures, and that this association is trained by the

release of dopamine from the VTA/SNc. Instead of focusing on matching the delib-

erative system to model-based algorithms, future research may be better served by

investigating more neurophysiologically-driven theories of how the neural deliberative

system functions.

It remains an open question how the deliberative system evaluates its internal

model, what causes this evaluation to occur, and even whether this evaluation is

as discrete and explicit as theories suggest. Certainly current work suggests that

some internal simulation process does occur (Johnson and Redish, 2007; Hassabis

and Maguire, 2009; Wang et al., 2015), and further work suggests that the outcomes

of these internal simulations are internally evaluated (van der Meer and Redish, 2010;

van der Meer et al., 2012; Rich and Wallis, 2016), but it is unknown how these events

are instigated. It could be that higher-level brain areas such as parts of the prefrontal

cortex identify a need for the deliberative system to be engaged (perhaps because

simpler and faster systems like the procedural system have not generated candidate

actions). In this thesis, we have assumed that the deliberative or model-based system

works in this way by actively instigating an explicit, discrete simulation of potential

futures, particularly in chapters 2 and 3, where we simulated model-based algorithms.

However, it is very possible that this process is more passive in nature. To make

progress, future work may be well-served by moving away from attempting to match

the neurophysiology to existing reinforcement learning algorithms, and instead begin

to shift towards developing neurally-inspired theories to model the inner workings of

decision systems.
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Yannick-André Breton, Kelsey D Seeland, and A David Redish. Aging impairs de-

liberation and behavioral flexibility in inter-temporal choice. Frontiers in aging

neuroscience, 7:41, 2015. doi:10.3389/fnagi.2015.00041.

Scott L Brincat and Earl K Miller. Frequency-specific hippocampal-prefrontal in-

teractions during associative learning. Nature neuroscience, 18(4):576, 2015.

doi:10.1038/nn.3954.

TI Brown, VA Carr, KF LaRocque, SE Favila, AM Gordon, B Bowles, JN Bailenson,

and AD Wagner. Prospective representation of navigational goals in the human

hippocampus. Science, 352(6291):1323–1326, 2016.

P. Calabresi, B. Picconi, A. Tozzi, and M. Di Filippo. Dopamine-mediated regulation

of corticostriatal synaptic plasticity. Trends in neurosciences, 30(5):211–219, 2007.

doi:10.1016/j.tins.2007.03.001.

B. Carpenter, A. Gelman, M. Hoffman, D. Lee, B. Goodrich, M. Betancourt,

M. Brubaker, J. Guo, P. Li, and A. Riddell. Stan: A probabilistic programming lan-

guage. Journal of Statistical Software, Articles, 76(1):1–32, 2017. ISSN 1548-7660.

doi:10.18637/jss.v076.i01.

Jean-Christophe Cassel, Anne Pereira De Vasconcelos, Michaël Loureiro, Thibault
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