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Abstract 
 

 Interventions targeting cognitive disorders often hinge on assumptions that 

humans and nonhuman animals recruit equivalent cognitive mechanisms during decision-

making. Identifying parallel decision systems across species could help bridge gaps 

between clinical and non-clinical research, and in turn, improve intervention efficacy. 

The goal of this dissertation is to assess for similar behavioral and neural markers of 

decision-making across humans and rodents using a sequential foraging paradigm (“The 

Web-Surf Task”) that was adapted from a rodent spatial neuroeconomic task (“Restaurant 

Row”). The included studies highlight a functional translational approach that aims to 

access similar functional constructs via parallel tasks and methodological approaches. 

The results provide evidence of cross-species behavioral equivalents, such as the ability 

to detect revealed preferences. Findings from a neuroimaging study suggest that different 

neural systems track past and forward representations, indicative of human prospection 

during deliberation (i.e., episodic future thinking). Moreover, neural activation related to 

difficult decisions is similar to many of the structures that underlie rodent deliberation. 

Lastly, a risk-variant of the task suggests that regret-instances provide a bridge between 

our liking and pursuit of rewards. This final study also finds that impulsive individuals 

may fail to learn from regret. Collectively, this dissertation demonstrates the utility of this 

novel task for elucidating human deliberative mechanisms and identifying cross-species 

decision system compatibilities.  
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CHAPTER 1: GENERAL INTRODUCTION 

In his seminal review, George Ainslie (1975) described the cross-disciplinary 

study of impulsive choice, synthesizing findings from economics, sociology, and 

behavioral psychology. He opened with a question that continues to motivate researchers: 

“Why [do] organisms, particularly human beings, often freely choose the poorer, smaller, 

or more disastrous of two alternative rewards even when they seem to be entirely familiar 

with the alternatives?” Ainslie posited that, although this question spawned immense 

research within a variety of disciplines, there was a general disregard among researchers 

for “their neighbors’ work.” The need for cross-discipline communication remains a core 

issue even some 40 years later, particularly for the human and nonhuman animal 

branches of decision-making research.  

Animal models of impulsivity and addiction are considered among the most well-

regarded representations of human psychopathology, despite fissures that exist between 

model validity and the efficacy of human treatments based on these animal models (Hall, 

De Serrano, Rodd, & Tropepe, 2014; Kalivas, Peters, & Knackstedt, 2006). Coordinating 

clinical and pre-clinical research to model equivalent behaviors is necessary to 

understand the mechanisms that underlie impulsivity (Belzung & Lemoine, 2011; 

Potenza, 2009). Functional translational research is a promising approach in this regard, 

as it aims to access similar functional constructs via parallel tasks. The success of this 

approach hinges on the careful coordination of construct definitions, paradigm 

development, and analytic streams. Although demanding, this type of parallel processing 

between clinical and pre-clinical science could have an immense impact on our ability to 

treat psychologically and financially devastating disorders, such as substance abuse and 
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ADHD (Naqvi & Bechara, 2010). But to achieve this ideal synergy, we must first 

establish behavioral models that capture fundamental decision processes in human and 

nonhuman animals.  

The purpose of this introduction is to provide a systematic review of the decision-

making literature, with a specific focus on behavioral and neurobiological findings from 

human and rodent studies. I synthesize research across a variety of disciplines that 

include behavioral neuroscience, ecology, clinical psychology, and personality. This 

introduction is broadly organized into three main sections: the first section provides a 

review and critique of the traditional approaches for modeling impulsive choice (i.e., 

binary intertemporal choice models). The second section highlights foraging models as a 

promising approach for modeling naturalistic intertemporal decision behaviors. These 

first two sections are further subdivided into (1) theoretical and mathematical 

descriptions, (2) human and rodent task designs, (3) relevance to psychopathology, and 

(4) the underlying neural biological correlates. The third section provides 

recommendations aimed to improve our investigation of cross-species behavioral 

parallels and reduce gaps between animal decision model validity and corresponding 

treatment efficacy. 

 

1.1 Traditional Binary Choice Models 

 Impulsivity is a multi-dimensional construct that includes a broad range of 

potentially unrelated maladaptive behaviors (de Wit, 2009b). These behaviors include an 

impaired ability to withhold responses, the incapacity to wait, or insensitivity to delayed 

or negative outcomes. The delay-discounting phenomenon is arguably the most highly 
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studied aspect of impulsivity (MacKillop et al., 2012). In particular, delay-discounting 

models quantify how quickly reward value declines as a function of temporal delay 

(alternatively called temporal discounting or intertemporal choice; Mazur, 1987). These 

models emerged from economics, stemming from the field’s emphasis on understanding 

choice behaviors within a constrained system (Bickel, Green, & Vuchinich, 1995). 

Within this framework, impulsive choice is considered the selection of a smaller, 

immediate reward over a larger, delayed reward (Ainslie, 1975). Delay-discounting 

models are a common index for measuring impulsivity in addiction and other 

neuropsychiatric illnesses (Heerey, Robinson, McMahon, & Gold, 2007; Mackillop et al., 

2011; Marsch & Bickel, 2001; Odum, 2011). 

In the following section, I begin with an overview of the mathematical functions 

and behavioral techniques often used to measure impulsive choice in human and rodents. 

I next review the literature relating impulsive choice with severe psychopathology in 

humans and rodents, as well as a discussion of individual differences findings in humans. 

Lastly, I discuss the neural circuitry that underlies healthy and aberrant decision-making 

behaviors. I conclude this section by describing cross-species parallels and divergences in 

the impulsive choice literature, with an emphasis on areas for advancing translational 

synergy.   

 

Mathematical Models of Delay Discounting 

 Two major mathematical models have been proposed to describe temporal 

discounting behavior. Economists and decision analysis researchers have traditionally 

favored an exponential model (Bickel, Jarmolowicz, Mueller, Koffarnus, & Gatchalian, 
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2012; Green, Fristoe, & Myerson, 1994; Green & Myerson, 2004; Reynolds, 2006a). The 

exponential model takes the following form:  

 
 

(1) 

where V is the subjective (or discounted) reward value of amount A that is available after 

a delay in D units of time. The k parameter reflects the discounting rate, or the rate at 

which value decreases with delay, with larger k values reflecting steeper discounting. 

This parameter has become a fundamental metric for assessing both within-subject (e.g., 

between offers) and between-group variability (e.g., controls versus drug users; Bickel et 

al., 2012). The exponential function assumes that value is discounting by a fixed 

proportion (Bickel et al., 2012; Kirby, 1997). Although this function may explain certain 

impulsive behaviors (e.g., temporal myopia, which assumes a large discounting rate), 

empirical research better supports alternative models (Marsch & Bickel, 2001). 

One pivotal alternative from the behavioral economic literature is the hyperbolic 

discounting function (Mazur, 1987). This function takes the following form:   

 

 

(2) 

where V, A, and D are defined in equation (1). Comparable to the exponential function 

(1), a larger k parameter reflects steeper discounting. However, the hyperbolic function 

does not assume that discounting occurs at a fixed rate. Instead, reward devaluation is 

proportional to delay magnitude (Ainslie & Haslam, 1992), where small delay rewards 

are devalued more rapidly than more delayed rewards.  

Many researchers argue that temporal discounting is better captured by the 

hyperbolic than exponential function in humans across an array of species (Green & 

V = Ae−kD ,

V = A
1+ kD

.
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Myerson, 2004; Mazur & Biondi, 2009; Mazur, 2007). However, the optimal discounting 

function may hinge on the type of decision at hand (Wikenheiser, Stephens, & Redish, 

2013), where the precise nature of the decision is modulated by task specificities (e.g., 

different cost types). Researchers can empirically determine the optimal discounting 

model by computing indifference points, which is the point at which the immediate and 

delayed options are equivalent in value (Green et al., 1994). When indifference points are 

calculated over a series of possible delays, researchers can plot an indifference curve to 

visualize the shape of the discounting function (Marsch & Bickel, 2001). The next 

section describes possible procedures for obtaining indifference points. 

 

Methods to Derive Indifference Points 

 The most common delay procedures used to derive indifference points are the 

adjusting-delay (Mazur, 1987) and adjusting-amount methods (Rachlin, Raineri, & 

Cross, 1991). Mazur (1987) first proposed the adjusting-delay procedure to examine the 

influence of delay and uncertainty on reward value. In this method, the shorter delay is 

lengthened each time a subject chooses the immediate reward, and reduced each time a 

subject chooses the delayed reward. Rachlin and colleagues (1991) proposed the 

complementary adjusting-amount procedure, which adjusts the magnitude of the 

immediate reward as a function of choice, while holding the larger reward and delay 

length constant.  

 Numerous studies have assumed that both delay procedures tap into the same 

behavioral processes (Christensen, Parker, Silbergeld, & Hursh, 1998; Green et al., 1994; 

Jimura, Myerson, Hilgard, Braver, & Green, 2009; Raineri & Rachlin, 1993; Rodriguez 
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& Logue, 1988). Only two studies directly compared these procedures, the first including 

pigeons (Green, Myerson, Shah, Estle, & Holt, 2007) and the second using humans (Holt, 

Green, & Myerson, 2012). Green and colleagues (2007) did not observe any systematic 

differences in the discounting rates produced using the adjusting-amount or adjusting-

delay procedures. Holt et al. (2012) used three discounting procedures to assess this 

claim: adjusting-delay, adjusting-immediate-amount, and adjusting-delayed-amount. The 

authors found robust magnitude effects for all three discounting methods, whereby 

smaller rewards were discounted more steeply than larger rewards. Thus, these delay 

procedures may tap into common underlying decision processes.    

 Alternatively, one can calculate discounting without indifference points. For 

instance, Evenden and Ryan (1996) developed a procedure where animals cycle through 

a fixed list of options. Specifically, the delay to the larger reward increases over the 

session to improve task efficiency and ensure that subjects remain sensitive to the delay 

(Odum, 2011). Choice behavior is then quantified as the percentage of times a subject 

chooses the larger delayed reward. For more extensive descriptions of the procedures 

used to derive discounting functions in human and nonhuman animals, I refer the reader 

to Madden and Johnson (2010). Importantly, indifference points are computed from 

impulsive choice tasks that vary according to several structural dimensions, which are 

discussed in the following section.   

 

Laboratory Models of Impulsive Choice  

 Impulsive choice tasks vary along at least three structural dimensions: (1) reward 

type (i.e., abstract to concrete), (2) cost type (e.g., delay, effort), and (3) the availability 
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of a reward following a decision (i.e., commitment- versus sustained-choice). The 

majority of human and nonhuman animal paradigms can be described within this 

framework. The following section explores these dimensions and the corresponding task 

designs in more detail, with an emphasis on cross-species comparisons.  

 

Reward Types: From Abstract to Concrete 

 The rewards used in human paradigms exist along a continuum that ranges 

from more abstract offers (e.g., hypothetical monetary gains) to concrete gains (e.g., 

primary reinforcers, such as juice). These reward types are then incorporated into 

various discounting paradigms, which are further categorized as: (1) hypothetical, (2) 

real-reward, and (3) real-time paradigms (Reynolds, 2006a). These tasks all entail 

scenarios in which a subject selects between immediate and delayed outcomes of 

different magnitudes; however, the precise nature of the reward and delay components 

differs across paradigms.  

 Hypothetical paradigms are the most common discounting measure (Green & 

Myerson, 2004; Odum, 2011), and typically ask subjects to make abstract choices about 

future monetary gains (Madden & Bickel, 2010), such as:  

 

“Which would you prefer: $10 now or $50 in two weeks?” 

 

Hypothetical discounting paradigms are often used in psychology and neuroscience 

experiments because they are relatively inexpensive and time efficient to employ. 

Hypothetical choices are also favorable in situations in which real offers are impractical 
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or unethical (Kang, Rangel, Camus, & Camerer, 2011). However, researchers have 

questioned the validity of hypothetical paradigms in modeling real-world decisions 

(Green & Myerson, 2004; Kirby, 1997; Marsch & Bickel, 2001; Odum, 2011) and other 

researchers have questioned whether hypothetical and real choices tap into the same 

underlying systems (Navarick, 2004).   

  Real-reward discounting paradigms were developed to improve the face validity 

of hypothetical discounting tasks (Reynolds, 2006a). In real-reward paradigms, one or a 

few of the choices made by the subject during the task are randomly selected and paid to 

the subject at the end of the testing session. When compared directly, the majority of 

studies did not detect differences between discounting rates derived from real versus 

hypothetical tasks (e.g., Johnson & Bickel, 2002; Lawyer, Schoepflin, Green, & Jenks, 

2011; Madden et al., 2004; Matusiewicz, Carter, Landes, & Yi, 2013). Nonetheless, 

Lagorio and Madden (2005) argued that real-world paradigms may only capture 

potentially real-rewards. Potentially real-reward paradigms should theoretically yield 

similar results to real-reward paradigms, as subjects do not know which outcome they 

will receive, assuming that subjects treat all choices as possibly real. 

Motivated by this concern, real-time (or experiential) paradigms were designed 

such that subjects could experience the consequences of their choices (e.g., delay, 

reward) on a trial-by-trial basis (Reynolds, 2006). A few real-time studies used primary 

reinforcers (Jimura et al., 2009; Kirk & Logue, 1997; McClure, Ericson, Laibson, 

Loewenstein, & Cohen, 2007), although many used monetary rewards of smaller reward 

magnitude available at shorter delays (Reynolds, 2006; Shiels et al., 2009). Real-time 

paradigms may be especially valuable for populations that struggle with abstract 
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decision-making (e.g., children, people with severe mental illness; Reynolds, 2006), as 

trial-by-trial consummatory responses are perhaps more salient than hypothetical 

monetary gains available weeks or months away. However, two methodological concerns 

are worth noting. First, the trial-by-trial structure could confound discounting behaviors 

with learning effects. For instance, it may be challenging to parse whether an individual 

is more impulsive or has difficulty adapting behavior based on prior experiences. Second, 

the frequent use of monetary rewards ultimately detracts from the experiential aim of 

these tasks. Even though subjects physically receive money (via coin dispenser) on each 

trial, this does not equate to spending or consuming a monetary reward on each trial.   

In contrast to human tasks, rodent discounting paradigms are always experiential, 

given that rodent subjects encounter real-time delays and consume rewards as the 

consequence of each choice. In this vein, rewards are frequently in the form of 

primary reinforcement such as food pellets, saccharin, or a drug. Rodent discounting 

paradigms can take on non-spatial and spatial designs.  

Non-spatial paradigms typically require rodents to make a series of lever-presses 

or nose-pokes to receive reward. For instance, rodents may be placed in operant 

chambers that contain several nose-poke holes. In such a task, nose-pokes to one hole 

may deliver a small, immediate reward, whereas nose-pokes to another hole may deliver 

a delayed but larger reward (Pattij, Schetters, Janssen, Wiskerke, & Schoffelmeer, 2009). 

Lever-press paradigms are comparable in design, where different levers presses produce 

rewards of disparate delay and magnitude.    

Spatial paradigms frequently require rodents to navigate mazes while making 

choices. Numerous researchers have adopted maze designs to probe rodent cognitions, 
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given their inclination towards narrow, winding passages (Dudchenko, 2004). The T-

maze is the simplest spatial maze design (Tolman, 1925). In the context of delay-

discounting, rats choose between smaller, immediate rewards at one maze arm and larger, 

delayed rewards from the other maze arm. This design is advantageous in several 

respects: First, rats tend to alternate arms even in the absence of forced-choice trials. This 

behavior has been called exploration or investigation (Dudchenko, 2004; Papale, Stott, 

Powell, Regier, & Redish, 2012), and may reflect the process by which the rat learns 

which side of the maze represents which delay type. Second, the T-maze design does not 

require complex lever-press or nose-poke pre-trainings (Papale et al., 2012). Given these 

positive attributes, T-mazes are often employed in rodent discounting studies.  

 
Cost Types: Delay, Probability, and Effort Discounting 

Comparable to the reward type dimension, human and rodent discounting 

models can differ in the type of cost involved --- temporal delay, probability of 

receipt, or effort requirements. Although delay is most often used, researchers also use 

probability and effort discounting tasks that similarly include discrete binary offers (Bari 

& Robbins, 2013). Distinctions between cost types are important as different response 

costs may recruit separable neural substrates (Prévost, Pessiglione, Météreau, Cléry-

Melin, & Dreher, 2010).   

Probability discounting (alternatively called uncertainty or odds discounting) 

captures subjective reward value as a function of the probability of receipt, given a 

choice between a smaller certain reward and a larger uncertain reward (Bidwell et al., 

2013). For humans, subjective reward value is expected to decrease as the odds of receipt 



	

11	

increase, according to a hyperbolic function (Cardinal, 2006). There is debate as to 

whether delay and probability discounting reflect the same or dissociable processes, 

though recent evidence supports the latter assertion. Several studies found that delay- and 

probability-discounting rates were not highly correlated in humans (Andrade & Petry, 

2012; Holt, Green, & Myerson, 2003; Madden, Petry, & Johnson, 2009) or rats (Wilhelm 

& Mitchell, 2008), and may differentially relate to addiction (Bidwell et al., 2013; 

Madden et al., 2009). 

Effort discounting models describe subjective reward value as inversely related to 

the effort required to obtain it (Botvinick, Huffstetler, & McGuire, 2009). Consideration 

of effort costs are important for developing ecologically valid decision-making models, 

as animals in the wild (and laboratory) must weigh the metabolic costs needed to obtain 

sustenance or reward (Croxson, Walton, O’Reilly, Behrens, & Rushworth, 2009). Despite 

this ecological utility, relations between physical effort and choice have been examined 

far less than alternative decision costs (Klein-Flügge, Kennerley, Saraiva, Penny, & 

Bestmann, 2015). Most studies suggest that effort costs are discounted linearly (Burke, 

Brünger, Kahnt, Park, & Tobler, 2013; Phillips, Walton, & Jhou, 2007) or hyperbolically 

(Grossbard & Mazur, 1986; Prévost et al., 2010; Sugiwaka & Okouchi, 2004). Effort and 

delay discounting may be functionally similar despite separable neural substrates (Prévost 

et al., 2010; Reed, Kaplan, & Brewer, 2012); although others challenged this notion by 

identifying dissociable underlying functions that yielded uncorrelated choice parameters 

(Klein-Flügge et al., 2015). The extent to which effort and delay-based discounting tap 

into dissociable systems is further discussed in a later section (see How Specific Are 

These Associations?).  
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Room to Deflect: Commitment- versus Sustained-Choice  

 Choice impulsivity is typically assessed using the kinds of paradigms described in 

the previous section, where subjects choose between rewards of differing magnitudes 

available at different costs. These tasks are considered “commitment-choice” procedures, 

because a subject commits to one option over the other (Reynolds & Schiffbauer, 2005; 

Shamosh & Gray, 2008). Alternatively, “sustained-choice” procedures (often called 

delay of gratification paradigms) measure choice impulsivity when the smaller 

immediate reward is continuously available. This means that even if an individual 

selects the delayed option, he can deflect to the alternative until the trial ends.  

Walter Mischel’s Stanford marshmallow experiments during the 1960s to 70s are 

perhaps the most well-known studies of delayed gratification (Mischel, Ebbesen, & Zeiss, 

1972). In one variant, a child was presented a food reward and delay (Mischel & Mischel, 

1983). If the child waited through the delay, the experimenter returned and the child 

received two food rewards, although at any point during the delay the child could ring a 

bell and the experimenter would return. The failure to wait through the entire delay 

resulted in only a single food reward. In effect, delayed gratification depends on cognitive 

control, or the capacity to suppress contesting thoughts or action (Casey et al., 2011). 

Delayed gratification abilities in children have been positively correlated with academic 

and social competency, SAT scores, and self-regulation abilities in adulthood (Mischel, 

Shoda, & Peake, 1988; Shoda, Mischel, & Peake, 1990).  

Few studies have directly compared delay discounting and delay of gratification 

paradigms, which have yielded conflicting results regarding their discriminant validity 
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(Reynolds, De Wit, & Richards, 2002; Reynolds & Schiffbauer, 2005; Rachlin, Brown, & 

Cross, 2000). A lack of consistent operational definitions has contributed to difficulties in 

determining whether these paradigms capture distinct impulsivity facets (de Wit, 2009b). 

For instance, different studies use the terms delay discounting and delay of gratification 

to reflect either commitment- or sustained-choice tasks (Shamosh & Gray, 2008). 

Similarly, some researchers ascribe delay of gratification to impulsive behaviors 

exhibited during response inhibition tasks (e.g., Casey et al., 2011), which are believed to 

reflect impulsive action (Bari & Robbins, 2013). These tasks typically require subjects to 

postpone action until a go-signal appears, restrain action when an unexpected no-go 

signal appears, or cancel action when a stop-signal appears after the response has begun. 

Bari and Robbins (2013) distinguish these paradigms from impulsive choice tasks, as one 

tries to inhibit the urge to select an immediate, smaller reward over the larger, delayed 

reward. Although impulsive choice and action paradigms both fall under the umbrella of 

“impulsivity”, the current review focuses primarily on the former. Nonetheless, rectifying 

this lack of consistent terminology is of utmost importance for elucidating the extent to 

which various tasks map onto unique impulsivity branches.  

 More broadly, it appears that researchers can sufficiently conceptualize human 

and rodent impulsive choice paradigms according to three parameters (i.e., reward type, 

cost type, and the ability to deflect). However, clear methodological differences emerge 

when directly comparing human and rodent task designs. Regardless, established 

associations between impulsive choice and psychopathologies have encouraged the 

continued use of discounting tasks in human and nonhuman animal research. The next 

section examines the literature on discounting and psychopathology, with a particular 
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focus on addiction, obesity, schizophrenia, and ADHD. This discussion considers the 

relevance of task design to specific disorders, as well as knowledge into potential causal 

mechanisms gained from the rodent literature.   

 
 
Correlates with Psychopathology  

Impulsive Choice and Severe Psychopathology: Findings from Human and Rat Studies  

“Loss of Control” Disorders: Drug Addiction, Excessive Gambling, and Obesity 

 Impulsive choice paradigms are frequently used to investigate aberrant decision-

making in substance addiction. Numerous reviews have substantiated greater 

impulsivity in addicts given robust relations with delay discounting parameters (Bickel et 

al., 2012; de Wit, 2009; Marsch & Bickel, 2001; Reynolds, 2006a). Hyperbolic 

discounting functions, in particular, capture the preference reversals characteristic of 

addiction, that are related to loss of control and relapse (Bickel et al., 2012). For example, 

someone with alcohol addiction may prefer the delayed alternative when both options are 

delayed (e.g., long-term fitness benefits), whereas preference may shift to the immediate 

alternative as delays decrease (e.g., the clock approaches happy hour). In other words, 

individuals may wish to abstain when substances are not immediately available, but 

reverse their preference when substances become readily available. Despite compelling 

links between discounting and addiction, research remains uncertain as to whether 

impulsive choice precedes drug use, or if repeated drug use fosters impulsive choice 

(Bickel et al., 2012).  

 Animal models are particularly advantageous for elucidating causal relations 

between drug use and impulsive behaviors (Jupp & Dalley, 2014), as researchers can 
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ensure subjects are drug-naïve at the outset (de Wit & Mitchell, 2010). Preclinical models 

can provide insight as to whether impulsivity is a determinant or consequence of drug use 

(Potenza, 2009). Supporting impulsivity as a determinant, rodent research suggests 

steeper discounting rates may precede various indices of drug use, particularly for 

amphetamines (Weafer, Mitchell, & de Wit, 2014). Several longitudinal studies have 

demonstrated similar prospective associations in humans (Audrain-McGovern et al., 

2009; Brody et al., 2014; Fernie et al., 2013; Janssen, Larsen, Vollebergh, & Wiers, 

2015), although methodological challenges make it difficult to determine the shared 

causal mechanisms across human and nonhuman animals (Weafer et al., 2014). 

Nonetheless, discounting rates may represent a risk factor for developing addiction and a 

promising target for intervention development.  

 In contrast to the convergent results above, the human and animal literatures 

diverge as to whether impulsive choice is a consequence of drug use (Weafer et al., 

2014). The majority of animal studies note discounting rate changes following acute drug 

administration, though these effects may depend somewhat on rat strain and drug dosage. 

Far fewer studies have examined these associations in human subjects (de Wit & 

Mitchell, 2010), yielding inconsistent results and cross-species discrepancies (Bickel et 

al., 2012). For instance, acute alcohol administration to humans has been linked with both 

increased (Reynolds et al., 2006) and decreased discounting rates (Ortner, MacDonald, & 

Olmstead, 2003), as well as null effects (Richards, Zhang, Mitchell, & de Wit, 1999).  

 Impulsive choice paradigms are similarly used to examine excessive gambling 

(Bickel et al., 2012), which is conceptualized as a behavioral addiction. Comparable to 

substance use disorders, a plethora of findings reveal increased impulsive choice among 
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individuals with pathological gambling (Koffarnus, Jarmolowicz, Mueller, & Bickel, 

2013); however, some evidence indicates that impulsive action is a better predictor of 

gambling severity (Brevers et al., 2012). Many studies also posit that comorbidity with 

substance abuse may yield the highest discounting rates. Andrade and Petry (2012) aimed 

to elucidate relations between response cost types (i.e., delay versus probability 

discounting) and specific impulse-related psychopathology (i.e., pathological gamblers 

with and without substance use), finding that substance use influenced delay but not 

probability discounting. Accordingly, different response costs may tap into different 

impulsivity facets, and/or delay discounting may be more sensitive to drug addictions. 

Regardless, there are considerable similarities across substance use and gambling 

pathology with respect to behavior and neural substrates (Leeman & Potenza, 2012). 

Differences between these disorders may be partly attributed to the effects of chronic 

drug exposure on the brain. If this latter point is indeed true, investigations into 

behavioral addictions could become a key avenue for investigating the relevant brain 

circuitry sans drug impact.  

 Potential utility notwithstanding, certain procedural limitations influence the 

ecological validity of gambling studies in humans (Madden, Ewan, & Lagorio, 2007). 

Limitations include regulations on the extent to which risks and consequences are real. 

Animal models can address this issue, though this requires that animal gambling 

paradigms equivalently capture loss (Clark et al., 2013). This notion has led some 

researchers to adopt rat variations of the Iowa Gambling Task (which involves subjects 

deducing between several options to maximize gains), rather than employing probability 

discounting paradigms as done previously (Zeeb, Robbins, & Winstanley, 2009). 
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Probability discounting paradigms arguably capture the failure to gain an additional 

reward rather than the loss of resources that occurs from gambling. Consequently, 

traditional impulsive choice tasks may be ill suited for investigating cross-species 

parallels in gambling addiction. That said, probability-discounting paradigms are an 

especially powerful control for delay-discounting tasks, as they allow researchers to 

discern the specific effects of delay on behavior when rewards are equivalent.  

 The strong overlap between over-eating and substance use disorders supports 

addiction models of obesity (Barry, Clarke, & Petry, 2009). For instance, sugar-bingeing 

in rats can yield behavior equivalent to that observed in drug-dependent rats (Avena, 

Rada, & Hoebel, 2009). It is therefore unsurprising that obesity and drug addiction 

produce similar impulsive tendencies and share common neurobiological substrates 

(Volkow & Baler, 2015; Volkow, Wang, Tomasi, & Baler, 2013). Recent endeavors have 

linked discounting with obesity and body mass, particularly for females (Jarmolowicz et 

al., 2014). Weller and colleagues (2008) found that obese women discounted monetary 

rewards more steeply than healthy-weight women. Thus, discounting metrics can capture 

behavioral tendencies that cut across diagnostically separate, but related disorders. 

  

Other Goal-Directed Disorders: Schizophrenia and ADHD 

 Schizophrenia is a heterogeneous disorder characterized by a range of symptoms 

(i.e., positive, negative, disorganized), as well as cognitive, social, and functional 

impairments. Moreover, motivational and goal-directed deficits are a core issue for 

treating schizophrenia (Barch & Dowd, 2010). Such concerns have led researchers to 

investigate how decision-making systems go awry in schizophrenia. Still in its nascent 
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stages, the impulsive choice literature for schizophrenia indicates both heightened (Ahn 

et al., 2011; Heerey, Matveeva, & Gold, 2011; Heerey et al., 2007; Weller et al., 2014) 

and normative discounting rates (Docx et al., 2015; MacKillop & Tidey, 2011; Wing, 

Moss, Rabin, & George, 2012) when compared with healthy controls. It is possible that 

differences observed between groups and/or across studies could be related to smoking 

covariates (Bickel et al., 2012), given the links between substance use and discounting 

behaviors.  

An alternative theory suggests psychiatric-control differences emerge from 

disrupted dynamics between working memory capacity, value/cost representations, and 

motivational processes. Through a series of experiments, Gold et al. (2008) explored the 

interplay between hedonic experience and cognition in schizophrenia. Interestingly, 

individuals with schizophrenia exhibited relatively normative experiences of positive 

emotion when shown evocative stimuli. However, deficits were apparent when patients 

had to incorporate or weigh multiple factors during decision-making (Heerey, Bell-

Warren, & Gold, 2008), which may be explained in part by working memory capacity 

(see Ahn et al., 2011 and Heerey et al., 2011 for examples); this deficiency may be linked 

to one or more of the memory systems that are critical to learning and planning (Johnson, 

van der Meer, & Redish, 2007; Poldrack & Packard, 2003). Individuals with 

schizophrenia also have difficulties in representing the value (or cost) of different offers 

(Gold et al., 2008), especially temporally distant rewards (Heerey et al., 2011). Such 

abnormal cost estimations may underlie disconnects between intact hedonic experiences 

and goal-directed pursuits (Gold et al., 2013). Taken together, it is possible that aberrant 

discounting in schizophrenia reflects failures in memory, perceptual, and/or deliberative 
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decision systems (for a review of these systems see Redish, 2013).  

 As suggested earlier, real-time paradigms may be a promising alternative for 

examining decision-making processes in schizophrenia. Such tasks could reduce the 

abstraction needed to represent temporally distant hypothetical rewards, and thus reduce 

strains on working memory. If real costs and consummatory rewards were more salient, 

patients might have less difficulty using immediate experiences to guide subsequent 

decisions (or less difficultly in mentally representing potential outcomes). In turn, 

experiential models could enable a more focused investigation into the specific 

mechanisms impaired in schizophrenia by reducing certain cognitive demands. These 

endeavors could also foster parallels with animal discounting models of schizophrenia, an 

area in need of development (Barnes, Der-Avakian, & Markou, 2014).  

 The perception of time can also influence intertemporal choices (Wittmann & 

Paulus, 2008). For example, people are more patient when distal rewards are perceived as 

closer (Lempert & Phelps, 2016). This idea relates to the Construal-Level Theory that 

describes psychological distance with respect to abstract versus concrete thinking, 

whereby more distal objects are represented more abstractly (Trope & Liberman, 2010); 

it is also possible that more distal rewards are harder to ‘find’ and thus evaluate, from the 

perspective that deliberation is a mental search process that identifies rewards available in 

the future (Kurth-Nelson, Bickel, & Redish, 2012). Of note, temporal perception is 

sometimes altered among individuals with severe mental illness (Dale et al., 2010; 

Mcdowell, Clementz, & Wixted, 1996; Papageorgiou et al., 2013), and can be influenced 

by certain drugs (Fowler, Pinkston, & Vorontsova, 2009). Temporal perception is 

therefore an important consideration for clinical research.  
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 Attention deficit hyperactivity disorder (or ADHD) is a developmental disorder 

characterized by inattention, hyperactivity, and disinhibition. Steeper discounting rates 

have been observed for children, adolescents, and adults with ADHD (Bickel et al., 

2012). Similar to the schizophrenia literature, group differences were associated with 

working memory. This common cognitive-behavioral association may provide a novel 

avenue for modifying impulsivity, and subsequently treating a range of disorders, 

including substance abuse (e.g., Shamosh et al., 2008). For instance, preliminary findings 

indicated reduced discounting in stimulant addicts following working memory training 

(Bickel, Yi, Landes, Hill, & Baxter, 2011). Future schizophrenia and ADHD treatment 

studies could extend this work to elucidate the importance of working memory, and other 

cognitive abilities, to impulsive choice and psychopathology. But how does individual 

variation influence impulsivity? Similarly, are discounting rates only useful for clinical 

case-control studies?  

 

Individual Differences: Relations with Personality-Based Impulsivity Indices in Humans 

 The prior section highlights the effectiveness of impulsive choice paradigms for 

distinguishing psychiatric groups from healthy subjects. Given this wide applicability, 

excessive temporal discounting has been conceptualized as a core mental health 

(McClure & Bickel, 2014) or trans-disease process that underlies a range of disorders 

(Bickel et al., 2012). The idea of discounting as a shared behavioral marker speaks to 

dimensional models of psychopathology, in which individuals are characterized 

according to various symptom continuums as opposed to distinct categories (Cuthbert, 

2014; Krueger & Markon, 2006). Rather than emphasizing between-group differences, 
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a dimensional approach stresses within-group investigations that capture individual 

variation in traits or behaviors. This approach has critical implications for animal models, 

as high comorbidity encourages animal researchers to model specific symptom 

dimensions rather than entire disorders (Fernando & Robbins, 2011).  

Historically, personality and individual differences researchers have used self-

report questionnaires to evaluate impulsivity dimensions in clinical and non-clinical 

populations (Cyders & Coskunpinar, 2011; Marsch & Bickel, 2001). Self-report 

measures are beneficial in several respects (e.g., easy to administer, inexpensive), but are 

limited by factors like subject response-bias. Reynolds et al. (2006) were the first to 

directly compare behavioral and self-report impulsivity measures in a non-clinical sample 

and found no significant overlap. Alternatively, work by Mobini et al. (2007) reported 

positive associations between discounting rates and self-reported impulsivity. Given 

discrepancies in the literature, Cyders and Coskumnipar (2011) conducted a meta-

analysis to better elucidate relations between these methods. The authors found evidence 

for a significant association but the effect size was small. Thus, while some lab tasks 

corresponded with self-reported impulsivity facets, by and large these approaches shared 

a small amount of variance. Hence, these divergent approaches should not be 

conceptualized under the same broad impulsivity header. Instead, researchers should 

classify measures according to the specific one-dimensional concept they were designed 

to capture, like sensation seeking or impulsive choice. The lack of overlap between self-

report and behavioral measures might also motivate researchers to use these measures in 

conjunction to obtain a more comprehensive picture. 

An important component of impulsivity research is identifying the biological 
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systems that support decision-making across species. A detailed account of these systems 

is necessary for understanding how they break down and in turn, developing effective 

pharmacological treatments. The next section discusses the neural systems involved in 

decision-making, with attention to cross-species parallels and psychopathology.   

 

Neurobiological Correlates of Decision-Making: Implications for Psychopathology 

Seminal work by McClure and colleagues (2004) first described the brain areas 

involved in delay discounting, noting dissociable neural systems: limbic areas rich with 

dopaminergic projections (e.g., ventral striatum [VStr], medial prefrontal cortex [mPFC], 

orbitofrontal cortex [OFC]) activated for decisions involving immediate rewards, whereas 

lateral frontal areas (e.g., dorsolateral prefrontal cortex [dlPFC]) activated in response to 

all choices (immediate and delayed). The authors framed these results as a two-

component model of discounting, where the beta system weighed immediate rewards and 

the delta system weighed rewards at all delays (Ballard & Knutson, 2009). The two-

component model can also be conceptualized as competing impulsive (i.e., limbic areas) 

and executive control (i.e., frontal and parietal areas) systems. This competing framework 

then proposes that addiction emerges from the imbalance between two interacting but 

distinct neural systems (Bechara, 2005). For instance, excessive discounting among 

individuals with addiction may result from chronic use that decreases function in the 

executive system (Meier et al., 2012), which in turn, reduces preference for delayed 

rewards (McClure et al., 2004). Similarly, an underdeveloped or weakened executive 

system could explain heightened discounting in ADHD or antisocial personality disorder 

(Bickel et al., 2007).   
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Findings by Kable and Glimcher (2007) challenged the two-component model 

offering a one-component model instead. The authors found that many of the impulsive 

or beta areas (e.g., VStr, mPFC, and posterior cingulate cortex [PCC]) tracked the 

subjective value of delayed rewards, thus contradicting the claim that these regions form 

an impulsive system that primarily values immediate rewards (although cross-study 

methodological differences prevented a direct comparison of these findings; Peters & 

Büchel, 2011). Despite cumulative evidence that supports the dual-system model 

(McClure & Bickel, 2014), decision-making systems are likely more complex than 

initially proposed.  

Current theories suggest that decision-making is driven by multiple interacting 

systems (Daw, Niv, & Dayan, 2005; Redish, Jensen, & Johnson, 2008; van der Meer, 

Kurth-Nelson, & Redish, 2012): The first is the reflex system, which is hardwired into the 

central nervous system and responds immediately to direct dangers and events; it is 

simple and follows basic rule-based reactions (e.g., pulling your hand away from a hot 

stove; Redish, 2013). Next is the Pavlovian action-selection system, which reacts to 

expected outcomes in a genetically prewired manner (i.e., species-specific actions that are 

acquired via associative learning processes; Bouton, 2007). This system is 

computationally fast. In comparison, the deliberative action-selection system is flexible 

but much slower. This system is responsible for planning actions and maximizing 

expected rewards (van der Meer et al., 2012), and likely entails searching through a series 

of mentally simulated future possibilities, i.e., ‘episodic future thinking’ (Redish, 2016). 

Finally, the habit action-selection system learns the best action to implement for a given 

situation; importantly, stored actions are fast but inflexible. There are also various 
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motor, perceptual, and motivational support systems. These systems are also equipped 

with unique but overlapping systems. For instance, the Pavlovian system includes the 

periaqueductal gray, ventral tegmental area, amygdala, VStr, and OFC (Ledoux, 2002; 

McDannald, Lucantonio, Burke, Niv, & Schoenbaum, 2011), whereas the deliberative 

system includes the hippocampus, prefrontal cortex, VStr, ventral tegmental area, and 

dorsomedial striatum (Johnson & Redish, 2007; Schacter & Addis, 2011; van der Meer, 

2009). Importantly, failure nodes or vulnerabilities within each of these decision systems 

may lead to addiction (see Redish, 2013 for review).   

 Meta-analytic research indicates the OFC and VStr, specifically the nucleus 

accumbens or NAcc, are key players in human reward processing (Liu, Hairston, Schrier, 

& Fan, 2011). More specifically, the OFC (including medial OFC and ventromedial PFC) 

plays a pivotal role in reward value representation (Jan Peters & Büchel, 2011), 

particularly during reward receipt or consumption (Diekhof, Kaps, Falkai, & Gruber, 

2012; Liu et al., 2011). The OFC processes a wide array of reward types, from primary 

rewards (e.g., juice, water, pleasant smells), to abstract secondary rewards (e.g., money, 

positive feedback, and social stimuli), to conditioned arbitrary stimuli (e.g., light flashes; 

Peters & Büchel, 2011). Subdivisions within the OFC have different hedonic coding 

functionalities (Berridge & Kringelbach, 2015): while the mid OFC codes the subjective 

experience of pleasure (e.g., sex, food), the medial OFC tracks valence and learning of 

reward values but not pleasure per se. In addition, the lateral OFC subdivision is often 

recruited during punishment. Considering OFC functionality more broadly, several delay-

discounting studies noted that OFC lesions in rats yielded an increased preference for 

immediate rewards (Kheramin et al., 2002, 2005; Mobini et al., 2002), although an 
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increased preference for delayed rewards has also been observed (Winstanley, Theobald, 

Cardinal, & Robbins, 2004).  

Compared to the OFC, the striatum is often evoked during reward anticipation 

and consumption (Diekhof et al., 2012; Liu et al., 2011). Although fMRI studies suggest 

that these areas share strong functional overlap, findings from the rodent literature 

indicate that the VStr may be involved in action selection before a decision, whereas the 

OFC may process post-decision information (Stott & Redish, 2014). Moreover, 

dopamine-projection striatal areas like the NAcc may signal prediction errors, or 

differences between received and expected rewards, that in turn, contribute to learning 

and motivation (Sescousse, Caldú, Segura, & Dreher, 2013). The NAcc-error association 

is further corroborated by evidence that midbrain dopamine neurons signal reward 

prediction error in rodents (Doya, 2008). With respect to discounting behaviors, lesions 

to the NAcc core (but not shell) may also produce heightened impulsivity in rats 

(Cardinal, Pennicott, Sugathapala, Robbins, & Everitt, 2001; Pothuizen, Jongen-Rêlo, 

Feldon, & Yee, 2005). Thus, the OFC and NAcc are pertinent to the study of impulsivity 

in human and non-human animals.  

 Other core decision areas include the ventromedial PFC (or vmPFC), anterior 

cingulate cortex (or ACC), anterior insula, and amygdala (Liu et al., 2011). Similar to the 

OFC, the vmPFC is likely responsible for reward value computations and comparisons 

(Padoa-Schioppa, 2011; Sescousse et al., 2013). In contrast to the OFC, the ACC and 

anterior insula may be more responsive during the anticipation phase (Liu et al., 2011); 

this functionality is consistent with reports that the insula processes risk and uncertainty 

(Kuhnen & Knutson, 2005; Liu et al., 2011; Sescousse et al., 2013). Converging 
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evidence suggests that the amygdala signals emotional valence (Bickel et al., 2007), 

rather than intrinsic value (Sescousse et al., 2013). This area may also encode loss-related 

expected values in humans, which contrasts the VStr, which may solely reflect gain-

related expected value (Yacubian et al., 2006). Complementary findings from rodents 

implicate the amygdala’s role in biasing choice when losses (but not gains) are 

emphasized (Tremblay et al., 2014). Taken together, the amygdala is a key target for 

assessing gambling-specific neural substrates.  

 

How Specific Are These Associations?  

 As noted previously, delay and effort-based discounting paradigms may evoke 

somewhat separable neural substrates. Such distinctions are critical in delineating the 

specific mechanisms associated with various costs, as separate valuation systems may 

have evolved in response to different types of environmental costs (Prévost et al., 2010). 

Moreover, different valuation systems may be differentially weighted across species. For 

instance, certain primate species show less inclination towards exerting effort but more 

tolerance towards delay, whereas other species exhibit opposing patterns (Stevens, 

Rosati, Ross, & Hauser, 2005). A firm grasp on the neural representation of cost among 

different species can inform the extent to which specific impulsive choice models 

measure the same constructs and translate across species.  

Dissociable substrates were first observed in rodent lesion studies: while ACC 

lesions impacted effort-based decisions in rats (Walton, Bannerman, Alterescu, & 

Rushworth, 2003), they did not yield impulsive delay-based decisions (Rudebeck, 

Walton, Smyth, Bannerman, & Rushworth, 2006). Rather, OFC lesions produced more 
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impulsivity, but did not alter effort-based decision processes. Researchers also found that 

introducing lesions to the NAcc core or disconnecting the ACC and NAcc core similarly 

impacted effort-based decisions by reducing the preference for high-effort rewards 

(Hauber & Sommer, 2009). Thus, transfer between these regions may be pertinent to 

effort-based decision-making.  

 Human neuroimaging studies similarly highlight the ACC and NAcc in effort 

discounting. Botvinick and colleagues (2009) first examined the neural correlates of 

effort discounting in humans, finding that NAcc activation fluctuated with reward 

outcome and the amount of mental effort needed to obtain reward. Moreover, NAcc 

activation was correlated with preceding dACC activation, again suggesting that effort-

demand information is shared between these areas. Additional human studies further 

highlight the ACC in effort-based decision-making (Croxson et al., 2009; Hernandez 

Lallement et al., 2014; Massar, Libedinsky, Weiyan, Huettel, & Chee, 2015; Prévost et 

al., 2010). Many studies also link VStr activity with effort valuation (Croxson et al., 

2009; Hernandez Lallement et al., 2014; Treadway et al., 2012), although the VStr has 

also been shown to represent delayed reward value but not effort cost (Prévost et al., 

2010). Lastly, the insula may also be implicated (Burke et al., 2013; Hernandez 

Lallement et al., 2014; Prévost et al., 2010; Treadway et al., 2012), perhaps through 

functional coupling with the prefrontal cortex (Burke et al., 2013) or ACC (e.g., salience 

network; Prévost et al., 2010).  

 Effort-based paradigms have become a recent focus for measuring motivational 

deficits in schizophrenia (Green, Horan, Barch, & Gold, 2015), as these symptoms are 

linked with daily functioning impairments and represent a novel treatment target 
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(Green, Hellemann, Horan, Lee, & Wynn, 2012; Rassovsky, Horan, Lee, Sergi, & Green, 

2011). Emerging evidence suggests that individuals with schizophrenia may opt for lower 

effort options, although there are discrepancies across task designs (e.g., button-pressing 

versus grip tasks). Moreover, several studies identified relations between willingness to 

expend effort and motivational deficits, such as apathy and anhedonia (Barch, Treadway, 

& Schoen, 2014; Hartmann et al., 2014; Wolf et al., 2014).  

No studies to date have directly examined the neural activity associated with 

effort computation in schizophrenia. However, VStr activation has been linked with 

negative symptom severity (Juckel et al., 2006; Simon et al., 2010; Waltz et al., 2010). 

Functional and structural abnormalities of the ACC have also been observed in 

schizophrenia samples (Fervaha, Foussias, Agid, & Remington, 2013). For instance, a 

recent meta-analysis found that individuals with schizophrenia had reduced ACC activity 

during an executive task that required effortful responses (Minzenberg, Laird, Thelen, 

Carter, & Glahn, 2009). Thus it is plausible that dysfunction within (or between) the VStr 

and ACC could negatively impact effort valuation and motivational processes in 

schizophrenia. The empirical assessment of these neural associations, and their cross-

species parallels, is pertinent as researchers push forth efforts to translate animal effort-

based paradigms for use in schizophrenia clinical trials (for recent work in this domain 

see Reddy et al., 2015).  

 

Summary of the Impulsive Choice Literature: A Within- and Cross-Species Assessment 

 This section covered behavioral and neurobiological findings from traditional 

intertemporal choice studies. More broadly, human and rodent impulsive choice tasks 
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solicit a forced-choice between two discrete options of different values that are available 

at different time delays. The two research domains converge in the mathematical 

functions shown to best characterize discounting behavior (e.g., hyperbolic functions), as 

well as the procedures used to produce those functions (e.g., adjusting delay procedures 

to derive indifferences points). Furthermore, a common set of neural structures appears to 

broadly support human and rodent decision-making. Despite these overlapping features, 

certain methodological differences may challenge cross-species compatibility.    

 Rodents often experience the consequences of their actions (e.g., delay) and 

consume primary rewards during each trial, whereas humans typically do not. It 

follows that delay-discounting tasks likely require animals to use reward experience to 

guide subsequent responses (Chudasama and Robbins, 2006). With the exception of real-

time discounting measures that also include primary rewards, human tasks rarely entail 

an analogous experiential design. In other words, few human paradigms include real-time 

delays and primary rewards for immediate consumption. This discrepancy raises at least 

two issues: (1) different stimuli (e.g., primary versus secondary rewards) may evoke 

separable brain systems in humans, and (2) hypothetical versus real choices may not 

evoke equivalent valuation systems in humans.  

With respect to the first issue, rodent tasks typically include primary rewards, 

whereas human tasks typically include money (Mitchel and Potenza, 2014). This 

methodological distinction has implications for elucidating the shared neurobiological 

correlates. A recent meta-analysis examined the extent to which primary (e.g., erotica, 

food) and secondary (e.g., money) reinforcing rewards showed overlapping neural 

representations (Sescousse et al., 2013). The results revealed a “core reward system” 
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that included the vmPFC, VStr, amygdala, insula, and thalamus, as well as reward-

dependent activation patterns. In particular, the VStr and right anterior OFC were more 

likely to be activated by monetary rewards than food or erotic stimuli. The authors 

posited that, in comparison to primary rewards, secondary reinforcers might be coded in 

evolutionary recent brain areas, such as the anterior OFC. In contrast to monetary 

rewards, food stimuli more strongly recruited the dorsal anterior insula and 

somatosensory cortex, and erotic stimuli more strongly recruited the ventral anterior 

insula and the extrastriate body area. When collapsed together, primary rewards recruited 

the middle insula more so than secondary rewards. These results are consistent with 

theories that the insula coordinates various interoceptive, homeostatic, emotional, and 

cognitive signals (Augustine, 1996; Cauda et al., 2011; Liang, Zou, He, & Yang, 2013; 

Mesulam & Mufson, 1982a, 1982b), whereby the insula’s integrative nature may be 

pertinent to processing sensory and emotionally evocative stimuli. Thus, although 

primary and secondary rewards exhibit several neurobiological parallels (Haber and 

Knutson, 2010), the observed differences may be critical to successful human-rodent 

translational. Furthermore, given the insula’s prominent role in impulse-related disorders 

in humans and rodents (e.g., addiction; Abram et al., 2015; Contreras, Ceric, & 

Torrealba, 2007; Goodkind et al., 2015; Abram et al., 2015; Contreras et al., 2007; 

Goodkind et al., 2015), a shift towards primary reward paradigms might influence the 

extent to which impulsive choice tasks effectively capture psychopathology. 

In regards to the second issue, the “hypothetical bias” theory indicates that 

hypothetical valuations are greater than real valuations (Cummings, Harrison, & 

Rutström, 2013; Johannesson, Liljas, & Johansson, 1998; List & Gallet, 2001). This 
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theory led researchers to question whether real and hypothetical recruits recruit separable 

valuation systems in the brain. Two studies by Kang and colleagues (2011; 2013) 

explored this question using tasks where subjects decided whether to purchase consumer 

goods. In the first study, the authors found evidence for a common valuation circuit, as 

both real and hypothetical decisions recruited the medial OFC and VStr. However, the 

authors did note that certain valuation and cognitive control areas (e.g., OFC, ACC, 

caudate) were more active for real choices. This latter finding could indicate that real-

choice neural activation reflects more careful or deliberate decision-making. The second 

study extended this work to assess neural differences when choices were made to avoid 

aversive outcomes. Contrary to the hypothetical bias, subjects were willing to pay more 

to avoid bad choices under real conditions. Similar to Kang et al. (2011), real decisions 

more strongly activated the OFC and VStr. Real decisions also evoked unique neural 

activity in the insula and amygdala (areas implicated in negative emotions). This 

additional insula finding complements the association between the insula and primary 

rewards described above. Moreover, these studies suggest that, despite a set of core 

valuation regions, there are detectable neural differences for real decisions; these 

divergences may be relevant for psychopathology research, e.g., relations between the 

insula and impulsivity. However, these studies did not directly address neural differences 

using impulsive choice tasks, and future work is needed in this regard.  

Hypothetical discounting measures may capture state and/or trait-level 

impulsivity in humans. Both state and trait-level factors are posited to affect decision-

making behaviors (Bickel et al., 2007). Work by Dixon et al. (2006) provides evidence 

for this dual process model in a sample of pathological gamblers. The authors observed 
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stable discounting functions over multiple sessions (trait component), but also context-

dependent shifts when subjects were tested in a gambling context (state component). To 

some degree, these results indicate that hypothetical measures can capture state and trait 

dimensions by modulating environmental features. However, there are inconsistent 

results regarding how acute drug administration impacts hypothetical discounting rates 

(Bickel et al., 2013). It is thus important to clarify the specificity of this dual-process 

model in terms of psychopathological disorders (e.g., behavioral versus substance 

addiction) and drugs and abuse (e.g., alcohol versus opiates), as this can inform the 

direction of cross-species translational endeavors.  

 Rodents often undergo repeated sessions and/or extensive pre-training. Testing 

is often repeated daily with upwards of a month or more of training time (Foscue, Wood, 

& Schramm-Sapyta, 2012). This approach sharply contrasts human research, where 

subjects typically complete a single session with same-day training. This discrepancy has 

prompted researchers to develop and test more efficient methods of acquiring rodent 

decision-making data (Foscue et al., 2012), including a single-session variant of the 

rodent Iowa Gambling Task that measures stable individual differences (de Visser et al., 

2011; Rivalan, Ahmed, & Dellu-Hagedorn, 2009; Rivalan, Coutureau, Fitoussi, & Dellu-

Hagedorn, 2011). With respect to human studies, researchers have demonstrated strong 

test-retest reliability for discounting rates derived from hypothetical tasks among healthy 

(Matusiewicz et al., 2013; Simpson & Vuchinich, 2000; Weafer, Baggott, & de Wit, 

2013) and disordered populations (Baker, Johnson, & Bickel, 2003). However, 

comparable reports for an experiential discounting measure (i.e., the Experiential 

Discounting Task; Reynolds & Schiffbauer, 2004) showed poorer test-retest reliability 
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(Smits, Stein, Johnson, Odum, & Madden, 2013). This psychometric divergence may 

support hypothetical tasks as measures of stable trait-like features when compared to 

experiential tasks. That said, a more nuanced understanding of the underlying 

mechanisms these tasks measure and their corresponding psychometric properties is 

necessary. For instance, an ideal experiential task would produce stable parameter 

estimates under constant conditions (e.g., same testing room, same time of day), and 

varying estimates when influential variables were introduced (e.g., acute drug 

administration). A thorough account of these psychometric properties could enhance 

cross-species translation, and convey the optimal amount of pre-training and sessions 

needed to produce equivalently stable estimates in humans and rodents.   

 In addition to these cross-species methodological limitations, intertemporal choice 

models rely primarily on economic theories and techniques, such as the binary delay-

discounting tasks described previously. Alternative decision-making models grounded in 

evolutionary theories may be an important counterpart to binary decision paradigms. The 

next section will focus on one alternative decision-making model that may be particularly 

useful in facilitating cross-species translation. 

 

1.2  Serial-Choice Foraging Models 

Serial-choice paradigms, specifically foraging tasks, are a naturalistic complement 

to traditional binary choice investigations (Wikenheiser et al., 2013). In particular, 

foraging models can provide a computational account of how individuals allocate scare 

resources (e.g., time) when searching for valuable goods like food, money or drugs 

(Stephens, 2008). Foraging tasks fall within an alternative class of decision problems, 
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where options are considered sequentially rather than simultaneously and choices are 

interdependent (Constantino & Daw, 2015). Essentially, individuals decide whether to 

accept a current offer (i.e., foreground option) or go in search of a superior alternative 

(i.e., the background).  

Many of the problems framed within the traditional binary system (i.e., choice 

between sooner-smaller versus larger-later) can be adequately described within a serial 

stay/leave framework (Carter, Pedersen, & McCullough, 2015). Take, for example, the 

scenario where an alcoholic must decide whether to order a drink or abstain. In the binary 

choice framework, imbibing alcohol entails an immediate payoff, whereas not imbibing 

yields larger long-term gains (e.g., abstinence). Within the serial framework, the choice 

to drink represents a stay decision, whereas to not drink would represent a leave strategy 

(e.g., individual searches for preferred alternatives elsewhere). This structure may 

potentially capture the extent to which certain choices are mutually exclusive more 

realistically than binary models: An individual cannot drink alcohol and abstain at the 

same moment as suggested by a binary choice model, whereas a drink in the current 

moment does not preclude future abstinence as indicated by a stay/leave framework.  

In the following section, I begin with an overview of traditional foraging theories. 

I next review the predominant foraging paradigms that have been used with rats and 

humans to date. Next, I discuss the literature that links foraging models with 

psychopathology that includes evolutionary support for addictive behaviors. Lastly, I 

discuss the neural circuitry that underlies foraging decisions. I conclude this section by 

commenting on the relative value of foraging paradigms, as well as target areas for 

advancing cross-species foraging models.  
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Early Foraging Theories 

 While economics typically emphasizes problems faced by humans (e.g., weighing 

costs of consumer goods), foraging theories emerged to conceptualize non-human animal 

problems. It is therefore unsurprising that stay/leave paradigms are often preferable to 

binary choice tasks for modeling naturalistic animal decisions (Hayden, 2015; Kacelnik, 

Vasconcelos, Monteiro, & Aw, 2011; D. W. Stephens & Anderson, 2001), where is it 

unlikely that animals encounter concurrent food sources when foraging in the wild 

(Wikenheiser et al., 2013). Rather, foraging is better described as the choice to exploit or 

explore: when an animal encounters a potential food source, the animal must elect 

whether to exploit the source at hand or search for alternatives (Watson & Platt, 2008).  

Two of the major issues identified in the foraging literature include: (1) the patch-

leave problem, where an animal decides when to stay or leave a prey-rich patch for 

another one, and (2) the diet selection problem (also referred to as the prey selection 

problem), where an animal decides whether to accept or reject a prey item (Hayden & 

Walton, 2014). In the classical patch-leave problem, an animal seeks to optimize 

behavior in a patchy environment, where food is dispersed in clumps or “patches.” The 

animal exerts a cost when traveling between patches to obtain food. The animal also 

depletes the available resources at a given patch the longer it remains in that location. 

Different patches also provide different food types (e.g., small versus large prey). 

Charnov’s (1976) Marginal Value Theorem (MVT) indicates that the animal seeks to 

maximize energy intake as a function of patch type and energy costs (e.g., travel or 

search time). More specifically, an animal should leave a patch when the rate of return 
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from the current patch drops below the average rate of return for that environment. The 

MVT has been shown to apply across an impressive range of species, including worms, 

insects, fish, birds, primates, rodents, and humans (Stephens, Brown, & Ydenberg, 2007).  

In the classical diet selection problem, an animal forages for randomly distributed 

food items that are encountered in a serial fashion (Mitchell, 1990). The animal elects 

whether to allocate handling time to the encountered prey, or spend time searching for a 

preferred alternative. Here, choices are associated with different energetic investments 

and different rates of energetic return (Watson & Platt, 2008). MacArthur and Pianka 

(1966) proposed an early prey model function:  

 

 

(3) 

where R is the net benefit gained by consuming a particular prey, E is the energy gained, 

Th is the handling time, and Ts is the search time. Maximizing R derives the diet offering 

that yields the largest energetic return, and in turn, maximizes evolutionary success. 

Contrary to the patch-leave problem, optimal diet theory assumes that resource depletion 

does not occur; thus, the emphasis is on the frequency and type of prey the animal selects. 

While this model has been used to describe behavior across a variety of species, it may 

not perfectly characterize real-world decisions (Watson & Platt, 2008); the model 

predicts that rate-maximizing behavior is to always prefer one prey to the alternatives, 

although many studies found that subjects showed partial preferences for other prey. The 

next section will explore the experimental paradigms that researchers have used to 

investigate the patch-leave and diet-selection problems.  

 

R = E
Th +Ts

,
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Laboratory Models of Foraging 

Patch-Exploitation Paradigms: Evidence of Excessive Exploitation 

 Charnov’s MVT was initially tested in a series of patch-use experiments where 

birds foraged between groups of pinecones (Krebs, Ryan, & Charnov, 1974). More 

recently, researchers outside of the ecology field have begun to employ computerized 

patch-foraging tasks (Blanchard & Hayden, 2014; Calhoun & Hayden, 2015; Constantino 

& Daw, 2015; Hayden, Pearson, & Platt, 2011). Hayden and colleagues (2011) first used 

a patch-foraging task with rhesus monkeys, where two monkeys made stay/leave choices 

by shifting eye gaze towards one of two targets. One target reflected a stay choice, where 

the monkey remained in the current patch and received a juice reward, and the juice 

reward declined in magnitude each time it was selected. The other target reflected a leave 

choice. If this option was selected, the monkey encountered a delay (to simulate travel 

time between patches) and the patch was replenished. Consistent with the MVT: (1) 

monkeys remained in the current patch longer as travel times between patches increased, 

and (2) patch residence time decreased as handling time increased (i.e., delay before 

reward delivery). The authors also noted that the MVT model better fit the sequential 

choice data than a traditional discounting model (i.e., hyperbolic function), even when 

stay/leave choices were conceptualized as smaller-sooner/larger-later decisions. This 

suggests that the stay/leave foraging structure may capture a dissociable aspect of 

intertemporal choice. 

Patch-exploitation paradigms have been far less utilized in human research 

(Bixter & Luhmann, 2013). Hutchinson and colleagues (2008) employed one of the first 

computerized patch-exploitation studies in humans, where subjects caught 
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(computerized) fish in ponds and ponds were depleted as subjects caught more fish. The 

ponds were not replenished, but subjects could switch ponds at any time. Subjects earned 

monetary rewards for each caught fish (although payment was not delivered until the 

end). Contrary to predictions, humans delayed patch switching for longer than optimal. 

Similar “over-staying” tendencies have been observed in other patch-exploitation 

paradigms with humans (Carter et al., 2015; Constantino & Daw, 2015). Likewise, these 

findings are akin to foraging animals that over-stay in patches (Nonacs, 1991), or wait 

through longer-than-necessary delays (Wikenheiser et al., 2013; Carter & Redish, 2016).  

 The multi-armed bandit task is an alternative patch-exploitation paradigm, where 

a forager explores a new environment to uncover hidden values at various locations and 

then exploits the option that yields the greatest value (Addicott, Pearson, Kaiser, Platt, & 

McClernon, 2015). In an uncertain environment the reward values and locations can 

fluctuate, thus, the forager’s challenge is to maximize long-term gains by adjusting his 

exploit/explore strategy accordingly. An example of the multi-armed bandit problem is a 

computerized task that presents four slot machines, where the number of points obtained 

from each machine shifts gradually across the trials (Addicott et al., 2015; Addicott, 

Pearson, Wilson, Platt, & McClernon, 2013; Daw, O’Doherty, Dayan, Seymour, & 

Dolan, 2006). Thus, the subject will obtain the maximum payoff by exploiting the current 

machine with the greatest yield, and then exploring when that yield declines.   

 

Alternative Foraging Paradigms: Forced Exploration 

 In contrast to the patch-exploitation paradigms described previously, alternative 

foraging paradigms may require a subject to explore his environment without the option 
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to continuously exploit any single reward site. Forced exploration paradigms allow for 

the assessment of individual preferences and emotional constructs (e.g., regret), which 

are important features of dynamic decision-making. The “Restaurant Row” task is a 

spatial foraging paradigm that forces subjects to explore each reward site in sequence 

(Steiner & Redish, 2014). In this task, rats foraged for food around a circular track that 

had four feeders (or “restaurants”). Each feeder provided a different flavor of pellet after 

a variable delay. Upon arrival at a feeder, a tone indicated the delay length before the rat 

would receive the food pellets. The rat then made a stay/leave choice, i.e., whether to stay 

and wait through the delay and receive the reward, or travel to the next feeder. 

Importantly, the rat could not stay at any feeder and receive a second offer. Rather, the rat 

had to continue to the next feeder to receive a subsequent offer (i.e., forced exploration). 

The rat could only return to the same reward site after completing a full cycle around the 

maze. Individual preferences were revealed by the rat’s willingness to wait out a certain 

delay length for a particular pellet flavor; these preferences differed across rats but were 

consistent within-subject and across-session (Abram et al., 2016). Using this paradigm, 

the authors highlighted the value of serial choice designs, as pairs of consecutive trials 

tracked distinct emotional events (Steiner & Redish, 2014). In particular, the results 

revealed specific behavioral and neural signatures for regretful situations (as compared to 

disappointing situations), where the rat deviated from its behavioral strategy in error.  

 I designed the “Web-Surf Task” as a human analogue to the Restaurant Row 

paradigm, drawing from human ethology and information foraging (Abram et al., 2016). 

Information foraging theory suggests that humans make stay/leave foraging choices when 

surfing the Internet, e.g., deciding when to begin a new search or follow links within 
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the current page (Pirolli, 2005). In the Web-Surf Task, humans had 30 minutes to 

“forage” for rewards in the form of photos or video clips. Comparable to Restaurant Row, 

there were four galleries (each of which included a different category of stimuli, e.g., 

kitten clips). The subject was informed of the random delay time upon arrival at the 

gallery and could then choose to stay and wait through the delay, or continue on to the 

next offer. Similar to rats, humans showed evidence of revealed preferences that were 

consistent within subject (i.e., revealed preferences correlated with other preference 

metrics) but differed across subjects. This study was seminal in that we directly compared 

cross-species behaviors using analogous tasks and operational definitions. In the same 

vein as traditional discounting tasks, foraging tasks can include different types of costs.  

 

Cost Types: Delay versus Physical Expenditures 

 The types of costs an individual encounters may influence the measurement of 

foraging behaviors. In the virtual reality patch-exploitation paradigm described by 

Hayden et al. (2011), monkeys did not physically travel between patches or exert an 

action to advance; even though the delay created an opportunity cost by delaying reward, 

there was no physical cost. Work by Wikenheiser and colleagues (2013) incorporated 

physical cost via a spatial foraging paradigm that was akin to the diet selection problem. 

Rats foraged for food around a circular track that included three feeders, where each 

feeder was associated with a particular delay length. Within the foraging framework, 

delay reflected handling time. Rats made stay/leave decisions at each feeder: for stay 

decisions, the rat waited through a delay to receive food pellets as reward; for leave 

decisions, the rat physically traveled to the next feeder to encounter an alternative offer. 
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Consistent with prior criticisms of the prey selection model (Watson & Platt, 2008), the 

rats did not display rate-maximizing behaviors where one prey type was always preferred 

(nor was rat behavior consistent with a matching strategy or discounting function). That 

is, rats did not always accept the short delays and reject the medium and large delays as 

expected by the prey selection model. In response, the authors proposed a modified 

model that included a parameter for the cost of rejecting potential offers. This parameter 

enhanced model fit, perhaps suggesting that rejection-aversion is key for capturing 

complex foraging choices. However, these results depart from earlier studies in which 

animal foraging behavior did approximate the optimal solution (Stephens, 2008). This 

divergence may be due to task design differences, as physical and non-physical 

expenditures may not be equivalent. For example, willingness to wait may not be 

comparable to physical travel or greater exertion; this was not directly tested but is a 

critical point for future efforts that seek to reliably model cross-species foraging 

behaviors.  

In comparison to traditional intertemporal choice tasks, there is a dearth of 

research utilizing foraging paradigms to study psychopathology. However, from an 

evolutionary perspective, foraging models may be particularly valuable to addiction 

research. I highlight relevant findings from this literature in the following section.   

   

Foraging and Addiction  

 The balance between exploitation and exploration is vital to healthy outcomes like 

food foraging and job hunting (Addicott et al., 2013); however, an inclination towards 

exploitation may foster negative outcomes. Excessive exploitation may lead an 
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individual to develop and maintain extreme (maladaptive) habits, such as those observed 

in substance addiction (Graybiel, 2008). For instance, one study found that cigarette 

smokers exhibited less exploratory behavior than non-smokers on a multi-armed bandit 

task and exploratory behavior was negatively correlated with impulsivity (Addicott et al., 

2013). Dopamine models of addiction support these findings, as chronic abuse may 

actually decrease dopamine function and reward sensitivity (Volkow, Fowler, Wang, 

Baler, & Telang, 2009), which in turn, may yield greater exploitation and energy 

conservation (Beeler, Frazier, & Zhuang, 2012). In comparison, work by the same group 

did not observe heightened exploitation in pathological gamblers (Addicott et al., 2015). 

It is therefore possible that foraging behaviors differentially manifest across substance 

and behavioral addictions, or chronic substance exposure differentially influences the 

underlying reward pathways that support foraging. 

 Substance addiction may also be analogous to natural motivation states, such as 

food deprivation (Nestler & Landsman, 2001). Stemming from this notion, risk-sensitive 

foraging (RSF) theory suggests that under deprivation conditions, animals will select 

riskier food sources. For instance, if a deprived animal is faced with two food sources, 

one that provides a constant amount of food (e.g., 3 pellets) and one that provides a 

variable amount of food that produces the same average amount over time (e.g., 2-7 

pellets, 3 pellets on average), the animal will select the variable option. This model 

suggests that risky choices are made to increase the chances of immediate survival 

(Kacelnik & Bateson, 1996); however, this pattern deviates from the optimal behavior 

one would expect given economic theory. Work by Bickel and colleagues (2004) were 

the first to demonstrate the RSF model in humans, using a sample of opioid-addicted 
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individuals. As anticipated, subjects purchased more hypothetical heroin from a variable 

source when exposed to a deprivation script (i.e., one that described withdrawal 

symptoms) versus a satiated script (i.e., one that described opioid agonist symptoms). 

These findings ground opiate seeking in evolutionarily based survival behaviors, yet it 

remains unknown whether this model extends to other substances or forms of addiction. 

 To what extent are foraging behaviors supported by comparable neural substrates 

as compared to traditional decision tasks? And if these neural systems are largely the 

same, what else can we learn from foraging studies? The next section discusses relevant 

neural structures, with attention to the unique functionalities captured via sequential 

foraging paradigms. 

 

The Neural Correlates of Foraging  

 Foraging paradigms evoke many of the same brain regions as traditional value-

based binary tasks (e.g., vmPFC, dorsal ACC [dACC]). Recent work has sought to parse 

neural activation that distinguishes foraging decisions from other choice behaviors in 

humans and non-human animals. The dACC is a key focus, which is unsurprising given 

its pertinence in reward-based decision-making (Bush et al., 2002), behavioral adaptation 

(Boorman, Rushworth, & Behrens, 2013), effort-based valuation processes (Croxson et 

al., 2009), and response conflict (Botvinick, 2007). Researchers first investigated the 

neural basis of patch-leaving decisions in non-human primates (Hayden et al., 2011). 

This seminal study found that dACC neurons mediated patch-leaving decisions: dACC 

neurons fired for each choice, and neurons increased in responsiveness the longer the 

macaque remained in the current patch; once the neurons reached a particular threshold, 
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the macaque abandoned the patch. Thus, dACC neuronal firing represented a decision 

variable that indicated the relative value of leaving a patch.  

 Kolling and colleagues (2012) extended this work to human foraging, finding 

dissociable value-coding roles for the dACC and vmPFC. While the dACC encoded the 

average search value of the environment with respect to known alternatives and search 

costs, the vmPFC encoded value between two well-defined options. dACC activity was 

positively associated with the value to forage (i.e., searching for a better offer) and 

negatively associated with the value of engaging the current offer (i.e., the default 

option). Previous reports document the ACC’s role in representing choice value 

(Rushworth & Behrens, 2008); however, Kolling et al.’s (2012) conclusion that the 

dACC specifically encodes foraging value was novel. Furthermore, although several 

high-profile studies bolstered the dACC-foraging association (Boorman et al., 2013; 

Kolling, Wittmann, & Rushworth, 2014; Mobbs et al., 2013), this interpretation has not 

gone without criticism.  

Work by Shenhav et al. (2014) challenged the dACC-foraging specificity claim, 

instead positing that this region responds to decision difficulty. The authors’ discontent 

stemmed from notions that the choice to forage is inherently more challenging than 

resorting to a default option. In two neuroimaging experiments, the authors showed that 

choice difficulty confounded relations between the dACC and foraging value. 

Alternatively, the authors suggest, this area may engage more broadly in cognitive 

control processes that override automated behaviors. Regardless, it is unlikely that the 

dACC is the sole driver of foraging decisions, as models like the MVT apply to such a 

extensive array of organisms, including those without brains (Hayden et al., 2011).  
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Human neuroimaging studies have also implicated the frontal polar cortex (FPC) 

in foraging (Rushworth, Kolling, & Mars, 2012). The FPC may represent the value of the 

best alternative, as opposed to the net average of the alternatives, like the dACC 

(Boorman, Behrens, Woolrich, & Rushworth, 2009; Boorman, Behrens, & Rushworth, 

2011). Specifically, the FPC may be implicated in tracking the advantage of switching to 

a foregone option (Boorman et al., 2009), or coding the expected value of an untaken or 

counterfactual choice (Boorman et al., 2011).  

Although many of the same neural structures track across traditional decision and 

foraging tasks, sequential foraging paradigms (like Restaurant Row) have the unique 

advantage of tracking interconnected outcomes. This is because subjects are aware of an 

overall task structure throughout the session (e.g., “to skip this banana offer means the 

next offer is cherry.”). During Restaurant Row, OFC and VStr recording typically 

represented the upcoming offer during the choice phase, suggestive of episodic future 

thinking in rats (i.e., imagining the potential outcome). In comparison, OFC and VStr 

signals in rats represented the foregone opportunity following regret-instances, in which 

the animal had deviated from its strategy (Steiner & Redish, 2014). Thus, this task 

uniquely captured both past and future-oriented thinking in the same neural structures (a 

topic examined further in Chapter 3).  

 

Implications for Psychopathology Research 

 As alluded to previously, connections between foraging-specific biological 

systems and psychopathology are largely under-examined. However, evolutionary 

theories that link dopaminergic systems with foraging are a promising avenue for 
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explorations into goal-directed disorders, like Parkinson’s disease, schizophrenia, and 

addiction (Hills, 2006). For example, Parkinson’s disease is characterized by dopamine 

loss that may contribute to impaired feedback-based learning (Shohamy et al., 2004). 

Researchers tested the effects of dopaminergic drugs on individuals with Parkinson’s 

during a dynamic foraging task, noting that increased dopamine decreased perseverative 

choices and enhanced learning from positive outcomes (Rutledge et al., 2009). These 

outcomes may have implications for other goal-related disorders with perseverative 

behaviors, such as schizophrenia. Although dopamine-foraging-psychosis relations have 

not been directly tested, prior schizophrenia research connects learning and reward-

related impairments with dopamine circuits (Waltz et al., 2013). Moreover, meta-analytic 

evidence suggests that polymorphisms in genes responsible for dopamine degradation 

influence prefrontal cognition in schizophrenia (Mier, Kirsch, & Meyer-Lindenberg, 

2010). It is then plausible that dopaminergic abnormalities in schizophrenia may 

contribute to deficits in exploration/exploitation tradeoffs. However, elucidating the 

precise nature of dopamine-cognitive associations is a challenge, as dopamine 

manipulations may differentially impact cognitive functions (i.e., cognitive stability 

versus flexibility), and relations between dopamine and cognition is likely non-linear 

(Cools & D’Esposito, 2011).  

The salience network may also play a role in foraging-psychopathology 

associations. This network, primarily comprised of the dACC and anterior insula (Seeley 

et al., 2007), is implicated in a broad range of psychopathologies that includes bipolar 

disorder, schizophrenia, depression, and addiction (Goodkind et al., 2015). With respect 

to foraging, one theory suggests that dACC and anterior insula co-activation may signal 
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errors that encourage behavioral adaptation (Mobbs et al., 2013). Dopamine may underlie 

this functional chain, as dopamine is fundamental to prediction error signals, as well as 

various traits and behaviors mediated by the salience network (Palaniyappan & Liddle, 

2012). By extension, one might hypothesize that dopaminergic abnormalities, as typical 

of psychopathologies like schizophrenia, may interact with salience network functionality 

to impede learning and adaptation, which in turn, could produce suboptimal foraging.  

 

Summary of the Foraging Literature: Implications for Cross-Species Research 

 Foraging models provide a novel and complementary approach for examining 

decision-making parallels across humans and non-human animals. Because animals 

evolved to forage, such tasks may help researchers to reorient focus towards 

evolutionarily based behavioral and neural systems (Calhoun & Hayden, 2015). 

However, relatively few studies have assessed foraging in humans, and even fewer have 

directly compared foraging across species. Nonetheless, this burgeoning literature has 

already demonstrated several key advancements in our understanding of decision-making 

and the underlying neural substrates.  

 

The Relative Utility of Foraging Paradigms   

 Foraging paradigms can capture the interdependent nature of complex 

intertemporal decisions. As noted previously, real-world intertemporal choices likely 

occur in dynamic environments where repeated, interdependent decisions are needed to 

achieve an outcome (Bixter & Luhmann, 2013). Foraging paradigms can account for 

these integrated dynamics, by employing tasks where choices influence the availability 
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of future rewards or choices are constrained within a fixed time window. For instance, 

researchers have used foraging environments to assess trial-by-trial effects, such as the 

extent to which a subject learns to adjust their behavior across the session (Constantino & 

Daw, 2015). In a real-world scenario, an animal might need to find food before sunset (or 

sunrise if it is a nocturnal creature) or before starvation occurs (Doya, 2008; Stephens, 

1987). The rate at which the animal learns is then critical to survival. This time-constraint 

feature is pertinent to psychopathology research, as certain learning deficits may impede 

optimal foraging strategies; hence, isolating learning processes from other decision 

parameters could help to distinguish between goal-directed disorders (e.g., impulsive 

decision-making in addiction versus impaired adaptation in schizophrenia).  

Tasks that entail a fixed time-constraint require that subjects adopt a strategy to 

maximize earnings (Bixter & Luhmann, 2013; Schweighofer et al., 2006). The need to 

strategize across trials is more akin to real-world decisions for which cumulative actions 

are necessary to achieve goals. Time-constrained foraging tasks may be particularly 

beneficial for cross-species gambling research. Currently, human gambling tasks are 

limited by design regulations and many animal tasks may fail to capture loss (Clark et al., 

2013; Madden et al., 2007). And as noted previously, probability-discounting tasks 

arguably measure the failure to gain a reward rather than a loss of wagered resources 

(Zeeb et al., 2009). By introducing a fixed time window, poor decisions can be 

interpreted as a missed opportunity and loss of resources (i.e., time). This has been 

demonstrated in rats during the Restaurant Row task (Steiner & Redish, 2014).  

Foraging paradigms often take more timing components into account, whereas 

discounting tasks are primarily concerned with delay until reward receipt. Foraging 
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models aim to account for every moment spent foraging, including travel time, search 

time, and risk, whereas discounting tasks ignore many of these components (Mazur, 

Snyderman, & Coe, 1985). This distinction is not surprising given the frequent use of a 

fixed time constraint in foraging paradigms, where one seeks to maximize gains within a 

specific time window (as opposed to one encountering a fixed number of trials or 

reaching equilibrium to reach task completion). The time constraint again highlights an 

ecological advantage, assuming that real-world decisions are less likely to entail a fixed 

number of decisions but may entail a fixed time limit (e.g., animal must find food before 

sundown). Regardless, parameters derived from typical discounting tasks arguably 

exclude important contextual factors. For instance, discounting rates are computed solely 

as a function of reward magnitude and cost, with other relevant decision components 

unaccounted for. The omission of key parameters could be problematic for mapping 

specific mechanisms with corresponding biological substrates (e.g., parsing neural 

activation associated with foraging versus well-defined binary choices).  

 

Improving Foraging Paradigms for Cross-Species Translation 

 Many human foraging paradigms lack primary rewards and real-time costs. 

Although there are exceptions (e.g., Abram et al., 2016; Bixter & Luhmann, 2013), most 

human tasks lack real consummatory experiences and instead use points or other 

secondary reinforcers. This discrepancy could impede how individual trials impact 

subsequent decisions, as immediate trial feedback may be less salient. Similarly, the level 

of reward abstraction may influence one’s ability to imagine potential outcomes when 

making a choice; that is, abstract rewards may be more difficult to mentally simulate. 
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Thus, the use of equivalent rewards across human and rodent studies could better parallel 

investigations of deliberation. Furthermore, differences in reward types may impact 

neural investigations, as primary and secondary rewards may depend on somewhat 

dissociable systems (see Summary of the Impulsive Choice Literature: A Within- and 

Cross-Species Assessment).  

 The inclusion of risk parameters could further enhance the ecological validity 

of foraging paradigms. In natural foraging environments, rewards are associated with 

randomness and uncertainty (Bixter & Luhmann, 2013). The addition of risk parameters 

to foraging tasks has been shown to impact foraging behaviors in non-human animals. 

For instance, more variance in the travel time between patches led to decreased 

exploitation in pigeons (Kacelnik & Bateson, 1996). Among humans, adding uncertainty 

to the larger-delayed reward in an intertemporal choice task increased preferences for 

immediate rewards (Keren & Roelofsma, 1995). A more recent study by Kolling and 

colleagues (2014) showed that human subjects modulated choice behavior as a function 

of reward uncertainty, available resources, and other opportunities. In particular, 

increases in risk pressure and risk bonus frequently yielded riskier choices. This work is 

particularly relevant for pathological gambling, which may be related to baseline 

fluctuations in risk proneness/aversion. Nonetheless, future work is needed to address 

how risk parameters influence human decision-making on intertemporal foraging tasks.       

 

1.3  Conclusions 

Translational science has the unique opportunity to utilize basic research findings 

for the development of human treatments. However, the use of analogous tasks is 
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insufficient for claiming research as translational (van den Bos et al., 2013). Rather, the 

effectiveness of translation depends on continuous cross-talk between human and non-

human animal researchers (Abram et al., 2016), and collaborative research programs that 

ask comparable questions using similar tasks and environments (van den Bos et al., 

2013). Assuming this framework, I advocate several areas to further improve 

translational science: 

(1) Tight operational definitions are critical (de Wit, 2009b), particularly given 

the heterogeneity that exists within the impulsivity construct, and the immense number of 

interacting components that underlie decision-making (Ernst & Paulus, 2005). (2) 

Mirroring task complexity across species may reduce translational gaps, as many animal 

studies involve simple procedures that may not capture decision-making intricacies 

(Rivalan et al., 2009). (3) Strong psychometric properties of human tasks is pertinent for 

translating paradigms from healthy to clinical populations (Green et al., 2015). For 

instance, poor test-retest reliability, scale attenuation, practice effects, or challenging 

directions can limit or even prohibit the adaptation of a task for clinical trials. (4) 

Emphasizing specific behavioral processes and symptoms in task development and 

analysis could advance treatment initiatives, as dimensional models of psychopathology 

avoid certain issues that arise from comorbidity.     

 

Limitations 

 The human foraging literature is still in its nascent stages. Thus, many of the 

described links between foraging and psychopathology are derived from hypotheses and 

not empirical evidence (with some exceptions, see Bickel et al., 2004). It follows that 
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future research should not only aim to parallel foraging models across species, but also 

address the extent to which these models capture the continuum from maladaptive traits 

to severe psychopathology. In turn, such efforts could close gaps between rodent models 

and human treatment development. As mentioned previously, many of the available 

foraging paradigms lack a risk or uncertainty parameter that could influence a given 

task’s ecological validity; this is an important area for future task development. Many of 

the neuroimaging foraging studies are also limited by small sample sizes (e.g., N < 20). 

Future investigations interested in maladaptive trait-foraging associations may require 

much larger samples, as large samples are needed to capture individual differences with 

small-to-moderate effect sizes (Abram & DeYoung, 2017).    

 

Closing Thoughts 

 Experiential foraging paradigms, in particular, provide a promising avenue for 

translational pursuits. Tasks that incorporate real-time costs and consummatory rewards 

could foster cross-species parallels and also provide a novel method for investigating 

decision-making deficits for individuals that struggle with more abstract thinking (e.g., 

schizophrenia). Moreover, the foraging approach may enhance ecological validity by re-

focusing our efforts to understand aberrant decision-making through an evolutionary lens. 

Lastly, there are a wealth of opportunities and research explorations for effectively 

adapting pre-clinical foraging paradigms for use with healthy individuals to those with 

severe psychopathology.       
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CHAPTER 2: THE WEB-SURF TASK: A TRANSLATIONAL MODEL OF 

HUMAN DECISION-MAKING 

 

Foreword: This chapter was written in collaboration with Yannick-André Breton, Brandy 

Schmidt, A. David Redish, and Angus W. MacDonald, who edited versions of the 

manuscript. The text of this chapter is also published in Cognitive, Behavioral, and 

Affective Neuroscience.  

 

Abstract 

Animal models of decision-making are some of the most highly regarded 

psychological process models; however, there remains a disconnection between how 

these models are used for pre-clinical applications and the resulting treatment outcomes. 

This may be due to untested assumptions that different species recruit the same neural or 

psychological mechanisms. We propose a novel human foraging paradigm (Web-Surf 

Task) that we translated from a rat foraging paradigm (Restaurant Row) to evaluate 

cross-species decision-making similarities. We examined behavioral parallels in human 

and nonhuman animals using the respective tasks. We also compared two variants of the 

human task, one using videos and the other using photos as rewards, by correlating 

revealed and stated preferences. We demonstrate similarities in choice behaviors and 

decision reaction times in human and rat subjects. Findings also indicate that videos 

yielded more reliable and valid results. The joint use of the Web-Surf Task and 

Restaurant Row is therefore a promising approach for functional translational research, 

aiming to bridge pre-clinical and clinical lines of research using analogous tasks.   
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2.1. Introduction 
 
 Animal models of impulsivity are regarded as being among the most well 

developed representations of human psychopathology (Kalivas et al., 2006; Madden & 

Bickel, 2010), and have been key contributors to our understanding of human 

psychopathologies, such as addiction (Madden & Bickel, 2010; O’Brien & Gardner, 

2005). Nonetheless, there remains a gap between model validity and the efficacy of 

human treatments based on these animal models (Hall et al., 2014; Kalivas et al., 2006). 

Prior research suggests this gap may stem from untested assumptions that humans and 

nonhuman animals recruit the same cognitive systems (Demeter, Sarter, & Lustig, 2008). 

Coordinating human and non-human animal research to model the same behaviors is 

therefore critical to elucidating the behavioral and neurobiological mechanisms that 

underlie many psychopathologies (Belzung & Lemoine, 2011; Potenza, 2009). However, 

this functional approach to translation requires parallel tasks that access similar 

functional constructs. Here, we present a novel experiential human foraging task 

translated from a rat food foraging paradigm (Steiner & Redish, 2014). Instead of food, 

humans foraged for information through an internet-like interface, as a naturalistic 

analogue to the food rewards used with nonhuman animals (Pirolli, 2005). Our results 

suggest these tasks captured behavioral parallels in human and rat decision-making. 

 

The Foraging Model of Decision-Making 

New theories posit that many psychopathologies are fundamentally problems with 

decision-making. This notion implies that understanding the causes (and improving 

treatments) depends on understanding how those decision-making systems work and 



	

55	

break down (Montague, Dolan, Friston, & Dayan, 2012; Rangel, Camerer, & Montague, 

2008; Redish, 2013; Redish et al., 2008). Foraging models of decision-making provide a 

computational account of how humans and nonhuman animals allocate scarce resources 

(e.g. time) when searching for valuable resources like food, money, or drugs (Stephens, 

2008). Sociological observations of drug-users suggest that users are seen as “foraging” 

for drugs in a “patchy” world of opportunities; for example, smokers looking for the 

cheapest cigarettes (Feighery, Schleicher, Boley Cruz, & Unger, 2008; Grossman & 

Chaloupka, 1998), gamblers looking for video poker machines (Schüll, 2012), or heroin 

addicts looking for narcotics (Hoffer, Bobashev, & Morris, 2009). Thus, foraging 

paradigms may be a promising approach for examining the complex decision-making 

systems that underlie addiction or other psychopathological disorders. 

Foraging models advance historical intertemporal choice models of decision-

making, during which subjects make binary choices between rewards of different value 

that are available at disparate time delays (often referred to as ‘delay-discounting’ 

paradigms). Delay-discounting tasks have been widely used to assess impulsive decision-

making among addicted human and nonhuman animals. However, multi-option foraging 

paradigms may be more akin to real-world scenarios where humans are cognizant of 

other options or alternatives in the background when making a decision. Moreover, 

researchers have posited that stay/skip serial foraging choices may better characterize 

naturalistic decision-making (Stephens, 2008; Wikenheiser et al., 2013). As a result, 

researchers are using foraging models at an increasing rate in both human and nonhuman 

animal studies (Benjamin Y Hayden, Pearson, & Platt, 2011; Kolling et al., 2012; 

Shenhav et al., 2014; Steiner & Redish, 2014; Wikenheiser et al., 2013). A logical next 
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step is to develop a foraging model that translates across species; researchers could then 

use this foraging model to examine cross-species parallels in the maladaptive decision-

making behaviors that support psychopathologies like addiction. This type of translation 

requires a bridging of research branches, which have typically produced 

methodologically divergent decision-making paradigms.  

 

Current Challenges in Functional Translation 

Decision-making tasks for nonhuman animals are experiential, in that they 

typically entail a rat physically running through a maze or pressing a lever, waiting 

through real-time delays, and receiving primary reinforcers as reward, like food (Mazur, 

1987; Papale et al., 2012). In contrast, efforts to produce comparable human experiential 

paradigms generally result in one of three approaches for reward stimuli: (1) secondary 

reinforcers like tallied points that may eventually convert to money (Kolling et al., 2012; 

Reynolds & Schiffbauer, 2004; Shenhav et al., 2014), (2) secondary reinforcers like coins 

that are dispensed during the task (Krishnan-sarin et al., 2007; Reynolds, 2006b; Voon et 

al., 2010), or (3) primary rewards like juice or candy (Kool & Botvinick, 2014; McClure, 

Ericson, Laibson, Loewenstein, & Cohen, 2007). These methodological differences may 

impact the underlying reward systems evoked in humans. For example, in scenarios 

where points/money are summated over the session or the subject randomly receives one 

or several of their choices at the end (the latter called real-reward measures; Reynolds, 

2006a), each poor decision may be salient. This is because each choice influences the 

ultimate gain and/or the subject does not know which final outcome the subject will 

receive (thus, making each decision important). On the contrary, in real-time measures, 
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the subject consumes rewards at the end of each trial (Reynolds, 2006a). As a result, poor 

choices may be less salient as individual choices do not influence a post-session outcome. 

Given these distinctions, it is also possible that the same reward systems observed in rats 

are not evoked during human tasks that lack comparable real-time consummatory 

rewards.  

Researchers have identified and addressed similar methodological gaps with 

respect to visuospatial paradigms. For example, human studies historically assessed 

spatial ability via paper and pencil tests, whereas non-human studies assessed spatial 

navigation via maze-learning tasks (Moffat, Hampson, & Hatzipantelis, 1998). In 

response, many human studies adopted virtual reality radial mazes and Morris water tasks 

and successfully identified cross-species behavioral and neural parallels (Bohbot, Lerch, 

Thorndycraft, Iaria, & Zijdenbos, 2007; Hamilton, Driscoll, & Sutherland, 2002; 

Hamilton, Kodituwakku, Sutherland, & Savage, 2003; Iaria, Petrides, Dagher, Pike, & 

Bohbot, 2003). Despite the success of these virtual reality paradigms, these particular 

tasks did not address the issue of primary versus secondary reinforcement that may be 

pertinent to decision making (as subjects solely received monetary compensation at the 

study conclusion). Thus, experiential human foraging models with primary reinforcement 

are needed to fill this gap in external validity and provide a link to the animal decision-

making literature.  

 

Primary Reinforcement for Humans 

Considering how humans interface with the world on a daily basis while seeking 

rewards or entertainment may improve insight into the processes underlying decision-
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making, which in turn, may guide task development. Information Foraging Theory 

suggests that humans seek and acquire information using the Internet (Pirolli & Card, 

1999). More specifically, individuals perform ongoing cost-benefit analyses as they 

navigate through websites, making stay/skip foraging choices to remain on the current 

site or move on to the next (Pirolli, 2005). Humans also forage the Internet for rewarding 

stimuli, frequently presented in the form of video segments or images – each of which we 

can feasibly incorporate into an experimental paradigm. Such internet-found stimuli may 

even yield natural reinforcement that is comparable to drugs or food. Recent findings that 

Internet-addicted individuals exhibited functional and structural brain similarities to drug-

addicted individuals bolster this claim (Ding et al., 2013; Kuss & Griffiths, 2012; 

Weinstein & Lejoyeux, 2013). The combined feasibility and primary reinforcement 

possible from using videos or photos as reward makes their use a compelling option for 

human task development.  

 

Study Aims 

The current study advances available experiential tasks for humans by developing 

a foraging paradigm that (1) translates across species, (2) includes primary reinforcement 

and real-time delays, and (3) integrates natural human ethology into the design. We 

translated the proposed task directly from a novel stay/skip foraging paradigm, called 

“Restaurant Row” (Steiner & Redish, 2014), during which a rat had a fixed amount of 

time to traverse a circular track and collect food rewards from four feeders. Each feeder 

(or “restaurant”) provided a different flavor of food pellet after a random time delay (see 

Figure 2.1A). We drew from Information Foraging Theory and the burgeoning Internet-
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addiction literature to develop the human variant of Restaurant Row, which we call the 

“Web-Surf Task” (see Figure 2.1B). During this task, humans made a series of stay/skip 

decisions while traveling between galleries that contain primary rewards (videos or 

photos), which were presented after real-time delays. In this paper, we illustrate the 

external and face validity of the Web-Surf Task, as well as cross-species behavioral 

parallels using the Web-Surf Task and Restaurant Row. 

 

2.2 Methods 

Web-Surf Task in Humans 

Sample Demographics 

The total sample included 64 University of Minnesota undergraduates (72% 

female, mean age = 20.5), who received extra credit toward a psychology course. The 

initial round of data collection included both the video (N = 22) and photo versions (N = 

15); the second round of data collection included only the video version (N = 27). This 

resulted in a total of 49 subjects who completed the video version. The University of 

Minnesota’s Institutional Review Board approved the study, and all subjects provided 

written informed consent.  

 

Web-Surf Task Design 

Subjects had 30 minutes to “surf” (or forage) through four galleries (see Figure 

2.2 for decision flow-diagram) presented using PsychoPy (Peirce, 2009). In the video 

variant, each gallery presented a video clip from one of four categories (kittens, dance, 

bike-accident, landscapes) as a reward. In the photo variant, each gallery presented an 
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image from one of four categories (kittens, desserts, female faces, or landscapes); we note 

that we transformed the still images using the Ken Burns panning and zooming effect to 

parallel the video variant. We selected these particular categories in consideration of 

future functional neuroimaging data collection and neural decoding analyses. More 

specifically, we expect these categories will map onto separable neural substrates, as 

prior evidence indicates unique correlates for faces, bodies, animals, natural scenes, 

tools/objects, and animals (Doll, Duncan, Simon, Shohamy, & Daw, 2015; Haxby et al., 

1999, 2001; Peelen & Downing, 2007; Walther, Caddigan, Fei-Fei, & Beck, 2009). For 

additional details on the anticipated decoding analyses see Steiner and Redish (2014). 

We laid out the task as follows: Upon arrival at a gallery, the subject was 

informed of the random delay time before video presentation. Delay time was displayed 

using text and a progress bar similar to those located on an Internet webpage. The subject 

was given the option to stay and wait for the current reward or skip and continue on to the 

next gallery. If the subject decided to stay, the subject viewed the stimulus for four 

seconds and then rated it using a 5-star rating system (1 star = extremely dislike, 5 stars = 

extremely like). If the subject decided to skip, the subject pushed the “SKIP” button 

located at the bottom of the screen. After leaving the gallery, the subject “surfed” to the 

next gallery that presented a new offer (i.e. new video or photo after a new random 

delay). The subject then completed a series of “NEXT” screens when traveling between 

galleries, regardless of the decision to stay or skip; this entailed finding and clicking 3 or 

5 “NEXT” buttons that were randomly positioned on the screen. We intended the 

“NEXT” to serve as an analogue to the rats physically running a track to travel between 

feeders. We designed the buttons to blend into the background to increase the cost for 
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locating them around the screen. 22 subjects completed the task with 5 “NEXT” screens 

between galleries; 27 subjects completed the task with 3 “NEXT” screens between 

galleries.  

 As preliminary training, subjects completed two forced practice trials, during 

which we instructed them to push the “SKIP” button for trial one and to stay and wait for 

trial two. We created this structure to illustrate the two choice options as well as the 

transition between the galleries. Subjects then completed eight practice trials where they 

could decide whether to stay or skip.  

 

Restaurant Row in Rats 

Sample Characteristics 

 We used eight adult Brown-Norway rats in this experiment. Our methods were 

consistent with Steiner and Redish (2014), as we aimed to replicate behavioral findings in 

a new sample. Our study protocol complied with the National Institute of Health 

guidelines for animal care, and the Institutional Animal Care and Use Committee at the 

University of Minnesota approved the protocol.  

 

Restaurant Row Design 

Restaurant Row consisted of a circular track with four spokes leading off to food-

reward sites (restaurants) as illustrated in Figure 2.1A. Each food-reward site provided a 

different flavor of food (cherry, chocolate, banana, and unflavored/plain sugar). The rat 

proceeded around the circle encountering each offer serially. When the rat entered the 

offer zone, a tone sounded, with pitch indicating the delay (1-30s). The tone counted 
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down once per second (change = 250 Hz) until it reached the base tone (1 kHz), at which 

time the two pellets of the flavor for that restaurant were delivered. If the rat left the offer 

zone before the delay finished counting down, the tone stopped, the offer was rescinded, 

and the rat had to proceed to the next restaurant to get food. Because zones were only 

triggered in a clockwise serial manner, rodents quickly learned to run in one direction. 

Essentially, the animal made a series of stay/skip decisions, such as – Is it worth waiting 

25 seconds for two banana-flavored food pellets? In this task, we gave rodents 60 

minutes to collect food for the day. The 60-minute time limit means that the encounters 

were not independent of each other – time spent waiting at one restaurant was time that 

could not be spent waiting at another. This means that an animal using an economically 

intelligent strategy should have waited longer for more preferred flavors. Rats’ 

preferences were “revealed” by an increased willingness to wait out a longer delay for a 

favored flavor of pellet. Each rat completed 9 or 10 sessions in total.  

We trained rats in four phases. In the first phase (5-7 days, twice daily), rats 

completed 30-minute sessions of habituation. The delay at every feeder was 1s and the 

reward was 2 pellets. During this phase the rat became accustomed to the task, whereby it 

learned the correct direction of travel and the flavor available at each feeder site. The rat 

moved on to the next training phase after it reliably ran clockwise around the loop. In the 

second phase (4 days, twice daily), the 30-minute sessions had increasingly longer 

delays. The delays began with a range of 1-2 seconds, then 1-3 seconds, and continued to 

increase by 1 second each day until the rat achieved a maximum of 5 seconds (this 

trained the rat to wait). In the third phase (10 days, twice daily), the rat completed 30-

minute sessions with the full delay set (1-30 seconds). In the fourth phase (5-10 days, 
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once daily), the rat completed 60-minute sessions with the full delay set (1-30 seconds). 

By the end of this final training phase, the rats typically showed delay thresholds (by 

visual inspection), skipped high tones, and left the feeder site after reward receipt. From 

this evidence, we concluded that the rats understood the task and commenced the 

experimental testing portion.  

 

Task-Derived Decision Metrics 

 To examine behavioral parallels across species we used three decision metrics: (1) 

revealed preferences, (2) stated preferences, and (3) decision consistency. We calculated 

revealed preferences for each category via a logistic fit function for human and 

nonhuman animals (see Figure 2.3). These values reflect the delay time (or delay 

threshold) at which a subject reliably began to skip offers for the respective category. In 

other words, the inflection point equates to the delay threshold at which a subject had a 

50% probability of staying (or skipping). We computed inflection points according to the 

following equation (one per category, per subject): 

 

 

(1) 

where p is the desired probability (50% in this case),  is the intercept,  is the slope, 

and x is the delay threshold. Notice that the function on the left of equation (1) is the logit 

of p, and the function on the right of equation (1) represents a linear regression model 

with a single predictor. We then rearranged the equation to solve for x: 

 

 

(2) 

log( p
1− p

) = β0 + β1x

βo β1

x =
l og( p

1− p
)− β0

β1
.



	

64	

We considered favored galleries to be those where a subject consistently waited longer 

for the reward (equating to a higher delay threshold). We acquired stated preferences for 

human subjects only, which included average ratings for each category, as well as post-

test category rankings, 1 to 4.  

We also measured decision consistency in both species, which indicated the extent 

to which subjects cohered to category-specific strategies (i.e. stayed for trials below 

threshold, and skipped trials above threshold). Given the economically normative 

assumption that subjects had a subjective valuation of a particular category and a fixed 

time constraint, subjects should have stayed when the subjective valuation of a category 

(reward) was larger than the offered delay (cost). Subjects that deviated from this 

economically normative model made “economic errors” in that they sacrificed time that 

could be spent in a preferred location (e.g. time spent waiting for a bike-accident video 

was time that could not be spent waiting for a [potentially preferred] kitten video). To 

derive the decision consistency metric we computed the proportion of error trials for each 

subject (number of error trials divided by the total number of trials).  

 

Analyses 

 Our first set of analyses assessed behavioral cross-species parallels using the 

respective tasks. First, we identified evidence of revealed preferences in both species. 

Next, we evaluated within-subject consistency. For human subjects, we examined the 

correspondence between a human subjects’ revealed and stated preferences; this analysis 

also provided a measure of the Web-Surf task’s external validity. For rats, we evaluated 

the consistency of the rats’ revealed preferences (i.e. delay thresholds) across sessions 
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because we could not ask a rat to explicitly state its preference. Third, we investigated 

whether humans and nonhuman animals exhibited similarities in decision consistency. 

Fourth, we analyzed decision times to determine whether subjects made quick decisions 

or waited for cues; we used this measurement to evaluate the face validity of each task. 

Finally, we examined within-session dynamics to determine whether humans and rats 

behaved similarly as the session proceeded.   

 In the second set of analyses, we compared the two variants of the Web-Surf task 

(video versus photo stimuli). We conducted these analyses to determine which type of 

stimuli provided the most reliable and valid results, while also considering category 

homogeneity across stimuli types (rats always received the same reward at a given 

feeder). We also assessed within-session dynamics and gender differences across the two 

task variants.  

  

2.3 Results 

Humans versus Rats: Revealed Preferences  

First, we determined whether human and non-human animal subjects showed 

evidence of revealed preferences. Figure 2.3 illustrates a side-by-side comparison for a 

single human and single rat session, where each curve depicts choices for a particular 

category. In both species, we visually (and statistically) identified a clear inflection point 

at which the subject had a 50% chance of staying or skipping on to the next offer. The 

distributions in Figure 2.3 are typical of those we observed from other human and non-

human animal subjects (see Steiner and Redish, 2014, for additional rodent examples).  
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Humans versus Rats: Evaluating Within-Subject Consistency 

Next, we evaluated the extent to which both species displayed consistent within-

subject preferences. For the human sample (N = 49), we computed two correlations per 

subject: (1) the correlation between delay thresholds and average category ratings (4 

values for each) and (2) the correlation between delay thresholds and post-test category 

rankings (4 values for each). We found that delay thresholds corresponded with average 

category ratings, with 69% of correlations above 0.50. Similarly, 73% of correlations 

between delay thresholds and post-test category rankings were above 0.50. We did not 

detect significant differences between subjects who completed the 3 versus 5-NEXT 

versions for rating (t47 = 0.51, p = 0.61) or ranking (t38 = 0.08, p = 0.94) validity 

correlations.  

 To determine within-subject consistency for rats, we evaluated delay thresholds 

across sessions using a repeated-measures analysis of variance (ANOVA). We 

constructed a model that included delay thresholds as the dependent variable, and zone 

(i.e. feeder site) and session number as the predictor variables. As shown in Table 2.1, we 

observed a significant main effect for zone (F3,231 = 4.58, p = 0.004) but not session 

number (F70,231 = 0.59, p = 0.99), thus indicating that rats had detectable and stable flavor 

preferences. These results are consistent with across-session rat performance in Steiner 

and Redish (2014).  

 

 

Humans versus Rats: Decision Consistency  

 Third, we examined parallels in decision consistency for humans and nonhuman 
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animals (see Figure 2.4). In particular, we found that rat subjects exhibited greater 

decision instability (mean = 0.12, median = 0.12), compared to human subjects (mean = 

0.07, median = 0.08). Several human subjects also had no error trials, which was not the 

case for rats. We were also interested in the spread of this decision consistency metric 

within each species, as we hope to capture a comparable range of threshold error variance 

using the respective tasks. To this end, we used an F-test to investigate differences in 

decision consistency variance between species and found no significant differences (F49, 

77 = 1.15, p = 0.60). Thus, although humans had less mean decision instability, the spread 

of this metric was consistent in humans and rats.  

 

Humans versus Rats: Decision Times  

Fourth, we evaluated the association between choice reaction time and delay to 

determine whether delay times influenced the speed at which subjects made a decision. 

This analysis included a subset of human video subjects (N = 27) for whom the task 

recorded skip reactions times. The plots in Figure 2.5 illustrate the relation between 

choice reaction time and delay for all human and rat subjects separately. Stay trials are 

represented as the full delay time (points along diagonal) and mean times for skip trials 

are represented as the points parallel to the x-axis. The blue shaded bands indicate skip 

time standard deviations around each possible delay time. Humans and rats made 

decisions shortly after arrival at a gallery, with decisions made within 3 seconds or less 

for the majority human trials and within 5 seconds or less for the majority of rat trials. In 

other words, when presented with a less valuable offer, subjects did not hesitate to skip 

and travel towards other potential offers. Instead, both species efficiently decided 
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whether an offer was preferable or not. This supports the face validity of each task, where 

neither species waited for a specific cue to decide but made a quick choice and remained 

engaged in the task. For example, the rats did not appear to wait for a specific tone before 

deciding to leave.  

 

Humans versus Rats: Within-Session Dynamics 

 As a final cross-species comparison, we assessed whether human and rat 

behaviors showed comparable fluctuations throughout the session. To this end, we used 

repeated measures ANOVAs with choice as the dependent variable, and category/zone 

and trial number as the predictor variables. We were particularly interested in the trial 

number term as an indicator of reward satiation, where a significant effect would suggest 

a change in stay/skip tendencies over the session. Table 2.2A reveals a significant main 

effect for category (F3,5587 = 110.78, p < 0.001) but not trial number (F1,5587 = 2.03, p = 

0.16) for human subjects. Table 2.2B reveals comparable findings for rat subjects, 

including a significant main effect for zone (F3,13856 = 18.69, p < 0.001) but not trial 

number (F1,13856 = 1.28, p = 0.25). This suggests that, regardless of species, subjects 

exhibited differential choice patterns across reward sites but not trial number. In other 

words, neither species appeared to satiate during the session.  

We also assessed the amount of time spent in the reward zone following reward 

consumption as a function of trial number. In human subjects this equated to the time 

after viewing a stimulus but before providing a rating (as the subject could not advance to 

the next gallery before rating the video or photo). In rat subjects this equated to the time 

after eating but before running to the next zone. A t-test indicated that rats spent 
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significantly more time lingering in the reward zone than humans, t12207 = 46.23, p < 

0.001 (see Figures 2.6A and 2.6B).  

 

Videos versus Photos: Selecting Optimal Stimuli 

 To compare the task variants, we first computed correlations between revealed 

and stated preferences for the photo (N = 15) and a subset of the video subject (N = 22) 

whose data we collected during the same period. For average category ratings, 68% of 

video subjects had correlations of 0.50 or above versus 40% of photo subjects. As 

depicted in Figure 2.7A, video subject correlations for average category ratings ranged 

from -0.31 to 1.00, with a mean of 0.62 and a median of 0.82. The photo subject 

correlations spanned a comparable range from -0.76 to 1.00. However, the mean and 

median correlations for the photo subjects were lower, with values of 0.27 and 0.35, 

respectively. A t-test revealed a significant difference between the groups (t35 = -2.10, p = 

0.04).  

A similar pattern emerged for the post-test category rankings, where 72% of video 

subjects had correlations 0.50 or above versus 64% of photo subjects (See Figure 2.7B). 

Video subject correlations for category rankings ranged -0.40 to 0.99, with a mean of 

0.56 and a median of 0.85. The photo subject correlations covered an even larger range, 

with bounds of -0.73 and 0.96. As a result, the mean correlation for these subjects was 

0.41 and the median 0.55. Although video subjects generally had higher validity 

correlations, this difference was not significant (t27 = -0.73, p = 0.47); 8 subjects did not 

have ranking data, hence the reduced degrees of freedom.  

 We also calculated decision consistency metrics for photo subjects and the same 
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subset of 22 video subjects. As shown in Figure 2.8, video and photo subjects did not 

exhibit mean differences in their proportion of error trials (t35 = -0.65, p = 0.52). Similar 

to the human and rat comparison, we also assessed for differences in decision consistency 

variance. Here we did find a significant difference (F21, 14 = 0.19, p < 0.001), whereby 

video subjects exhibited a more homogenous pattern of decision instability.  

 

Videos versus Photos: Within-Session Dynamics 

 Next, we assessed within-session choice behaviors for the two task variants using 

repeated measures ANOVAs. This entailed two models with choice as the dependent 

variable, and category and trial number as the predictor variables (i.e. separate models for 

the initial 22 video subjects and the 15 photo subjects). Table 2.3A reveals a significant 

main effect for category (F3,2382 = 64.35, p < 0.001) but not trial number (F1,2382 = 0.12, p 

= 0.73) for video subjects. Table 2.3B reveals similar findings for photo subjects, 

including a significant main effect for zone (F3,1241 = 8.85, p < 0.001) but not trial number 

(F1,1241 = 1.72, p = 0.19). Thus, subjects showed significant choice differences as a 

function of category but not trial duration.  

 We also investigated whether video and photo subjects differed in the amount of 

time spent in the reward zone following consumption (after viewing a stimulus but before 

rating it). As shown in Figures 2.9A and 2.9B, we observed similar patterns using the two 

task variants (t2272 = 0.85, p = 0.39), as human subjects generally rated the videos and 

exited the reward zone in 5 seconds or less (with comparable variation extending into the 

5 – 18 second range).  
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Videos versus Photos: Gender Differences 

 Lastly, we built linear mixed models to assess gender differences in category 

preference; this approach uses restricted maximum likelihood to obtain parameters 

estimates and can thus accommodate unbalanced designs (i.e. missing data). We 

constructed two models per task variant (four models total) that included either delay 

thresholds or average category ratings as the dependent variable, and gender, category, 

and a gender x category interaction term as the predictor variables. We were particularly 

interested in the interaction term as an indicator of preference differences across gender. 

We observed non-significant interactions in all models (see Supplemental Tables 2.1A-

2.2B). However, a trend-level gender x category interaction for average category ratings 

in the video subjects (N = 22) and a subsequent power analysis encouraged us to re-

assess for significant interactions using the complete video sample (N = 49). Here, we 

found significant gender x category interactions for delay thresholds (F3,141 = 2.77, p = 

0.04) and average category ratings (F3,138 = 6.12, p < 0.001; see Supplemental Tables 

2.3A and 2.3B). Follow-up tests revealed that gender differences were most prominent 

for the bike-accident and landscape categories. We refer readers to the Supplemental 

Materials for further details. 

 

2.4 Discussion 

 The current study proposes a novel experiential foraging paradigm for humans 

called the Web-Surf Task. We designed this paradigm to assess similarities in decision-

making systems in humans and rats. The Web-Surf Task involves individuals making a 

series of stay/skip foraging decisions as they cycle through four galleries. This task 
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builds on available decision-making paradigms in several ways: (1) its experiential 

design includes primary reinforcement and real-time delays, (2) it entails serial stay/skip 

offers and is therefore more akin to real-world choices, and (3) it was designed as a direct 

analogue to a rat foraging task. This last point is particularly salient in the context of 

psychopathology research, where translational models are critical for developing 

successful treatments. Our preliminary findings demonstrate both the external and face 

validity of the Web-Surf task, as well as cross-species behavioral parallels using the 

analogous tasks. Therefore, the complementary use of the Web-Surf or Restaurant Row 

tasks could be a step forward for bridging pre-clinical and clinical lines of research.   

We first examined cross-species parallels using data from both the Web-Surf Task 

and Restaurant Row. Our results showed that each task captured individual differences in 

preference as evidenced by delay thresholds, as well as within-subject consistency in 

humans and non-human animals. We also found evidence that both species actively made 

decisions as they traversed through their respective tasks, where each offer (combination 

of delay length with specific gallery or flavor) represented a certain value that fit within a 

given subjects’ strategic framework. Moreover, we detected cross-species parallels in 

reward satiation rates, as tendencies to stay versus skip remained relatively stable 

throughout the session. We did observe cross-species divergences with respect to 

decision consistency, where rat subjects exhibited more deviations, on average, from the 

ideal strategy. However, the spread of decision instability was similar using the 

analogous tasks. The tasks also diverged according to post-consumption reward time. In 

particular, we found that rat subjects spent more time lingering in the reward zone 

partaking in leisure activities such as grooming.  



	

73	

We then compared two variants of the Web-Surf Task: one that included video 

stimuli as reward and a second that included photo stimuli. Our primary intention was to 

empirically assess which type of internet-available reward stimuli yielded more reliable 

and valid results. We found that subjects who completed the video version showed 

greater correspondence between revealed and stated preferences. We also observed a 

tighter range of decision stability in the video subjects. Hence, although photo categories 

may appear more homogenous, the data suggest that video rewards yielded more reliable 

results. These discrepancies may reflect the notion that videos are inherently more 

rewarding to humans. Comparable findings have been reported in macaques, where 

animated movies had considerably more reward value than static pictures (Blatter & 

Schultz, 2006). We also compared within-session dynamics across the two task variants, 

which indicated similar stay proportions and post-reward consumption times. As a last 

step, we explored gender differences in category preference. These results suggested that 

males tended to wait longer for landscape and bike-accident videos, and also rated these 

categories more highly (although the bike-accident ratings did not attain significance). 

We were unable to detect gender differences using the photo version, further suggesting 

an increased sensitivity in the video version.  

Previous studies have demonstrated the utility of multi-option foraging models for 

investigating natural foraging behaviors in human and nonhuman animals; however, ours 

is the first to compare these processes across species. The Web-Surf Task provides a 

novel combination of primary reinforcement, real-time delays, and serial stay/skip 

foraging choices that parallels Restaurant Row. 
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Future Directions 

Despite the promising overlap of the described tasks, functional translation is a 

dynamic and evolving process that benefits from ongoing modifications at both the pre-

clinical and clinical ends. We therefore suggest several avenues to further reduce cross-

species divergences. First, future studies could assess whether decision-making 

parameters derived from the Web-Surf Task are stable via repeated sessions. This 

approach would not only foster design parallels with nonhuman animal studies (which 

typically entail multiple sessions) but also elucidate whether the Web-Surf Task captures 

state and/or trait-like effects. Some researchers argue that experiential decision-making 

tasks better capture acute state changes (e.g. drug effects), whereas questionnaire based 

tasks may tap into stable, trait-like impulsivity (Reynolds, 2006a). Nonetheless, empirical 

research is needed to assess if the Web-Surf Task, which we consider an experiential 

measure, can measure state-level fluctuations in a similar fashion to Restaurant Row. 

Second, researchers could investigate the extent to which various experimental design 

manipulations (e.g. increasing delay lengths, adjusting distance/effort to travel between 

feeders or galleries) similarly influence human and rodent behavior. Third, future 

endeavors could modify the stimuli sets to address specific psychopathology questions 

(e.g. food pictures or videos for obesity hypotheses, drug paraphernalia for addiction 

hypotheses, etc.). In effect, such stimuli would serve as a combination of primary and 

conditioned reinforcement. Researchers might then investigate whether satiation rates for 

these stimuli differ from other primary rewards. Fourth, researchers may examine 

relations between error trials and psychopathology, particularly the influence errors might 

have on trial-by-trial behavior. For example, a subject might encounter an unfavorable 
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scenario where one skips an offer below threshold (where they should have stayed) only 

to encounter a less favorable offer on the next trial (termed “regret” when seen in rats by 

Steiner and Redish, 2014). The manner in which a subject uses this experience to guide 

subsequent decisions may reflect pathological processes. For instance, addicted 

individuals may continue to deviate from strategy despite negative feelings or 

repercussions.  

Another pertinent avenue for future endeavors is to explore the underlying neural 

systems evoked during the analogous tasks. Although we restricted the current study to 

behavioral methods, prior investigations have identified the rodent neural systems 

recruited during Restaurant Row (Breton, Schmidt, & Redish, 2014; Schmidt, Breton, & 

Redish, 2014; Steiner & Redish, 2014). Steiner and Redish (2014) found that 

representations in both orbitofrontal cortex (OFC) and ventral striatum (vStr) reliably 

tracked choices and preferences (e.g. neuronal signals in these areas differentiated 

between feeders during reward receipt). Breton et al. (2014) found that compromising 

OFC with DREADD-driven pyramidal-cell inhibition led to a disruption in flavor 

preferences, while Schmidt et al. (2014) found that compromising medial prefrontal areas 

(prelimbic, PL and infralimbic, IL) led to a disruption in hesitation during difficult 

decisions. Although the homologies between rat and human prefrontal areas remain 

controversial (Preuss, 1995; Uylings, Groenewegen, & Kolb, 2003), these findings 

suggest that it would be extremely interesting to compare human neuroimaging findings 

and rodent neurophysiological findings on these parallel tasks.  

For example, these findings are consistent with human neuroimaging findings, 

whereby studies have shown that medial OFC activation scales proportional to expected 
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reward value (M. F. Rushworth, Kolling, Sallet, & Mars, 2012), the ventromedial 

prefrontal cortex (suggested to parallel rodent OFC; Ongür & Price, 2000; Schoenbaum, 

Roesch, & Stalnaker, 2006) reflects rewards and decisions (Balleine & O’Doherty, 2010; 

Gläscher, Hampton, & O’Doherty, 2009; Hampton, Bossaerts, & O’Doherty, 2006), and 

the dorsolateral prefrontal cortex (suggested to parallel rodent mPFC; Ongür & Price, 

2000; Seamans, Lapish, & Durstewitz, 2008) links with deliberative decision processes 

(Krawczyk, 2002). One might also anticipate cross-species parallels in recruitment of the 

anterior cingulate cortex (ACC; Kolling, Behrens, Mars, & Rushworth, 2012). For 

example, evidence suggests that the ACC may monitor performance, such as the yield of 

foraging decisions. In particular, the ACC is sensitive to situations where the alternative 

value is deemed greater than the current option, thus leading the subject to skip. Lastly, 

the anterior insula is an additional target region for tracking reward responsiveness during 

the Web-Surf Task, as this area is closely linked to the salience network and has been 

shown to activate more strongly in response to primary than secondary rewards in 

humans (Sescousse et al., 2013).  

 

Conclusions 

Collectively, our findings support the use of the Web-Surf Task as an effective 

experiential human foraging paradigm. Many decision-making tasks are concerned with 

modeling the motivation (or aversion) to reward and punishment as a means to 

characterize impulse-related psychopathology. To effectively model reward requires that 

a given task capture the natural ethology of a species – a reason that has led many to 

utilize monetary questionnaire or point-based delay-discounting paradigms. However, 
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money is only symbolically rewarding to humans, and is not a comparable primary 

reinforcer as the food rewards used in rodent paradigms. Our results demonstrate that 

video stimuli provide a compelling counterpart to food that can be easily incorporated 

into an experimental setup. Moreover, the multi-option design enables researchers to 

evaluate individual differences in preference. This feature may be valuable for 

researchers interested in mapping various behavioral parameters with other marks of 

impulsivity (e.g. self-report, neural activation, etc.). Therefore, this research lays the 

foundation for a stream of functional translational research that seeks to narrow the gap 

between pre-clinical and clinical research via parallel tasks.  
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2.5 Figures and Tables 
 
Figure 2.1. Restaurant Row and Web-Surf Task Schematics 
 

 
 
(A) Schematic of Restaurant Row. Rats had 60 minutes to cycle around a circular track 
and collect food rewards from four feeders (“restaurants”); feeders provided different 
flavors of pellets after variable delay times. (B) Schematic of the Web-Surf Task. 
Humans had 30 minutes to cycle through four video or photo galleries; video or photo 
rewards were represented after variable delay times. 
 
Reprinted from “The Web-Surf Task: A translational model of human decision-making,” 
by S. V. Abram, Y.-A. Breton, B. Schmidt, A. D. Redish, A. W. MacDonald, 2016, 
Cognitive, Affective, & Behavioral Neuroscience, 16(1), 37-50. Copyright 2016 by 
Springer. Reprinted with permission of Springer.
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Figure 2.2. Web-Surf Task Flow-diagram 
 

 
 
Flow diagram of the Web-Surf Task to illustrate stay/skip decisions. Subject receives an 
offer (1). If the subject decides to stay: the subject views the video or photo stimulus for 4 
seconds (2), rates the stimulus at the end of 4 seconds (3), proceeds through the “NEXT” 
transition phase (4), and then receives the next offer (5). If the subject decides to skip: the 
subject moves directly from the initial offer (1) to the “NEXT” transition phase (4), 
before receiving the next offer (5).  
 
Reprinted from “The Web-Surf Task: A translational model of human decision-making,” 
by S. V. Abram, Y.-A. Breton, B. Schmidt, A. D. Redish, A. W. MacDonald, 2016, 
Cognitive, Affective, & Behavioral Neuroscience, 16(1), 37-50. Copyright 2016 by 
Springer. Reprinted with permission of Springer. 

!

Video in 7 secs ... 

1" 2" 3"

x3 

4"

Video in 15 secs ... 

5"



	

80	

Figure 2.3. Evidence of Revealed Preferences 
 

 
 
Examples of subject level plots for a single category for the Web-Surf Task (A) and 
Restaurant Row (B), which show revealed preferences. The red plus sign indicates a 
subject’s inflection point, or the delay threshold at which a subject reliably begins to skip 
offers for a given category (calculated using a logistic fit function). These are typical 
distributions (see: Steiner and Redish, 2014).  

 
Reprinted from “The Web-Surf Task: A translational model of human decision-making,” 
by S. V. Abram, Y.-A. Breton, B. Schmidt, A. D. Redish, A. W. MacDonald, 2016, 
Cognitive, Affective, & Behavioral Neuroscience, 16(1), 37-50. Copyright 2016 by 
Springer. Reprinted with permission of Springer. 
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Figure 2.4. Decision Consistency Distributions 
 

 
 
Distributions representing decision consistency for the Web-Surf Task (right) and 
Restaurant Row (left). Specifically, this metric reflects the proportion of trials for which a 
subject deviated from his or her strategy (skipped an offer below his delay threshold for 
the respective category or stayed for an offer above his threshold). Here, the upper and 
lower bars indicate the range of scores, the shaded area depicts the interquartile range, 
and the dark horizontal band reflects the median decision consistency score. Circles 
outside the boxes show outliers.  

 
Reprinted from “The Web-Surf Task: A translational model of human decision-making,” 
by S. V. Abram, Y.-A. Breton, B. Schmidt, A. D. Redish, A. W. MacDonald, 2016, 
Cognitive, Affective, & Behavioral Neuroscience, 16(1), 37-50. Copyright 2016 by 
Springer. Reprinted with permission of Springer. 
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Figure 2.5. Choice Reaction Times 
 

 
 
Choice reaction times for the Web-Surf Task (A) and Restaurant Row (B). Stay trials 
shown as the full delay time (points along the diagonal) and mean times for skip trials 
shown as the points parallel to the x-axis. Blue shaded bands indicate skip time standard 
deviations. Decisions were generally made quickly for humans and rats.  

 
Reprinted from “The Web-Surf Task: A translational model of human decision-making,” 
by S. V. Abram, Y.-A. Breton, B. Schmidt, A. D. Redish, A. W. MacDonald, 2016, 
Cognitive, Affective, & Behavioral Neuroscience, 16(1), 37-50. Copyright 2016 by 
Springer. Reprinted with permission of Springer. 
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Figure 2.6. Time in Reward Zone (Humans vs. Rats) 
 

 
 
Time spent in the reward zone after consumption against trial number (N) for the Web-
Surf Task (A) and Restaurant Row (B). In human subjects this equated to the time after 
viewing a stimulus (video or photo) but before providing a rating. In rat subjects this 
equated to the time after eating but before running to the next zone. The counts reflect the 
number of samples included in a given cell.  

 
Reprinted from “The Web-Surf Task: A translational model of human decision-making,” 
by S. V. Abram, Y.-A. Breton, B. Schmidt, A. D. Redish, A. W. MacDonald, 2016, 
Cognitive, Affective, & Behavioral Neuroscience, 16(1), 37-50. Copyright 2016 by 
Springer. Reprinted with permission of Springer. 
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Figure 2.7. Correspondence of Revealed and State Preferences 
 

 
 
Correspondence between revealed and stated preferences for both stimuli types. (A) 
Correlations between delay thresholds (revealed preferences) and average category 
ratings (stated preferences) for video and photos subjects. (B) Correlations between delay 
thresholds and post-test category rankings (stated preferences). The upper and lower bars 
represent the range of correlations. The shaded area represents the interquartile rang, and 
the dark horizontal band within the shaded area indicates the median correlation.  

 
Reprinted from “The Web-Surf Task: A translational model of human decision-making,” 
by S. V. Abram, Y.-A. Breton, B. Schmidt, A. D. Redish, A. W. MacDonald, 2016, 
Cognitive, Affective, & Behavioral Neuroscience, 16(1), 37-50. Copyright 2016 by 
Springer. Reprinted with permission of Springer. 
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Figure 2.8. Decision Consistency (Video vs. Photo) 
 

 
 
Comparison of video versus photo subjects on measure of decision consistency. The 
upper and lower bars indicate the range of scores, the shaded area depicts the interquartile 
range, and the dark horizontal band reflects the median decision consistency score. 
Circles outside the boxes show outliers.  

 
Reprinted from “The Web-Surf Task: A translational model of human decision-making,” 
by S. V. Abram, Y.-A. Breton, B. Schmidt, A. D. Redish, A. W. MacDonald, 2016, 
Cognitive, Affective, & Behavioral Neuroscience, 16(1), 37-50. Copyright 2016 by 
Springer. Reprinted with permission of Springer. 
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Figure 2.9. Time in Reward Zone (Video vs. Photo) 
 

 
 
spent in the reward zone after consumption against trial number (N) for the Web-Surf 
Task, where (A) is the initial 22 video subjects and (B) is the photo subjects. This equated 
to the time after viewing a stimulus (video or photo) but before providing a rating. The 
counts reflect the number of samples included in a given cell.  

 
Reprinted from “The Web-Surf Task: A translational model of human decision-making,” 
by S. V. Abram, Y.-A. Breton, B. Schmidt, A. D. Redish, A. W. MacDonald, 2016, 
Cognitive, Affective, & Behavioral Neuroscience, 16(1), 37-50. Copyright 2016 by 
Springer. Reprinted with permission of Springer. 
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Table 2.1. Across-Session Threshold Consistency (Rats, N = 8) 
 

 

Source 
 

df 
 

 

Sum Sq 
 

Mean Sq 
 

F-Value 
 

p-value 
 

Zone 
 

3 
 

523 
 

174.27 
 

4.58 
 

0.004 
Session Number 70 1581 22.59 0.59 0.99 
Residuals 
 

231 8788 38.04   

 
Reprinted from “The Web-Surf Task: A translational model of human decision-making,” 
by S. V. Abram, Y.-A. Breton, B. Schmidt, A. D. Redish, A. W. MacDonald, 2016, 
Cognitive, Affective, & Behavioral Neuroscience, 16(1), 37-50.  
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Table 2.2A. Choice as a Function of Category and Trial N (Video, N = 49) 
 

 

Source 
 

df 
 

 

Sum Sq 
 

Mean Sq 
 

F-Value 
 

p-value 
 

Category 
 

3 
 

65.70 
 

21.91 
 

110.78 
 

<0.001 
Trial Number 1 0.40 0.40 2.03 0.16 
Residuals 
 

5587 1104.90 0.20   

 
 
Table 2.2B. Choice as a Function of Zone and Trial N (Rats, N = 8) 
 

 

Source 
 

df 
 

 

Sum Sq 
 

Mean Sq 
 

F-Value 
 

p-value 
 

Zone 
 

3 
 

12.20 
 

4.07 
 

18.69 
 

<0.001 
Trial Number 1 0.30 0.28 1.28 0.25 
Residuals 
 

13856 3015.80 0.22   

 
Reprinted from “The Web-Surf Task: A translational model of human decision-making,” 
by S. V. Abram, Y.-A. Breton, B. Schmidt, A. D. Redish, A. W. MacDonald, 2016, 
Cognitive, Affective, & Behavioral Neuroscience, 16(1), 37-50.  
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Table 2.3A. Choice as a Function of Category and Trial N (Video, N = 22) 
 

 

Source 
 

df 
 

 

Sum Sq 
 

Mean Sq 
 

F-Value 
 

p-value 
 

Category 
 

3 
 

37.90 
 

12.63 
 

64.35 
 

<0.001 
Trial Number 1 0.00 0.02 0.12 0.73 
Residuals 
 

2382 467.40 0.20   

 
 
Table 2.3B. Choice as a Function of Category and Trial N (Photo, N = 15) 
 

 

Source 
 

df 
 

 

Sum Sq 
 

Mean Sq 
 

F-Value 
 

p-value 
 

Category 
 

3 
 

4.84 
 

1.61 
 

8.85 
 

<0.001 
Trial Number 1 0.31 0.31 1.72 0.19 
Residuals 
 

1241 226.24 0.18   

 
Reprinted from “The Web-Surf Task: A translational model of human decision-making,” 
by S. V. Abram, Y.-A. Breton, B. Schmidt, A. D. Redish, A. W. MacDonald, 2016, 
Cognitive, Affective, & Behavioral Neuroscience, 16(1), 37-50.  
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2.6 Supplemental Materials 
 
Videos versus Photos: Gender Differences 

 Lastly, we built linear mixed models to assess gender differences in category 

preference; this approach uses restricted maximum likelihood to obtain parameters 

estimates and can thus accommodate unbalanced designs (i.e. missing data). We 

constructed two models per task variant (4 models total) that included either delay 

thresholds or average category ratings as the dependent variable, and gender, category, 

and a gender x category interaction term as the predictor variables. We were particularly 

interested in the interaction term as an indicator of preference differences across gender. 

Supplemental Tables 1A and 1B summarize the results for the video version (N = 22 

subset). Here we found a non-significant gender x category interaction for delay 

thresholds (F3,60 = 0.85, p = 0.47) and a trend level interaction for average category 

ratings (F3,58 = 2.14, p = 0.10). Supplemental Tables 2A and 2B report comparable 

information for the photo version, indicating non-significant interactions for delay 

thresholds (F3,39 = 0.73, p = 0.54) and average category ratings (F3,39 = 0.21, p = 0.89).  

Given these null findings, we conducted sensitivity analyses to derive the effect 

size needed to detect a significant gender x category interaction. For both task versions, 

we input the following parameters into the G*Power software (Faul, Erdfelder, Lang, & 

Buchner, 2007): alpha = 0.05, power = 0.95, number of groups = 2, number of 

measurements = 4, correlation among measurements = 0.5. To achieve a significant 

interaction for a sample of 22 (original video subset), we would need an F-statistic of 

2.76 and an effect size of 0.32, whereas we would need an F-statistic of 2.85 and an 

effect size of 0.40 for a sample of 15 (photo version). Alternatively, a power analyses 
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revealed that 26 subjects would be necessary to detect an effect size of about 0.30.   

We then tested whether utilizing the complete sample of video subjects (N = 49) 

yielded a significant interaction, given the power analysis above. Supplemental Tables 

3A and 3B reveal significant gender x category interactions for delay thresholds (F3,141 = 

2.77, p = 0.04) and average category ratings (F3,138 = 6.12, p < 0.001) for the complete 

video sample. Based on the significant interactions, we performed follow-up analyses to 

determine which specific categories drove the gender differences. With respect to delay 

thresholds, we observed significant gender differences for the bike-accident (t47 = 2.65, p 

= 0.01) and landscape (t38 = 3.03, p = 0.004) categories; for the latter we used a Welsh 

corrected t-test to account for significant gender differences in variance (Levene’s test: 

F1,47 = 4.34, p = 0.04), hence the reduced degrees of freedom. We did not detect gender 

differences for the animal (t47 = 0.12, p = 0.91) or dance (t47 = 0.38, p = 0.71) delay 

thresholds. With regards to average category ratings, only the landscape category was 

significant (t47 = 3.55, p < 0.001). Although males generally rated the bike-accident 

videos higher, this effect did not attain significance (t47 = 1.50, p = 0.14). Similar to the 

delay thresholds, we did not detect gender differences for the animal (t47 = -1.04, p = 

0.30) or dance (t47 = -0.86, p = 0.40) categories.  
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Supplemental Table 2.1A. Gender Differences in Thresholds (Video, N = 22) 
 

 

Source 
 

Num df 
 

 

Den df 
 

F-value 
 

p-value 
 

Gender 
 

1 
 

20 
 

0.15 
 

0.70 
Category 3 60 7.72 <0.001 
Gender X Category 
 

3 60 0.85 0.47 
 

 
 
Supplemental Table 2.1B. Gender Differences in Ratings (Video, N = 22) 
 

 

Source 
 

Num df 
 

 

Den df 
 

F-value 
 

p-value 
 

Gender 
 

1 
 

20 
 

12.40 
 

0.002 
Category 3 58a 12.37 <0.001 
Gender X Category 
 

3 58a 2.14 0.10 
 

aTwo subjects did not have ratings for the bike accidents category, as they skipped every 
trial, hence the reduced degrees of freedom.  
 
Reprinted from “The Web-Surf Task: A translational model of human decision-making,” 
by S. V. Abram, Y.-A. Breton, B. Schmidt, A. D. Redish, A. W. MacDonald, 2016, 
Cognitive, Affective, & Behavioral Neuroscience, 16(1), 37-50.  
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Supplemental Table 2.2A. Gender Differences in Thresholds (Photo, N = 15) 
 

 

Source 
 

Num df 
 

 

Den df 
 

F-value 
 

p-value 
 

Gender 
 

1 
 

13 
 

0.54 
 

0.47 
Category 3 39 1.47 0.24 
Gender X Category 
 

3 39 0.73 0.54 
 

 
 
Supplemental Table 2.2B. Gender Differences in Ratings (Photo, N = 15) 
 

 

Source 
 

Num df 
 

 

Den df 
 

F-value 
 

p-value 
 

Gender 
 

1 
 

13 
 

0.18 
 

0.68 
Category 3 39 3.15 0.04 
Gender X Category 
 

3 39 0.21 0.89 
 
 

 
Reprinted from “The Web-Surf Task: A translational model of human decision-making,” 
by S. V. Abram, Y.-A. Breton, B. Schmidt, A. D. Redish, A. W. MacDonald, 2016, 
Cognitive, Affective, & Behavioral Neuroscience, 16(1), 37-50.  
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Supplemental Table 2.3A. Gender Differences in Thresholds (Video, N = 49) 
 

 

Source 
 

Num df 
 

 

Den df 
 

F-value 
 

p-value 
 

Gender 
 

1 
 

47 
 

4.37 
 

0.04 
Category 3 141 12.21 <0.001 
Gender X Category 
 

3 141 2.77 0.04 
 

 
 
Supplemental Table 2.3B. Gender Differences in Ratings (Video, N = 49) 
 

 

Source 
 

Num df 
 

 

Den df 
 

F-value 
 

p-value 
 

Gender 
 

1 
 

47 
 

1.06 
 

0.31 
Category 3 138a 28.81 <0.001 
Gender X Category 
 

3 138a 6.12 <0.001 
 

aThree subjects did not have ratings for the bike accidents category, as they skipped 
every trial, hence the reduced degrees of freedom.  
 
Reprinted from “The Web-Surf Task: A translational model of human decision-making,” 
by S. V. Abram, Y.-A. Breton, B. Schmidt, A. D. Redish, A. W. MacDonald, 2016, 
Cognitive, Affective, & Behavioral Neuroscience, 16(1), 37-50.  
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CHAPTER 3: THE NEURAL BASIS OF HUMAN DELIBERATION 

 

Abstract 

 The ability to project oneself into the future and pre-experience an event is termed 

‘prospection’ or ‘episodic future thinking.’ It follows that prospection is critical to 

deliberation, which is the process of mentally searching through or imagining various 

possibilities. Internally driven networks may underlie prospection (and in turn, 

deliberation), given their roles in self-reflection, autobiographical memory, and mental 

simulation. The imagination literature may also inform our understanding of these 

decision processes, as the same neural systems are evoked when imagining or perceiving 

a stimulus. In the current study, we found that humans engaged in episodic future 

thinking when making decisions, a pattern indicated by comparable neural activation 

during the consideration of and actual receipt of reward. Further, different brain networks 

showed representations of past and future outcomes when subjects made decisions, but 

only tracked current outcomes during reward receipt. We also found that the capacity to 

imagine outcomes when making a decision predicted more optimal decision-making 

overall. Lastly, we found that difficult choices recruited similar behavioral and neural 

responses in humans as previously observed in rats, providing evidence of cross-species 

parallels in deliberation.  
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3.1 Introduction 

Humans have a remarkable capacity to mentally simulate the future. This ability, 

often referred to as ‘prospection’ or ‘episodic future thinking’, affords individuals 

cognitive and behavioral flexibility by anticipating potential outcomes in advance 

(Buckner & Carroll, 2007; Gilbert & Wilson, 2007). Although there is general agreement 

in psychology regarding the importance of future-oriented thinking to behavior 

(Fukukura, Helzer, & Ferguson, 2013), recent technological advances provide the tools 

needed to study prospection and clarify its role in human action.    

Prospection is fundamental to deliberation, or the process by which one searches 

through and evaluates various possibilities based on a hypothesized world model (Payne, 

Bettman, & Johnson, 1993; Redish, 2013). Human deliberative search processes are 

likely serial, with individual options imagined as concrete future possibilities (Redish, 

2016). Further, the ability to search and find future prospects may be pivotal to how 

humans assign value and make decisions (Kurth-Nelson et al., 2012). The current study 

presents neural evidence of human deliberation; specifically, we find that different brain 

networks tracked past and future outcomes when subjects made decisions. We also find 

that the capacity to locate outcomes when making a choice (as indicated by neural 

representations) predicted more optimal decision-making, demonstrating the role of 

prospection in deliberation. 

 Deliberation hinges on several cognitive functions, including episodic future 

thinking and working memory (Redish, 2016). Autobiographical memory may also play a 

role in deliberation given evidence that future and past-oriented thinking reflect the same 

underlying process and neural structures (Addis, Wong, & Schacter, 2007; Hassabis, 
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Kumaran, Vann, & Maguire, 2007; Spreng, Mar, & Kim, 2009; Szpunar, Watson, & 

McDermott, 2007). Several neural systems support these cognitive functions: the default 

mode network (DMN; Raichle et al., 2001), particularly the dorsal medial temporal 

subsystem, is involved in autobiographical memory, mental simulations, and navigation 

(Buckner, Andrews-Hanna, & Schacter, 2008; Spreng et al., 2009); the fronto-parietal, or 

‘central executive,’ network is pertinent to active maintenance and manipulating 

information in working memory (Koechlin & Summerfield, 2007; Müller & Knight, 

2006; Sauseng, Klimesch, Schabus, & Doppelmayr, 2005); and the salience network may 

coordinate the DMN and the fronto-parietal network to guide attention and working 

memory to salient stimuli (Menon & Uddin, 2010).  

Findings from the human fMRI literature on imagination may also inform our 

understanding of prospection, as the same neural circuits are evoked during both the 

imagination and perception of a stimulus (Pearson, Naselaris, Holmes, & Kosslyn, 2015). 

For example, both mental and perceptual images are encoded in the primary visual cortex 

(e.g., Kay, Naselaris, Prenger, & Gallant, 2008; Naselaris, Olman, Stansbury, Ugurbil, & 

Gallant, 2015), and memories about past experiences reactivate representations of those 

prior encounters (Gelbard-Sagiv, Mukamel, Harel, Malach, & Fried, 2008; Miller et al., 

2013). Moreover, decisions that require imagination of future possibilities activate the 

sensory cortical representations of those future outcomes (Doll et al., 2015). Doll’s 

experiment, however, was based on binary choices between discrete offers, which 

precludes the assessment of prospection beyond the current offer.   

Contrary to traditional binary decision tasks, multi-option foraging paradigms 

entail sequential stay/leave choices (Stephens, 2008; Wikenheiser et al., 2013). For 
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instance, during a spatial neuroeconomic task called Restaurant Row (Steiner & Redish, 

2014), rats had a fixed amount of time to cycle between four feeders and collect different 

flavored food pellets available after a variable delay. Importantly, the flavor order was 

held constant, while the delays were random. The rat thus knew the location of the 

flavors but not the specific delays it would encounter, e.g., to decline the current cherry 

offer meant a chocolate offer available after an unknown delay would follow.  

The difficultly of a choice may also impact deliberative decision-making. 

‘Vicarious trial and error’ (VTE) reflects the tendency for a rat to sometimes pause at a 

choice point and look back and forth as if imagining the future possibilities (Muenzinger 

& Gentry, 1931; Tolman, 1939, 1948). Given that VTE is specifically implicated in 

difficult decisions, it is theorized to capture the indecision that underlies deliberation 

(Redish, 2016). During VTE, hippocampal place cells show forward-sweeping 

representations that alternate between options, supporting the idea that a rat is mentally 

simulating the possible outcomes (Johnson & Redish, 2007). The hippocampus may 

serve an analogous role in humans, as evidenced by its function in episodic future 

thinking (Addis et al., 2007; Hassabis, Kumaran, Vann, & Maguire, 2007; Lebreton et al., 

2013; Peters & Büchel, 2010a; Szpunar et al., 2007), although this theory has not been 

tested directly.  

The current study identified a set of human deliberative mechanisms using a 

sequential foraging paradigm, i.e., the Web-Surf Task, and functional neuroimaging 

methods (Abram et al., 2016). Humans made sequential skip/stay decisions as they 

cycled between four galleries, each of which offered fun video clips available after some 

delay. Comparable to Restaurant Row, galleries were presented in a fixed order and 
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subjects encountered real-time costs and received immediately consumable rewards. We 

hypothesized that deliberation and consumption would engage similar neural systems 

exemplifying episodic future thinking in humans. We also hypothesized that humans 

would exhibit analogous behavioral and neural signatures of VTE; in particular, we 

expected some overlap between prospective and VTE activation, following notions that 

VTE involves mental simulation of future trajectories.  

 

3.2 Methods 

Subjects 

Twenty-five healthy volunteers participated in the current study (52% male, mean 

age of 28 years, all right-handed). Subjects were recruited via the Craigslist website and 

reported no prior history of neurological disease or severe mental illness, nor did they 

have a first-degree relative with a severe mental illness. Subjects completed a urine drug 

screen prior to participation and only those with a negative screening continued. Four 

subjects were excluded due to excessive head motion, claustrophobia, or invalid 

behavioral data. All subjects provided written informed consent and the study procedures 

were approved by the Institutional Review Board at the University of Minnesota.  

 

 

Web-Surf Task Layout 

Subjects had 35 minutes to cycle between four video galleries (i.e., kittens, dance, 

landscapes, bike accidents) presented using PsychoPy (Peirce, 2009). Galleries were 

indicated by the symbol at the top of the screen (see Supplemental Figure 3.1). At the 
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arrival of the gallery, subjects were presented with an offer that indicated how long they 

would have to wait for a given reward (i.e., 4-second video clip). If they elected to stay, 

the delay counted down, the subject watched the video clip, and then rated it on a 1-4 

scale. If the subject chose to skip, they proceeded to the next gallery and received a new 

offer. When traveling between galleries, subjects had to click the numbers 1-4 as they 

randomly appeared around the screen; this represented a travel cost. Numbers were 

presented in dark grey against a grey screen to increase the difficulty. Trials were 

presented in 9 minute blocks, with 45 seconds of a fixation cross-hair shown in between 

blocks. All subjects completed both in- and outside of scanner practice.  

 

Web-Surf Preview Task 

Before the main task, subjects completed a preview task that presented a fixed set 

of ten 4-second video clips from each category, shown in a random order. A fixation 

cross-hair appeared between videos for 3-6 seconds. Total task time was approximately 7 

minutes. Importantly, this task provided baseline estimates of preference and neural 

activation for each category, in the chance that a subject skipped all offers from a 

particular category during the main task.   

 

 

Value Computations  

Value was computed as the category-specific threshold minus delay, where 

thresholds indicated the delay time at which a subject reliably began to skip offers for a 

particular category. Delay thresholds were computed separately for each trial, per 
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category, using a leave-one-out approach: to obtain the threshold for triali, we fit a 

Heaviside step function to all trials in categoryx excluding triali. This produced a vector 

of thresholds with length equal to the number of trials in categoryx. We used a Heaviside 

step function as an alternative to the logistic fit function described in Abram et al. (2016), 

as the Heaviside step function can better handle extreme cases (i.e., when a subject stays 

or skips all offers in a category). In such instances, the Heaviside step function produces 

a reasonable value (e.g., 0 or 30), whereas the logistic fit function is likely to produce a 

value approaching infinity. Values ranged -30 to 30, and a value of 0 was equal to 

threshold.  

 

fMRI Data Acquisition and Preprocessing 

Neuroimaging data were collected using a 3-Tesla Siemens MAGNETOM Prisma 

at the University of Minnesota’s Center for Magnetic Resonance Imaging. A high-

resolution T1-weighted scan was collected for registration [repetition time (TR) = 2.5 ms; 

echo time (TE) = 3.65 ms; flip = 7°; voxel = 1 x 1 x 1 mm]. The main task was collected 

using a single echo planar imaging (EPI) run, with the following sequence parameters: 

TR = 720 ms, TE = 37 ms, flip angle = 52°, voxel size = 2 x 2 x 2 mm; these same 

parameters were used for the preview task EPI sequence.  

We carried out standard preprocessing using FMRIB Software Library (FSL 

version 5.0.8; Jenkinson, Beckmann, Behrens, Woolrich, & Smith, 2012), which included 

brain extraction, motion correction1, prewhitening, high-pass temporal filtering with 

																																																								
1	Average	absolute	(mean	=	0.57	mm)	and	relative	(mean	=	0.09	mm)	head	
displacement.			
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sigma of 50s, spatial smoothing with a 6 mm FWHM Gaussian kernel, and spatial 

normalization and linear registration to the Montreal Neurological Institute (MNI) 152 

standard brain. We also employed FSL’s topup functionality to correct susceptibility 

induced distortions. This entailed collecting additional reverse phase-encoded EPI 

sequences to yield two pairs of images with distortions going in opposite directions (one 

pair for the main task and one for the Preview Task). The susceptibility-induced off-

resonance field was estimated from these pairs using a method similar to that described in 

Andersson et al. (2003). The images were then combined into a single corrected one.  

 

 
Deliberation and Consumption General Linear Models 

Functional data from both tasks were first analyzed using a general linear model 

(GLM) approach using the fMRI Expert Analysis Tool (FEAT) within FSL. We modeled 

the main task data using five events: skip choice, stay choice, delay, video 

viewing/rating, and travel time (i.e., cost phase); we did not separate the viewing and 

rating components of the trial, as rating typically occurred quickly (~ 1 second) and we 

intended to capture evaluative processes that occurred post-consumption. The model also 

included the six standard motion parameters as confound regressors. Our analyses 

focused on the two choice events (i.e., deliberation) and the video viewing/rating event 

(i.e., consumption). The events were convolved using a double-gamma hemodynamic 

response function (HRF).  

We carried out group-level whole-brain analyses using the voxelwise general 

linear model (GLM) analysis in FEAT. In terms of main effects, we examined activation 
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related to making a skip choice (skip choice > 0), making a stay choice (stay choice > 0), 

and consuming a video (video viewing/rating > 0). We then assessed the extent to which 

deliberation and consumption evoked comparable neural substrates, given our hypothesis 

that the imagination of future rewards at the choice point would yield a similar activation 

pattern as compared to actual reward consumption. Lastly, we evaluated differences 

between choices and video viewing (i.e., choice > video viewing and choice < video 

viewing); we only included stay choices, as videos were not consumed on skip trials and 

we aimed to compare activation during future projections of and receipt of that reward.  

For the preview task, we modeled the video viewing and rating for each category 

as separate events (yielding four regressors of interest), as well as the 6 standard motion 

parameters as confound regressors. The events were again convolved using a double-

gamma HRF. A threshold of z > 3.09 and whole-brain corrected cluster extent threshold 

of p < 0.01 were used for all group-level analyses.  

 
Decoding Methods 

We used a multi-voxel pattern analysis (MVPA) decoding method, as MVPA 

methods offer a unique approach for probing episodic memory in humans (Chadwick, 

Hassabis, Weiskopf, & Maguire, 2010), and are useful for identifying category-specific 

representations (Norman, Polyn, Detre, & Haxby, 2006). In particular, we employed the 

Sparse Multinomial Logistic Regression (SMLR; Krishnapuram, Carin, Figueiredo, & 

Hartemink, 2005) classifier available in the PyMVPA machine-learning package 

(Multivariate Pattern Analysis in Python, http://www.pymvpa.org; Hanke et al., 2009). 

We selected this classifier given its computational efficiency and good classification 
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performance (Krishnapuram et al., 2005; Sun et al., 2009). The SMLR classifier utilizes 

multiple regression to predict the logarithm of the odds ratio of belonging to a particular 

class. This ratio is then transformed into a probability via a nonlinear transfer function 

that ensures all classification probabilities summate to one. The sparse component 

promotes a more parsimonious and generalizable solution. For the present analyses we 

used the default lambda penalty setting (λ = 1). 

Decoding was conducted on a subject-by-subject basis, and included the 

previously pre-processed data to parallel the GLM analyses described above. For all 

decoding analyses, we trained the classifier on the Preview Task data. We used the this 

approach for several reasons: (1) each subject saw the same set of videos during the 

Preview Task,2 (2) the Preview Task contained trials from every category (whereas 

subjects could elect to skip all videos from a category during the main task), and (3) we 

did not have to create a ‘holdout’ set from the main task data. The first step in this 

process entailed fitting a GLM to obtain linear model activity estimate images (i.e., 

parameter estimates), which were then supplied as examples to the classifier. Each video 

category was modeled as a separate event, and we also included a regressor to account for 

the fixation periods between the videos; this event was considered the other category, and 

provided a baseline from which to compare the four video categories. Samples were 

‘chunked’ to create groups of samples, each of which included two video samples from 

each category, as well as the fixation periods between those samples. Chunks are 

important given that successive fMRI volumes cannot be considered independent samples 

																																																								
2	The	first	three	subjects	were	excluded	from	this	analysis	as	they	completed	a	
version	of	the	Preview	Task	with	half	the	number	of	trials;	this	resulted	in	a	sample	
of	N=22.	
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due to the forward contamination of the hemodynamic response. This meant that all trials 

in a given loop (or complete pass through all four categories) were included in the same 

chunk, as well as four trials from a different loop. We averaged two samples per category 

when forming chunks, as this approach produces less noisy examples (Pereira et al., 

2009). After fitting the model, we z-scored the data with respect to the other condition, 

with scaling done separately for each chunk.3  

As a preliminary step, we determined whether stimuli from the four categories 

were distinguishable via SMLR decoding, as the subsequent analyses hinged on 

successful category separation. We performed 60/40 cross-validation, i.e., left two 

chunks out, on the Preview Task parameter estimate maps.4 For the main decoding 

analyses we used the Preview Task maps to classify neural data during deliberation and 

consumption. Similarly, we averaged two (or three) samples per category to form the 

testing set examples. For each testing set example, we fit a GLM to acquire a parameter 

estimate map; this allowed a direct comparison with training data. We then predicted 

which category the testing example best represented (i.e., kittens, dance, landscape, bike 

accidents, or other), and extracted the corresponding probability estimates (one per 

category). The data in these analyses were masked based on the group-level GLM results.  

The final step entailed combining the subject-specific data and re-organizing the 

probabilities according to the subjects’ location within loop (i.e., previous, current, next, 

opposite, or other zone) as opposed to the specific category; this approach was used to 

test whether voxel patterns tracked past, current, or future representations as the subject 

																																																								
3	This	supports	the	independence	of	the	chunks	and	prevents	a	single	outlier	chunk	
from	dragging	down	the	global	mean.		
4	Two	chunks	constituted	40%	of	the	data,	as	the	Preview	Task	was	separated	into	
five	chunks	total.		
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traversed the task. We used mixed-effects linear models to compare probabilities between 

the zones; specifically, we regressed zone location on the SMLR probabilities, with 

subject as a random effect. Models were fit using the MCMCglmm package in R, which 

employs Markov chain Monte Carlo techniques (Hadfield, 2010; RStudio Team, 2016). 

We then used the lsmeans packages to determine which zones had probabilities above 

chance, i.e., 1/5 = 0.20, when accounting for the five zones.  

 

Deliberation and Consumption Decoding Analyses 

Two task-derived and three network-based masks were used for decoding: (1) the 

cumulative Preview Task mask, (2) the deliberation and consumption overlap mask, (3) a 

DMN mask, (4) a salience network mask, and (5) a right fronto-parietal control network 

mask. The network masks were derived using Independent Components Analysis (Abram 

et al., 2015), and selected given their roles in imagination and deliberation. The DMN 

map included the medial prefrontal cortex (mPFC), posterior cingulate cortex (PCC), 

precuneus, and bilateral angular gyrus. The salience network map included the anterior 

cingulate cortex (ACC) and bilateral anterior insula. The fronto-parietal network map 

included the right middle frontal gyrus (MFG) extending into the frontal pole, right 

angular gyrus, and paracingulate gyrus. Decoding was carried out during the choice and 

video phases of the main task using each of the five masks. 

Decoding Accuracy versus Validity Correlation Analyses 

As a follow-up to the decoding analyses, we asked whether one’s neural 

representation abilities during deliberation related to their overall decision-making 

capacity. Using robust regression methods, we correlated deliberation decoding 
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accuracies with the average rating validity correlations (i.e., correlations between delay 

thresholds [revealed preferences] and average category ratings [stated preferences]). This 

was done separately for accuracies obtained for each of the five masks, with a Bonferonni 

correction for multiple comparisons (i.e., p = 0.05/5 = 0.01).  

We used the average rating validity correlations instead of the post-test ranking 

validity correlations for two reasons: (1) multiple observations comprised each average 

rating, lending to better psychometric properties, and (2) ratings occurred immediately 

after reward consumption on a trial-by-trial basis, which was more akin to our 

computation of the delay threshold metric.  

 

VTE General Linear Model 

A final GLM was used to pinpoint activation related to difficult choices. This 

model included four regressors (choice, delay, video viewing/rating, and travel), as well 

as the six standard motion parameters. We weighted each decision and video-viewing 

event by its distance from the respective category threshold, such that events closer to 

threshold were weighted more heavily. Importantly, decisions in this model were isolated 

to the last second of the choice phase. This step was taken given our observation that 

reaction times differed as a function of offer value.5 Consistent with prior GLMs, events 

were convolved using a double-gamma HRF, and evaluated with a threshold of z > 3.09 

and cluster extent threshold of p < 0.01. 

 

																																																								
5	Mixed-effects	linear	models	demonstrated	a	positive	association	for	skip	reaction	
times	and	value	(β	=	0.01,	p	<	0.001),	versus	a	negative	association	for	stay	reaction	
times	and	value	(β	=	-0.02,	p	<	0.001).		
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3.3 Results 

Overlapping Activation during Deliberation and Consumption 

We first evaluated neural activation related to deliberation versus consumption. 

Our results revealed that stay and skip choices activated a similar set of regions, 

including the ACC, bilateral anterior insula, MFG, bilateral hippocampus, and lingual 

gyrus (Figure 3.1A), while consumption recruited a circuit including the anterior insula, 

superior temporal gyrus, hippocampus, amygdala, visual cortices, and other areas. But to 

what degree are regions recruited during reward consumption also involved in 

deliberating about those rewards? To address this question, we produced an intersection 

map to detect voxels that were common to skip choices, stay choices, and video viewing. 

The intersection map captured the majority of voxels recruited during deliberation, and 

roughly 50% of the voxels activated during consumption (Figure 3.1A).  

Further, a contrast revealed that stay choices activated the ACC, anterior insula, 

lingual gyrus, MFG, and mPFC (Figure 3.1B) more than video viewing. These regions 

increased in activation during deliberation, versus a more nuanced pattern for 

consumption; in particular, consumption led to more activation in the insula and lingual 

gyrus, decreased activation in the MFG and mPFC, and no changes in the ACC (with 

large effect sizes for all comparisons). Additionally, video viewing recruited a large 

cluster in the superior temporal gyrus when contrasted with stay choices (number voxels 

= 837, p < 0.001; not pictured). 

 

Distinguishability of Reward Zones 

With regards to the Preview Task, we observed similar activation patterns 



	

109	

across the video categories (Figure 3.2A); regions included the anterior insula, 

hippocampus, ACC, lateral occipital cortex, and lingual gyrus. Further, comparing signal 

changes across the categories revealed only trend-level differences (F3,96 = 2.73, p = 0.05; 

Figure 3.2B).6 Given the large overlap in activation across the categories during the 

Preview Task, we created a cumulative mask for decoding that entailed merging the four 

main effect maps. Decoding of the Preview Task data using the cumulative mask 

revealed dissociable categories (Figure 3.2C): category-specific probabilities ranged from 

about 60 to 85%, and the overall accuracy was 72%. Thus, reward stimuli were 

distinguishable via decoding producing similar activation maps. 

 

Evidence of Current and Future Representations during Deliberation 

The first set of decoding analyses examined the extent to which task-related 

activation patterns tracked a subject’s location, i.e., reward zone, during deliberation and 

consumption. Essentially, we asked whether the same voxels evoked during consumption 

also represented our prediction of future rewards when making a choice. Decoding using 

the cumulative Preview Task mask revealed representations of the current zone during 

consumption (mean = 0.57, SE = 0.01; Figure 3.3A; Table 3.1A). In contrast, decoding 

during deliberation revealed future representations of the next zone (mean = 0.25, SE = 

0.01; Table 3.1B). We then restricted the decoding to voxels contained in the deliberation 

and consumption overlap mask, as this included a subset of the cumulative Preview Task 

mask (Figure 3.3B). Here we found that activation patterns during deliberation best 

reflected the current (mean = 0.23, SE = 0.01; Table 3.1B) followed by the next zone 

																																																								
6	Post-hoc	Tukey	HSD	analyses	revealed	trend-level	differences	for	bike	accidents	>	
dance	(p	=	0.08)	and	bike	accidents	>	landscapes	(p	=	0.08)		
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(mean = 0.21, SE = 0.01), while decoding during consumption again represented the 

current zone (mean = 0.52, SE = 0.01; Table 3.1A).  

 

Large-Scale Brain Networks Track Past and Current Representations during Deliberation 

 While all three networks predicted the current zone during consumption (Figure 

3.4A, Table 3.2A), decoding during deliberation provided evidence of past and current 

representations (Figure 3.4B; Table 3.2B). More specifically, voxels within the DMN 

best represented the current zone (mean = 0.24, SE = 0.013), whereas salience network 

representations best captured the previous and current zones (previous mean = 0.24, SE = 

0.01; current mean = 0.24, SE = 0.01). In comparison, the right fronto-parietal network 

tracked all four zones similarly (previous mean = 0.22, SE = 0.01; current mean = 0.23, 

SE = 0.01; next mean = 0.23, SE = 0.01; opposite mean = 0.22, SE = 0.01).  

 

Decoding Accuracy during Deliberation Predicts Optimized Decision-Making Behaviors 

We found that greater decoding accuracy during deliberation predicted higher 

validity correlations, specifically for voxels within the deliberation and consumption 

overlap mask (Figure 3.5, β = 0.47, p = 0.006). Decoding accuracies using the other four 

masks did not predict the rating validity correlations (all p > 0.10; Supplemental Table 

3.2A). We then tested whether this association was specific to deliberation-related 

representations, and found that decoding accuracy during consumption was unrelated to 

validity correlations for all five masks (all p > 0.10; Supplemental Table 3.2B).  

 

Difficult Choices Parallel ‘Vicarious Trial and Error’ Behaviors in Rodents 
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In the Restaurant Row task, VTE was observed when a rat received an offer at its 

threshold, and decreased substantially for offers above or below its threshold (measured 

as change in head position; Steiner and Redish, 2014). Behavioral analysis revealed an 

analogous pattern in humans: subjects took longer to make choices for offers that 

approached threshold, and were fastest for those significantly above or below threshold 

(Figure 3.6A); this suggests that offers around threshold were especially challenging.  

Given these behavioral findings, we next investigated which brain areas were 

associated with difficult choices. As illustrated in Figure 3.6B, deliberation recruited the 

ACC, MFG, bilateral hippocampus, posterior cingulate cortex (PCC), and lingual gyrus. 

Similarly, video viewing evoked voxels within the ACC, hippocampus, and visuospatial 

areas, as well as bilateral portions of the orbitofrontal cortex, nucleus accumbens, 

amygdala, insula, and thalamus. An intersection mask revealed that difficult choices 

recruited the ACC, bilateral hippocampus, and visuospatial areas during both deliberation 

and consumption (Supplemental Figure 3.2). 

As a last step, we contrasted choice and video viewing to determine the extent to 

which challenging decisions are associated with different brain structures at different 

points in the decision process. Here, we observed increased ACC and MFG activation 

during deliberation, versus increased OFC and posterior insula activation during 

consumption (Figure 3.6C).  

 
3.4 Discussion 

 Recent theories posit that humans engage in episodic future thinking during 

deliberation (Buckner & Carroll, 2007; Gilbert & Wilson, 2007; Kurth-Nelson et al., 
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2012; Schacter & Addis, 2011). This entails imagining rich and concrete future 

representations (Redish, 2016). Using the Web-Surf Task, a sequential foraging paradigm 

that entails real-time costs and rewards, we discovered a set of human deliberation 

mechanisms indicative of episodic memory and episodic future thinking. The sequential 

nature of this task uniquely allowed us to track past outcomes and future possibilities: 

humans cycled between four video galleries that appeared in a constant order, but varied 

trial-to-trial with regards to the specific delay. Subjects developed a schema of the task 

that guided deliberation, e.g., “if I skip this kitten video, the upcoming dance video might 

have a shorter wait time.” We used multi-voxel pattern analysis decoding methods to 

uncover categorical representations within large-scale brain networks. Our results 

revealed that during deliberation, subjects imagined past and future possibilities within 

different parts of the brain; moreover, those who were better at imagining future 

prospects performed better on the task. We also assessed for evidence of ‘vicarious trial 

and error’ (VTE) in humans, as this behavior is linked to deliberation via future thinking 

in rats (Johnson & Redish, 2007). Humans exhibited behavioral and neural similarities to 

rats during challenging decisions, suggesting a common mechanism across species.  

Consistent with the fMRI literature on human imagination, our data indicated that 

overlapping systems were activated for imagined and experienced outcomes. That is, we 

observed similar activation during deliberation and reward consumption. This 

deliberation and consumption circuit mapped onto the ‘dorsal attention network’ that 

includes the frontal eye fields, supplementary motor area, superior parietal lobule, and 

intra-parietal sulcus (Corbetta & Shulman, 2002; Fox et al., 2005). This network is 

implicated in externally direct cognition like visuospatial planning and attention 
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(Spreng, Stevens, Chamberlain, Gilmore, & Schacter, 2010), and activates in response to 

visual search and detection tasks (Corbetta & Shulman, 2002; Shulman, 2003). For 

instance, the dorsal attention network is recruited during the Tower of London task, 

which involves mentally simulating a series of future actions (Nitschke, Kostering, 

Finkel, Weiller, & Kaller, 2017). With regards to the current study, this network may 

underlie the visual construction of future outcomes during deliberation. This notion aligns 

with our decoding findings that indicated current and future representations were 

captured using masks containing portions of the dorsal attention network (i.e., Preview 

Task and deliberation and consumption overlap masks). 

 Comparable to the neural commonalities detected across real and imagined 

prospects, simulating future and recalling past events may recruit the same brain areas, 

particularly the hippocampus and parahippocampal cortex (Schacter & Addis, 2011). The 

hippocampus and surrounding medial temporal lobe structures are critical to imagining 

future events (Hassabis et al., 2007; Lebreton et al., 2013; Peters & Büchel, 2010a), and 

may allow us to evaluate future outcomes via mental simulation (Johnson & Redish, 

2007; Johnson et al., 2007). Our decoding analyses using hippocampus-containing 

networks revealed representations of the upcoming offer and next zone during 

deliberation. This suggests that the hippocampus, in conjunction with the dorsal attention 

network, supported the imagination of future possibilities.    

 We also examined neural decoding patterns within other relevant decision-making 

networks. The default mode network (DMN) revealed representations of the current zone 

during deliberation. This network is involved in self-referential and internally driven 

cognition. Core DMN structures like the medial prefrontal cortex (mPFC), precuneus, 
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and posterior cingulate cortex are involved in autobiographical memory and prospection 

(Spreng et al., 2009). The mPFC, in particular, is found to code subjective value, to 

integrate multiple factors for complex decisions, and to simulate how a future event 

might feel (Benoit, Szpunar, & Schacter, 2014; Peters & Büchel, 2010b). With respect to 

our findings, DMN voxels may simulate the affective qualities of an upcoming event by 

integrating relevant autobiographical and value information. In comparison, voxels 

within the salience network represented past outcomes and current options. This network, 

which includes the anterior cingulate cortex (ACC) and anterior insula, detects 

behaviorally relevant stimuli to help guide behavior (Menon & Uddin, 2010; Seeley et 

al., 2007). The anterior insula is also critical to conscious interoceptive monitoring 

(Critchley, Wiens, Rotshtein, Ohman, & Dolan, 2004; Kurth, Zilles, Fox, Laird, & 

Eickhoff, 2010; Zaki, Davis, & Ochsner, 2012). It is then possible that the salience 

network coordinates information regarding recent experiences and available options to 

direct attention to salient stimuli; in turn, this could optimize goal-directed behaviors 

aimed to increase desirable and decrease undesirable outcomes. Lastly, we found that the 

right fronto-parietal network, which includes right-lateralized middle frontal gyrus 

(MFG) and parietal structures, captured representations of all four zones. This network is 

involved in initiating and adjusting control in response to feedback (Dosenbach et al., 

2007; Dosenbach, Fair, Cohen, Schlaggar, & Petersen, 2008), spatial working memory 

(Ikkai & Curtis, 2011), and maintenance of object- and space-based attention (Scolari, 

Seidl-Rathkopf, & Kastner, 2015). In the current context, this network may support 

spatial attention and working memory by maintaining a broad representation of the task’s 

layout.  
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 A key finding revealed that one’s ability to accurately imagine options when 

deliberating predicted how well that subject generally made choices that led to rewards 

that they liked. A recent theory by Kurth-Nelson et al. (2012) may explain this result: the 

authors propose that the evaluation of outcomes entails a search process that indicates 

which rewards are available in the future. The authors posit that expected value hinges on 

how easily one can find a reward, with more temporally distant rewards being harder to 

find and thus devalued. Within this framework, subjects with poorer neural 

representations may fail to project themselves into the future, which is necessary for 

evaluating potential outcomes. The specific network implicated in this finding included 

regions engaged in the dorsal attention network, as well as bilateral portions of the 

anterior insula and hippocampus. As noted previously, these areas may support 

deliberation given their roles in episodic future thinking, visuospatial planning, and 

interoceptive monitoring.  

We also detected several cross-species parallels: First, reaction-time patterns in 

humans were analogous to rodent VTE behaviors during Restaurant Row, as indicated by 

longer reaction times on offers closer to threshold (i.e., more difficult choices; Steiner & 

Redish, 2014). Second, hippocampal activation scaled with choice difficulty during 

deliberation and consumption. In rodents, VTE occurs during deliberation and entails 

forward-hippocampal sequences that alternate between options (Johnson & Redish, 

2007). Taken together, VTE may represent a cross-species mechanism that underlies 

deliberation and prospection (Doll et al., 2015; Redish, 2016). In addition to the 

hippocampus, difficult choices recruited the ACC and MFG (including the dorsolateral 

prefrontal cortex [dlPFC]) more strongly during deliberation. These areas are 
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implicated in cognitive control and conflict monitoring, and might respond to the 

uncertainty and error potential of difficult trials (Botvinick, Cohen, & Carter, 2004; 

MacDonald, 2000); previous research also implicates the ACC in decision difficultly 

during a foraging task (Shenhav et al., 2014). Moreover, the MFG is theorized to initiate 

VTE (Redish, 2016). This follows from rodent findings that disrupting hippocampal 

representations actually increases VTE, making the hippocampus an unlikely candidate 

for initiating the VTE process (Bett, Murdoch, Wood, & Dudchenko, 2015; Robbe et al., 

2006). Instead, the rodent prelimbic cortex, arguably homologous to the human dlPFC, 

might initiate this process, given its role in outcome-dependent decisions and influence 

on goal-directed activity in the hippocampus (Dalley, Cardinal, & Robbins, 2004; Ito, 

Zhang, Witter, Moser, & Moser, 2015; Killcross & Coutureau, 2003; Sharpe & Killcross, 

2015; Spellman et al., 2015). Findings from the nonhuman primate literature that the 

dlPFC generates action plans prior to action execution further support this theory 

(Mushiake, Saito, Sakamoto, Itoyama, & Tanji, 2006; Saito, Mushiake, Sakamoto, 

Itoyama, & Tanji, 2005). Compared to deliberation, consumption led to more activation 

in the lateral orbitofrontal cortex (OFC) for difficult trials. This is also consistent with the 

rodent literature, which notes the OFC’s role in post-decisional outcome evaluation 

(Steiner & Redish, 2012; Stott & Redish, 2014).         

 One proposed distinction between real and imagined events is that imagined 

events are often comparative while actual experiences are not (Gilbert & Wilson, 2009). 

For example, students who imagined that they received a low grade predicted that they 

would feel worse if they expected a high grade than if they expected a low grade; 

however, students felt badly regardless of their expectation (Golub, Gilbert, & Wilson, 
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2009). This suggests that prospects contain comparative features that do not necessarily 

impact our reaction to the real experience. Our decoding results tell a similar story. We 

found that different neural systems represented different zones when making a choice, 

whereas all neural systems represented the current zone during reward receipt. This 

suggests that comparative processes were critical to deliberation but not consumption. 

Perhaps during consumption, the actual experience of the current reward is much more 

salient than the experience one is not having (in this case the alternative options), thus 

rendering comparisons less likely (Gilbert & Wilson, 2009). 

 

Conclusions 

 The current study employed a sequential experiential foraging paradigm to 

evaluate human deliberation. Our results indicated that different neural systems tracked 

past and future outcomes during the choice phase, while these systems always 

represented the current offer during reward receipt. Moreover, the capacity to represent 

outcomes during deliberation predicted overall decision-making abilities on this task. 

Lastly, with regards to cross-species parallels, humans demonstrated comparable 

behavioral and neural signatures of VTE, which could suggest a common mechanism that 

translates across humans and rodents.   
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3.5 Figures and Tables 

Figure 3.1. Deliberation versus Consumption Neural Activation 

 
 
(A) Main effects of deliberation (light blue) and consumption (red) from the main task. 
Choices and video viewing events recruit an overlapping set of regions (purple). (2) 
When compared to video viewing, stay choices more strongly activate voxels in several 
cognitive and sensory areas. 
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Figure 3.2. Preview Task Neural Activation and Decoding 
 

 
 
(A) Main effects of each video category during the Preview Task. (B) Minimal activation 
differences across categories. (C) Despite activation similarities, the four categories were 
dissociable using decoding methods. 
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Figure 3.3. Evidence of Current and Future Representations during Deliberation 
 

 
 
(A) Decoding using cumulative Preview Task activation mask indicated current 
representations during consumption versus future (next) representations during 
deliberation. (B) Decoding using the deliberation and consumption intersection mask, 
indicated current representations for consumption versus current and future 
representations during deliberation. Error bars reflect within-subject standard errors. 
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Figure 3.4. Large-scale Brain Networks Track Past and Future Representations 
 

 
 
(A) Decoding using three network-based masks (i.e., default mode, salient, and front-
parietal networks) represent the current category during consumption. (B) These same 
networks track different representations during deliberation. Specifically, the default 
mode network represents the current zone, whereas the salience network tracks the past 
(previous) and current zones, and the right fronto-parietal network represents all zones 
greater than chance.   

●
●

●●

●

●

●

●

0.10

0.15

0.20

0.25

0.30

0.35

Previous Current Next Opposite

Full Decis Time: RFrontPar, N=22

●

●

●

●

●

●

●

●

0.10

0.15

0.20

0.25

0.30

0.35

Previous Current Next Opposite

Full Decis Time: Salience, N=22

(A)	Decoding	with	Large-scale	Brain	Networks	during	ConsumpEon		
Next%Opposite%

Previous% Current%

●

●

●●

●

●

●

●

0.0

0.2

0.4

0.6

Previous Current Next Opposite

Full Video Time: DMN, N=22

●

● ●
●●

●

●

●

0.0

0.2

0.4

0.6

Previous Current Next Opposite

Full Video Time: Salience, N=22

●

●

●
●

●

●

●
●

0.0

0.2

0.4

0.6

Previous Current Next Opposite

Full Video Time: RFrontPar, N=22

Pr
ob

ab
ili
Ee

s	+
/-
	S
E	

Default	Mode	 Salience	 Right	Fronto-parietal	

●

●
●●

●

●

●

●

0.10

0.15

0.20

0.25

0.30

0.35

Previous Current Next Opposite

Full Decis Time: _DMN, N=22

Pr
ob

ab
ili
Ee

s	+
/-
	S
E	

(B)	Decoding	with	Large-scale	Brain	Networks	during	DeliberaEon	

●

●

●

●

●

●

●

●

0.0

0.2

0.4

0.6

0.8

Previous Current Next Opposite

Full Video Time: CommonMask, N=22ConsumpLon$

LocaLon$

●

●

●●

●

●

●

●

0.0

0.2

0.4

0.6

0.8

Previous Current Next Opposite

Full Decis Time: CommonMask, N=22DeliberaLon$ Next%Opposite%

Previous% Current%

LocaLon$

Pr
ob

ab
ili
Le

s$+
/?
$S
E$

Dance%
%

Bike%Accidents%
%

Ki\ens%
%

Landscape%
%

Common%Mask%

Default	Mode	 Salience	 Right	Fronto-parietal	

Default	Mode	
Network	Mask	

Right	Fronto-
parietal	Mask	

Salience		
Network	Mask	



	

122	

Figure 3.5. Decoding Accuracy during Deliberation Predicts Decision-making  
 

 
 
Higher decoding accuracies during deliberation (for the deliberation and consumption 
mask) positively correlated with rating validity correlations, i.e., correlation between 
delay thresholds and average category ratings.  
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Figure 3.6. Neural and Behavioral Evidence of ‘Vicarious Trial-and-Error’  
 

 
 
(A) Subjects were slowest to make a decision for offers closer to threshold (indicated by 
vertical line at 0). (B) Activation related to difficult choices during deliberation (top) and 
consumption (bottom). (C) Contrasts reveal which cognitive and sensory areas are 
associated with difficult choices during deliberation versus consumption.
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Table 3.1A. Consumption Decoding using Task-based Masks 
 

 

Zone Comparisons 
 

B 
 

CI 

 

P-value 
 

 

Preview Task Mask  
   Current > Previous 
   Current > Next 

 

 
-.45 
-.34  

 

 
[-.48, -.41] 
[-.44, -.37] 

 

 
<.001 
<.001 

   Current > Opposite 
 
Deliberation + Consumption Mask 
   Current > Previous 
   Current > Next 
   Current > Opposite 

-.48 
 
 

-.39 
-.33 
-.42 

[-.52, -.45] 
 
 

[-.43, -.35] 
[-.37, -.30] 
[-.26, -.38] 

<.001 
 
 

<.001 
 <.001 
<.001 

    
 

B: unstandardized coefficient; CI: confidence interval.  
 
 
Table 3.1B. Deliberation Decoding using Task-based Masks 
 

 

Zone Comparisons 
 

B 
 

CI 

 

P-value 
 

 

Preview Task Mask  
   Next > Previous 
   Next > Current 

 

 
-.05 
-.04  

 

 
[-.08, -.02] 
[-.06, -.01] 

 

 
.002 
.01 

   Next > Opposite 
 
Deliberation + Consumption Mask 
   Current > Previous 
   Current > Next 
   Current > Opposite 

-.05 
 
 

-.03 
-.01 
-.04 

[-.08, -.02] 
 
 

[-.06, .00] 
[-.04, .01] 
[-.06, -.01] 

.002 
 
 

.03 
 .32 
.006 

    
 

B: unstandardized coefficient; CI: confidence interval.  
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Table 3.2A. Consumption Decoding using Large-scale Network Masks 
 

 

Zone Comparisons 
 

B 
 

CI 

 

P-value 
 

 

Default Mode Network  
   Current > Previous 
   Current > Next 
   Current > Opposite 

 

 
-.33 
-.30 
-.34  

 

 
[-.37, -.30] 
[-.34, -.26] 
[-.38, -.30] 

 

 
<.001 
<.001 
<.001 

 
Salience Network  
   Current > Previous 
   Current > Next 
   Current > Opposite 

 
 

-.18 
-.21 
-.20  

 
 

[-.21, -.14] 
[-.25, -.17] 
[-.24, -.16] 

 
 

<.001 
<.001 
<.001 

 
Right Fronto-parietal Network  
   Current > Previous 
   Current > Next 

   Current > Opposite 
 

 
 

-.29 
-.31  

-.25 

 
 

[-.33, -.25] 
[-.35, -.27] 

[-.30, -.22] 

 
 

<.001 
<.001 

<.001 
 

 

B: unstandardized coefficient; CI: confidence interval.  
 
 
Table 3.2B. Deliberation Decoding using Large-scale Network Masks 
 

 

Zone Comparisons 
 

B 
 

CI 

 

P-value 
 

 

Default Mode Network  
   Current > Previous 
   Current > Next 
   Current > Opposite 

 

 
-.03 
-.03 
-.03  

 

 
[-.06, .00] 
[-.06, -.01] 
[-.05, .00] 

 

 
.04 
.02 
.06 

 
Salience Network  
   Current > Previous 
   Current > Next 
   Current > Opposite 

 
 

.00 
-.05 
-.03  

 
 

[-.03, .03] 
[-.09, -.02] 
[-.06, -.01] 

 
 

.99 
<.001 

.03 
 
Right Fronto-parietal Network  
   Current > Previous 
   Current > Next 

   Current > Opposite 
 

 
 

-.02 
-.01 

-.02 

 
 

[-.05, -.01] 
[-.03, -.02] 

[-.05, .01] 

 
 

.19 

.67 

.21 

 

B: unstandardized coefficient; CI: confidence interval.  
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3.6 Supplemental Materials 

Validity Analyses 

Choice behaviors conformed to a sigmoid pattern, where subjects typically 

accepted offers above threshold (i.e., 0), and declined those below threshold 

(Supplemental Figure 3.3A). This suggests our threshold metric was a good indicator of 

decision behaviors. Comparable to the previous studies, we correlated the four category 

thresholds with average category ratings and post-test category rankings separately. We 

found that 76% of the average rating correlations were above 0.5 and 88% of the post-test 

ranking correlations were above 0.5 (Supplemental Figure 3.3B). These values are well 

within the range of prior reports (Abram et al., 2016).    

 

Decoding using Preview Task Residual Mask 

  Given the commonalities between the two task-derived decoding masks, we 

produced an additional Preview Task residual mask that excluded voxels contained in the 

deliberation and consumption overlap mask (Supplemental Figure 3.4A). Using this mask 

we most strongly detected future representations of the next zone during deliberation 

(mean = 0.25, SE = 0.01), versus representations of the current zone during consumption 

(mean = 0.53, SE = 0.01; Supplemental Figure 3.4B; Supplemental Tables 3.1A and 

3.1B). This suggests the areas unique to activation during reward receipt are particularly 

pertinent to future projections.  

 

Value General Linear Models 

We were also interested in whether similar neural structures were evoked when 



	

127	

evaluating an offer at the choice point versus reflecting on the experience of that reward 

after consumption. To this end, we constructed three GLMs to assess activation related to 

value (i.e., threshold – delay) and likability ratings: the first weighted choice and 

consumption events by value, the second by average category rating, and the third by the 

actual rating. The first two models included four regressors (choice, delay, video 

viewing/rating, and travel), and the six standard motion parameters. For the decision 

value model, we weighted each choice and video viewing event by the offer value for that 

trial; this meant that trials with delays further below the threshold were weighted more 

highly. For the average rating model, we weighted choice and video-viewing events by 

the average rating for that category. This allowed us to model both stay and skip trials in 

the decision phase, given that skip trials did not have an associated rating. Both models 

isolated the last decision for the choice regressor, and the first second of the rating for the 

video viewing/rating regressor (i.e., each event was approximately 5-sec as the video 

viewing portion was 4-sec). This approach was taken given correspondence between 

value and choice reaction times (see Methods, VTE General Linear Model), as well as 

correspondence between ratings and rating reaction times.7 

Lastly, the actual rating model included five regressors, with skip and stay 

included as separate regressors, along with the six motion parameter regressors. Only stay 

choice and video viewing events were weighted by the corresponding rating. We again 

isolated stay choice events to the last second, and video viewing/rating events to that first 

second.  

																																																								
7	Mixed-effects	linear	models	demonstrated	a	negative	association	for	ratings	and	
rating	reaction	times	(β	=	-0.08,	p	<	0.001),	suggesting	subjects	took	longer	to	make	
lower	ratings.	
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As shown in Supplemental Figure 3.5, the value systems recruited similar neural 

structures, such as the ACC, MFG, and lingual gyrus. Contrasts revealed greater 

activation during deliberation than consumption for trials weighted by value 

(Supplemental Figure 3.5A) and average rating (Supplemental Figure 3.5B); more 

specifically, this model demonstrated increased activation in the ACC, mPFC, and MFG 

(not pictured) during deliberation, versus deactivation in these areas during consumption. 

The average rating-weighted model similarly demonstrated increased activation during 

choice in the ACC and MFG, although the ACC did not deactivate during consumption 

as found in the value-weighted model. It is possible that the value metric captures 

evaluative processes most critical to the decision phase, hence scaling with deactivation 

in reward valuation areas during consumption. In contrast, the rating metric may hold 

value during both deliberation (e.g., “how much do I typically like kitten videos?”) and 

consumption (e.g., “how much did I enjoy that kitten video?”) phases; this could account 

for the fact that the valuation neural structures often showed less but not decreasing 

activation during consumption (most evidence in Supplemental Figure 3.6B, which 

depicts the actual ratings). We also note that for all three of the value models, only the 

decision greater than video viewing contrast was significant. This could suggest that, in 

general, valuation systems are more strongly engaged when making a decision than 

passively consuming a reward.    
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Supplemental Figure 3.1. MRI Web-Surf Task Layout and Flow-diagram 
 

 

(A) Flow diagram illustrates differences between a stay and skip trial. If the subject stays 
(1), they wait through the delay, view the 4-sec video clip (2), and rate the video (3). If 
they instead choose to skip, they proceed through the cost phase (4), and arrive at the next 
offer (5). (B) Schematic of Web-Surf Task. Subjects had 35 minutes to cycle between the 
four video galleries in the depicted order. 
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A. Significance  
 

Although animal models of addiction are considered to be among the most developed and valid models 
of psychopathology, research still struggles to translate this knowledge into effective treatments.10 As a result, 
addiction continues to impose substantial psychological and financial burdens on society. It has been theorized 
that the poor clinical efficacy of many translational interventions targeting cognitive disorders may be, in part, 
attributed to assumptions that humans and nonhuman animals recruit the same cognitive mechanisms.2,11 
Thus, identifying comparable decision-making systems across species is critical to pre-clinical and clinical lines 
of research. The verification of similar systems would propel substance abuse research by closing the division 
between animal models and treatment initiatives. Unfortunately, translating available animal models of 
decision-making for human use, and vice versa, are difficult because of species’ different ethologies.  

Delay-discounting models are often used to assess decision-making in various species; however, the 
methods used to elicit such behaviors in humans and nonhuman animals often differ considerably. Typical 
delay-discounting paradigms solicit a forced-choice between two reward options of different value that are 
available at different time delays. Discounting tasks for nonhuman animals are experiential, meaning rats wait 
out real-time delays and physically press a lever or run through a maze to receive a reward, which is usually a 
primary reinforcer, like food.12-14 In contrast, experiments with humans commonly ask participants to make 
abstract choices about future gains (e.g. “Would you prefer $10 now, or $20 in 3 weeks?”), which are most 
often secondary reinforcers, like money.15 Two central conceptual difficulties arise from using traditional 
discounting models to characterize decision-making across species: 1) most human tasks lack an equivalent 
experiential design with real-time delays and primary reinforcement (with some exceptions16,17), and 2) most 
human tasks are limited to forced-choice designs, when go/no-go foraging paradigms may capture a wider 
range of human decision-making abilities.4,7 These methodological discrepancies are important as they may 
contribute to incompatibilities between tasks and objects of study. Improving translational human paradigms 
can establish external validity with animal research, and allow for more efficient intervention development. 

To this end, I propose to study a novel experiential foraging task for humans that i) translates 
across species, ii) integrates natural human ethology into the design, and iii) captures meaningful 
personality differences. The proposed human task was translated from a novel go/no-go foraging paradigm, 
called “Restaurant Row”.8 During a session, a rat had 60 minutes to cycle through a circular track and collect 
food rewards from four feeders. Each feeder (or “restaurant”) provided a different flavor of food pellet after a 
random time delay (Figure 1). Because of the finite time, an economically behaving rat waited for valuable 
offers and skipped nonvaluable offers, where value reflected 
personal preferences. Preferences were “revealed” by a rat’s 
willingness to wait out a longer delay for a preferred flavor. 
Behavioral and neural signatures of emotional constructs (e.g. 
regret, disappointment) were observed over consecutive 
decisions: Regret was defined as sequences where a rat 
skipped a low-cost offer only to encounter a high-cost offer. In 
these instances, the rat recognized its own action yielded a 
poorer outcome than the alternative. Disappointment was 
defined as two possible sequences: 1) the rat stayed on a low-
cost offer only to encounter a high-cost offer, or 2) the rat 
skipped a high-cost offer only to encounter another high-cost 
offer. In contrast to regret trials, the rat had made choices 
consistent with its preferences. Thus, although disappointment 
also entailed unfavorable situations, the source was not 
attributed to the subject’s own error. Behaviorally, rats showed 
regret over missed opportunities by looking back to the 
previous (skipped) feeder. Their neural firing patterns were 
also representative of the previous feeder on these trials; 
neural signatures provided evidence for mental “time travel”, 
where consistent firing patterns reflected current and past 
choices. In other words, neural patterns represented a rat’s 
mental road map as it moved through the task. The ability of 
this paradigm to capture deliberation and emotional constructs 
in rats made it a strong candidate for translation.  

Chocolate)Unflavored)

Banana) Cherry)
Figure 1. Schematic of Restaurant-Row task. 
Each feeder provided two 45 mg pellets after 
a variable delay. Delay was indicated by a 
tone when the rat entered the zone (higher 
pitch indicated a longer delay). If a rat stayed, 
the delay counted down with consecutively 
lower tones until reward delivery. If a rat 
skipped, it traveled to the next feeding zone 
and encountered a different flavor and a new 
random delay time.  
!)
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Supplemental Figure 3.2. Deliberation + Consumption Overlap for Difficult Choices  
 

 
 
Difficult decisions recruit overlapping areas during the choice and video viewing phases.

Choice	and	Video	Viewing	by	Difficulty	(IntersecEon)	

z-threshold	>	3.09,	cluster	threshold	p	<	0.01		

Supplemental	VTE	Figure	

A R
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Supplemental Figure 3.3. Task Validity  
 

 
 
(A) Choice pattern conformed to a sigmoid shape, suggesting that subjects typically 
declined low-valued offers (i.e., left of the 0) and accepted high-valued offers (i.e., right 
of the 0). (B) Distribution of validity correlations that relate delay thresholds with 
average category ratings (left) and post-test category rankings (right).  
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Supplemental Figure 3.4. Evidence of Future Representations during Deliberation 
 

 
 
(A) Preview Task residual mask excluded voxels that were also contained in the 
deliberation and consumption overlap mask. (B) Decoding using the residual mask 
revealed current representations during consumptions versus the strongest representations 
of future (next) during deliberation. 
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Supplemental Figure 3.5. Value and Ratings Evoke Similar Neural Activation 
 

 
 
(A) Deliberation and consumption activation associated with higher valued offers. 
Choices more strongly activate frontal regions than video viewing. (B) Deliberation and 
consumption activated associated with higher average category ratings. A similar pattern 
emerged, with stronger activation in frontal regions for the choice phase.  
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Supplemental Figure 3.6. Neural Activation Driven by Actual Ratings  
 

  
 
(A) Main effects for stay choice and video-viewing events associated with higher rated 
rewards. (B) Contrasts for stay choices greater than video viewing revealed stronger 
activation across a variety of cognitive and sensory areas.   
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Supplemental Table 3.1A. Consumption Decoding using Residual Mask 
 

 

Zone Comparisons 
 

B 
 

CI 

 

P-value 
 

 

 Current > Previous 
 Current > Next 

 

-.38 
-.35  

 

[-.42, -.34] 
[-.39, -.32] 

 

<.001 
<.001 

 Current > Opposite -.46 [-.42, -.34] <.001 
    
 

B: unstandardized coefficient; CI: confidence interval.  
 
 
Supplemental Table 3.1B. Deliberation Decoding using Residual Mask 
 

 

Zone Comparisons 
 

B 
 

CI 

 

P-value 
 

 

 Next > Previous 
 Next > Current 

 

-.04 
-.03 

 

[-.06, -.01] 
[-.06, .00] 

 

.006 
.01 

 Next > Opposite -.05 [-.08, -.03] <.001 
    
 

B: unstandardized coefficient; CI: confidence interval.  
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Supplemental Table 3.2A. Decoding Accuracies during Deliberation 
 

 

Mask 
 

B 
 

P-value 
 

 

Cumulative Preview Task 
Deliberation + Consumption 

 

.19 

.47  

 

.19 
.006 

Default Mode Network 
Salience Network 
Right Fronto-parietal Network 

.13 

.22 

.12 

.37 

.13 

.81 
   
 

B: unstandardized coefficient 
 
 
Supplemental Table 3.2B. Decoding Accuracies during Consumption 
 

 

Mask 
 

B 
 

P-value 
 

 

Cumulative Preview Task 
Deliberation + Consumption 

 

.13 

.08  

 

.40 

.59 
Default Mode Network 
Salience Network 
Right Fronto-parietal Network 

.07 

.17 

.09 

.66 

.22 

.54 
   
 

B: unstandardized coefficient 
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CHAPTER 4: LEARNING FROM REGRET: DISSOCIATING LIKING FROM 

WANTING IN HUMAN NATURALISTIC FORAGING 

 

Foreword: This chapter was written in collaboration with A. David Redish and Angus W. 

MacDonald, who edited versions of the manuscript.  

 

Abstract 

Both emotion and motivation are fundamental, but arguably separable, 

contributors to human decision-making. Prominent hypotheses suggest that liking of 

reward is dissociable from the pursuit of reward in the decision-making process. These 

components have separable neural substrates, and reward enjoyment and pursuit are 

driven apart in addiction. Using a human foraging paradigm, we report for the first time 

that these processes are linked within the context of regret. More specifically, reward 

likability (i.e., ratings) following regret-inducing experiences directly predicted the 

pursuit of future choices. However, reward likability and choice behaviors were 

dissociated following situations that invoked disappointment or relief. Additionally, 

highly impulsive individuals showed less risk-aversion after regret-inducing experiences, 

but no differences in their levels of reward likability under the same conditions. This 

suggests that impulsivity is specifically related to aberrant pursuit-of-reward learning, 

particularly when choices that result in bad outcomes lead to regret.    
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4.1 Introduction 

Affective processes have predictable and pervasive influences on human decision-

making (Lerner, Li, Valdesolo, & Kassam, 2015); however, the extent to which affect 

and motivation are separable processes within decision-making remains disputed (Chiew 

& Braver, 2011; Dolan, 2002). For example, the incentive salience model posits a 

dissociation between the “liking” (i.e., subjective pleasure) and “wanting” (i.e., 

motivation towards reward) components of reward, because these processes rely on 

dissociable neural mechanisms (Berridge & Robinson, 1995, 2003). The construct of 

regret may bridge these two facets when there is disagreement between liking and 

wanting, such as the regret that one experiences when a new purchase does not fulfill 

expectations from its advertisement. 

Regret exists at the intersection of value and agency: it occurs when an individual 

receives an unfavorable outcome for which they are responsible, and entails the 

realization that an alternative (counterfactual) action would have yielded a preferred 

result (Bell, 1982). Regret is often contrasted with disappointment, which follows the 

receipt of a less valuable outcome but is not the result of an individual’s mistaken action 

(Bell, 1985; Loomes & Sugden, 1986). Consequently, agency and counterfactual thinking 

distinguish regret and disappointment, given that disappointment lacks the sense of 

personal responsibility and recognition of preferred alternatives that are fundamental to 

regret (Coricelli et al., 2005). In response to regret, individuals often learn to make 

choices that minimize future negative outcomes (Coricelli, Dolan, & Sirigu, 2007; 

Loomes & Sugden, 1982), while the inability to learn from regret may be integral to 

certain psychopathologies like addiction (Chiu, Lohrenz, & Montague, 2008). These 
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learning mechanisms arguably manifest as regret-aversion but not necessarily risk-

aversion, as regret-minimizing choices can entail risk-avoidance or risk-seeking 

behaviors (Zeelenberg, Beattie, van der Plight, & de Vries, 1996; Zeelenberg & Pieters, 

2004; Zeelenberg & van Dijk, 1997).  

  We previously devised a human foraging paradigm, called the “Web-Surf Task” 

(Abram et al., 2016), based on the rodent neuroeconomic task called Restaurant Row 

(Steiner & Redish, 2014); we adapted Restaurant Row as it revealed counterfactual 

thinking in rats through sequential decisions (Steiner & Redish, 2014). These parallel 

tasks entailed serial stay/skip choices regarding offers of real-time delays and primary 

rewards (i.e., food in Restaurant Row, video clips in the Web-Surf Task). The inclusion 

of experiential rewards represents a key difference in our task design as compared to 

traditional decision tasks, since previous decision tasks have largely relied on abstract 

secondary rewards (Reynolds, 2006a). We observed comparable decision valuation 

systems across species, as well as high correspondence between choices and 

consummatory responses among humans (i.e., delay thresholds related to video ratings). 

This work bridged cross-species models of decision-making, while also demonstrating 

the Web-Surf Task’s capacity to dissociate wanting and liking in humans. However, 

because humans had limited experience on the task, they did not show the sequential 

regret effects seen in rats. We therefore designed a modified version of the Web-Surf 

Task that introduced counterfactual outcomes using risky offers.  

In the risk-variant of the Web-Surf Task (Figure 4.1A), humans encountered 

serial offers that presented a set of possible delays (Figure 4.1B). The true delay was only 

revealed if the subject elected to stay. Rewards included 4-second video clips from four 
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categories. Using the risk trial example in Figure 4.1B, the good outcome is receipt of the 

5-second delay, the bad outcome receipt of the 15-second delay, and the mid outcome 

receipt of the 10-second delay. In comparison, non-risk trials presented offers with three 

identical delays. Subjects made stay/skip decisions as to whether to accept an offer or try 

their luck at the next category. They also rated how much they liked each video clip they 

saw. As in the original task, humans had a fixed amount of time to forage; this means that 

subjects should have made economically maximizing decisions and stayed when the 

subjective value of an offer exceeded its cost.  

We used this novel risk task to resolve the question of how post-outcome 

emotions impacted wanting and liking in a foraging environment. Our results revealed 

that immediate consummatory responses and pursuit of future rewards were dissociated, 

except within regret-inducing situations (i.e., bad outcomes resulting from personal 

agency). Additionally, regret fostered risk-aversion following negative affective 

experiences and risk seeking following positive affective experiences, suggesting that 

subjects became regret-averse but not necessarily risk-averse. We then asked whether 

individual differences in impulsivity differentially tracked these decision systems. Our 

innovative approach allowed us to see that impulsive individuals may not differ in how 

they feel regret; rather, they fail to learn from regret-inducing situations. 

 

4.2 Methods 

Subjects 

A sample of 105 undergraduate students (81% female, average age 20.2 years) 

from the University of Minnesota completed the current study and received 
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compensation in the form of extra credit towards psychology courses. The ethnic 

breakdown of the sample was as follows: 63% Caucasian, 26% Asian, 4% Black/African 

American, 3% Hispanic, 1% American Indian/Alaskan Native, 1% Native 

Hawaiian/Pacific Islander, 2% other. The University of Minnesota Institutional Review 

Board approved the study, and all subjects provided written informed consent.  

 

Experimental Design 

Subjects had 40 minutes to travel between galleries that provided video rewards 

from the four categories described in Abram et al. (2016): kittens, dance, landscapes, and 

bike accidents. Comparable to the original task, offers were presented in text and a 

webpage-like progress bar. Video rewards lasted four seconds and subjects rated each 

viewed video using a 1-4 system (4 = highest) according to how much they liked that 

video. Subjects advanced between galleries by clicking on the numbers 1-4 as they 

randomly appeared around a gray screen, with numbers in a slightly darker shade of gray 

to increase difficulty. At the end of the session, subjects ranked the categories 1-4. A stay 

choice was coded 1 and a skip choice coded 0.  

Delays ranged 3 to 30 seconds. Risk level was reflected by the width of an offer 

and was either 0 (non-risk) or greater than 0 (risk). Thus, for a non-risk trial, the lower, 

mid, and upper values were equivalent, e.g., “Video in 7, 7, or 7 secs…” All other offers 

were considered risk trials. We did not allow for a risk of one second, as this would have 

led to a non-integer mid value, e.g., “Video in 5, 5.5, or 6 secs…” 
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Trait-Level Impulsivity Measure 

Subjects completed the 100-item version of the Externalizing Spectrum Inventory 

(ESI; Krueger, Markon, Patrick, Benning, & Kramer, 2007), which captures general 

disinhibition processes (e.g., theft, irresponsibility), substance use/abuse, and callous 

aggression.8  

 

Delay and Probability Discounting 

 A computerized delay- and probability-discounting paradigm was administered.9 

This entailed subjects making a series of binary choices between monetary rewards of 

different reward magnitudes associated with different temporal delays (e.g., “Would you 

prefer $5 now or $10 in two weeks”) or probabilities (e.g., “Would you prefer $5 for sure 

or $10 with a 75% chance”). Offers ranged from 50 cents to $10. The task lasted 

approximately 10 minutes. A discounting rate (or k-value) was computed for the delay 

and probability trials separately using a hyperbolic function (Ainsle, 1975), yielding two 

k-values per subject. Higher k-values reflect more rapid discounting of delayed rewards, 

and have been linked with impulsivity (Bickel et al., 2012).  

 

Delay Threshold Computations 

Subject-specific delay thresholds were computed separately for each trial using a 

leave-one-out approach; this yielded four thresholds, one per category. Thresholds were 

indicative of revealed preferences, reflecting the delay time at which a subject reliably 

began to skip offers for a particular category. To obtain the threshold for triali, we fit a 

																																																								
8	Missing	self-report	data	for	1	subject.		
9	Missing	delay-	and	probability-discounting	data	for	3	subjects.	
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Heaviside step function to all trials in categoryx excluding triali. This produced a vector 

of thresholds with length equal to the number of trials in categoryx. We used a Heaviside 

step function as an alternative to the logistic fit function described in Abram et al. (2016), 

as the Heaviside approach is better equipped to handle extreme cases (i.e., when a subject 

stays or skips all offers in a category). In such instances, the Heaviside step function 

produces a reasonable value (e.g., 0 or 30), whereas the logistic fit function is likely to 

produce a value approaching infinity. Importantly, thresholds were computed using the 

mid value of each offer for risk trials only. Non-risk trials were then assigned a threshold 

equal to the mean of the threshold vector for the respective category.  

 

Value Computations 

Expected value for risk trials was calculated as follows:  

⅓ × [(Thresholdt – Lower Delayt) + (Thresholdt – Mid Delayt) + (Thresholdt – Upper Delayt)], 

where t refers to trial (e.g., Figure 4.1C). Expected value for non-risk trials was computed 

as the category-specific threshold minus delay, given that all delays in a non-risk offer 

were equal. Actual value for all trials equated to the category-specific threshold minus the 

delay received (e.g., Figure 4.1C). Values ranged -30 to 30, and a value of 0 was equal to 

threshold.  

 

Group-Level Deliberation and Affective Value Models  

We evaluated relations between framing (i.e., good/bad outcome), agency (i.e., 

risk/non-risk), and deliberative choice via linear mixed-effects models. We fit models 

using the MCMCglmm package in R, which uses Markov chain Monte Carlo 
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techniques (Hadfield 2010; R Core Team, 2015); for plotting purposes, we used the lmer 

and lsmeans packages (Bates, 2007; Lenth 2016).10 The main model included choice at 

the current trial as the independent variable, actual value received and outcome type at 

the previous trial as fixed-effect dependent variables, and subject as a random effect: 

[Choicet ~ actual valuet-1 + outcome typet-1 + (1|subject)]. This model included risk trials 

for which the subject stayed, and the following trial was also a risk trial. This allowed us 

to evaluate whether the type of outcome on the previous trial influenced subsequent risk 

seeking or aversion. Note that higher values in Figures 4.2A and 4.2B indicate an 

increased likelihood of staying.  

 Follow-up models were used to clarify the influence of framing and agency on 

choice, using trials matched by actual value received on the previous trial; trials were 

matched on a subject-by-subject basis and then combined for the group analysis. The first 

subset included trials for which subjects received the good or bad outcome (i.e., stayed on 

a risk trial) and encountered risk on the following trial. The second subset included trials 

for which subjects stayed and received the bad outcome or stayed on a non-risk trial of 

equivalent value, and encountered risk on the subsequent trial. Because each subject’s 

contributing trials only included a portion of the possible values, we included actual value 

as a nested variable in the following model: [Choicet ~ actual valuet-1 + outcome typet-1 + 

actual valuet-1:outcome typet-1 + (actual valuet-1|subject)]. We included the interaction 

term, as we were particularly interested in whether framing effects or agency shaped 

value-by-choice sequencing effects.  

																																																								
10	We	note	that	the	parameter	estimates	obtained	using	the	MCMCglmm	and	lmer	
packages	were	nearly	identical.		
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We carried out a similar approach to evaluate influences on the liking system. The 

main rating model included mean-centered rating as the independent variable (i.e., 

centered to the average of the respective category), actual value and outcome type at the 

previous trial as fixed-effect dependent variables, and subject as a random effect: [Ratingt 

~ actual valuet + outcome typet + (1|subject)]. This model included risk trials for which 

the subject stayed. We also produced two follow-up subsamples of trials matched by 

actual value at the previous trial; this was to compare ratings that followed good versus 

bad outcomes and ratings that followed bad outcomes versus non-risk offers. We fit the 

following model using each of the subsets described above: [Ratingt ~ actual valuet-1 + 

outcome typet-1 + actual valuet-1:outcome typet-1 + (actual valuet-1|subject)].  

 Lastly, we produced an integrated mixed-effects model that examined direct 

relations between deliberative choice and affective value, while considering the effects of 

framing and agency. In particular, we were interested in whether affective responses 

interacted with actual value or offer type when predicting subsequent decisions (building 

off the prior choice model detailed above). This model then regressed choice on the 

current trial, on actual value, mean-centered rating, and outcome type of the previous 

trial, two interaction terms, and subject as a random effect: [Choicet ~ actual valuet-1 + 

ratingt-1 + outcome typet-1 + actual valuet-1:ratingt-1 +  actual valuet-1:outcome typet-1 + 

(1|subject)]. In this model, outcome type coded good outcomes, bad outcomes, and non-

risk offers; this metric then reflected the framing and agency manipulations.  

 

Subject-Specific Deliberative Choice and Reward Likability Models 

We fit subject-specific models based on the main choice and rating group-level 
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models. We first regressed choice on the actual value and outcome type of the prior trial: 

[Choicet ~ actual valuet-1 + outcome typet-1]. We extracted the unstandardized outcome 

type coefficient that reflected one’s likelihood to stay following receipt of the good 

versus bad outcome, with higher values indicating an increased tendency to stay after 

receiving the bad outcome. For the rating model, we regressed mean-centered ratings on 

the actual value and outcome type of the prior trial: [Ratingt ~ actual valuet-1 + outcome 

typet-1]. We again extracted the unstandardized outcome type coefficient for good versus 

bad outcomes, with higher coefficients reflecting better ratings following the bad 

outcome.11  

Using the extracted coefficients, we assessed the extent to which subjects’ 

behavioral patterns corresponded with trait-level impulsivity (i.e., ESI total scores). We 

computed two partial correlations that controlled for age, sex, and ethnicity. We included 

these demographic covariates based on prior research linking these variables with self-

report and/or behavioral impulsivity measures (de Wit et al., 2007). Partial correlations 

were calculated via robust regression methods to reduce the influence of outliers. ESI 

scores were log-transformed to improve normality. 

 

Binary Choice Comparison Models 

To compare parameters derived from the Web-Surf Task versus the discounting 

paradigm, we computed three robust partial correlations. The first two correlations 

predicted total ESI scores from the log-transformed delay and probability k-values,12 

																																																								
11	We	excluded	1	subject	with	a	coefficient	less	than	4	standard	deviations	below	
the	mean.	
12	We	excluded	9	subjects	with	invalid	k-values	(discounting	rates	of	0).		
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while controlling for age, sex, and ethnicity. The third tested whether the subject-level 

coefficient from the Web-Surf Task that indicated sequencing responses following receipt 

of a good versus bad outcome still predicted ESI scores, after controlling for the two k-

values and the age, sex, and ethnicity covariates.    

 

4.3 Results 

Regret Influences Deliberation and Reward Likability 

We first tested how post-outcome emotions impacted deliberative decisions and 

ratings via framing effects and degree of agency. Here, framing effects were specific to 

risk trials, where a given delay was framed as good, bad, or in-between (mid) depending 

on its placement within an offer. We assessed the effects of agency by comparing risk 

and non-risk trials that were matched by actual value (i.e., value computed using the true 

delay), where the true delay was only known at the outset of the non-risk trials.  

We defined regret-inducing situations as one in which the subject stayed on a risk 

trial and received the bad outcome; we note that our definition derives from an offer’s 

outcome type but not value, meaning that a regret trial could have an actual value above 

0. In regret-inducing situations, counterfactual thinking represented knowledge of the 

better alternatives from a given offer, where the alternatives included receipt of the good 

or mid outcomes from that offer. We contrasted these trials with those expected to 

provoke disappointment, in which the subject accepted a non-risk offer of equivalent 

value; however, because the true delay was known during the choice phase, there was no 

mismatch between the outcome and a known and better alternative within that offer (thus 

differentiating regret and disappointment). We also compared regret-inducing situations 
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to those characterized by relief, where the subject received the good outcome on a risk 

trial.  

 Regarding framing and agency, we examined whether the type of outcome on the 

previous trial influenced subsequent choices. When controlling for actual value, subjects 

were less likely to accept a successive risky offer if they previously received a bad versus 

good outcome (Figure 4.2A; Table 4.1); importantly, this effect was not better explained 

by global risk-aversion trends or trial-specific risk-aversion (see Supplemental Materials, 

Global Risk-Aversion Confound Analyses and Trial-Specific Risk-Aversion Confound 

Analyses). To clarify this result, we produced a subset of data that matched good and bad 

outcomes by actual value, on a subject-by-subject basis. The top graph in Figure 4.2B 

illustrates the interaction between outcome type and value for good versus bad outcomes 

(Supplemental Table 4.1A), showing that the negative framing of a previously bad 

outcome impacted relations between value of the previous trial and choice on the current 

trial (B = 0.015, CI = [0.006, 0.023], p < 0.001). More specifically, we found that 

subjects became risk-averse after a bad offer of lower value, and risk-seeking after a bad 

offer of higher value. These analyses demonstrated the predicted relationship to regret. In 

contrast, we did not detect an association between the previous trial’s value and 

successive choice after receipt of a good outcome (B = 0.000, CI = [-0.010, 0.009], p = 

0.96).  

 Next, we assessed the role of agency on deliberative choice, using a data subset 

that matched bad outcomes and non-risk trials by actual value, on a subject-by-subject 

basis. The bottom of Figure 4.2B highlights the impact of agency on subsequent choice 

(Supplemental Table 4.1B), with a positive association between the previous trial’s 
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value and current choice for bad outcomes (B = 0.012, CI = [0.004, 0.021], p = 0.002), 

but no relation for equivalently valued non-risk offers (B = -0.001, CI = [-0.009, 0.007], p 

= 0.83). These findings again show that regret induced risk-seeking and risk-averse 

behaviors. In contrast, relief and disappointment-inducing situations did not influence 

relations between value and choice.  

 But to what extent do post-outcome emotions contribute to our liking of a reward? 

To address this question, we carried out comparable analyses on the video ratings. When 

evaluating framing effects on ratings, we observed an opposite pattern, with subjects 

rating videos that followed a bad outcome more highly than those that followed a good 

outcome (Figure 4.2C; Table 4.2); again, this result was not accounted for by global 

trends of likability ratings (see Supplemental Materials, Global Risk-Aversion Confound 

Analyses). Follow-up analyses using value-matched trials revealed an interaction between 

actual value and rating for bad versus good outcomes (Supplemental Table 4.2A; top of 

Figure 4.2D), with bad outcomes yielding a positive association between value and rating 

(B = 0.013, CI = [0.004, 0.021], p = 0.002) and good outcomes a negative association (B 

= -0.011, CI = [-0.019, 0.001], p = 0.03). Although not significant (interaction term in 

Supplemental Table 4.2B), we saw a similar pattern to the deliberation versus agency 

model, with agency having a more substantial impact on relations between bad outcomes 

and ratings as compared to non-risk trials (bad outcomes: B = 0.007, CI = [0.000, 0.013], 

p = 0.04; non-risk: B = -0.002, CI = [-0.008, 0.004], p = 0.48; bottom of Figure 4.2D).  

 Generally, experiences we have enjoyed lead us to seek out those experiences 

again. We therefore tested whether likability ratings directly guided future choices under 

the different conditions of interest (Figure 4.3; Table 4.3). We found that, following 
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regret-inducing situations, relatively lower ratings predicted risk-aversion whereas 

relatively higher ratings yielded risk-seeking behaviors (B = 0.040, CI = [0.004, 0.074], p 

= 0.03). However, we did not detect associations between likability ratings and 

subsequent choice following good outcomes (B = 0.009, CI = [-0.028, 0.039], p = 0.63), 

or non-risk trials (B = 0.011, CI = [-0.017, 0.043], p = 0.51), suggesting a violation of this 

principle. 

 

Failure to Learn from Regret Predicts Impulsivity  

To explore the importance of regret to impulsive traits, we investigated whether 

trait-level impulsivity modified the relationship between the wanting and liking systems. 

Specifically, we were interested in whether highly impulsive individuals were less 

influenced by regret when making choices, a pattern observed among chronic smokers 

and individuals with psychopathy (Baskin-Sommers, Stuppy-Sullivan, & Buckholtz, 

2016; Chiu et al., 2008). We also predicted that impulsive individuals would exhibit 

comparable consummatory responses (i.e., likability ratings) following regret 

experiences; although differences in affective responses were not examined in the chronic 

smoker sample (Chiu et al., 2008), evaluations of the psychopathy sample revealed intact 

affective regret sensitivity for high psychopathy individuals (Baskin-Sommers et al., 

2016).  

  We obtained subject-specific estimates that reflected associations between the 

previous outcome and current choice. Informed by the group-level model, we computed a 

parameter that compared a subject’s likelihood of accepting a risky offer after receipt of a 

good versus bad outcome on the prior trial. Consistent with our expectation, impulsive 
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individuals showed an inverse pattern to that observed at the group level (partial r = 0.26, 

p = 0.006; Figure 4.2E); these individuals were more likely to accept a risky offer after 

having just received a bad outcome, signifying a potential deficiency in learning to avoid 

future regret. In contrast, the association between outcome type and ratings was unrelated 

to impulsivity scores (partial r = -0.01, p = 0.95; Figure 4.2F). Together, these results 

indicate that impulsivity tracked individual differences in deliberative choices but not 

consummatory responses.  

 

Discounting Rates do not Predict Impulsivity  

Lastly, given the extensive literature that utilizes traditional binary choice tasks to 

evaluate impulsivity (de Wit, 2009a; Reynolds, 2006a), we tested whether metrics from a 

monetary delay- and probability-discounting paradigm better explained individual 

differences in impulsivity.  The median R2 was 0.85 and 0.90 for the delay and 

probability discounting rates (i.e., logged k-values), respectively. Distribution qualities of 

the discounting rates were as follows: delay k-values (median = -5.27, SD = 2.08), and 

probability k-values (median = 0.26, SD = 0.84); we note that distribution values for the 

delay k-values are comparable to those reported in a large sample of healthy adults (de 

Wit, Flory, Acheson, McCloskey, & Manuck, 2007). The partial correlations revealed 

that discounting rates did not predict trait-level impulsivity (delay k-value: partial r = 

0.13, p = 0.23; probability k-value: partial r = 0.04, p = 0.74). Moreover, the coefficient 

that tracked regret-choice relations in the previous section still predicted impulsivity 

when accounting for the two k-values (partial r = 0.24, p = 0.03).  
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4.4 Discussion 

For the first time we demonstrate how the experience of regret bridges the 

affective and motivational processes that are dissociated within other emotional 

frameworks. In the current study we employed a risk-variant of the Web-Surf Task to 

assess how post-outcome emotions shaped choice and consummatory responses in 

humans. To this end, we capitalized on a naturalistic foraging task’s capacity to isolate 

liking from seeking behaviors. Our results showed that regret-inducing situations (i.e., 

receipt of the bad outcome on a risky gamble) influenced both reward likability and 

deliberative choice, and provided a connection between these processes. We also found 

that trait-level impulsivity tracked whether regret influenced future decisions, and this 

association was not better explained by performance on a traditional delay-discounting 

task.  

 Our examination of the deliberation system showed that subjects became more 

risk-averse following regret-inducing situations, although follow-up analyses revealed a 

more nuanced picture where subjects exhibited both risk-averse and -seeking tendencies 

depending on the value of the previous offer. In particular, risk-aversion followed receipt 

of bad outcomes of lower value, whereas risk seeking followed bad outcomes of higher 

value. These results are comparable to prior reports (Zeelenberg et al., 1996; Zeelenberg 

& Pieters, 2004), in which regret drove individuals to minimize future regret in particular 

(i.e., after bad outcomes of low value).  

 Compared to the deliberation system, our initial analysis of the liking system 

revealed an opposite effect, whereby subjects liked videos that followed a negative 

outcome more than those following a good outcome. This could be described as a sunk-
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cost effect, where the perception of more effort or time spent yielded greater investment 

(Arkes & Blumer, 1985). We clarified this effect by parsing the influences of framing 

effects and actual costs on ratings. We found that, in the context of regret, more time 

spent led to a decrease in liking whereas less time spent led to an increase in liking; 

hence, the perception of more effort on lower cost trials may have escalated personal 

investment. Conversely, in the context of relief, low-valued trials were rated better than 

high-valued trials, suggesting that reward likability was driven down by cheaper offers 

framed as requiring less effort (e.g., “I did not have to work particularly hard for this 

reward, so it must not be as good”). These cost-related behaviors are akin to the overly 

patient strategies observed in rats on spatial foraging tasks, such as rats accepting 

suboptimal offers (i.e., waiting through longer delays) when the perceived behavioral 

investment was high (Carter & Redish, 2016; Wikenheiser et al., 2013).  

We then assessed how recent video ratings guided decisions, to determine 

whether liking and wanting represented separable processes. In effect, these systems were 

only linked under regret conditions, in which higher ratings predicted more risk-seeking 

following regret-inducing situations only (versus no linkage for disappointment or relief). 

This provides additional evidence that perceived effort was critical to valuation, and in 

bridging consummatory responses with motivation.  

Taken together, our group-level results demonstrate that, contrary to rational 

choice theory, human choices were not invariant to different representations of the same 

offer (see Tversky & Kahneman, 1986, for review). Instead, flaws in value and effort 

perceptions predictably influenced decisions. This is similar to the systematic preference 

shifts described by Kahneman and Tversky under prospect theory (1979), i.e., evidence 
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that “losses loom larger than gains.” But do individual differences modulate these 

valuation and choice mechanisms at the subject level?  

 Our individual differences analyses revealed that more impulsive subjects became 

less risk-averse after regret, which could suggest aberrant learning. This explanation 

stems from the work of Chiu and colleagues (2008) who found that choices made by 

chronic smokers were not guided by a “fictive” (or counterfactual) learning signal, 

despite no loss in production of the signal. More broadly, this result fits with the 

substance use diagnostic criteria that describe tendencies to pursue or consume rewards 

despite the potential negative consequences (American Psychiatric Association, 2013). 

Importantly, the current findings demonstrate that this type of impaired learning 

mechanism may be present in nonclinical samples.  

 The individual differences analyses also showed that impulsivity did not predict 

relations between regret and reward likability. Thus, more impulsive individuals did not 

systematically differ in their affective experiences following regret. This result is similar 

to a recent report that separately evaluated affective responses and choice in psychopathy; 

specifically, individuals with psychopathy reported comparable negative affect in 

response to regret-inducing outcomes, but did not use prospective regret signals to guide 

future choices (Baskin-Sommers et al., 2016). Taken together, impulsivity discriminated 

between affective and motivational responses to regret, as impulsivity scores were 

specifically associated with future choice tendencies. 

 

Conclusions 

 To summarize, we used a translational foraging paradigm to examine the effects 
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of regret on human valuation processes. Our results suggest that regret impacted 

immediate consummatory responses and future choices, as well as more direct relations 

between liking and wanting. We also found that trait-level impulsivity was associated 

with impaired regret-induced learning, but not affective responses to regret, thus 

supporting notions that wanting and liking can be discriminated via substance use.  
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4.5 Figures and Tables 

Figure 4.1. Risk-Variant Web-Surf Task Layout and Flow-diagram 
 

 
 
(A) Schematic representation of the risk-variant of the Web-Surf Task. Subjects cycled 
between four video galleries (kittens, dances, landscape, bike accidents) in a constant 
order. (B) Flow diagram illustrates sequencing between risk and non-risk trials. For a risk 
trial, the true delay is only revealed if the subject stays. If they instead skip, they advance 
directly to the cost phase before encountering the next offer. (C) Description of threshold 
and value computations. Subject-specific delay thresholds indicated the delay at which a 
subject reliably began to skip offers for a given category. Expected value was calculated 
using the initial offer (before the subject has chosen to stay), taking all three delays and 
the category-specific threshold into account. Actual value was calculated using the true 
delay (only revealed after a stay choice) and the category specific-threshold.   
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Figure 4.2. Previous Experiences Predict Choices and Likability Ratings 
 

  
(A) Proportion of stay choices at current risky offers following receipt of the good, bad, 
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or mid outcome on the previous risk trial. Red represents a regret-inducing situation (bad 
outcome with personal agency); blue indicates a relief-inducing situation (good outcome 
with personal agency). Subjects were more risk-averse after regret-inducing experiences. 
(B) Interactions between previous outcome type and actual value when predicting choices 
on subsequent risky offers. Black represents a disappointment-inducing situation (lack of 
personal agency). Subjects became risk-averse following regret instances of low value, 
versus risk-seeking after regret instances of high value (whereas no associations between 
value and choice were detected for the relief or disappointment conditions). (C) 
Likability ratings following the receipt of the good, bad, or mid outcomes on the current 
risk trial. Subjects rated videos that followed regret-inducing situations more highly than 
those that followed relief instances. (D) Interactions between previous outcome type and 
actual value when predicting immediate likability ratings. After a regret-inducing 
experience, subjects tended to rate videos that followed a low value offer worse than 
those that followed a high value offer; the inverse pattern was found for video linked to 
relief instances. A similar pattern emerged when comparing regret and disappointment 
trials. (E) Relations between trait-level impulsivity and the likelihood of accepting a risk 
offer after previously receiving the bad outcome. Impulsive subjects showed less risk-
aversion in response to regret. (F) Relations between trait-level impulsivity and 
immediate likability ratings. Impulsive subjects did not differ in their ratings following 
regret instances. Error bars in a-d indicate within-subject standard errors. Shaded bands in 
e-f represent 95% confidence intervals.  
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Figure 4.3 Regret-induced Experiences Bridge Liking and Wanting 
 

 
 

Interaction between previous outcome type and rating when predicting choices on 
subsequent risky offers. Following receipt of the bad outcome (i.e., regret-inducing 
situation), subjects were more risk-averse after lower-rated videos and more risk-seeking 
after higher-rated videos; no association was detected for the other conditions. Error bars 
represent within-subject standard errors. 
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Table 4.1. Choice by Previous Framing Main Model 
 

 

Predictor Variable 
 

B 
 

CI 

 

P-value 
 

 

 Actual Value 
 Outcome Type (Bad vs. Good) 

 

-.006 
-.054  

 

[-.008, -.004] 
[-.092, -.015] 

 

<.001 
.006 

 Outcome Type (Mid vs. Good) -.033 [-.065, -.001] .05 
    

 

B: unstandardized coefficient; CI: confidence interval.  
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Table 4.2. Rating by Framing Main Model 
 

 

Predictor Variable 
 

B 
 

CI 

 

P-value 
 

 

 Actual Value 
 Outcome Type (Bad vs. Good) 

 

.002 

.051 

 

[.000, .004] 
[.004, .100] 

 

.07 

.04 
 Outcome Type (Mid vs. Good) .021 [-.022, .069] .37 
    

 

B: unstandardized coefficient; CI: confidence interval.  
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Table 4.3. Choice by Rating Integrated Model 
 

 

Predictor Variable 
 

B 
 

CI 
 

P-value 
 

 

 Actual Value 
 Rating 

 

-.006 
.040 

 

[-.008, -.004] 
[.006, .076] 

 

<.001 
.03 

 Outcome Type (Good vs. Bad) 
 Outcome Type (Non-Risk vs. Bad) 
 Actual Value × Rating 
 Rating × Outcome Type (Good vs. Bad) 
 Rating × Outcome Type (Non-Risk vs. Bad) 

.049 

.007 

.002 
-.055 
-.048 

[.014, .088] 
[-.029, .043] 
[.001, .004] 

[-.110, -.006] 
[-.098, .001] 

.01 

.69 

.13 

.04 

.06 
    

 

B: unstandardized coefficient; CI: confidence interval.  
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4.6 Supplemental Materials 

Validity Analyses 

We evaluated the current task’s external and face validity using methods 

described in Abram et al. (2016). For each subject, for each category, we averaged the 

vector of delay thresholds produced using the leave-one-out method described above; this 

yielded four thresholds per subject. We measured external validity by correlating 

revealed preferences (i.e., delay thresholds) with stated preferences (i.e., average category 

ratings and post-test category rankings), and obtained two validity correlations per 

subject. Subjects showed similar validity correlation distributions to those presented by 

Abram et al. (2016; Supplemental Figure 4.1A); threshold and rating correlations had a 

median of 0.66, while threshold and ranking correlations had a median of 0.60. 

To examine face validity, we plotted skip decision times against mid delays, to 

test if subjects made quick skip decisions regardless of delay length or appeared to wait 

for cues. Comparable to Abram and colleagues (2016), subjects responded efficiently 

irrespective of the delay (Supplemental Figure 4.1B). 

 

Global Risk-Aversion Trends 

We assessed global trends in choice patterns and affective responses using linear 

mixed-effects models. The first model included choice as the independent variable; 

number of videos viewed (i.e., consumed up to trial t), expected value, and a risk/non-risk 

categorical indicator as the fixed-effect dependent variables; and subject as a random 

effect. We also included the video consumption by risk/non-risk interaction term to 

assess differential relations between consumption and choice as a function of risk: 
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[Choicet ~ number videos consumedt + expected valuet + risk/non-riskt + number 

consumed videost:risk/non-riskt + (1|subject)]. All trials were included in the choice 

model.  

Our findings revealed that risk level differentially influenced stay/go choices, 

whereby subjects were even less likely to accept a risk than non-risk offer as they 

consumed more videos (significant satiation × risk interaction, p = 0.004; Supplemental 

Figure 4.2A); that is, subjects became more risk-averse across the session. This 

interaction was present if the consumption variable was replaced with the number of 

good outcomes or bad outcomes, suggesting this effect was not solely driven by 

accumulated negative experiences (but instead reflected reward satiety). We also note 

that because stay choices were coded as 1, higher values in Supplemental Figure 4.2A 

indicate an increased likelihood of staying.  

The second model was structurally equivalent to the first, but included mean-

centered ratings as the independent variable: [Ratingt ~ number videos consumedt + 

expected valuet + risk/non-riskt + number consumed videost:risk/non-riskt + (1|subject)]. 

Only stay trials were included in the rating model, as subjects only rated videos during 

stay trials. In contrast to the global decision trends, we did not detect an interaction 

between satiation and risk on ratings (p = 0.65; Supplemental Figure 4.2B). Thus, even as 

subjects increasingly rejected risk offers over time, their liking of risk and non-risk 

videos remained similar (Supplemental Tables 4.3A and 4.3B). 

 

Global Risk-Aversion Confound Analyses 

Given the results in the prior section, we conducted analyses to determine 
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whether global risk-aversion tendencies confounded the trial-by-trial effects presented in 

the Regret Influences Deliberation and Reward Likability section. Specifically, we 

constructed the following mixed-effects models that included the additional consumption 

parameter: 1) [Choicet ~ actual valuet-1 + outcome typet-1 + number videos consumedt + 

(1|subject)], and 2) [Ratingt ~ actual valuet + outcome typet + number videos consumedt + 

(1|subject)]. The inclusion of the consumption parameter did not undermine the prior 

results, which remained largely unchanged (Supplemental Tables 4.4A and 4.4B). Thus, 

global trends did not better account for the choice or affect sequencing effects.   

 

Trial-Specific Risk-Aversion Confound Analyses 

As an additional follow-up, we parsed the effects of the categorical (high, low, 

mid) and continuous (0-30 seconds) risk dimensions on choice. Our intention was to 

demonstrate that the general tendency to prefer offers with lower risk, i.e., a more narrow 

offer window, would not better account for the sequential effects in the Regret Influences 

Deliberation and Reward Likability section. We built the following model to address this 

potential confound: [Choicet ~ actual valuet-1 + outcome typet-1 + riskt + (1|subject)]. 

Supplemental Table 4.5 shows that, although subjects were more likely to accept offers 

with a narrower risk window (indicated by the negative Risk coefficient), the effect of 

post-decisional regret was unaffected by the addition of this parameter.      

 

Subject-Specific Risk-Aversion Trends 

We also fit subject-specific models based on the global risk aversion models to 

obtain individual risk-aversion estimates. For the choice model, we regressed choice on 
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the number of consumed videos and expected value: [Choicet ~ number videos 

consumedt + expected valuet]. This analysis was restricted to risk trials given the 

significant consumption by risk interaction at the group level. For the rating model, we 

regressed mean-centered ratings on the number of consumed videos, expected value, and 

the risk/non-risk categorical variable: [Ratingt ~ number videos consumedt + expected 

valuet + risk/non-riskt]. This analysis included all stay trials given the non-significant 

risk/non-risk interaction at the group level. We extracted the unstandardized consumption 

coefficients from both models. Using comparable methods to those described in the prior 

section, we obtained partial correlations between the two subject-level coefficients and 

total ESI scores.    

 We observed a trend-level positive association between ESI scores and the choice 

~ consumption coefficient (partial r = 0.17, p = 0.06; Supplemental Figure 4.3A).13 In 

effect, more impulsive individuals showed a reverse pattern from the global effect, with 

an increasing acceptance of risky offers over time (i.e., more risk-seeking). We did not 

detect an association between ESI scores and the rating ~ consumption coefficient (partial 

r = 0.10, p = 0.31; Supplemental Figure 4.3B).  

																																																								
13	We	excluded	1	subject	with	a	coefficient	greater	than	4	standard	deviations	
above	the	mean.	
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Supplemental Figure 4.1. Task Validity  

 

(A) Distribution of validity correlations that relate delay thresholds with average ratings 
(left) and post-test category rankings (right). (B) Evidence of face validity, where 
subjects made quick skip decisions regardless of the delay (i.e., mid delay). Stay trials are 
represented as the full delay time (points along the diagonal); mean times for skip trials 
are represented as the points parallel to the x-axis, with the blue shaded bands indicating 
skip time standard deviations.   
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Supplemental Figure 4.2. Global Risk-Aversion 
 

 
  
(A) Subjects became more risk-averse as the task progressed. (B) Subjects’ likability 
ratings for risk and non-risk videos did not differ over time. 
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Supplemental Figure 4.3. Risk-Aversion and Impulsivity  
 

 
 
(A) Trend-level association between trait-level impulsivity and global risk-aversion 
tendencies, with impulsive subjects showing more risk seeking over time. (B) No 
association between trait-level impulsivity and global rating trends. 
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Supplemental Table 4.1A. Choice by Bad vs. Good Follow-up Framing Model 
 

 

Predictor Variable 
 

B 
 

CI 

 

P-value 
 

 

 Actual Value 
 Outcome Type (Bad vs. Good) 

 

.012 

.137 

 

[.002, .021] 
[.020, .240] 

 

.02 

.01 
 Actual Value × Outcome Type -.014 [-.026, -.003] .008 
    

 

B: unstandardized coefficient; CI: confidence interval.  
 
 
Supplemental Table 4.1B. Choice by Bad vs. Non-Risk Follow-up Agency Model 
 

 

Predictor Variable 
 

B 
 

CI 

 

P-value 
 

 

 Actual Value 
 Outcome Type (Bad vs. Non-Risk) 

 

.012 

.083 

 

[.003, .020] 
[-.016, .182] 

 

.006 
.11 

 Actual Value × Outcome Type -.013 [-.023, -.002] .03 
    

 

B: unstandardized coefficient; CI: confidence interval.  
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Supplemental Table 4.2A. Rating by Bad vs. Good Follow-up Framing Model 
 

 

Predictor Variable 
 

B 
 

CI 

 

P-value 
 

 

 Actual Value 
 Outcome Type (Bad vs. Good) 

 

.013 

.148 

 

[.003, .021] 
[.004, .261] 

 

.008 
.02 

 Actual Value × Outcome Type -.023 [-.035, -.009] <.001 
    
 

B: unstandardized coefficient; CI: confidence interval.  
 
 
Supplemental Table 4.2B. Rating by Bad vs. Non-Risk Follow-up Agency Model 
 

 

Predictor Variable 
 

B 
 

CI 

 

P-value 
 

 

 Actual Value 
 Outcome Type (Bad vs. Non-Risk) 

 

.008 
-.008 

 

[.000, .017] 
[-.115, .099] 

 

.06 

.91 
 Actual Value × Outcome Type -.010 [-.022, .002] .11 
    
 

B: unstandardized coefficient; CI: confidence interval.  
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Supplemental Table 4.3A. Choice by Consumption Model 
 

 

Predictor Variable 
 

B 
 

CI 

 

P-value 
 

 

 # Videos Consumed 
 Expected Value 

 

-.001 
.036 

 

[-.001, .000] 
[.010, .064] 

 

.06 

.01 
 Risk/Non-risk 
 # Videos Consumed × Risk/Non-risk 

.032 
-.001 

[.031, .033] 
[-.002, .000] 

<.001 
.004 

    
 

B: unstandardized coefficient; CI: confidence interval.  
 
 
Supplemental Table 4.3B. Rating by Consumption Model 
 

 

Predictor Variable 
 

B 
 

CI 

 

P-value 
 

 

 # Videos Consumed 
 Expected Value 

 

-.001 
-.014 

 

[-.002, .000] 
[-.077, .047] 

 

.21 

.68 
 Risk/Non-risk 
 # Videos Consumed × Risk/Non-risk 

.002 

.000 
[.001, .004] 
[-.001, .002] 

.008 
.65 

    
 

B: unstandardized coefficient; CI: confidence interval.  
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Supplemental Table 4.4A. Choice by Consumption Confound Model 
 

 

Predictor Variable 
 

B 
 

CI 

 

P-value 
 

 

 Actual Value 
 Outcome Type (Bad vs. Good) 

 

-.006 
-.051 

 

[-.008, -.004] 
[-.087, -.013] 

 

<.001 
.01 

 Outcome Type (Mid vs. Good) 
 # Videos Consumed 

-.033 
-.001 

[-.065, .001] 
[-.002, -.001] 

.06 
<.001 

    
 

B: unstandardized coefficient; CI: confidence interval.  
 
 
Supplemental Table 4.4B. Rating by Consumption Confound Model 
 

 

Predictor Variable 
 

B 
 

CI 

 

P-value 
 

 

 Actual Value 
 Outcome Type (Bad vs. Good) 

 

.002 

.054 

 

[.000, .004] 
[.007, .104] 

 

.02 

.03 
 Outcome Type (Mid vs. Good) 
 # Videos Consumed 

.021 

.000 
[-.022, .065] 
[-.001, .000] 

.37 

.27 
    

 

B: unstandardized coefficient; CI: confidence interval.  
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Supplemental Table 4.5. Choice by Risk Confound Model 
 

 

Predictor Variable 
 

B 
 

CI 

 

P-value 
 

 

 Actual Value 
 Outcome Type (Bad vs. Good) 

 

-.006 
-.054 

 

[-.008, -.005] 
[-.090, -.016] 

 

<.001 
.006 

 Outcome Type (Mid vs. Good) 
 Risk 

-.031 
-.004 

[-.065, .007] 
[-.006, -.002] 

.11 
<.001 

    
 

B: unstandardized coefficient; CI: confidence interval.  
 
 
 
 
 
 

 

 
 



	

175	

CHAPTER 5: GENERAL DISCUSSION 

The current body of work explored human deliberative mechanisms using a 

translational decision-making task, called the Web-Surf Task. Specifically, these studies 

aimed to identify cross-species behavioral and neural parallels, as well as mechanistic 

failures among highly impulsive individuals. The first study presented the Web-Surf Task 

in parallel to its rodent predecessor, Restaurant Row (Steiner & Redish, 2014). The 

second study explored the neural correlates of decision-making during the task; the 

results revealed evidence of prospective thinking during the choice phase, and that the 

extent to which a subject accurately imagined future outcomes was related to their overall 

decision-making ability. We also detected cross-species parallels when evaluating 

behavioral and neural responses to difficult trials. Finally, the third study, which 

employed a risk-variant of the Web-Surf Task, found a link between the enjoyment and 

pursuit of rewards under conditions of regret. Further, this study found that impulsive 

individuals exhibited aberrant learning after regret, suggesting that the failure to use 

regret may contribute to maladaptive traits related to addiction. Taken together, these 

studies highlight the utility of the Web-Surf Task for exploring complex cognitive 

phenomena in humans (within a single-session), and evaluating how specific mechanisms 

translate across species.   

 

5.1 Study 1 Summary and Conclusions: Introducing the Web-Surf Task 

Results from the first study offered an important starting point for those that 

followed. This study uniquely compared human and rodent data using analogous 

statistical procedures. The identification of basic behavioral parallels, e.g., cross-
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species evidence of revealed preferences or delay thresholds, laid the foundation for 

subsequently implementing the task in the MRI scanner. Of note, the Web-Surf Task 

grew out of a previous translational endeavor for which cross-species behavioral 

similarities were less established before neuroimaging data collection; thus, these initial 

results were especially motivating.  

 A second goal of the first study was to determine which type of stimuli to include 

in the Web-Surf Task: videos or photos (both of which are immediately consumable).  

Early debates raised concerns that videos were less consistent than photos, while photos 

were less rewarding than videos. Our results found that videos provided more reliable and 

valid results. This was rather unsurprising given the wealth of videos available on the 

Internet and our youthful demographic. Nonetheless, a direct comparison of these stimuli 

classes allowed us to draw this conclusion based on data rather than assumption.    

Taken together, the Web-Surf Task using video stimuli provided a nice analogue 

to Restaurant Row. We next investigated the neural systems evoked during the Web-Surf 

Task, with a continued interest in cross-species similarities and differences.  

 

5.2. Study 2 Summary and Conclusions: The Neural Basis of Human Deliberation 

The primary goal of this study was to evaluate deliberation mechanisms in 

humans using General Linear Models (GLMs) and multi-voxel pattern analysis methods; 

the latter approach was implemented to parallel the neural ensemble recordings used in 

Restaurant Row. Several key findings emerged from this study. First, we found neural 

evidence of imagination. Specifically, the GLMs revealed large swathes of overlapping 

activation during the choice and video viewing phases of the task; this suggests that the 



	

177	

same brain areas evoked when experiencing an outcome are also needed to mentally 

simulate the prospect of that outcome (Pearson et al., 2015). This result fits with 

emerging evidence that human prospection entails the representation of specific future 

outcomes (e.g., Doll et al., 2015).  

A critical goal of Study 2 was the confirmation that the included video categories 

were indeed separable using decoding. When initially selecting categories, I reviewed the 

fMRI decoding literature to determine which objects or scenes map onto unique neural 

substrates. Despite this process, there still remained the possibility that we would be 

unable to parse the stimuli, given that the selected videos were complex and there was 

some element of within-category heterogeneity (as we did not display repeated videos). 

Fortunately, the decoding was successful: Decoding of the Preview Task data revealed 

that the categories were highly dissociable, despite the similarity of the category-specific 

GLM activation maps. This dissociability was further corroborated by the consumption 

decoding results. In particular, we consistently found the strongest representations of the 

current category during consumption. Thus, the videos observed during the main task 

were well matched with those shown during the Preview Task. 

These decoding successes allowed us to then explore the deliberation phase. Here 

we found that different neural networks (e.g., dorsal attention, default mode, salience, 

etc.) represented different reward zones during deliberation. These results indicate that 

different systems are involved in imagining past and future outcomes. Comparable to 

Restaurant Row, the sequential nature of the Web-Surf Task was instrumental to these 

analyses; that is, we could track not only upcoming outcomes (as done by Doll et al., 

2015), but also past experiences. We also found that subject-specific decoding 



	

178	

accuracies predicted overall decision-making behaviors. One’s capacity to imagine future 

prospects may then be critical to assigning value, and making choices that maximize the 

intake of more valuable rewards.   

A final component of this study focused on the neural circuitry involved in 

difficult choices. This analysis paralleled ‘Vicarious Trial-and-Error’ (VTE) findings 

from rodents. First, we found that subjects’ reactions times were slowest for offers that 

approached threshold, a pattern comparable to findings from Restaurant Row (Steiner & 

Redish, 2014). The GLM results revealed further cross-specifics parallels. In particular, 

difficult choices recruited the hippocampus, anterior cingulate cortex (ACC), and dorsal 

attention network during deliberation or consumption. We also found that deliberation 

more strongly activated the ACC and middle frontal gyrus (MFG) as compared to 

consumption, while consumption more strongly activated the orbitofrontal cortex (OFC) 

and middle/posterior insula.14 We also note that the main effect for consumption included 

bilateral portions of the nucleus accumbens (NAcc), although this area did not emerge in 

the contrast map. These regions map well to those evoked in rats during VTE, 

particularly the hippocampus and prelimbic cortex (arguably homologous to the primate 

dorsolateral prefrontal cortex; Redish, 2016). OFC recruitment during consumption also 

aligns with rodent findings that implicate the OFC in signaling post-decisional 

information (Steiner & Redish, 2012; Stott & Redish, 2014). With regards to possible 

cross-species divergences, we did not detect NAcc activity when making difficult choices 

(Redish, 2016); this contradicts theories that the NAcc is responsible for pre-decisional 

evaluation. It is possible that the GLM model used to evaluate difficult choices was not 

																																																								
14	As	noted	in	the	General	Introduction,	the	middle	insula	has	been	implicated	in	
processing	primary	(versus	secondary)	rewards.	
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optimized for this purpose, i.e., isolating decisions to the last second aimed to address 

confounds regarding reaction time and value associations, but perhaps prevented us from 

capturing early NAcc signals.     

Although Study 2 yielded critical insights into human deliberation, we remained 

troubled by one limitation of the task: its failure to capture regret. A pivotal discovery 

from the Restaurant Row data was that rats exhibited behavioral and neural markers of 

regret on sequential trials (Steiner & Redish, 2014). Because humans only completed one 

testing session, we did not acquire a sufficient number of ‘regret’ trials in either Study 1 

or 2. To overcome this issue, we designed an alternative version of the Web-Surf Task 

that introduced counterfactuals within a trial via risky offers.    

 

5.3. Study 3 Summary and Conclusions: Regret and Impulsivity  

 The final study examined relations between the liking and wanting of rewards 

using a risk-variant of the Web-Surf Task. This version was unique in that subjects did 

not know the true delay unless they chose to stay and accept the gamble. We defined 

regret-inducing situations as those in which subjects received the bad deal on a risk trial 

and they were responsible. We compared regret-inducing situations to those expected to 

provoke disappointment (bad outcomes that lacked personal agency) and relief (good 

outcomes). Our analyses focused on how subjects differently reacted to these conditions, 

as evidenced by their choices on subsequent trials and their rating of video rewards. 

 Our first major finding indicated that both the pursuit of rewards and the 

enjoyment of rewards were influenced by regret. That is, subjects became risk-averse 

following regret-inducing situations characterized by low value, but risk-seeking 
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following regret-inducing situations of higher value. These results are comparable to 

findings that regret led individuals to minimize future regret in particular (i.e., after bad 

outcomes of low value; Zeelenberg et al., 1996; Zeelenberg & Pieters, 2004). Moreover, 

regret-instances influenced both choices and ratings, while disappointment-instances did 

not. This suggests that personal agency is a key factor in modulating decision-making.   

 Second, video ratings following different emotional conditions reflected sunk cost 

effects. In the context of regret, more time spent led to decreased ratings whereas less 

time spent led to increased ratings. This could suggest that the perception of more effort 

on lower cost trials escalated personal investment. We compared this effect to the relief-

inducing trials and found the opposite pattern: low-valued trials were rated better than 

high-valued trials, suggesting that reward likability was driven down by cheaper offers 

framed as less effortful. These effects are akin to the overly patient foraging strategies of 

rodents, for which the perception of high behavioral investment led rats to accept high 

delay offers (Carter & Redish, 2016; Wikenheiser et al., 2013). 

 We also observed a direct connection between the liking and wanting systems: 

specifically, video ratings predicted subsequent choices following regret-inducing 

experiences only, i.e., these decision components remained dissociated following 

disappointment and relief scenarios. This challenges prior theories that liking and 

wanting constitute separable systems (Berridge & Robinson, 1995, 2003), by illustrating 

at least one context in which they are linked.     

 This study was the first to explore psychopathology using the Web-Surf Task. In a 

large non-clinical sample, we tested relations between task-derived parameters and trait-

level impulsivity scores (measured using the Externalizing Spectrum Inventory, ESI; 
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Krueger et al., 2007). We found that highly impulsive individuals failed to learn from 

regret-inducing situations (i.e., they became risk-seeking and not risk-averse), but they 

did not differ in their immediate emotional reactions to those scenarios (i.e., reward 

ratings). This finding is consistent with evidence that chronic smokers were not guided by 

error signals despite exhibiting no loss in production of those signals (Chiu et al., 2008). 

Our results are also akin to a study on regret in psychopathy that demonstrated failures in 

regret-learning, but intact affective responsiveness (Baskin-Sommers et al., 2016).   

 Collectively, these results have broad implications across the areas of decision, 

emotion, and psychopathology research. Regret is a universal emotion that can have a 

powerful impact on our choices. Moreover, the failure to use regret may be a 

transdiagnostic factor present across various psychopathological disorders. This 

transdiagnostic conceptualization is critical, as our understanding and treatment of mental 

illness continues to draw from dimensional models of psychopathology, such as the 

RDoC (Research Domain Criteria) framework (Cuthbert, 2014). The link between regret-

learning and impulsivity in a nonclinical sample speaks to these dimensional 

conceptualizations, in which maladaptive traits are present along a continuum from 

healthy to disordered individuals (Krueger, Markon, Patrick, & Iacono, 2005).    

 

5.4 Future Directions 

 This collection of studies sets the stage for a breadth of future research. In this 

section, I focus on potential applications for cognitive and psychopathology research, as 

the included studies were limited to non-clinical samples. In particular, I discuss 

extensions of the Web-Surf Task for elucidating the behavioral and neural mechanisms 
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that underlie addiction, psychosis, and psychopathy.  

 First, the finding for a link between poor decoding and decision-making has 

critical implications for cognition. Does this association suggest that certain individuals 

are unable to develop a cognitive map of the task (Tolman, 1948)? Of note, the 

hippocampus is fundamental to this ability, and one of the regions involved in our 

observed decoding deficit (O’Keefe & Nadel, 1978). Spatial memory training may 

enhance hippocampal growth (Lerch et al., 2011). It follows that future extensions could 

directly train spatial navigation skills and assess whether alterations in hippocampal 

function/structure impact one’s representational abilities.15 Additionally, one limitation of 

the current studies is that we did not ask subjects to explicitly state the order of the 

categories during the debriefing. Future studies could include this step to determine 

whether these subjects are aware of the task’s layout but lack well-defined category 

representations, i.e., they know dance videos come next but cannot generate concrete 

future options.    

Second, future studies are needed to explore relations between failures of regret-

related learning among individuals with addiction. Such studies would benefit from the 

inclusion of multi-dimensional impulsivity measures, like the ESI, as a means to parse 

relations between mechanistic failures and specific impulsivity facets. For instance, 

alcohol consumption is most associated with sensation seeking and positive urgency (the 

latter being the propensity to engage in maladaptive and impulsive behaviors when in 

response to positive mood states; Stautz & Cooper, 2013). One might then explore the 

																																																								
15	Working	memory	training	could	be	an	alternative	approach,	given	evidence	that	
working	memory	training	decreases	discounting	in	stimulant	addicts	(Bickel	et	al.,	
2011).	
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extent to which sensation seeking tendencies differentially explain task performance. Is 

this failed learning mechanism equivalently captured by a heightened pursuit of risk? Or 

are these dissociable contributors?  

Researchers could also investigate the impacts of different mood states on 

modulating impulsive behaviors. Work by Yuen and Lee (2003) used sad, neutral, and 

happy video clips to induce the respective moods before subjects completed risk-taking 

tasks. Their data indicated that individuals in an induced depressive state were more 

conservative in their risk-taking tendencies. With regards to findings from Chapter 4,16 it 

is possible that short-lived regret-inductions are not sufficient for shifting behavior and 

stronger manipulations are needed (perhaps even ones that activate empathic circuits). In 

turn, understanding how affective states influence risk-seeking behaviors may be of value 

to addiction treatment initiatives.   

 Third, the Web-Surf Task’s capacity to parse decision components could help 

elucidate goal-directed deficits in schizophrenia. Historically, anhedonia, or a diminished 

capacity to experience pleasure, has been linked to impaired goal-directed activity in 

schizophrenia (Rado, 1953). However, accumulating data paints a different picture: goal-

directed deficits are not the result of an enjoyment deficit, but instead reflect failures to 

represent reward value or engage in key exploratory behaviors (Barch & Dowd, 2010; 

Strauss, Waltz, & Gold, 2014). For instance, individuals with schizophrenia exhibit 

comparable neural activation in response to emotional stimuli (Taylor et al., 2012), but 

struggle to utilize episodic memory when recreating past emotional experiences (Strauss 

& Gold, 2012). The Web-Surf Task provides a unique approach for examining relations 

																																																								
16	This	is	a	reference	to	the	failed	regret-related	learning	observed	among	highly	
impulsive	individuals.	
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between reward representation and hedonic capacity. Future studies could assess relations 

between neural representation accuracies at the choice point and consummatory pleasure; 

do representation abilities predict reward enjoyment or are these processes largely 

separable? Moreover, are there detectable differences in the representation of recent 

experiences (i.e., episodic memories) versus potential outcomes (i.e., episodic future 

thinking)? The sequential task design could shed interesting light on how recent 

experiences shape goal-directed pursuits.  

 Lastly, I discuss possible extensions of this task for understanding psychopathy. 

Psychopathy is associated with a lack of remorse and regret, features that have been 

attributed to low empathy and failures to generate negative affective responses to 

aversive stimuli (Patrick, 2007). Recent work by Sommers-Baskin and colleagues (2016) 

found that individuals with psychopathy failed to use prospective regret to guide future 

choices, despite intact emotional responses to regret. The authors then argued an 

alternative viewpoint to psychopathy: maladaptive decision-making may arise from a 

failure to generate forward models rather than a basic emotional deficit. The Web-Surf 

Task could be used to validate and extend this study: Researchers could first test whether 

individuals with psychopathy exhibit comparable consummatory responses (i.e., likability 

ratings) following regret, but are not driven to avoid risky offers on subsequent trials. 

Researchers could then explore potential representational failures during deliberation to 

directly test the alternative theory proposed by Baskin-Sommers et al. (2016). In 

summary, this task has broad utility for evaluating representation failures in 

psychopathology.   
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