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Abstract 
 The study of noise and fluctuations has proven useful in a wide variety of 

disordered systems, from disordered condensed matter systems to noisy biological 

systems. Neurological signals termed local field potentials are characterized by 

apparently random fluctuations interspersed with periods of clear oscillatory activity. 

Numerous mathematical theories have been developed that describe the power spectrum 

that results from different fluctuation phenomena. Several of these theories are presented 

with discussions of how they may apply to local field potentials in the brain. Experiments 

and simulations are proposed that could help to clarify specific aspects of the fluctuation 

origins of local field potentials. Given long time series of neurological voltage 

fluctuations, it can be difficult to detect the occurrence of oscillatory activity. An 

analytical method is presented to identify the presence of oscillations within a signal. 

This method is verified through simulations and experiments on signals with known 

oscillations. Using this method, a previously unknown oscillation is detected, termed γ50, 

that is recorded in the striatum of awake, behaving rats. The γ50 signal is characterized 

by short bursts of coherent 50 Hz oscillations, and is found to be correlated with the 

initiation of movement. Preliminary experiments were conducted to identify the origin of 

γ50 events. Data from these experiments is discussed along with remaining open research 

questions and future directions. 
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Chapter 1 

Introduction  

1.1 Introduction to Electrophysiology 

Our understanding of animal and human nervous systems has changed 

significantly across decades and centuries, with ever improving technologies making new 

levels of nervous system function accessible to researchers. Early research was confined 

to clinical studies in which large sections of the brain were altered by either injury or 

disease. We have quickly progressed to a point where many levels of neuronal function 

are accessible to researchers, ranging from molecules and proteins through single cells 

and cell groups, to methods for quantifying and analyzing large scale behaviors. 

A standard way to study various properties of neural systems is through 

electrophysiology. Electrophysiology is the study of the electrical properties of biological 

cells and tissues. It involves measurements of voltage change or electrical current flow on 

a wide variety of scales from single ion channel proteins to whole tissues like the brain. 

One of the most familiar of electrophysiological techniques is the 

electroencephalogram, or EEG. The EEG is a record of electric potential fluctuations 

recorded from electrodes on the scalp.1  The scalp electrode measures fields due to neural 

activity in tissue volumes containing 108 – 109 neurons and it is primarily the electrical 

activity that occurs at the synapse between neurons that contributes to the EEG signal. 

The dominant contribution to the EEG signal comes from the brain structure closest to 

the surface, cortex. This is due to the strong spatial drop off in the magnitude of electric 
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fields. In addition to its surface location, the cellular architecture of the cortex makes it 

particularly conducive to being recorded at some distance.  Neurons within cortex are 

arranged in layers that parallel the skull, with the main axis of the neurons radial to the 

skull. The electrical currents that relate to the synaptic electrical fluctuations are along the 

main axis of the neuron, thus also radial to the skull. This arrangement results in many 

electrical currents in the same direction such that any coherent activity will persist 

through the spatial averaging that occurs in EEG recordings. 

This technique has been available for nearly a century and its noninvasive nature 

has provided researchers with a powerful window to the workings of the brain. Activity 

within the EEG has been associated with various states of consciousness and cognitive 

processes. For example, the eyes-closed awake state, termed the alpha state, shows 

widespread near sinusoidal oscillation at 10 Hz. Deep sleep is characterized by larger 

amplitude activity at lower frequencies. Most people are familiar with EEG from its use 

in clinical settings, where it can be used for the identification of deep anesthesia, seizures, 

and some neurological disorders. In the psychology research setting, researchers have 

identified EEG correlations with cognitive processes associated with mental calculations, 

working memory, and selective attention.  

Another way to study various properties of neural systems is to record the 

electrical activity by placing electrodes within the extracellular medium. A variety of 

biomechanical processes underlie the fluctuations observed in this signal. The low-

frequency portion of this signal (where low frequency here is approximately 1 – 500Hz) 

is called the local field potential (LFP) and, like EEG, is believed to reflect the electrical 
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fluctuations occurring at synapses between neurons. The spatial range of fluctuators that 

are thought to comprise this portion of the signal is of an order that includes hundreds of 

neurons. For this reason, local field potentials are thought to reflect the activity of local 

populations of neurons.2  

As mentioned, local field potentials are the low frequency portion of the signal 

recorded from electrodes placed in the extracellular medium. The high-frequency portion 

of this signal (typically 600 – 6000 Hz) can be recorded and analyzed to identify neural 

spikes. During the normal, resting state, neurons maintain a potential difference between 

the inside and outside of the cell. Action potentials are defined as discrete events in which 

the polarization across the cell membrane reverses and then returns to the resting state. 

During this process, there are several ionic currents in the extracelluar space that result in 

measurable potential changes, commonly referred to as spikes. These discrete events last 

several milliseconds and by recording at a high rate, researchers can capture both the 

timing of events as well as the unique waveform of the potential change.  

1.2 Local Field Potentials: A ‘Mesoscopic’ Phenomena 

 While there are many open questions to occupy EEG researchers for the 

foreseeable future, there is also a stable and robust foundation of theoretical, 

computational, and experimental work in this field. Given the similarities between EEG 

and LFP, there has been a tendency to extrapolate the theoretical framework of EEG to 

LFPs. For some situations, this extrapolation provides useful insights with a minimum of 

problems. For example, LFPs in cortex are likely well described with the same theory as 

EEG as this theory is based upon assumptions true of cortical anatomy. In other 
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situations, this theoretical transfer breaks down. EEG are recorded from the scalp surface, 

thus outside the electrically active region although LFPs are recorded from within the 

active region. When recording from outside the scalp, electrical signals experience 

significant spatial averaging as a result of volume conduction. This results in the recorded 

signal being relatively insensitive to parameters such as electrode size and location. Local 

fields experience a much lesser amount of spatial averaging and thus the recorded signal 

is extremely sensitive to electrode parameters. 

 Another approach to interpreting LFPs is to assume that spikes are the 

fundamental neural fluctuation and that local field potentials uniquely correlate with 

spike activity. As mentioned, the extracellular spikes relate to cellular action potentials. 

These action potentials occur when the synaptic inputs to the cell reach a critical 

threshold that triggers the event. The synaptic inputs that sum to trigger action potentials 

are the same synaptic events that are thought to underlie LFPs, thus it is reasonable to 

anticipate a correlation between spikes and LFPs. For the purposes of modeling, some 

researchers have assumed that LFPs can be reconstructed from spike activity by assuming 

a single synaptic event occurred congruent with each spike and that the synaptic event 

had a particular form.3 While these assumptions have some physiological basis, they fail 

to acknowledge the complexity of subthreshold activity.4, 5  

 As is the case in many multi-scale scientific fields, it’s becoming clear that 

theories that were developed for one spatial scale often break down when applied to 

others. Just as the case of superfluidity, where an understanding of the atomic structure of 

helium is necessary but not sufficient to understand the phenomena, local field potentials 
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possess many of the characteristics of a mesoscale system and thus warrant dedicated 

research attention.  

1.3 Approaches to Studying Local Field Potentials 

Local field potentials have been well studied in some areas of the brain while they 

are still relatively unexplored in others. The data obtained in a local field potential 

experiment is a long time series of voltages – perhaps 30 minutes of data recorded at 

2000 Hz - which makes examination in the temporal domain intractable. Alternatively, 

one can study the signal in the frequency domain and the standard first approach to 

characterize a long time series is to examine the power spectrum. Examples of power 

spectra of LFPs recorded from several different brain structures are shown in Figure 1.1. 

Mathematical aspects of the power spectrum will be discussed in Chapter 2 and 

experimental details regarding these data will be discussed in Chapter 3. 

 

Figure 1.1 Sample Power Spectra 

 Power spectra of local field potentials recorded from different brain structures. Panel A 

is the power spectrum of an LFP recording from hippocampus and shows a slope of -2.2. 

Panel B is the power spectrum of an LFP recording from motor cortex and shows an 

average slope of -1.5 . Panel C is the power spectrum of an LFP recording from ventral 

striatum and shows an average slope of -1.1. 

 

These power spectra show several qualitative features. As displayed on 

logarithmic axes, the power spectra all appear approximately linear with slopes ranging 
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from -2.2 for that in figure 1.1.A to -1.1 for that shown in figure 1.1.C. The deviations 

away from linearity also vary. Both figures 1.1.A and 1.1.B can be fit to a line but may be 

better described by a function that acknowledges the slow curvatures. The deviations 

from linearity present in figure 1.1.C are more local in nature; there are various bumps 

around a generally linear trend. All of the spectra show very sharp peaks that are due to 

external electrical noise rather than any type of neural activity. 

None of these qualitative features are terribly surprising given both a general 

knowledge of fluctuation phenomena and fundamental neural physiology. A wide variety 

of systems, both biological and non-biological, exhibit power law spectral behavior. 

Perhaps the most well studied system is voltage fluctuations in condensed matter systems 

ranging from metals to vacuum tubes to carbon resistors.6 Famous reviews of 1/f noise 

cover topics ranging from noise in traffic flow to fluctuations in undersea currents.6, 7 In 

the biological realm, power law fluctuations have been identified in systems ranging from 

current fluctuations across cellular membranes to large scale physiological parameters 

such as heart rate variability in healthy adults.8, 9 Another signal of particular relevance is 

the EEG which has also been shown to exhibit 1/f noise.10, 11   

Although the nature of scientific reporting makes it difficult to report on negative 

findings, a cursory literature search leaves a person wondering if there are systems whose 

power spectra do not exhibit a power-law frequency dependence and questioning what 

can be gained by identifying yet another system with this characteristic. The general 

utility of noise measurements will be discussed in Chapter 2 along with a discussion of 

the possible benefit of such measurements of local field potentials. Many mathematical 
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models have been developed to explain the 1/f noise found in a wide range of systems. 

Chapter 3 will focus on possible ways to map several of these models onto LFPs. 

Another qualitative feature of the power spectra shown in Figure 1.1 is the 

deviations away from linearity. The existence of bumps on the power spectra is not 

terribly surprising. Different brain structures are known to display different oscillatory 

states, termed fundamental frequencies and these epochs of oscillatory activity appear in 

the power spectrum as small, localized bumps of high power. For example, in the 

hippocampus, a brain structure involved in learning and memory, there are two well 

characterized oscillations. Oscillations that occur at 6-10 Hz are labeled theta oscillations 

and persist for up to minutes, while the animal is engaged in attentive behaviors.12, 13  

During periods of rest and autonomous behaviors, this strong 6-10 Hz oscillation is not 

present and the activity is largely irregular,  even being referred to as Large Irregular 

Activity (LIA). These epochs of LIA are punctuated by 160-200 Hz oscillations known as 

sharp waves. Sharp waves are characterized by ripples at the given frequency with a 

characteristic duration of 100 ms.14  The cortex typically shows 40 Hz oscillations while 

a variety of structures show oscillations in the range of 10-70 Hz, collectively referred to 

as beta or gamma oscillations.15  Figure 1.2 shows activity recorded from rodent 

hippocampus where one can see theta activity (8 Hz) emerging from irregular activity. 
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Figure 1.2 Hippocampal Theta Rhythm  
Local field potential recorded from rat hippocampus showing theta emerging from 

irregular activity. The 8Hz rhythm begins at approximate 1551 sec (indicated by arrow) 

and continues through the rest of the trace. 

 

A typical experiment involves multiple electrodes placed within the same brain 

structure. The signals recorded from these different locations can be compared to gain 

additional information. Some types of oscillatory events occur over an entire brain 

region, and when the recorded oscillation is in phase across multiple signals, it is referred 

to as a coherent oscillation. An example of such an event is shown in figure 1.3. 

 
 

Figure 1.3: Coherent Oscillation  
Raw LFP data where the individual lines are raw LFP signals recorded from different 

electrodes in a single animal. The two vertical lines indicate the identified oscillatory 

event. 
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This dissertation is organized as follows. Chapter 2 provides theoretical 

background for statistical analysis of fluctuation phenomena, while chapter 3 applies this 

analysis to neurological local field potentials. Following an overview of experimental 

techniques in chapter 4, chapters 5 and 6 will discuss aspects of the bumps in the power 

spectrum. Specifically, a technique for identifying the frequency range of interesting 

features will be presented in chapter 5 and the behavioral significance of a newly 

identified feature will be discussed in chapter 6. 
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Chapter 2 

Statistical Analysis of Noise  

2.1 Introduction 

 A common type of experiment among many disparate scientific disciplines is to 

repeatedly measure a particular variable and then analyze the recorded fluctuations about 

an average value. A physicist might measure the current across a superconducting film, 

while a geologist might measure the flood level of the Nile River, and a neuroscientist 

might measure the voltage fluctuations in the cortex of a monkey performing a task. 

These scientists will describe their data differently – one referring to the recorded 

fluctuations as noise, while another describes the data as a fluctuating signal. In each 

case, the scientist has recorded a time series of a macroscopic variable and may wish to 

understand the microscopic phenomena that give rise to the variations of the macroscopic 

variable. Studying the fluctuations, or noise, provides one framework to possibly link the 

microscopic and macroscopic regimes. 

 As mentioned in Chapter 1, it is widely believed that local field potentials reflect 

the electrical fluctuations that occur at the synapses between neurons. Several 

experimental studies support this hypothesis within certain brain structures but the 

hypothesis is also incomplete. Analyzing local field potentials from the perspective of 

noise and fluctuations could help to complete the link from microscopic fluctuations to 

macroscopic observations.  Even if this link proves elusive, there are several ways in 

which noise analyses could prove useful. 
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2.2 Random Signals 

The fluctuations considered here will be those that appear as time series of a 

continuous variable, as opposed to those that can be described as a fluctuating two state 

system or a point process. Three such example time series are shown in Figure 2.1. The 

time series in Figure 2.1.A was generated by drawing random numbers from a Gaussian 

distribution; each value is independent of all others. The second time series, displayed in 

Figure 2.1.B, was generated by superimposing many (n = 85) two state fluctuators, each 

governed by Poisson statistics, with an exponential distribution of Poisson rates. This 

particular time series will be discussed in greater detail in chapter 3. The time series in 

Figure 2.1.C is that of a random walk; from an initial location, the position of the next 

point is chosen at random. All of these signals could be described as random but there are 

clear qualitative differences between them. Aspects of these qualitative differences can be 

quantified.  
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Figure 2.1 Random Signals  
Three signals generated by different random methods. (A) Gaussian white noise obtained 

by selecting numbers at random from a normal distribution; each value is independent of 

the others. (B) A random time series generated by superimposing 85 two state Poisson 

fluctuators. (C) Brown noise generated through a random walk. Each value is obtained by 

adding a Gaussian random number to the previous value. 

 

The two point autocorrelation function provides one quantitative measure of these 

differences in randomness, by determining how well a signal correlates with a time 

shifted copy of itself. Autocorrelation functions for the signals shown above are 



      -13- 

displayed in figure 2.2. A quickly varying signal such as that shown in Figure 2.1.A 

exhibits an autocorrelation function that decays to zero nearly instantaneously indicating 

that knowledge of the signal at a particular time provides no predictive value of the signal 

at a later time.  Slowly varying signals, such as that shown in Figure 2.1.C, show an 

autocorrelation function that decays to zero very slowly. Signals such as that shown in 

Figure 2.1.B possess some intermediate amount of correlation and the autocorrelation 

function decays at some intermediate rate. 

 

Figure 2.2 Autocorrelation of Random Signals  
Autocorrelation functions of the signals shown in figure 2.1. (A) Gaussian white noise 

signals show autocorrelations that immediately drop to zero as there is no correlation 

between values. (B) This signal shows an autocorrelation that decays at an intermediate 

rate. (C) This signal shows a high amount of correlation with the autocorrelation 

decaying very slowly. 

 

While the autocorrelation function provides a useful quantitative measure of 

randomness in a somewhat intuitive way, an alternative technique is often more 

analytically useful. The power spectrum, given by the square of the Fourier transform 

coefficients of the time series, gives an estimate of the ‘power’ carried by each frequency. 

Depending on the dimensionality of the time series, the power spectrum may represent 

the actual physical power in the signal or it may be a conceptually similar quantity. For 

many time series, including the three presented here, the power spectrum can be well 
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described by !f
S 1= , where S is the power, f is frequency and α is a constant. The 

constant can be easily determined by plotting the frequency dependence of the power 

spectrum on logarithmic axes and finding the slope of the line, as shown in Figure 2.3. As 

can be seen, the power spectrum of the first signal (Fig 2.1.A), for which the 

autocorrelation decays to zero instantaneously, is flat across all frequencies. The time 

series with the intermediate amount of correlation (Fig. 2.1.B) shows a power spectrum 

with a slope near -1 while the highly correlated time series (Fig. 2.1.C) shows a power 

spectrum with a slope near -2.  

 

Figure 2.3 Power Spectra of Random Signals  
Power spectra of the signals show in figure 2.1. (A) The Gaussian white noise signal 

shows a flat power spectrum, with equal power at all frequencies. (B) This intermediate 

signal shows a power spectrum with a slope of -1. (C) This Brownian signal shows a 

power spectrum with a slope of -2. 

 

2.3 Modeling Physical Systems 

 For the three classes of signals discussed above, the autocorrelation results and 

power spectra frequency dependencies can all be derived analytically. The utility of 

fluctuation study becomes apparent when these mathematical constructs are mapped onto 

a physical substrate. Assuming that the dimensionality of the time series shown in figure 

2.1 is that of current, all of the signals could arise from common (or only mildly 
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contrived) electronic fluctuations in certain solids. The uncorrelated noise in figure 2.1.A 

could be that of thermal noise across a standard carbon resistor.16, 17 The moderately 

correlated noise shown in figure 2.1.B could be that of current carried across amorphous 

silicon films.18 In this system, charge carriers become trapped and released in an 

uncorrelated fashion and at a distribution of characteristic rates which is known to result 

in a 1/f spectrum. The highly correlated signal shown in figure 2.1.C could arise in a 

circuit with electromigration damage.19 

2.4 Noise and Local Field Potentials 

2.4.1 Current Theory of Local Field Potential Origin 

 Most researchers state that local field potentials reflect the synaptic activity of 

local populations of neurons. This understanding arises from a set of experiments done in 

the 1960s that link EEG recordings to intracranial recordings.2, 20-22 These studies showed 

that the low-frequency activity recorded in EEG is essentially independent of neuronal 

spiking. It was also shown that the magnitude of the fluctuations is not correlated with the 

properties of individual cells (as is the case for spikes), but rather they reflect the scope 

and geometry of the dendrites within the recording field. As discussed in the Chapter 1, 

cells within the cortex are arranged in layers, with the main body of neurons parallel to 

each other and perpendicular to the brain surface. Most people are familiar with the 

grooves and ridges of cortex. Within these ridges, or sulci, there are regions of relative 

silence where the electric dipoles created by non-parallel neurons cancel out, or at least 

do not sum to create the large magnitude fluctuations that are recorded in EEG. 
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 Additional evidence for the idea that synaptic activity dominates cortical local 

field potentials comes from current source density experiments.23-25 This technique 

employs spatially precise electrodes to measure current sources and sinks that arise due to 

currents that flow across neuron membranes. It was current source density experiments 

that led researchers to conclude that local field potentials reflect activity over a region of 

approximately .5 – 3 mm from the electrode tip.24 

2.4.2 Gaps in the Theory 

 Experimental evidence suggests that synaptic activity is the primary source of 

fluctuations that underlie local field recordings in cortex, and suggests that no coherent 

oscillations could emerge in non-laminar structures, as the dipoles created by individual 

neurons will cancel. This is a strong prediction that makes it difficult to interpret local 

field potentials in non-laminar structures. In order to show that local field potentials are 

generated locally in non-laminar structures, researchers typically try to correlate spike 

activity with local field oscillations, with generally low levels of success.26, 27 Still, 

several measures suggest that oscillations can be generated within non-laminar 

structures.28  

Several researchers have discovered that processes beyond synaptic fluctuations 

contribute to local field potentials, yet these processes are rarely mentioned in discussions 

of the origin of LFPs. These processes include voltage dependent membrane oscillations 

and spike after potentials.4, 5 Voltage dependent membrane oscillations tend to be lower 

amplitude than synaptic fluctuations. After potentials have a typical duration of tens of 

milliseconds and have been suggested to contribute to the generation of LFP signals.29 
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2.4.3 Potential Benefits of Noise Analysis 

Section 2.2 described how different fluctuation phenomena result in different 

spectra and spectral characteristics. In the case of local field potentials, the different 

contributing fluctuations, such as synaptic potentials, voltage dependent membrane 

oscillations, and spike after potentials, occur on different time scales, and thus should 

contribute to different regions of the power spectrum. In brain regions where the 

cytoarchitecture is laminar, it is likely that the synaptic potentials will dominate. In 

structures with other cellular arrangements, the relative contribution of different 

mechanisms will likely depend on the unique dynamics of the local cells. Once 

researchers understand the noise signatures of various fluctuation mechanisms, the power 

spectrum could help to identify the dominant mechanisms in a particular brain structure.  

 While a complete theory that links microscopic fluctuations to macroscopic 

observables is desirable, fluctuation studies could prove useful even without that 

connection. Many experiments are conducted by implanting moveable electrodes which 

are then lowered into position over a number of days and finely tuned through the 

duration of a several week experiment. One inherent challenge of this experimental 

technique is that the researcher is essentially ‘diving blind’, only having vague 

information about electrode location until after the completion of the experiment. Noise 

spectra will likely be architecture dependent, showing differences between structures that 

possess different cellular arrangements. Once these differences in noise signatures are 

correlated with specific brain structures, researchers may be able to use this additional 

information to guide electrode placement during experiments. 
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In other physiological systems, power spectra show modulation with disease state. 

For example, the human heart rate tends to display a power spectrum of form !"fS ~  

with α~- 1 in normal adults. In subjects known to have congestive heart failure, α is 

typically closer to 1.5.9 Variations in the power spectrum of heart rate variability have 

also been studied in patients with diabetes and found to correlate with associated heart 

conditions.30 

The traditional ways that EEG studies are reported do not allow for conclusions 

regarding the modulation of power spectral slope with disease states, though they do 

provide enough information that one would expect to see changes. EEG is traditionally 

analyzed in discrete frequency bins (eg, bin theta = 4-8 Hz, bin alpha = 8-13 Hz, etc.) and 

many pathological states are associated with increases or decreases in power within these 

bins. For example, Alzheimer’s disease is characterized by increased power in low 

frequency bands and a subsequent decrease in power within the higher frequency bands.31 

One would thus expect to see a higher spectral slope in Alzheimer’s patients relative to 

healthy patients. EEG is closely related to another brain recording paradigm, 

magnetoencephalography or MEG. Researchers studying this technique have recently 

learned that many pathological states show changes in the correlation of activity in 

different frequency ranges.32, 33 These studies note changes in a wide range of brain 

diseases, including schizophrenia, alcoholism, and chronic pain. This also suggests that 

there will be a modulation in the power spectral slope associated with disease states. 
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Chapter 3 

Power Spectra of Local Field Potentials 

3.1 Introduction 

 A wide variety of disordered systems display 1/f-like power spectra, including 

noise in traffic flow6, fluctuations in undersea currents7, heart rate variability9, and 

current fluctuations in amorphous silicon films.18 Several theoretical models have been 

developed to account for a 1/f power spectrum following from underlying fluctuations. 

We next discuss these models and consider their potential relevance to local field 

potentials. 

3.2 Distribution of Poisson Fluctuators 

One of the more versatile frameworks for obtaining 1/f power spectra is that 

which focuses on relaxation processes within a system. At some underlying level, many 

systems, such as magnetic domain flipping in a ferromagnet (Barkhausen noise) and 

charge trapping in defects in a nanoscale semiconductor device, can be described as 

assemblies of fluctuators that flip between two states. This type of signal is often referred 

to as a random telegraph signal and a simulated example of such a signal is shown in 

Figure 3.1.  
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Figure 3.1 Poisson Fluctuator  
A one second segment of a random telegraph type signal, or Poisson fluctuator. The 

lifetime of both the upstate and downstate are exponentially distributed with a 

characteristic time of 80 ms. 

 
Signals of this type are also referred to as Poisson fluctuators, reflecting 

the fact that a key parameter of these fluctuations is described by Poisson 

statistics. If the distribution of times spent in each state, x, is exponentially 

distributed,  
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then the number of transitions K  between states within some time T will follow a Poisson 

distribution,  
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 The parameter, λ in the exponential distribution (3.1) is sometimes referred to as the 

survival parameter and relates to the rate parameter, µ of the Poisson distribution by 

µ
! 1= . The distribution of lifetimes and the distribution of transitions per second for 

the signal in Figure 3.1 are shown in Figure 3.2 A and B, respectively. 
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Figure 3.2 Statistical Properties of a Poisson Flucator  
Distribution of lifetimes and transition rates for the signal shown in Figure 3.1. (A) The 

average time spend in both the up and down states is well fit by an exponential 

distribution, with λ = 80 ms. (B) The number of transitions per second, K, is well fit by a 

Poisson distribution. The distribution was calculated with a time window, T, of 1 s and µ 

is 12.5 flips/sec.  

 
In these signals, the autocorrelation function is given by 
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and it is common to define 
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= , where τ can then be identified as the characteristic 

relaxation time of the signal . The resulting power spectrum has a Lorentzian frequency 

dependence, 
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where ω = 2π f, and exhibits white noise at low frequencies and f -2 noise at high 

frequencies. The autocorrelation function and power spectrum for the signal shown in 

Figure 3.1 is shown in Figure 3.3. 
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Figure 3.3 Autocorrelation and Power Spectrum of a Poisson Fluctuator  
Autocorrelation function and power spectrum of the signal shown in Figure 3.1. (A) The 

autocorrelation function is well fit by a decaying exponential with a relaxation time, τ, of 

40 ms. (B) The power spectrum is well fit by a Lorentzian, showing white noise at the 

lowest frequencies and f-2 at high frequencies. 

 
Many systems possess multiple relaxation times. In these systems, the distribution 

of relaxation times can be written as g(τ), resulting in a power spectrum of 
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If g(τ) = 1/τ, then S(f) will show a frequency dependence of 1/f. 

While the last constraint, g(τ) = 1/τ is necessary to obtain a 1/f spectrum across all 

frequency and power decades, it has been found that the 1/f spectrum is robust against 

deviations from this distribution. In the case of noise in metals, it is found that the 

distribution is actually quite peaked and still results in a 1/f spectrum consistent with 

experimental results6. Experimental systems are typically only accessible across several 

frequency decades and non-model specific simulations show that realistic 1/f-like 

spectrum can be achieved with even a small number of independent relaxation times. 

Figure 3.4 shows a 1/f-like power spectrum over the range 1-500 Hz created with just 

three independent fluctutors. This simulation is not sensitive to the exact values for the 
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characteristic lifetime of the fluctuators. So long as there is approximately one fluctuator 

per temporal decade, the resulting power spectrum will be approximately 1/f over the 

corresponding frequency range. 

 

Figure 3.4 Simulation of 1/f Noise  
1/f noise can be simulated with a small number of independent Poisson fluctuators. (A), 

(B), and (C) One second segments of three Poisson fluctuators. (D) When the three 

fluctuators are added, the signal appears somewhat random. (E) The power spectrum of 

the signal shown in panel (D) shows a slope of -1.1 and can be considered to be 1/f.  

 

Local field potentials are thought to reflect electrical fluctuations occurring at 

synapses between neurons2. These electrical fluctuations are well characterized and the 

times associated with them are limited in number. Some have disregarded the distribution 

of relaxation times model described above as irrelevant for this reason3.  It is also unclear 

if it is relevant to consider a model that is based upon uncorrelated fluctuations. Despite 
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these reservations, it is premature to discard this framework as a possible explanation for 

the 1/f – like noise that is frequently observed in neural systems. 

 The distribution of characteristic synaptic transmission times is clearly not g(τ) = 

1/τ, as there are a limited number of types of ionic channels that underlie synaptic 

fluctuations. Despite being limited in number, the transmission times span a significant 

range. The distribution of fluctuators model is based on fluctuations within a two state 

system. The fluctuations underlying synaptic transmission are not well modeled with 

such a system but instead are well represented by an α - function of the form  
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 A simple simulation that includes physiologically relevant α-function fluctuations 

occurring at random, exponentially distributed times could test the relevance of this 

model. While nothing here can be taken as proof that the 1/f spectrum of local field 

potentials arises from a distribution of relaxation times, the argument cannot be discarded 

on the basis of fluctuations being physiologically limited. So long as the relevant time 

constants span orders of magnitudes comparable to that of the observed 1/f spectrum, the 

distribution of fluctuators model remains potentially relevant. 

 Synaptic alpha functions are generated by the coordinated activity of ion channels 

at the synapse. Individually, the activity of these ion channels resembles Poisson 

fluctuators.34  A small segment of membrane with just one ion channel can show two 

conductances – one conductance when the channel is open and one when the channel is 

closed. It has been shown that individual channels open and close with a characteristic 

lifetime and exponential distribution about this lifetime.35, 36 These channels show 
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characteristic Lorentzian power spectra. As discussed and shown in figure 3.4, a spread 

of characteristic lifetimes would result in 1/f noise, if the activity of the channels was 

independent. Despite the fact that channel activity tends to be highly correlated, this 

could suggest that the activity of the individual channels plays a larger role in local field 

potentials than previously thought. 

3.3 Frequency Filtering Properties of Dielectric Media  

In the simple situation of a voltage recorded across a resistor, fluctuations in the 

voltage can occur due to thermal fluctuations within the resistor. The resulting power 

spectrum, termed Johnson noise, is frequency independent and given by 

 ( ) kTRfS 4=! . (3.7) 

If instead of an ideal resistor, we consider the noise arising within a dielectric 

material, we can write  

 ( ) ( )ZkTfS Re4=!  (3.8) 

where ( )ZRe  is the real part of the system’s impedance. In an ideal capacitor, the real 

impedance is zero. Any actual capacitor has some real resistive impedance and the actual 

capacitor can be modeled as a parallel system of an ideal parallel plate capacitor and a 

resistor. For this system, the impedance is given by  
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resulting in a voltage noise spectrum of  
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where R is the parallel resistance and C the ideal capacitance of plate area A and plate 

spacing d. 

An ideal capacitor is characterized by a purely real dielectric constant with no 

energy dissipated as heat. In reality, all dielectric materials possess a complex dielectric 

constant typically denoted by 

 ( ) ( ) ( )!"!"!"
rrr
i ##+#= . (3.11) 

The real component,
r
! " , represents the relative permittivity as used to calculate 

capacitance, as in  
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.The imaginary component relates to the materials conductivity and accounts for the 

energy dissipation that occurs through polarization and relaxation processes.  

By considering the admittance, the reciprocal of impedance, of both the real and 

modeled systems, the ideal model parameters (Cideal and R) can be related to the 

measurable dielectric constants. For the real system, 
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while for the modeled system,  

 

R
Ci

Z
Y

ideal

11
+!== "  

(3.14) 

.Thus, the ideal model parameters are given by 
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Substituting these parameters into equation 3.10, defining the loss tangent as 
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 and considering the limit where !! "<<""  results in a power spectrum of the form 
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For dielectric materials with a frequency independent loss tangent, the power spectrum 

resulting from random thermal fluctuations will show a 1/f frequency dependence. A 

wide variety of solid dielectrics and many liquid dielectrics possess this property with 

nearly frequency independent loss tangents over the range of 10-2 Hz through 108 Hz.37  

The loss tangent of brain tissue has not been explicitly studied, though there have 

been studies of dielectric properties of biological tissues that may help to test the 

relevance of this model 38-40. In these studies, researchers used three different techniques 

to measure the permittivity and conductivity of harvested brain tissue over the range of 

10 Hz to 20 GHz.  

 There are several reasons to question the applicability of the these experiments. 

The tissue used in that experiment was from recently euthanized animals with 

measurements made several hours after death. Older work has shown that cerebral 

impedance changes abruptly and significantly within minutes after circulatory arrest41. 

Using deeply anesthetized and intact animals, measurements could be obtained in 

hemodynamically normal animals with normal boundary conditions provided by the 

intact skull. The particular probes used required a large piece of brain tissue – 

significantly larger than that available from rats and, more importantly, significantly 

larger than the heterogeneities within brain tissue.  Ideally, the impedance measurements 
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would be made with the same probes used in recording the local field potential samples 

in order to equally account for the potentially unknown frequency dependencies of the 

probe impedance. 

This section outlined an approach to interpreting the power spectral slope by 

considering the structural properties of brain tissue as characterized by the dielectric loss 

tangent. In the case of brain tissue, the loss tangent is likely heavily influenced by 

electrostatic effects at the interface of the extracellular space and the cell membrane. The 

same properties that influence the loss tangent will also influence diffusion of molecules 

throughout the extracellular space. These properties include complex neuronal 

morphologies, the presence of large biological macromolecules and cellular swelling, 

among others. While the dielectric properties of brain tissue have not been explicitly 

studied, other structural parameters related to diffusion have been investigated by 

researchers interested in the diffusion of neuroactive substances.42 One of these 

parameters is the extracellular space volume fraction, denoted alpha, and defined as the 

ratio between the volume of the extracellular space and the total volume of tissue. In the 

adult brain, the volume fraction is roughly 20% with variations between brain structures. 

 Many pathological states exhibit changes in the diffusion properties of 

extracellular space.43, 44 Researchers have measured significant changes in model systems 

of epilepsy45, Parkinson’s disease46, and Alzheimer’s disease47, among many others. It 

would be interesting to study the local field potentials in the disease model systems used 

to study diffusion parameters. If the composition of the extracellular space plays a 
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significant role in the frequency properties of local field potentials, one would expect to 

see a difference in the power spectra recorded from normal and pathological systems.  

It should be noted that the two previously discussed models of 1/ f noise are likely 

mathematically identical despite the different formalism and physical considerations in 

their derivations. While I discussed the macroscopic properties of a leaky dielectric 

medium, one could also consider the microscopic behavior of such a system. In the 

presence of an electric field, molecules within the material become polarized. Upon 

removal of the field, random collisions reduce the induced dipole moment over some 

characteristic time. Given the extreme molecular heterogeneity of the brain, it is 

reasonable to expect a wide distribution of dipole relaxation times. While the first 

situation considered opening and closing ion channels as the origin of the fluctuations, 

the second situation considers the source to be molecular alignment and relaxation. 

3.4 Self-Organized Criticality   

Self-organized criticality is a framework that was proposed by Bak, Tang, and 

Weisenfeld in 1987 to describe the behavior of complex dynamical systems.48 Their 

hypothesis was that systems organize themselves into a complex state that lacks any 

characteristic spatial or temporal scale. This suggestion combined two concepts familiar 

to many neuroscience researchers – self-organization and critical behavior. They report 

that 1/f noise arises from the dynamics of these self-evolved critical states. There are 

several indications that self-organized criticality could be applicable to neural dynamics, 

including 1/f frequency scaling. It is necessary to critically examine this idea from both a 

theoretical and experimental perspective before any definite statements can be made 
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regarding the relevance of self-organized criticality to any particular dynamic neural 

signal. 

In order to test the hypothesis that self-organized criticality can explain the 1/f 

noise observed in local field potentials, it is first necessary to carefully examine both 

what self-organized criticality is and what it is not.  As described by Bak, Tang and 

Weisenfeld, as well as by the many researchers that have explored this idea, self-

organized criticality is a framework through which models for specific systems can be 

developed. It is not a model in and of itself. There is no concise definition of self-

organized criticality, but rather there are a number of characteristics displayed by 

candidate systems. These include 49: 

• The system’s behavior arises due to many interacting degrees of freedom  

• The system’s behavior is dominated by mutual interactions of many degrees of  

freedom 

• The system evolves to a critical, metastable state with no outside tuning 

• The system’s critical, metastable threshold can be reached through a large number 

of microscopic configurations 

• The system operates under a slow drive such that the system can relax from one 

metastable state to another 

• The statistical properties of the system are described by power laws 

Researchers in many disparate fields have constructed models based on the 

characteristics of self-organized criticality. The most frequently noted examples are those 

of sand piles, earthquakes, and forest fires, but models have also been developed for 
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economic systems and biological evolution. In all of these cases, the resulting model is 

very system specific; there is no mathematical formalism that can be mapped onto 

different systems. In order to develop a self-organized criticality based model for local 

field potentials, one would need to start with the underlying fluctuations and try to apply 

the above listed characteristics.  

 Self-organized criticality can also be tested experimentally. A system possessing 

the characteristics of self-organized criticality will show fluctuations due to driven 

dynamics rather than equilibrium fluctuations. The nature of the fluctuations can be 

analyzed through higher order statistics.50, 51 Self-organized criticality requires that events 

at one temporal scale set the stage for events on another scale. This flow of activity from 

one scale to another can be captured in higher order correlation functions. These 

analytical methods are particularly susceptible to extraneous noise sources, thus extra 

care must be taken to ensure that the recorded signal is uncontaminated. This could be 

particularly challenging in living systems and it may be best to first test this theory in 

prepared slices.  

 As emphasized in Chapter 1, there are different signals that can be recorded from 

neurological systems and they reflect different underlying physiological fluctuations. 

Even if researchers find that self-organized criticality can account for a certain 

neurological signal, it should not be concluded that ‘the brain’ shows self-organized 

criticality until we have a better understanding of how the various neurological signals 

relate to each other. None of these observations and constraints should be interpreted to 

mean that self-organized criticality does not describe some aspect of neural dynamics, but 
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rather that much work must be done before one could claim that this paradigm is 

applicable.
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Chapter 4 

Experimental Methods 

Data for the analyses presented in Chapters 5 and 6 was originally collected for a 

variety of rodent navigation experiments. Hippocampal data was collected by Jadin 

Jackson and Chris Boldt.52, 53 Striatal data was collected by Neil Schmitzer-Torbert, 54, 55 

and the postsubicular data was collected by Kelsey Seeland and Adam Johnson.56 

4.1 Brain Structures 

4.1.1 Hippocampus  

The hippocampus is a well-studied brain structure involved with learning and 

memory (see reviews by O’Keefe and Nadel12, and Redish57). In rodents, the 

hippocampus is noted for having cells that are only active when the animal is in a 

particular region of its environment. The local field potentials generated in the 

hippocampus are also well characterized. Oscillations that occur at 6-10 Hz are labeled 

‘theta’ oscillations and persist for up to minutes, when the animal is engaged in attentive 

behaviors.12, 13  During periods of rest and autonomous behaviors, this strong 6-10 Hz 

oscillation is not present and the activity is largely irregular, even being referred to as 

Large Irregular Activity (LIA). These epochs of LIA are punctuated by 160-200 Hz 

oscillations known as sharp waves. Sharp waves are characterized by ripples at the given 

frequency with a characteristic duration of 100 ms.14  Past work on hippocampus has 

revealed significant aspects of hippocampal dynamics by investigating the interplay of 

cellular spike activity with these LFP states. The hippocampus provides an ideal structure 
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in which to study local field potentials due to the laminar structure and the strong 

interaction between cellular spike activity and LFP oscillations. 

4.1.2 Postsubiculum 

The postsubiculum is another brain structure involved in navigation.  It is a 

cortical structure that is closely interconnected with the hippocampus and its cellular 

architecture is layered just as in visual and motor cortex. Head direction cells were first 

identified in this structure.58 These are cells that show peak firing activity when the 

animal is facing a particular direction and their firing decreases monotonically as the 

orientation deviates from that preferred direction.59 This spatial tuning, along with 

anatomical connections with other structures thought to be involved with navigation 

make the postsubiculum an interesting experimental target. From the perspective of local 

field potentials, postsubiculum is interesting because of its laminar structure and the 

potential relevance to EEG, which is thought to reflect cortical synaptic activity. 

4.1.3 Striatum  

The striatum is a subcortical structure that, compared with hippocampus and 

postsubiculum, is relatively unexplored. Classically, this structure has been considered a 

motor structure and has been studied with regards to the role it plays is several major 

diseases. Local field potentials have only recently begun to be characterized and studies 

show oscillations in different frequency ranges. Low frequency oscillations (~ 8 Hz) and 

gamma oscillations (~30–80 Hz) have been recorded from rats,26 and beta oscillations 

(10-30 Hz) have been recorded from monkey striatum.60 Work done by Schmitzer-

Torbert and Redish, through experiments for which the data studied here was collected, 
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found cellular firing correlates such as spatial location and reward-delivery.55, 61 Striatum 

is a non-laminar structure, and thus recording from this structure could provide data 

useful for deciphering the origin of LFP oscillations in structures that lack regular cellular 

arrangements. 

4.2 Animals 

All animals used were Brown-Norway Fisher-344 Hybrid rats (BNF1) and were 

aged 7-18 months at the time of recording. Animals were food-restricted during 

behavioral training and testing. All procedures were approved by the IACUC at the 

University of Minnesota and were in accordance with NIH guidelines for animal care. 

4.3 Behavioral Tasks 

 The data in this study came from rats trained on a number of different behavioral 

tasks. Sessions ran from 20 to 40 min, depending on the specifics of the task. The 

hippocampal data was taken from rats performing the Linear Track task62, and Open 

Field Goal task.63 The postsubicular data came from rats performing the Open Field 

task.64, 65 The dorsal striatal data came from rats performing the Multiple-T task66 and 

NosePoke task.67  

In the Linear Track task shown in Fig. 4.1, rats ran back and forth on a 1.25 m 

linear track, receiving food at both ends. Pellets were delivered upon entry into a goal 

region near the feeder and the region was not re-armed until the animal triggered the goal 

zone at the opposite end of the track. 

In the Open Field task (Fig. 4.2), animals foraged for food in a 1m diameter 

cylinder with a cue-card subtending 90 degrees. The cue-card provides a navigational 
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landmark. Food was delivered randomly with a Poisson interval (λ = 10 s).  In the Open 

Field Goal task, rats also foraged for food in the 1 m cylinder, but food was only 

delivered when rats crossed a 7 cm diameter goal region. The goal was re-armed only 

after rats had been outside of a 14 cm diameter region around the goal for 4 s.  The goal 

zone was invisible and the location varied from session to session. 

 

Figure 4.1 Linear Track Task  
The Linear Track task schematic. Animals ran back and forth on the track to trigger food 

reward upon entry to a goal region near each feeder. The goal zone was not re-armed 

until the animal triggered the goal zone at the opposite end of the track. 

 

 

Figure 4.2 Open Field and Open Field Goal Tasks  
Schematic of the Open Field and Open Field Goal Tasks. Left In the Open Field task, 

animals foraged for food pellets that were delivered randomly. Right In the Open Field 

Goal task, animals needed to locate the goal region to trigger food delivery. 
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In the NosePoke task, shown in Fig. 4.3, a rat had to hold his nose in a nose-poke 

port in order to break an LED beam. If the LED beam was interrupted for 500 ms, food 

became available at the other end of the 1.25 m track. The beam was not re-armed until 

the rat had traveled to the other end of the track and received its food.  

 

Figure 4.3 Nose Poke Task  
The Nosepoke task schematic. A nosepoke port and a pellet dispenser were placed at 

opposite ends of a linear track. Rats were required to interrupt the infrared beam in the 

noseport port for 100 ms in order to activate the pellet dispenser. 

 

In the Multiple-T task, rats ran through a sequence of four T-choices in order to 

receive food. The last choice led to a return path, so the task entailed running a 4 m loop 

for food (see Figure 4.4). Food was provided at two sites on each return rail. On any 

specific day, only one pair of sites (i.e. the right or left return rail) was active and 

provided food reward. The other pair of feeders remained in their usual positions on the 

track, but did not provide reward. The sequence of choices remained constant within a 

day, but changed between days. Rats were allowed to run for one 40 minute session daily.  
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Figure 4.4 Multiple-T Task  
Schematic of the Multiple T maze. The path of the animal is indicated by the dark line. 

The four filled circles indicate the locations of the feeders on the return rails. Each day, 

the turn sequence (which in this case was right-left-right-right) remained constant, but 

between days the turn sequence could be changed. On each day, only one pair of feeders 

was active (either the left or the right pair of feeders), providing a fourth choice to the 

turn sequence. The animal ran a continuous one-way loop, receiving food at the correct 

feeders on each trial. 

 

In the Take-5 task, four feeders were placed around a rectangular track (90 cm x 

60 cm), one feeder at the center of each side. In order to receive food, rats had to run 5/4 

around the track in a clockwise direction (see Figure 4.5). Thus if a rat received food at 

the west feeder, the rat had to make one full circuit around the track, returning to the west 
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feeder, and then continue on to the north feeder in order to receive food. Rats were 

allowed to run for one 40 minute session daily. 

 

 

Figure 4.5 Take-5 Task  
Rats ran on a rectangular track for food which could be delivered to any side of the track. 

In each trial, rats were required to run 1.25 times around the track. Illustrated are four 

successive trials, in which the rat first received food reward on the west side of the track, 

then subsequently received food on the north side of the track. The path of the rat in each 

trial is shown by the black arrow, and the rewarded feeder in each trial is shaded dark. 

 
4.4 Neural Recording 

Local field potentials were recorded from one channel of a four channel tetrode, 

shown schematically in Fig. 4.6. The four wire tetrode is useful for providing source 

separation for extracellularly recorded action potentials (spikes). Tetrodes allow the 

researcher to discriminate spikes from multiple neurons, by comparing the spike 

waveform properties across channels. The recorded voltage trace depends on the spatial 

relationship between the neuron and the four tetrode channels and the differences in 

waveform properties can be exploited to separate spikes arising from different neurons. 

Local field potentials reflect the electrical activity over a distance much larger than the 
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separation of electrode tips, and thus the signal is nearly identical between the four 

recording sites. For all analyses, only one channel of each electrode is considered. 

 

Figure 4.6 Tetrode Schematic  
The tetrode is depicted as 4 black strands intertwined. Voltage traces arising from spikes 

(high frequency activity) from neuron A will be larger on channel 1 than on channels 2 

and 4, and much larger than channel 3. Local field potentials reflect activity from a larger 

area, and thus the LFP signal recorded from each channel is nearly identical. Figure 

courtesy of Jadin Jackson. 

 

LFPs were recorded with 16 channels of a Cheetah 64-Channel system 

(Neuralynx, Tucson AZ). A 72-channel torque-sensing, motorized commutator (AirFlyte, 

Bayonne, NJ; Dragonfly, Ridgeley WV; Neuralynx, Tucson AZ) allowed the animals to 

run without twisting the shielded cables connecting the electrodes to the recording 

system. Signals were amplified at unity-gain at a headstage (Neuarlynx) directly 

connected to the implant, passed along the cables and commutator before reaching two 
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variable gain (1-50,000x) Lynx-8 amplifiers (Neuralynx). Amplification was typically 

500x though this was variable and automatically recorded into each data file. The signals 

were passed through a Cheetah A2D processor and stored at a sampling frequency of 943 

or 2003 Hz. All local field potential signals were filtered at 1-475 Hz in the amplifiers. 

4.5 Surgery 

Tetrodes were made from 14 micron NiChrome wire (Kanthal Precision Wire, 

Palm Coast, FL). Tetrodes were loaded into hyperdrives (David Kopf Instruments, 

Tujunga, CA), providing individual microdrives for each of 12 tetrodes and 2 single-wire 

electrodes used as references for common noise rejection. Hyperdrives were implanted 

stereotactically over the target location (hippocampus: Bregma -3.8 mm AP, +2.0 mm 

ML; postsubiculum: Bregma -7.0 mm AP, +2.4 mm ML; dorsal striatum: Bregma +0.5 

mm AP, 3.0 mm ML). Surgery was done under general anesthesia (sodium pentobarbital 

40-50 mg/kg, maintained with isoflurane 0.5-2%, vaporized into pure oxygen, delivered 

at 1.0 L/min) and under sterile conditions. Signals from the tetrodes were measured 

relative to a ground screw implanted during surgery in the parietal bone. After surgery, 

electrodes were lowered into place over the subsequent 1-3 weeks. 

4.6 Position and Velocity 

For all experiments, position was sampled at 60Hz via a camera in the ceiling 

tracking LEDs on the headstage of the animal (Cheetah, Neuralynx).  Video data was 

timestamped synchronously with the electrophysiological data and pixels that broke 

manually determined thresholds were recorded to disk. The video data was accessed in 



      -42- 

real-time to facilitate automated behavioral controls, such as delivering food pellets in 

response to specified behaviors. 

A linear speed could be calculated for the LinearTrack and NosePoke tasks. For 

the Multiple-T and Take-5 tasks, the overall motion was essentially angular around a 

skewed circle. Thus, only the angular components around the pseudo-center of the track 

were included in the speed calculations. Speed was calculated using the adaptive 

windowing procedure described by Janabi-Sharifi et al.68 This algorithm provides for 

both accurate speed estimates and an accurate estimate of the time of speed change. 

Speed estimates received from this algorithm were subsequently smoothed with a 300 ms 

Hamming window. 
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Chapter 5 

Analytical Technique 

5.1 Introduction 

Standard techniques for identifying fundamental frequencies typically entail 

applying a fast Fourier transform (FFT) to the time-series and then examining either the 

power spectrum or the spectrogram. The power spectrum assumes that the data are 

stationary in time, an assumption that is invalid for almost all neural data. Non-stationary 

oscillations are difficult to identify within an average power spectrum because the 

characteristic frequency peak only occurs in a limited number of time-windows. 

Averaging across time-windows dilutes the magnitude of the characteristic peak so that it 

may be difficult to resolve from background fluctuations. The spectrogram does not 

assume stationarity, in that it measures the power at each frequency as a function of time, 

but examining a spectrogram for a long data session is extremely difficult because each 

time-window contributes only one column to the spectrogram. Since neural data tend to 

have a low signal-to-noise ratio, identifying the fundamental frequencies within each 

time-window can be difficult. 

5.2 Overview of Technique 

Instead of averaging the separate samples of the spectrogram, we propose 

correlating the power values at each frequency across the time-samples within the 

spectrogram. For Gaussian processes, the two-point autocorrelation function contains all 

the relevant information concerning the physical mechanisms underlying the fluctuating 
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time series 6, 69, as the magnitude of the FFT amplitudes at one frequency are uncorrelated 

with the FFT amplitudes at another frequency 70. However, interactions between 

fluctuators can produce significant time-dependent variations in the power spectra with 

non-trivial correlations. These can be quantified through the calculation of a conventional 

correlation coefficient ρij, where the indices i and j denote differing frequencies within 

the same time-series. Since any characteristic oscillation arising from a biological rhythm 

will have a finite, non-zero width, it will overlap with adjacent frequencies, and thus will 

show a non-zero correlation with these neighboring frequencies, even if it does not 

interact with other oscillations. 

5.3 Analysis Methods 

The time-dependent fluctuations of the voltages V(t) recorded from the tetrodes 

were first broken into individual continuous, contiguous, non-overlapping time-windows. 

The extent of the time-window determined the lowest frequency in the Fourier transform 

of V(t), while the data acquisition rate constrained the upper frequency. The voltage was 

fast Fourier transformed and then multiplied by its complex conjugate, to yield the 

spectral density as a function of frequency.  

The correlation between the power spectrum S(f) at a frequency fi and at another 

frequency fj can be calculated using the expression  
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where ( )ik fS  is the spectral density at frequency fi in time-window k, ( )ifS  the average 

spectral density magnitude at frequency fi, σi is the standard deviation of S(fi), and k 
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ranges over the total number of time-windows. Because the spectral density at any 

frequency will always be perfectly correlated with itself, ρii will always be unity. Time-

windows in which the recorded voltage exceeded the maximum range of the analog-to-

digital converter were removed from analysis. 

These correlations can be visualized through standard correlation plots (for 

example, Fig.  5.2 and Fig. 5.3). In these figures, correlation coefficient values of zero are 

shown as dark while high correlations are in white. No significant anti-correlations (ρij < 

0) were found. In these plots, the diagonal represents ρii and thus has a value of 1 by 

definition. Since ρij = ρji, the upper triangles of these plots are redundant with the 

corresponding lower triangles, but have been included for convenience. Biologically-

generated fundamental frequencies appear as areas of high correlation and are reflected 

by symmetric grey regions near the diagonal. Off-axis dark regions indicated interactions 

between oscillators. Non-biological signals (such as 60 Hz electrical background noise) 

appear as sharp, uncorrelated lines in these plots. 

5.4 Results 

This simple methodology provides a novel means of determining the fundamental 

oscillation frequencies within a neural structure. In Sections 5.4.1 – 5.4.3 we first test this 

method with simulations, inserting known fluctuators into an example recording. We then 

show that in hippocampus, in which characteristic LFP oscillation frequencies are well 

known, this method identifies the known frequencies. We then apply the method to a new 

aspect of a structure with known oscillations (postsubiculum, part of cortex). 

Postsubiculum showed oscillation components similar to other aspects of cortex. Finally, 
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we apply the method to the dorsal striatum, where the fundamental LFP oscillation 

frequencies are unknown, and identify novel oscillatory components there. 

5.4.1 Simulation  

In order to test the capabilities of the method proposed here, simulations were 

used to create a time-series in which all oscillation frequencies were known. Applying the 

method to these simulations indicated that fundamental oscillations can be detected 

through the correlation coefficient analysis even while remaining undetected using 

standard frequency analysis techniques. 

For this simulation, a voltage time-series from a single tetrode channel was 

recorded from an animal performing the NosePoke task. The single voltage time-series 

from the single tetrode channel that was analyzed exhibited primarily Gaussian 1/f noise 

(Fig 5.1.A). A spectral density is considered Gaussian if it arises from a large number of 

statistically independent fluctuators, so that the magnitude of the spectral density at one 

frequency is uncorrelated with the power spectrum at a differing frequency. In the power 

spectrum (Fig. 5.1.C), external electrical noise was observed as sharp peaks at 60 Hz and 

the odd harmonics. The spectrogram (Fig. 5.1.E) contains essentially the same 

information. The correlation matrix (Fig. 5.1.G) shows that most power correlations are 

equal to zero. One can faintly see the absolute zero correlation of the 180 Hz noise 

harmonic. 

Oscillations were then added to the signal. The oscillations were sine waves of 

various frequencies, all with amplitude equal to the rms value of the original voltage 

signal. One of the oscillations was comprised of a 100 ms 50Hz oscillation followed 
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immediately by a 75 ms 100Hz oscillation. The original signal was divided into 1 second 

segments and this oscillation was placed into 10% of the segments, selected randomly. 

The second oscillation was simply a 50 ms, 150 Hz oscillation that was placed into 10% 

of the time segments, also selected randomly. 

The power spectrum of the modified signal (Fig. 5.1.D) shows the increased 

power over the designated frequencies but the change is small enough to be difficult to 

distinguish from other bumps in the spectrum. The oscillations are not visible in the 

spectrogram (Fig. 5.1.F) demonstrating that an oscillation that occurs completely within 

one time slice will not be visible given the large number of time slices examined. Finally, 

the correlation matrix (Fig. 5.1.H) was computed, which unambiguously displays the 

structure that was placed in the signal. One can clearly see both the frequency of each 

oscillation in the high correlation regions centered on the diagonal, as well as the inter-

oscillator correlations shown by the region of high correlation off the center axis. 
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Figure 5.1 Simulation  
Simulation showing how the correlation method can identify the occurrence of coherent 

oscillations within a noisy signal. (A) and (B) Time series of the original and modified 

signal, respectively. (B) includes a 100 ms 50Hz oscillation followed immediately by a 

75 ms 100 Hz oscillation. (C) and (D) Power spectra of the original and modified signals. 

The arrows in (D) point to the small increases in power associated with the added 

oscillations. (E) and (F) Spectrograms of the original and modified signals. Because the 

oscillations were added intermittently, they are nearly invisible in the spectrogram. (G) 

and (H) Correlation plots of the power spectra of the signals show in (A) and (B). The 

uniform zero correlations in (G) show that the original signal consisted of Gaussian 

fluctuators with no fundamental frequencies. Three fundamental frequencies are clear in 

(H) and correspond to the frequencies indicated by the arrows in (D). The diagonal in 

panels (G) and (H) represents the correlation of each frequency with itself and thus has a 

value of 1 by definition. 
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5.4.2 Hippocampus 

Local field potentials recorded from the CA1 region of the hippocampus show 

two major oscillatory frequencies, characterized as theta (7-14 Hz), which occurs during 

awake, attentive and REM states 12, 13, and ripples (200 Hz) 14, which ride on sharp-waves 

that occur during slow-wave-sleep and inattentive states.71 Other oscillations can also be 

seen in hippocampal structures (such as gamma oscillations; 50-100 Hz) 72, but these do 

not show strong power in CA1 stratum pyramidale.73 In order to test the capabilities of 

our proposed method to identify fluctuators in real situations, we measured local field 

potentials from tetrodes chronically implanted in the dorsal hippocampal pyramidal layer. 

As can be seen in Fig. 5.2, there were clear regions of high activity in the low 

frequency range (0-20 Hz) and in a high-frequency range (160-220 Hz). Examination of 

the low-frequency range finds a strong fluctuator at 5-15 Hz, likely to be the theta signal. 

The very sharp, uncorrelated 10 Hz signal slicing through the correlation coefficient plot 

is non-biological; it was generated by the firing of the automated pellet-delivery feeders. 

The high-frequency power block is likely to have arisen from ripples which typically 

show oscillations in the range of 140-200 Hz.14, 74  
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Figure 5.2 Correlation Structure of LFPs Recorded from the Hippocampus of Two 
Rats 
(A) Correlation matrix of all frequencies ranging from 1 to 250 Hz. Note the clear blocks 

in the low frequency (0–20 Hz) and high-frequency (160–220 Hz) ranges. (B) Expanded 

plot of the correlation matrix of the frequencies ranging from 1 to 20 Hz. Note the strong 

5–15 Hz oscillator (theta). The uncorrelated 10 Hz oscillator (with its 20 Hz harmonic) is 

non-biological; it is generated by the firing of automated pellet delivery feeders during 

the behavioral task. (C) Expanded plot of the correlation matrix ranging from 100 to 250 

Hz. Note the 160–220 Hz component. Figure from Masimore et al, 2004. 

 

5.4.3 Postsubiculum (cortex) 

The local field potential oscillation structure of hippocampus is well known, and 

our method found the key frequencies previously identified. We next apply the method to 

a structure where the specific frequencies are not known, but can be inferred from similar 

structures. 
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Fundamental oscillatory frequencies have been well-studied in cortex, particularly 

through extracranial EEG 75 and in local field potentials recorded in primary visual 

cortex.76, 77 The strongest oscillatory component of cortex is the well-studied 40Hz 

gamma band.75, 76, 78-80 Other slower components have also been identified including theta 

(4-8 Hz) 75, 80, 81, alpha (8-13 Hz) 75, 79, 80, and beta (14-30 Hz).75, 79, 80 Although other 

aspects of cortex have been extensively studied, we know of no studies of the local field 

potential in postsubiculum. The data presented below suggest that postsubiculum shows 

local field potential oscillations similar to other aspects of cortex. 

As can be seen in Figure 5.3, there were three regions of non-zero correlations: a 

region showing complex substructure in the low ranges (1-60 Hz), a 130-160 Hz region, 

and high-frequency components (>200 Hz). The low-frequency region contained a 

complex substructure including a smaller 5-10 Hz region (theta), and an un-correlated 10 

Hz component (non-biological, arising from automated pellet-delivery feeders). In 

addition, the correlation matrix showed a strong 20-50 Hz (gamma) component. The 

identification of a 150 Hz fundamental oscillation is novel, but there have been reports of 

high-frequency oscillations >200 Hz in other aspects of rodent cortex.82-84 There have 

been no previous studies of local field potentials in postsubiculum, but the results 

presented here suggest that postsubiculum shows oscillatory components similar to other 

aspects of cortex, rather than to hippocampus. 
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Figure 5.3 Correlation Structure of LFPs Recorded from the Postsubiculum of Two 
Rats 
(A) Correlation matrix of all frequencies ranging from 1 to 250 Hz. Note the regions in 

the low-frequency range (1–60 Hz) and in the high-frequency range (120–160 Hz), as 

well as the strong >200 Hz components. (B) Expanded correlation matrix showing the 

substructure in the low-frequency range. The uncorrelated signal occurring at 10 Hz is 

non-neural noise generated by the automated pellet-delivery system. (C) Expanded 

correlation matrix showing the 120–160 Hz component and the >200 Hz component. The 

uncorrelated signal occurring at 180 Hz is an odd harmonic of the 60 Hz non-neural 

noise. Figure from Masimore et al, 2004. 

 

5.4.4 Striatum 

Fundamental oscillatory frequencies have not been well-studied in the dorsal 

striatum, however, there have been preliminary reports of striatal rhythms. DeCoteau et 

al.85 found that a theta oscillation (7-10 Hz) can be seen under certain conditions and 

Berke et al.26 have reported the presence of gamma-band oscillations (35-100 Hz). We 
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recorded local field potentials from the striatum of five rats running a variety of 

behavioral tasks. 

The correlation matrix (Fig. 5.4) identified two clear regions of important 

frequencies (1-30 and 50-55 Hz). The lack of off-axis correlations between the two 

regions indicate that these fluctuators were likely to have been generated by different 

processes. 

 

Figure 5.4 Correlation Structure of LFPs Recorded from the Dorsocentral Striatum 
of Five Rats 
(A) Correlation matrix of all frequencies ranging from 1 to 250 Hz. Note the clear blocks 

in the low-frequency range (1–30 Hz), in the gamma band range (50–55 Hz). (B) 

Expanded plot showing the substructure in the low-frequency range. (C) Expanded plot 

showing the tight fluctuator in the mid-frequency range. Figure from Masimore et al, 

2004. 
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Although the correlation matrix does not tell us when the characteristic 

oscillations appear, nor under what conditions they occur, nor what the behavioral 

correlates of the frequencies are, it can guide our investigation to look at the fundamental 

frequencies identified here. The gamma band is traditionally specified as being very 

broad (30-100 Hz).72, 73, 77, 86-88 The data reported here identify the important oscillatory 

range in striatum as extremely tight (50-55 Hz). 

5.5 Discussion 

This chapter presents a novel methodology for determining the fundamental 

frequency of an oscillation within neural time-series, such as the local field potential. By 

combining two well-understood techniques in common use in neuroscience (Fourier 

transforms and correlation coefficients), it provides an easily accessible procedure 

applicable to many aspects of neuroscience. The key advantage over other techniques for 

determining fundamental underlying frequencies is that it allows the averaging of 

multiple time windows from long data recordings to filter out noise effects, without 

making any assumptions about the stationarity of the data. This technique is thus 

particularly useful for neural data, which tend to be non-stationary and to have a low 

signal-to-noise ratio. 

While the technique of employing correlation coefficients to investigate local 

field potentials is not new 75, 89-92, we make use of a frequently overlooked property of the 

self-coherence function. Since any peak in the spectral density corresponding to the 

characteristic frequency of a rhythmic oscillation will have a finite, non-zero width (due 

to its transient nature), it can be identified by the finite cross-correlations with 
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neighboring frequencies. The non-stationary, small amplitude aspect of these oscillations 

would ordinarily be buried in the background noise in a traditional average spectral 

density. In contrast, correlation coefficients are calculated by summing the correlations 

over a large number of individual power spectra. This summation leads to a cancellation 

of uncorrelated positive and negative coefficients, while a true correlated signal is 

undiluted by the summation process and is thereby readily detected. 

5.5.1 Importance for Other Recording Technologies 

Neural oscillations appear in many data acquisition paradigms, including EEG, 

fMRI, MEG, and ensemble neural recordings. The techniques proposed in this chapter 

are applicable to any time-series and will be of general use for all of these neural data. 

5.5.2 Detection of Non-Neural Noise Sources 

 Any experimental set-up will include spurious non-neural noise arising from 

external sources. Experimental techniques to control such noise sources (e.g. 60Hz and 

its harmonics) are a large part of any experimental project. Because these non-neural 

sources will be uncoupled from real neural fluctuators, they will appear as sharp 

uncorrelated bands in the correlation plot (e.g see Fig. 5.2). Because non-biological 

signals tend to be very sharp, the harmonics often also appear in the correlation plots. 

Off-axis correlations between a signal and its harmonics may suggest that the signal is 

non-biological. For example, the 100ms pulses used in the automated pellet feeders 

produced a non-biological 10Hz signal and its corresponding 20Hz harmonic (see Fig. 

5.2). Our methodology provides an additional useful tool to distinguish real neural signals 
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from non-neural noise sources. These signals can be difficult to disambiguate in power 

spectra. 

5.5.3 Relation to Coherence 

 The expression employed to calculate the correlation coefficient here (Eq. 5.1) is 

sometimes referred to as coherence in the signal engineering community.90 The 

correlation equation used here is mathematically equivalent to 
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used for cross-spectral analysis.75, 93, 94 Sxy is the cross-spectrum obtained by Fourier 

transforming the product of a time-dependent quantity x(t) and the complex conjugate of 

another time-varying quantity y(t), while Sxx and Syy are the traditional spectral densities 

of x(t) and y(t), respectively. Previous use of the coherence function in neuroscience 

applications has involved cross-correlations between two spatially distinct probes, so that 

ρxy provides spatial correlation information.72, 75, 77, 89-91, 95 In the present work, we employ 

the correlation coefficient to analyze the LFP data from a single electrode taking 

measurements from a single site. In this way the analysis presented here involves the self-

coherence of the LFP signal, while previous investigators have studied the mutual-

spatial-coherence function. 

5.5.4 Relation to Bispectral Analysis 

Bispectral analysis is widely used in EEG experiments to obtain information 

about the relative phases of oscillators.75, 96 The methodology proposed here measures 

correlated changes in the power spectrum obtained by multiplying the Fourier transform 
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by its complex conjugate. In contrast, in bispectral analysis, the real and imaginary 

components are considered separately. The bispectrum is a statistical calculation that 

yields information which is a mixture of amplitude and phase components. The 

bicoherence measurement provides strictly phase information just as correlation 

coefficients provide only amplitude information. The two techniques can thus, depending 

on the physical system, offer complimentary information. 

5.5.5 The Choice of Spectral Estimation Techniques 

 The method presented in this chapter includes two parts: a transformation of a 

time-series into the frequency domain and a subsequent statistical analysis in the 

frequency domain. Multi-taper spectral analysis has been proposed as an alternative 

technique to analyze time-series neurobiological data.92, 94 The relative merits of various 

spectral estimation techniques can be compared with respect to their bias and variance 

properties. The standard power spectrum (also known as the periodogram) is known to 

have poor bias due to broad power leakage through the spectrum. One way to improve 

the bias is to multiply the frequency term by a taper chosen to have desirable bias 

characteristics. While a taper could be almost any well behaved function, the Slepian 

sequences are often chosen for their independence characteristics.92, 97, 98 A carefully 

chosen taper function can improve bias, but all tapers cause variance inflation. Multi-

taper analysis utilizes the orthogonality of the Slepian sequences to effectively increase 

the sample set and thus decrease the variance, all while saving the bias improvements of 

tapering.97, 98 Although this improves bias, the variance still remains greater than that of 

the standard transform. In calculating correlation coefficients, the bias term is normalized 
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out. Thus, improving the bias term does not improve correlations. In contrast, correlations 

are highly dependent on variance, and thus any inflation of the variance is problematic. 

For data looking only at first-order measures (such as power spectra) a multi-taper 

analysis may be a better choice 78, 92, but multi-taper analysis does not improve 

correlation-based measures such as those described here. 

5.6 Conclusion 

 This chapter presented generally-applicable techniques for identifying 

fundamental fluctuation frequencies in neural time-series data, without any a priori 

filtering assumptions. The proposed technique combines two well-understood neural 

analysis methods (Fourier transforms and correlation matrices), which will make the 

technique accessible to many neural data acquisition paradigms and should provide a 

useful tool for the analysis of neural data. 
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Chapter 6 

50 Hz Oscillations 

6.1 Introduction 

In many neural structures, transient, synchronous oscillations in the local field 

potential are correlated with distinct behavioral states. These events are thought to reflect 

organized neural firing patterns which have implications for information processing.13, 15, 

99-101 Chapter 5 presented a method for identifying fundamental frequencies within local 

field potentials.102 When applied to LFP data in which the key frequencies have been 

determined from conventional filtering analysis, our method readily identifies those 

frequencies. When applied to local field potentials recorded from dorsal striatum, it 

identified 48-58 Hz as an important oscillation frequency.102 For simplicity, this 

oscillation will be referred to as γ50. Using conventional filtering techniques, Berke et 

al.26 has also reported the presence of LFP power at a similar 50Hz frequency in the 

striatum of awake rats. While other basal ganglia oscillations have been reported to have 

behavioral correlates in normal animals 26, 60, 103, the behavioral significance of γ50 is not 

known. Here it is reported that the γ50 oscillation occurs in transient ~150 ms events that 

are co-incident with the initiation of movement on spatial tasks.104 

6.2 Cross-Frequency Self-Correlations 

The primary data came from rats running two of the behavioral tasks presented in 

Chapter 4. Seven rats ran the Multiple-T sequential-spatial navigation task and five rats 

ran the Take-5 sequential non-spatial task. Due to noise present in the early recordings 
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that overwhelms standard filtering techniques, specific event times could only be 

identified on 4 of the 7 multiple-T rats. Therefore, data from 7 rats was used for 

correlation analyses (Figure 6.1) while data from 4 of those 7 was used for speed analyses 

(Figure 6.4). Details of the tasks, animal care and surgery and general data processing are 

presented in Chapter 4.  

 

Figure 6.1 Cross-Frequency Self Correlation 
Correlations were averaged across tetrodes within each animal, and then across animal. 

Important frequencies are indicated by blocks of high correlation surrounding the 

diagonal. Note the clear signal at 48–58 Hz (white arrows). The zero correlation 

crossbars at 60 Hz are due to electrical line noise and do not contribute to other 

correlations. [MT: 7 animals, T5: 5 animals]. Figure from Masimore et al, 2005. 

 
The within-time-series, cross-frequency correlation plot showed a fundamental 

frequency in the 48-58 Hz range that was clearly distinct from activity at surrounding 

frequencies (Figure 6.1). While every frequency in a power spectrum is trivially 

correlated with itself (producing a correlation of 1 on the x=y line), transient coherent 

oscillations hidden within the spectral density are revealed by their non-zero correlations 

with frequencies adjacent to the center frequency of the oscillation.102, 105 The zero 

correlation crossbars occurring at 60 Hz in Figure 6.1 were due to electrical line noise 

and do not contribute to other correlations. As can be see in Figure 6.1, our correlation 

analysis also indicates oscillatory activity in other ranges, such as theta and beta, which is 
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consistent with other observations in rodent striatum.26, 60 This chapter will concentrate 

on the γ50 signal. 

To test the hypothesis that this oscillation was associated with a particular 

behavioral state, we analyzed data from the rats performing the Multiple-T task (7 

animals).55, 66 In this task, the rat typically runs smoothly through the navigation sequence 

and stops at the feeders to eat and groom. After remaining at the feeder for a variable 

length of time, the rat leaves the feeder to self-initiate a new lap. Rats typically remained 

at the second feeder for a long time (average wait time at the second feeder was 27 sec, 

95% CI = [9-45 sec]), but once they left the feeder they ran at a stereotyped speed on a 

stereotyped path through the navigation sequence (average total lap time from leaving the 

second feeder to arriving at the first feeder, traveling nearly 4 m was 16 sec, 95% CI = 

[10 – 22 sec]).55, 66 

 The task was divided into behaviorally significant regions such as the navigation 

sequence and the return rails. The 50 Hz correlation block (Figure 6.1) was found to be 

significantly suppressed during the navigation sequence (P < .05, Wilcoxon paired sign-

rank, nrat = 7), but not on the return rail portion (P = .47, Wilcoxon paired sign-rank, nrat = 

7). Rats typically ran smoothly through the navigation sequence while they engaged in a 

wide range of behaviors on the return rail, including running, grooming, feeding, resting 

and transitions between these activities. 

6.3 Behavioral Correlations of γ50 Events 

Specific events characterized by an increase in the 45-55 Hz band were identified 

using conventional filtering methods.106 For a given session, all LFPs were filtered 
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individually at both 35-45 Hz and 45-55 Hz. Times were identified when the signal 

power exceeded 7 standard deviations above the mean amplitude for the 45-55 Hz band 

but not the 35-45 Hz band. As these γ50 oscillations appear across the striatum, only high 

power epochs occurring in LFPs from two or more electrodes were included. 

Clinical evidence has long suggested that the basal ganglia are involved in 

volitional movement and, specifically, the initiation of movement.107-110 This led us to 

focus on motor activity for further analysis. Figures 6.2 and 6.3 show typical examples of 

a γ50 oscillation from each task. These events were found primarily (but not exclusively) 

at the feeders, closely tied to the instant the animal left the feeders. As shown in panel E 

of Figures 6.2 and 6.3, the animal’s speed increased dramatically at the precise moment 

of the γ50 oscillation. 
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Figure 6.2 Example γ50 Event from the Multiple-T Task 
The event occurred just as the animal left the first feeder. (A) Raw LFP data. The two 

vertical lines indicate the identified γ50 event. (B) Raw LFP data zoomed in to show the 

transient synchrony. (C,D) x and y position of the animal. (E) Speed of the animal. (F) 

The position of the animal just prior to and just after the γ50 event. Individual lines in 

panels A and B are raw LFP signals recorded from different electrodes in a single animal. 

Panels A and C–E are aligned in time. Figure from Masimore et al, 2005. 
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Figure 6.3 Example γ50 Event from the Take-5 Task 
The event occurred just as the animal left the east feeder. (A) Raw LFP data. The two 

vertical lines indicate the identified γ50 event. (B) Raw LFP data zoomed in to show the 

transient synchrony. (C,D) x and y position of the animal. (E) Speed of the animal. (F) 

The position of the animal just prior to and just after the γ50 event. Individual lines in 

panels A and B are raw LFP signals recorded from different electrodes in a single animal. 

Panels A and C–E are aligned in time. Figure from Masimore et al, 2005. 

 

Once the times of specific events had been identified, traditional behavioral 

neuroscience methods (such as peri-event time histograms) could be used to analyze 

behavior based on those times. Given the hypothesized relationship between the basal 

ganglia and movement initiation, and the observation that many individual events 

occurred at the time of feeder departure, we hypothesized a relationship between the γ50 

signal and movement initiation. To test this hypothesis, we constructed a peri-event-time 

histogram, measuring the speed before and after the signal, aligned with the start-time of 
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the signal. As shown in Figure 6.4, speed increased dramatically at the time of the γ50 

event. 

 

Figure 6.4 Speed Relative to the Time of γ50 Events 
Specific γ50 events were identified as described in the Chapter 5. Speed measurements 

were aligned to the time of the γ50 event and averaged first within session (MT: 88±43 

events per session; T5: 94±117 events per session.), then within animal (MT: 8.7±6.9 

sessions per animal; T5: 6.4±1.8 sessions per animal) and finally across animals (MT: 4 

animals; T5: 5 animals), producing a peri-event histogram. Error bars indicate SE 

measurements across animals. Figure from Masimore et al, 2005. 

 
Short duration, frequency-focused LFP events, characterized by synchrony across 

large spatial areas, have been associated with periods of motor activity and visual 

perception.60, 77, 99, 101 The γ50 event described here is phenomenologically similar in that 

it is characterized by transient oscillatory activity at 48 – 58 Hz, with a duration of 100-

150 ms and showing synchrony across a relatively large spatial scale ( > 1mm). It is 

possible that the γ50 event may arise from striatal neural activity involved in the self-

initiation of movement, particularly a well-trained ballistic movement. This transiently 

synchronous signal may provide a key to understanding striatal function. As diseases of 

the basal ganglia involve aberrant oscillatory states103, 111, 112, striatal oscillations in 
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normal animals may shed light on chances in information processing that accompany 

changes in oscillatory activity in basal ganglia diseases. 

6.4 Conclusions 

An oscillatory local field potential event (γ50) has been identified in striatum. It is 

characterized by transient oscillatory activity at 48-58 Hz, with a duration of 100-150 ms 

and showing synchrony across a large spatial scale ( > 1mm). A strong increase in speed 

was found to occur at the moment of these events on rats running multiple tasks. 
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Chapter 7 

Future Directions and Open Questions 

7.1 Introduction 

The work discussed in the previous chapters leads to a number of future research 

directions and also leaves several open questions. Several of the future directions were 

discussed elsewhere, and are gathered here to highlight the variety of research directions 

that have grown out of what was initially an exploratory project. The open questions 

remain after a number of preliminary experiments that provide some insight into the 

origin and functional significance of the 50 Hz oscillations discussed in chapter 6.  

7.2 Fluctuator Simulation 

The first model discussed in chapter 3, a distribution of Poisson fluctuators, has 

found success in a wide variety of systems69 and is a logical starting point for examining 

1/f noise in a novel system, such as LFPs. Local field potentials do not directly map onto 

this model, but given that the model’s resulting power spectrum is fairly insensitive to 

underlying parameters, as show in Fig 3.4, it is reasonable to try to simulate LFPs with 

biologically relevant modifications. A first attempt may be that discussed in section 3.2. 

Synaptic fluctuations are well described by alpha functions (eq. 3.6) and τ has been 

measured in a variety of systems.34 It would be interesting to determine the slope of the 

power spectrum resulting from a signal generated by placing alpha functions at random 

times. There may be a way to model the temporal aspects of alpha functions in a more 

physiologically relevant way than as a random distribution. As the theoretical basis of 
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local field potentials is explored further, additional types of fluctuation phenomena could 

be incorporated into this simulation. 

7.3 Dielectric Properties of Brain Tissue 

The dielectric properties of brain tissue could contribute to the observed power 

spectra of local field potentials.113 The frequency dependence of the conductance and 

permittivity of tissue in different brain structures would need to be measured, using a 

system very similar to that used in traditional recording experiments. Ideal experiments 

will use deeply-anesthetized, intact animals and the same probes used for recording 

experiments. Should it prove experimentally difficult to directly measure the conductance 

and permittivity, it may be useful to inject white noise at one location and measure the 

transmitted signal at various distances away from the noise source. If the transmitted 

signal shows a power spectrum similar to those observed for LFPs, it could suggest that 

the dielectric properties of the local tissue play a significant role in the structure of 

recorded signals. 

The experimental set-up used to measure the dielectric properties of brain tissue 

could also be used to test a specific hypothesis related to the 50 Hz oscillations discussed 

in chapter 6. Berke suggested that striatal 50 Hz oscillations are generated in the piriform 

cortex,28 a laminar structure associated with olfactory information processing. This 

hypothesis could be tested by inserting an electrode into piriform cortex, stimulating at 50 

Hz, and recording the transmitted electrical activity at locations across striatum. We 

observe that 50 Hz oscillations are strongest in the ventral medial portion of striatum and 

diminish in power when moving towards the dorsal lateral striatum. If striatal 50 Hz 
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oscillations are generated in piriform cortex and volume conducted to stiatum, a 

stimulation experiment should produce the same power distribution across striatum. 

7.4 Self-Organized Criticality 

Section 3.4 discussed self-organized criticality (SOC) and its potential 

applicability to local field potentials, which can be explored theoretically and 

experimentally. To develop an SOC-based model for local field potentials, researchers 

will need to carefully examine ideas such as critical states and avalanches in the context 

of LFPs. There is no immediately obvious physical substrate for these ideas, but perhaps 

further theoretical explorations of LFPs could highlight candidate mechanisms. Self-

Organized Criticality: Emergent Complex Behavior in Physical and Biological Systems 

by Henrik Jensen49 provides a discussion of numerous self-organized criticality based 

models and will provide a solid foundation for researchers attempting to pursue self-

organized criticality as an explanation for the observed power law spectral behavior of 

LFPs. 

The relevant experiments are conceptually simple but may prove challenging to 

perform in a system similar to those used for traditional LFP recording experiments. It 

will first be necessary to obtain an LFP time series that is free of all known external noise 

sources as the data analysis that follows is extremely sensitive to spurious fluctuations. 

O’Brien and Weissman outline an analytical technique to identify self-organized 

criticality 50 and then applied the technique to experimental data 51, warning of several 

potential pitfalls. In brief, as fluctuations in a SOC system are triggered by an external, 

adjustable parameter (for example, a sandpile at the angle of maximum stability will not 
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avalanche until an additional grain of sand is added), O'Brien and Weissman argue that a 

signature of SOC is a non-zero imaginary component of the noise second spectrum. That 

is, there should be a "phase-lag" in the fluctuation spectrum (first spectrum) that will be 

revealed by examination of higher order moments of the spectral density. 

7.5 Relation to Other Dynamic Neural Signals  

Section 1.2 discussed the relationship between LFPs and other electrodynamic 

neural signals, spikes and EEG. All three of these signals reflect underlying voltage 

fluctuations, but at different spatial and temporal scales. Another recording technology, 

functional magnetic resonance imaging (fMRI) records a signal related to cerebral blood 

flow. When neurons fire action potentials, they consume oxygen carried by hemoglobin 

in red blood cells, which results in an increase in blood flow to the locally active 

region.114 This change in blood-flow and oxygenation is reflected in the blood oxygen 

level-dependent signal (BOLD) that is recorded in fMRI. Functional magnetic resonance 

imaging is a useful tool for non-invasive imaging of the human brain and an 

understanding of how the BOLD signal relates to electrodymanic neural signals such as 

LFPs, spikes, and EEG would allow for greater integration of research results obtained 

through different techniques. Recent studies show that the fMRI BOLD signal is more 

closely related to LFPs than spiking,114 and thus an increased understanding of local field 

potentials could improve the interpretation of data obtained by fMRI.  
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7.6 γ50 Oscillations 

7.6.1 Origin of Oscillations 

Upon recording a novel local field oscillation, it is desirable to verify that the 

oscillation was generated in the brain structure where the electrodes were placed, rather 

than the result of the passive spread of currents generated in other brain structures.  This 

has proven to be challenging in the case of the 50 Hz striatal oscillations described in 

Chapters 5 and 6.  

Traditional methods used to prove the local origin of an LFP oscillation are based 

on the interpretation of oscillations arising in structures with a laminar cellular 

arrangement. Current source density experiments23-25, discussed in section 2.4.1, can 

identify sources and sinks of extracellular currents, which can then be associated with the 

underlying cellular anatomy. The high spatial precision necessary to perform this analysis 

makes it impractical to perform these experiments in awake, behaving animals. Another 

approach that can be applied to data recorded from awake, behaving animals is to search 

for phase shifts among oscillations recorded from spatially separated electrodes within 

the same structure. These phase shifts would not be expected from volume conducted 

oscillations and indicate that a current sink or source is located between the relevant 

electrodes. Such a method has been used to verify the local origin of oscillations recorded 

in the subthalamic nucleus and pallidum, two non-laminar brain structures that are part of 

the basal ganglia.115   Such phase shifts have not been observed in 50 Hz striatal 

oscillations, which appear coherent across the entire recorded region. 
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 A second approach to verify the local origin of an LFP oscillation is based on the 

assumption that local field potentials reflect synaptic activity and that this synaptic 

activity that is correlated with extracellular spikes. Most experiments, including all of the 

ones discussed in chapters 4-6, record both the local field potentials and spikes, thus 

enabling the researcher to search for correlations between the two signals. There are 

numerous ways in which the two signals could be correlated. For example, high-voltage 

spindles are a type of LFP oscillation that occur in awake, immobile animals.26 There are 

different types of cells within striatum and it has been shown that one cell type tends to 

spike just before the peak of high voltage spindles, while another cell type tends to spike 

approximately 45º after the high voltage spindle peak.  One can easily imagine other 

possible correlations, such as cells that fire at the beginning of an oscillatory burst or at 

some multiple of the local field oscillatory frequency. The wide range of correlation 

possibilities can result in a nearly endless search for a correlation as one cannot prove 

that the two signals are not correlated, merely that they are not correlated in any of the 

ways that have been examined. Another possibility is that the local field potentials reflect 

local synaptic activity, but that correlated cellular spiking is from cells in a distant 

structure that project to the recording location. 

We recorded from a number of candidate brain structures, searching for both 50 

Hz oscillations and cells that show correlated firing with 50 Hz oscillations. Figure 7.1 

shows the regions where 50 Hz oscillations were not observed, as well as the observed 

gradient of 50 Hz oscillation strength within striatum. Lateral septum, a medial brain 

structure associated with movement initiation, showed no 50 Hz oscillations throughout 
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the entire depth of the brain (1 rat). This suggests that the oscillations are not volume 

conducted from piriform cortex, as this would not result in an abrupt drop off in 50 Hz 

oscillations between medial striatum and lateral septum. We also recorded both local 

field potentials and spikes from motor cortex (1 rat). This structure is both associated 

with, and projects to, the regions of striatum that show high power 50 Hz oscillations. We 

found neither 50 Hz oscillations or spike activity that correlates with 50 Hz oscillations.  

 

Figure 7.1 Recording Locations. 
We recorded from a number of brain structures in an attempt to locate the origin of the  

γ50 events that were described in Chapter 6. Shaded areas indicate locations from which 

we have observed 50 Hz,; areas outlined with a dashed line indicate locations from which 

we have recorded and do not observe 50Hz. Recorded areas include dorsal and medial 

striatum, motor cortex, lateral septum, and pallidum. Within striatum, oscillations are 

strongest in the ventral-medial area, as indicated by the shaded gradient. 

 

 Despite these negative results, there is considerable evidence that suggest that 

LFP oscillations can be locally generated in non-laminar structures such as striatum. 

Striatal high voltage spindles were mentioned above and DeCoteau et al. have identified 

locally generated theta oscillations in rodent striatum.27 Other non-laminar basal ganglia 

structures also show locally generated oscillations.26, 60, 116-118 A robust theory of local 

field potentials that includes parameters related to cellular architecture and to the 
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underlying fluctuation phenomena beyond synaptic fluctuations would help guide 

experiments that could conclusively demonstrate that 50 Hz oscillations are generated in 

striatum.    

7.6.2 Dopamine 

 The experiments discussed thus far all entail recording from healthy animals and 

correlating neural activity with various behavioral parameters.  Neuropharmacology is an 

experimental approach that involves studying drug-induced changes in the functioning of 

neurons. Dopamine is a major neurotransmitter in the striatum (and elsewhere) and cells 

that use dopamine as a transmitter are involved in motor control circuits. As discussed in 

chapter 6, we observed a correlation of 50 Hz events with a motor control event 

(initiation) and thus we hypothesized that interfering with the striatal dopamine system 

would alter 50Hz events.  

 There are several indications that the dopamine system could be involved in 

striatal 50 Hz oscillations. The striatum is one portion of the basal ganglia, a brain 

structure involved in disease processes such as Parkinson’s disease. Oscillatory activity in 

the human basal ganglia has also been studied through LFPs recorded after 

microelectrode implantation for the treatment of Parkinson’s disease and dystonia. When 

withdrawn from dopaminergic therapy, oscillatory activity is synchronized into three 

major frequency bands. The lowest band (3 – 12 Hz) is in the frequency range of 

parkinsonian rest and action tremor.119, 120 Beta-band oscillations (~13 – 32 Hz) are a 

prominent feature of LFPs recorded in both subthalamic nucleus (STN) and globus 

pallidus (GPi) of parkinsonian patients.115, 121-124 These oscillations are coherent between 
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the two structures and are viewed as a characteristic of basal ganglia circuitry in 

Parkinson’s disease.111, 115, 125, 126 Gamma band activities (here, 65-85 Hz) have also been 

reported in both STN and GPi 115, 125  along with very high frequency activity (200-300 

Hz) in STN.127 Some of the oscillations recorded in the diseased human basal ganglia 

show distinct changes between when patients are on dopaminergic therapy and when 

drug therapy is withdrawn. There are multiple reports that beta band activity is 

suppressed as motor symptoms improve after the administration of drug therapy.115, 124, 

125, 128  The suppression of the beta activity occurs prior to and during voluntary 

movements and following environmental cues related to future movement demands. 

Thus, in the treated human basal ganglia, modulation of oscillatory activity is well 

correlated with motor-related activity while the diseased human basal ganglia shows 

persistent, non-modulated beta band activity. The modulation of beta activity in drug 

treated humans shows striking resemblance to the beta activity observed in healthy 

monkeys.60 

 There is an extensive history of behavioral experiments with both reversible 

systemic dopamine manipulations and permanently damaged dopamine systems.129 There 

are relatively few electrophysiology studies under these paradigms. In 1-methyl 4-phenyl 

1,2,3,6-tetrahydropyridine (MPTP) treated monkeys (in which the dopaminergic system 

is damaged and animals present many common symptoms of Parkinson’s disease130), 

basal ganglia cells (STN and GPi) tend to fire in synchrony as opposed to the 

independent firing observed in normal animals.118, 126, 131, 132 The beta oscillations present 

in healthy monkey striatum have not been studied in a dopamine manipulated system. Rat 
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STN has been studied in anaesthetized 6-Hydroxydopamine (6-OHDA) lesioned rats, in 

which the dopaminergic system is damaged.133, 134 In lesioned rats, spikes were found to 

cluster into bursts more than in normal animals and showed more synchrony and a 

consistent phase relationship with the LFP. Work has also been done with dopamine 

transporter knock-out mice (a model system that allows for inducible and reversible 

manipulations to the dopamine system) where it is found that LFP power in the theta (4.5 

– 9 Hz) and gamma (30 – 55 Hz) bands increases relative to that in the delta (1.5 – 4 Hz) 

and beta (11 – 30 Hz) bands during periods of excessive movement and dopamine 

depletion.135, 136  Local field potentials have also been studied in the STN of alert, healthy 

rats.103 Following application of the D2 agonist quinpirole, the power in the 40-80 Hz 

band was found to increase significantly. In this study, the increased power in the gamma 

band was verified to be of local origin as it was not observed on electrodes found to be 

outside, but near to, the subthalamic nucleus. 

We conducted preliminary experiments to examine striatal 50 Hz oscillations 

under the effects of dopamine receptor agonists and antagonists (1 rat). There are two 

different types of dopamine responsive cells - those that have D1 receptors and those that 

have D2 receptors. Agonists activate the receptors while antagonists block the receptors. 

We applied drugs systemically, using saline injections on alternate days as an 

experimental control. The drugs were SKF38393 (D1 agonist), SCH23390  (D1 

antagonist), quinpirole (D2 agonist), and sulperide (D2 antagonist). Results of these 

experiments are shown in Fig 7.2.  
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Figure 7.2 Preliminary Data of Dopamine Manipulations 
We conducted preliminary experiments to examine striatal 50 Hz oscillations under the 

effects of dopamine receptor agonists (+) and antagonists (-). The error bars are standard 

error over two trials. (A) D1 antagonists significantly increase the number of 50 Hz 

events recorded during each 40 min. session. (B) D2 agonists significantly decrease the 

number of 50 Hz events recorded during each session. 

 

The systemically applied dopaminergic drugs had a significant effect on the 

number of 50 Hz events recorded during behavioral tasks. It is difficult to interpret the 

results, as systemic drugs affect dopamine receptors throughout the body, not just in the 

structure under study. Animals showed significant behavioral changes, including running 

no laps under the application of the D1 antagonist. A properly designed experiment 

would start with a series of dose-response experiments with the behavioral tasks to be 

used in the subsequent recording experiments. Completing all of the necessary controls 

for the behavior, pharmacology, and electrophysiology portions of this experiment is 

conceptually simple but extremely labor intensive and will require a large number of 

animals. Other experimental approaches, such as dopamine transporter knock-out mice 
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may be a better way to approach the open question of how dopamine is involved in 

striatal 50 Hz oscillations.  

Brown et al have recorded from the subthalamic nucleus of healthy rats and 

observed power in the gamma frequency band that increases under the application of 

quinpirole. It would be interesting to compare the oscillations in striatum and STN. We 

attempted to record from STN (2 animals) but were unable to place electrodes into the 

structure using the standard recording device and techniques used for other experiments. 

Recording from both structures under the same conditions is necessary for direct 

comparison. Alternative recording technologies, including ones currently in the early 

stages of development, may provide more successful ways to target small structures such 

as STN.  
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Chapter 8 

Summary 

Neurological local field potentials are characterized by apparently random 

fluctuations that are interspersed with periods of clear oscillatory activity. It is commonly 

thought that LFPs reflect the electrical fluctuations occurring at synapses between 

neurons. This theory stems from experiments performed in structures where the cellular 

arrangement is laminar and fails to account for the occurrence of LFP oscillations in 

structures that do not possess regular cellular arrangements. The power spectrum of a 

typical local field potential recording shows a power-law frequency dependence. 

Numerous mathematical theories have been developed that describe the power spectrum 

that results from different fluctuation phenomena, but they have not previously been 

applied to local field potentials.  

One of the more versatile frameworks for obtaining 1/f power spectra is based on 

systems being comprised of numerous two state Poisson fluctuators that show a 

distribution of relaxation times. This model does not neatly map onto local field 

potentials, but modifications that account for physiologically relevant fluctuations could 

be explored through simulations. The extracellular medium is extremely heterogeneous 

and could act as a frequency dependent filter of electrical fluctuations. Experimental 

measurements of the conductivity and permittivity of the extracellular medium could help 

to determine the impact of the extracellular dielectric properties on the observed LFP 

power spectrum. Further examination of the applicability of these theories to local field 
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potentials could help to develop a robust theory of LFP fluctuations that could account 

for phenomena observed in both laminar and non-laminar structures. 

Typical LFP experiments entail examining long time series of voltage 

fluctuations. A simple technique, combining Fourier transforms and correlation 

coefficients has been shown to yield unambiguous determinations of the frequencies 

without a priori filtering. This procedure also provides quantitative information 

concerning interactions between activity at different frequencies. This technique 

identified the characteristic frequencies of known oscillations in hippocampus and cortex. 

Application to dorsal striatal LFPs identified a low-frequency theta component as well as 

a narrow gamma band oscillation at 50-55 Hz.  These coherent oscillations, which we 

term γ50, occurred in brief (150 ms) events co-incident with the initiation of movement. 

On navigation tasks, the animal's speed increased dramatically at the precise moment of 

the γ50 event. 

This work leads to a number of future directions and open questions. Future 

directions include developing a theoretical framework for local field potential 

fluctuations that integrates with the theoretical basis of other neurodynamic signals. 

Preliminary experiments suggest that γ50 events are generated in the striatum, but this 

has not been verified. We hypothesized that interfering with the striatal dopamine system 

would alter γ50 events and preliminary data suggests that this is true. Improved recording 

technologies and alternative experimental paradigms could be used to further explore this 

hypothesis. 
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