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Abstract

Neural representations are distributed. This means that information about

sensory, motor, or cognitive variables is spread across a population of neu-

rons. To get at the dynamics of information processing in the brain re-

quires an understanding of the neural code not only at the single cell level,

but also at the population level. While a specific variable or distribution

may be reflected by a population code, measures are needed that reflect

the quality of such a distributed representation. This dissertation focuses

on this problem through two avenues of research.

Using attractor network models, we developed and characterized two

measures of representational quality. One, coherency, uses known response

properties of individual neurons to compare the current activity pattern of

an ensemble with the expected activity pattern. The result is a statistical

measure of representational quality that can detect dynamic anomalies in

a population’s representational state. Another measure, ensemble consis-

tency, has the advantage that it requires no explicit assumptions regarding

the tuning of neurons in the ensemble, making it ideal for exploring the
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dynamics of deep brain structures where neuronal response parameters

are controversial or unknown.

With these measures, we then examined the temporal dynamics of the

hippocampal representation while rats performed tasks of increasing spa-

tial and cognitive complexity. We examined single cell fluctuations and en-

semble (up to 100 simultaneously recorded neurons) modulation to clarify

the role of the hippocampus in spatial and temporal processing. Finally,

we explored the effects of behavior on the network dynamics of awake

sharp waves, hippocampal states that have only recently be characterized

yet have long been know to be a source of variability in the spatial firing

of hippocampal neurons.
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Chapter 1

Introduction

“...the intuitions needed for understanding biological information processing are

not easily available. Only by wresting them from actual experience does one

gain a feel for what questions need to be asked, and develop a language in

which to ask them.” (Marr, 1975)

1.1 Overview

How does the brain work? The question can be addressed at different lev-

els. For example, at a gross level, what brain structures are required for

memory; or, on the molecular level, how do individual neurons change

their biochemical properties to encode memories? In this dissertation, the

function of the brain is studied using electrophysiological (recording the

electrical activity emitted by neurons), and computational techniques to
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Ch 1. Introduction 2

examine specific aspects of how ensembles of neurons within a brain struc-

ture collaborate to encode memories, behaviors, and external variables.

Specifically, this work seeks to differentiate between network modulation

of neural activity and noise observed in the activity of single cells. This

involves recording the electrical activity of many neurons (up to 100 neu-

rons recorded simultaneously, yet separately) while an animal is awake

and operating under (near) normal conditions. The work in this disserta-

tion falls into two major categories: (1) recording neural ensembles in the

hippocampus of awake, behaving animals while concurrently studying

their navigational behavior and (2) development of new statistical tools

for quantifying neural activity at the multi-neuron level. Together, these

two aspects of my research address new questions about the dynamics of

information processing in the brain and how behavior affects changes in

the brain’s networks.

First, a network model with strong interactions between units is used

to explore concepts of the consistency of neuronal activation within a net-

work. We characterize and discuss two types of ensemble measure: rep-

resentation based and pattern based measures. Both types are effective at

detecting a lack of self consistency in ensemble firing patterns. We then

use these concepts to explore dynamic phenomena in the hippocampus.

The hippocampus is a brain structure considered to be crucial for learn-

ing and memory in mammals (for review see Redish, 1999). Humans with

hippocampal damage show marked short-term memory loss especially
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after temporary distractions. Additionally, these hippocampal patients

have difficulty storing new memories. The rodent hippocampus is most

noted for the strong spatial selectivity of its pyramidal cells, or place cells

(O’Keefe and Dostrovsky, 1971). Each neuron displays electrical activity

(or fires spikes) only in particular regions in an environment. Past work

has revealed many aspects of hippocampal network dynamics including

the modulation of place cell activity by well-known brain states such as

the theta rhythm (a strong 6-10 Hz electrical oscillation prominent during

movement) and sleep (Vanderwolf, 1971; O’Keefe and Nadel, 1978). There

are also explicit theories about how the manner in which information is

processed by the hippocampus should modulate place cell firing (O’Keefe

and Nadel, 1978; Buzsáki, 1989; Redish, 1999). In sum, the hippocampal

representation of space allows us to probe specific aspects of the process-

ing of spatial information in the brain.

For example, the spatial specificity of the hippocampus allows us to

examine the effects that varying the cognitive demands in navigational

tasks have on hippocampal processing. For instance, it is known that the

hippocampus is required for navigation to un-cued or hidden goal loca-

tions as well as solving other spatial problems (Milner, 1970; O’Keefe and

Nadel, 1978; Kesner and Novak, 1982; Morris et al., 1982; Squire, 1992; Re-

dish, 1999). In fact, hidden goal locations that are constant from day to

day are over represented by hippocampal neurons (Hollup et al., 2001a).

Additionally, increasing the spatial requirements of a task and enriching
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the variety of an animal’s spatial experiences increases the stability of the

hippocampal spatial representation (Kentros et al., 2004). Finally, adding a

spatial requirement to a foraging task improves the reliability of the spatial

firing of hippocampal cells (Olypher et al., 2002).

If the hippocampus represents an environment in multiple ways de-

pending on a task’s demands, then switching between these spatial maps,

or frames of reference, should result in detectable changes in the dynamics

of the hippocampal network. Modifying the experimental environment

of a task can have a variety of effects on the spatial map the hippocam-

pus uses to represent a task depending on the magnitude and type of

modification (Quirk et al., 1990; Markus et al., 1995; Anderson and Jef-

fery, 2003; Knierim, 2002; Knierim and Rao, 2003; Lee et al., 2004b; Leut-

geb et al., 2004; Vazdarjanova and Guzowski, 2004; Leutgeb et al., 2005;

Wills et al., 2005). Even changing the behavioral requirements of a task

within a session affects the spatial map the hippocampus uses to repre-

sent a task (Markus et al., 1995; Redish et al., 2000; Rosenzweig et al.,

2003). There is some evidence that this reference frame switching may

be a regular phenomenon even without experimental behavioral manip-

ulation (McNaughton et al., 1983; Wood et al., 2000; Fenton and Muller,

1998; Lánksý et al., 2001; Olypher et al., 2002). For example, this has been

observed in linear environments where hippocampal map depends on the

direction of travel (McNaughton et al., 1983; O’Keefe and Recce, 1993).

Little is understood how this relates to two-dimensional tasks where little
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directional firing is observed (Muller et al., 1994; Redish, 1999).

Fenton and Muller (1998) found that while place cells show spatially

reliable place fields, they exhibit much more temporal variability than

would be predicted by a simple Poisson process. This variability, or overdis-

persion, is task dependent (Olypher et al., 2002). It has been suggested that

this overdispersion may be the result of the rat switching reference frames

at a mean rate of 1 to 2 times per second (Lánksý et al., 2001; Olypher et al.,

2002). We replicated these findings of excessive variance in place cell dis-

charge and its task dependence. We found that on a task with known

reference-frame switching (the linear track), splitting by representational

state (direction of travel) results in greatly reduced variability. We then

present evidence that, contrary to previous research, there are significant

local interactions between some neurons with overlapping place-fields,

but that overall this effect is weak. We show that these effects are cor-

related with local behavioral variability and the level of repetition. We

then demonstrate that it is possible to extract different spatial firing maps

based on a separation of ensemble firing patterns. These firing maps are

indicative of separate reference frames being used in an alternating pat-

tern on the task. The variability of firing patterns within these reference

frames is greatly reduced, approaching the variance expected by a single

point-process stochastic model.

Finally, we explore the dynamics of a previously ignored brain state in

the awake rat that has long been a known behaviorally dependent source
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of neuronal firing variability in the awake rat: the sharp wave ripple. We

demonstrate that neuronal firing during sharp wave ripples is indeed well

organized and depends on the nature and repetition of an animal’s spatial

experiences. Together, these results shed new light on dynamics of dis-

tributed information processing in the hippocampus.



Chapter 2

Background:

Distributed Representations

2.1 Distributed Representations

Neural representations are distributed. This means that information in

the brain’s networks is spread across a population of neurons. The sig-

nificance of this massively parallel processing architecture has important

repercussions not only for the way information is handled by an organism,

but also for the way we approach the study of the brain.

2.1.1 Parallel Distributed Processing

Parallel distributed processing (PDP) architectures have a variety of ad-

vantages over current computing platforms. For instance, let us consider

7



Ch 2. Distributed Representations 8

the question posed in the overview: How does the brain work? One rea-

son for asking this question is because even the some of the simplest or-

ganisms have incredible abilities to interact with their environment and

accomplish tasks that are far beyond the most state-of-the-art machine

learning systems in the artificial intelligence (AI) and robotics fields.

How does the brain do this with units are that far slower than mod-

ern transistors (by at least six orders of magnitude)? First of all, in con-

trast to the primarily serial processing architecture of modern computers,

the brain can process incoming information by distributing information

over vast networks of neurons that can process the information in par-

allel. Computations are performed both within a neuron and across the

network as neurons interact within and across networks to process inputs.

To illustrate the power of the brain, consider an every-day task like

retrieving a food item such as a cucumber from the back of a cluttered

refrigerator. For most people, this is accomplished with apparent ease,

but simply describing the process is difficult and programming a machine

to accomplish this task would currently be intractable. First, the item is

identified visually against all odds (by computer vision standards) in that:

1) the entirety of the cucumber is not immediately visible, being blocked

by numerous items in the way such as the milk, juice, ketchup, etc.; 2) the

last time you saw a cucumber was perhaps days ago; 3) the individual

variability in the shape and size of cucumbers is enormous; and 4) the

color variation which depends on the incident light is incredible. Second,
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ignoring the 3 to 4 degrees of freedom at each finger, you will probably use

at least 6 degrees of freedom in your arm alone to position your hand at

the cucumber. In performing this reach to the back of the refrigerator, you

must find the following computationally non-trivial solutions: 1) a path

and orientation of the entirety of the arm to minimize interference with

the objects cluttering the refrigerator compartment so as to refrain from

spilling the milk or breaking a jar of pickles; 2) a path and orientation

of the cucumber-arm assembly for retrieval (a new addition to your art’s

weight, inertia, and cumbersome geometry). The simplest of these tasks

could take supercomputers days to solve, even for a well defined set of

initial conditions; yet you accomplish this with little difficulty in less than

10 s.

The distributed networks of the brain allow visual input, tactile input,

proprioceptive input, and motor output to be processed simultaneously

with each influencing the other in real-time. In the context of our cucum-

ber example, brushing an object that was hidden behind the milk (a tactile

experience) will lead to a rapid compensation in limb trajectory and ge-

ometry, with simultaneous visual and proprioceptive guidance. This “real

time”, processing of information-rich input from multiple sources is only

one of the numerous advantages of parallel distributed processing. The

highly interconnected nature of distributed systems leads to many emer-

gent properties such as content addressability.
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2.1.2 Content Addressable Memories

Another powerful attribute of distributed networks is that they are “con-

tent addressable”. This means that activation of a selective part of the

network can lead to activation of elements associated with that part. More

specifically, a particular input from one sensory modality may lead to the

activation of units related to other sensory modalities. For instance, given

the sight of the cucumber it is possible to retrieve the taste of cucumbers,

the expected feeling of grasping the cucumber, perhaps recipes that call

for a cucumber, even the name “cucumber”. Thus, these memories of at-

tributes associated with a given item are linked by the distributed nature

of the brain’s networks.

The important feature of content addressability in the context of this

dissertation, is that the memory retrieval process activates broad patterns

of units associated during the encoding of stored values. Thus, recall is

in essence a co-activation of an assembly of neurons. The fidelity of the

memory lies in the binding and successful recruitment of all neurons in

the encoding assembly as well as the preservation of the relative activa-

tion pattern of these neurons. This property allows us to make specific

analytical statements of what a “coherent” representation of a given state

should look like.
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2.1.3 Cell Assemblies

Cell assemblies as first hypothesized by Hebb in his landmark book, are

neurons that have been repeatedly co-active and therefore have by mecha-

nisms of plasticity become “associated” so that they are more likely to fire

together (Hebb, 1949). If neurons are part of the same cell assembly they

should be bound together temporally and possibly result in a transient

“reverberation” (Hebb, 1949). Hebb (1949) went so far as to suggest that

this may be the mechanism of consciousness or perception. These ideas

continue to re-emerge due to assembly-like phenomena in the hippocam-

pus (Wilson and McNaughton, 1994; Buzsáki, 1996; Kudrimoti et al., 1999;

Harris et al., 2003; Harris, 2005). Harris et al. (2003) presented data sug-

gesting the existence of cell-assembly dynamics in the awake hippocam-

pus. The authors demonstrated that while the spatial location of an animal

predicted the firing of hippocampal neurons, using the firing of other neu-

rons in the ensemble greatly improved prediction of the firing of the neu-

ron of interest. Their analysis revealed grouping of neuronal assemblies

that tended to fire together. The firing of these assemblies could interrupt

spatial responses. This was taken by the authors as evidence for the inter-

nal cognitive processes conceptualized by Hebb (1949) in his theory of cell

assemblies (Harris et al., 2003; Harris, 2005).

These data also fit with recent observations of non-spatial network cod-

ing in the hippocampus reported by Lin et al. (2005). Using a multiple

components analysis they found that specific patterns of activation across
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the hippocampal network could be used to reliably discriminate between

salient task events such as air-puffs, shaking the environment, and sudden

downward displacement of the animal’s cage. They termed these “neu-

ronal cliques”. (Lin et al., 2005)

2.2 Reconstruction Techniques

Given the properties of distributed systems, one may ask how we extract

meaning from the activation of units within the system. In the case of sen-

sory systems, this may amount to asking what stimulus is most likely gen-

erated by a particular network activation pattern. In a sense, the general

approach amounts to understanding the way individual units within the

network code for stimuli and invert this encoding computation to decode

the joint likelihood of observing a stimulus given the population response

(Rieke et al., 1997) �.

One of the first methods used to extract a behavioral variable from the

activity of neurons was in motor cortex with the application of vector re-

construction (Georgopoulos et al., 1983). Assigning a vector to each neu-

ron based on it’s mean preferred stimulus and its current firing rate, vector

reconstruction is simply the vector mean of these firing rate weighted neu-

ronal tuning vectors (Mardia, 1972; Batschelet, 1981). This is also known

�Actually, in their discussion of reconstruction techniques, Rieke et al. (1997) focused
primarily on the reconstruction of a stimulus from the temporal pattern of spikes emitted
from a single neuron. However, these concepts can be generalized and extended to pop-
ulations of neurons as will be seen in the methods discussed in the following paragraphs.
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as the population vector (Georgopoulos et al., 1983, 1988).

Assuming a directional representation over circular, spherical, or hyper-

spherical angles, let �vk be a unit vector pointing in the preferred direc-

tion φk of neuron k. In the two-dimensional plane we would write: �vk �

�cos�φk�, sin�φk��. The reconstructed vector �̂R is then the vector mean of

the preferred vectors of all units with lengths proportional to their firing

rates Fk:

�̂R � ∑
k

Fk ��vk (2.1)

Since this method is sensitive to the uniformity of the distribution of

preferred directions φk, one variation on the vector reconstruction method

is the optimal linear estimator method employed by Salinas and Abbott

(1994). This method determines a mapping of the vectors�vk, to a new set of

vectors ��k that minimize the reconstruction error (the difference between

the actual and reconstructed directions). The result is similar to population

vector reconstruction:

�̂R � ∑
k

Fk ���k (2.2)

Another commonly used reconstruction technique is that of template

matching (e.g. Wilson and McNaughton, 1994). Define a firing rate vector

(unfortunately also referred to as a population vector) f�t� � � f1�t�, f2�t�, f3�t�, ..., fN�t��,

where fi�t� is the firing rate of neuron i at time t, and N is the number

of neurons in the ensemble. In template matching, this firing rate vec-

tor is matched against the mean vectors of ensemble firing calculated for



Ch 2. Distributed Representations 14

each value of the behavioral variable. This “matching” can be based on

maximum correlation, minimum error, etc. The best match is taken as the

reconstructed variable.

Recently, there has been a boom in the application of statistical infer-

ence techniques based on Bayes rule to reconstruct behavioral and stimu-

lus variables from neuronal activity. The core premise of Bayesian recon-

struction is that if one knows the probability of observing neuronal activity

for given a behavioral variable of interest, it is possible to use Bayes rule

to derive the probability of seeing a particular behavioral variable given

current neuronal activity. We write this as:

P�X�S� � P�S�X�P�X�

P�S�
(2.3)

where P�X�S� is the probability of seeing a particular behavioral variable

X given current neuronal activity S, P�S�X� is the probability of observing

neuronal activity S given behavioral variable X was observed, P�X� is the

probability of observing behavioral variable X, and P�S� is the probability

of seeing activity S. The reconstructed value X is then taken as the value

that maximizes P�X�S�. An example of an application of this method to

extract an animal’s spatial location from hippocampal ensembles is pro-

vided by Zhang et al. (1998).
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2.3 Coherent Representations

While the development of ensemble based reconstruction methods such

as those described above has allowed us to probe more deeply into the

brain’s processing of behavioral information, we run the risk of assuming

that an animal’s brain rigidly adheres to representing the present behav-

ioral status of the animal. In doing so, reconstruction errors are viewed

as “noise in the system”, and we forget the cognitive questions that are

fundamental to our understanding of the brain’s inner workings. For in-

stance, what is recall or confusion and how does the brain represent com-

peting values in ambiguous situations?

To answer these questions, we need to consider how units within a

network function together to form a coherent representation i.e. one that

is internally consistent across all units.

2.3.1 What is a Coherent representation?

A coherent or self-consistent representation is one in which the firing of

all neurons in a network conforms to some model. For instance, if one

records from an ensemble of motor cortical cells, one possible model of

the network would be to assume that the firing of each neuron is tuned

to the direction of movement. This tuning, if it exists, should dictate the

interactions of the neurons in the network. If the network is represent-

ing a particular direction, all neurons with any tuning to that direction
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should be firing to some degree specified by their respective tuning curves

and neurons that are tuned to very different directions should be respond-

ing very little. In other words, neurons with similar preferred directions

should respond similarly if the network in responding in a manner consis-

tent with the data set used to construct the neuronal tuning curves. If this

is not true, there is a fundamental difference between your model and the

current status of the network. This principle allows for the formulation

of a measure of the coherency or self-consistency of a neural ensemble. (See

Figure 2.1.)

Figure 2.1 B, C, and D show three hypothetical states for a network

made up of neurons with tuning curves shaped like the one depicted in

Figure 2.1 A, but centered at even intervals along �. The behavioral vari-

ables x̂1 and x̂2 are shown for reference. The pattern in B is consistent

with behavioral variable x̂2 but not with x̂1. A reconstruction algorithm

would yield value x̂2. If the actual value was x̂1, then reconstruction error

�x̂2 � x̂1� would be high even as the network state is internally consistent.

The left mode of the pattern in C is consistent with behavioral variable x̂1

but neither mode is consistent with x̂2. A vector based reconstruction algo-

rithm would yield value x̂2, while template matching or Bayesian methods

would yield x̂1 or the right peak depending on the noise in the system. If

the actual value was x̂1, then reconstruction error �x̂2 � x̂1� would either

be low or high depending on the reconstruction method and the noise in

neuronal activity. However, neither reconstruction measure would reveal
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the underlying representational ambiguity. The state in D is not consistent

with either behavioral variable x̂1 or x̂2. However, each reconstruction

method would yield a value such as x̂1 or x̂2 even though the underlying

state is complete confusion. Each of these scenarios suggests very dif-

ferent cognitive processes are occurring in this brain network, accessing

these through an appropriate measure of ensemble internal consistency is
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Figure 2.1: Self consistency. (A) An example uni-
modal tuning curve. The stimulus or behavioral
variable is on the x-axis with firing rate repre-
sented along the y-axis. (B) A “coherent” net-
work firing pattern. The stimulus or behavioral
variable is on the x-axis with firing rate of each
neuron represented along the y-axis. Each line
represents the location of a neuron’s preferred
stimulus, with height equal to the neuron’s firing
rate. If each neuron in a network had unimodal
tuning curves identical to the neuron represented
in A but with the peak firing occurring at a differ-
ent preferred stimulus x, then when the preferred
stimulus of the neuron in A is presented, this is
the expected network firing pattern. This pat-
tern is consistent with behavioral variable x̂2 but
not with x̂1. (C) A bimodal representation would
represent an ambiguous or incoherent state of the
network described in B, since the unimodal tun-
ing curves would predict only one mode of ac-
tivity should be possible of a single stimulus x
and that out side this mode neurons should be
silent. One mode is consistent with behavioral
variable x̂1 but neither mode is consistent with
x̂2. (D) As in C this representation would repre-
sent a confused or incoherent state of the network
described in B, since the unimodal tuning curves
would predict a prominent mode of activity and
that out side this mode neurons should be silent.
This state is not consistent with either behavioral
variable x̂1 or x̂2.
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one primary aim of this dissertation.



Chapter 3

The Hippocampus as Our Model

System

3.1 Hippocampus

In order to explore the biological validity of the concepts of ensemble

measurement that we have introduced, a biological system that is both

well-understood and yields itself to large scale experimental recordings is

needed. As we will discuss in this chapter and the next, the hippocampus

is a brain structure that fits this description very well. The hippocampus

has been the subject of numerous anatomical studies and is arguably one

of the most thoroughly investigated regions of the brain due to the in-

credible organization of its structural features and connectivity. Addition-

ally, with the availability of advanced chronic electrophysiological tech-

19
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niques the laminar structure allows for precise localization of electrodes

for high-yield recordings of up to 100 neurons or more with as few as 10-

12 tetrodes.

Beyond these issues, the hippocampus is a brain structure critical for

the formation of specific types of memory, therefore damage to this struc-

ture is particularly debilitating. So, characterizing the function of this

region is an important step toward understanding the adverse effects of

many neurological diseases including Alzheimer’s Disease, schizophre-

nia, autism, and many others.

3.1.1 Memory

While the unique structure of the hippocampus has drawn the attention

of many neuroanatomists throughout the years including Ramon y Cajal

and Lorente de No, one of the first major indications of its functional sig-

nificance came after treating a patient for intractable epilepsy (Scoville and

Milner, 1957).

On September 1st, 1953 at the age of 29, a patient referred to as H. M.

underwent surgery for bilateral resection of his medial-temporal lobes as

a dramatic effort to ameliorate his pharmacologically intractable and in-

creasingly debilitating epileptic attacks. Upon recovery, it was found that

this young man of average intelligence had lost the ability to form new

memories. Besides displaying this profound anterograde amenesia, H. M.

was unable to recall many events from the months preceding the surgery
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and was even unable to remember the death of an uncle that had occurred

three years earlier. In spite of these gross memory disturbances, the patient

was able to remember many remote childhood events. Post-recovery neu-

rological testing revealed little else of concern and in fact demonstrated

a slight increase in H. M.’s I.Q. (from 103 on the Wechler I.Q. scale pre-

operative, to 118 nine years post-operative). (Scoville and Milner, 1957;

Milner, 1970).

The dramatic amnesic effects of medial-temporal lobe removal on H. M.

triggered an immediate re-examination of other psychiatric patients that

underwent similar surgical procedures (Scoville and Milner, 1957). Since

then, comparing the results of a variety of lesion studies has revealed

much about the specific effects of hippocampal damage and the relation-

ship of the hippocampus to the surrounding cortices adding much insight

into the function of the normal hippocampus (Scoville and Milner, 1957;

Milner, 1970; Squire, 1992).

Place

The Place Cell. The studies showing that damage to the hippocampal

formation and its inputs generated intense interest in the hippocampal

formation as a locus of memory. Yet it was the discovery of the place cell

in 1971 that gave the first glimpses into the nature of hippocampal in-

formation processing (O’Keefe and Dostrovsky, 1971). After chronically

implanting rats with an electrode microdrive, a simple neurological work-
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up revealed that some rarely firing neurons in the hippocampus demon-

strated spatial responses and sometimes directional responses as the ani-

mal was passively moved around the testing platform (O’Keefe and Dostro-

vsky, 1971). Although this paper hardly presented convincing evidence for

the navigational and spatial functions now attributed to the hippocampus,

it was later followed by another paper and a landmark book by the same

first author that conclusively demonstrated the spatial information present

in the firing of hippocampal neurons (O’Keefe, 1976; O’Keefe and Nadel,

1978). Since then, the spatial tuning properties of hippocampal pyramidal

neurons have been thoroughly investigated (See Redish, 1999 for review).

Place Maps and Reference Frames

Since an ensemble of hippocampal place cells will generally tend to have

a stable pattern of place-fields distributed uniformly throughout an envi-

ronment, this is taken as the neural instantiation of a spatial map or ref-

erence frame (See O’Keefe and Nadel, 1978; Redish, 1999 for review). The

spatial map as represented by CA1 pyramidal cells degrades gracefully in

response to environmental manipulations such that small changes in the

environment result in small changes to the pattern of cells activated and

their preferred locations of activation (See Redish, 1999 for review).

The concept of partial remapping emerged in a study by Quirk et al.

(1990). The authors used two environments, a circular and a square arena,

and a light-dark-light followed by a dark-light session to study the effect
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of initial darkness upon entering an environment versus darkness falling

after light exposure. In the light-dark-light portion of the session, cells

maintained a high spatial correlation in their firing responses across the 3

conditions. However, in the dark-light portion of the session, many cells

remapped when animals entered an environment in the dark: some had

new place fields, some lost place fields, some retained similar place fields,

and some gained a place field after previous silence. This partial remap-

ping was shown for a pair of cells where one maintained it’s place field

and a previously silent cell gained a place field when started in the dark.

These remappings often persisted even after the lights were turned on.

Remapped fields could be reinstated if the animal was subsequently re-

introduced to the environment in the light. This experiment demonstrates

that place cells are not simply controlled by sensory cues, yet they are sta-

ble in the dark over long periods. The authors suggested that place-cells

may be controlled by a path-integrator, that this persistent dependence on

initial conditions during only the trial is similar to episodic memory or

working memory. They coined the term partial remapping and suggested

that the network will remap to the extent that two environments are dif-

ferent (Quirk et al., 1990).

It was later demonstrated that partial remapping can result from mod-

ification of task behavioral parameters (Markus et al., 1995). A simple cue

environment and multiple cue environment was used to test the effect

of sensory “richness” on place cell firing as wells as multiple tasks: rats
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ran on an open field (either randomly foraging for pellets or in a directed

manner) or on a plus maze. Markus et al. (1995) found that within the

open field, simply changing the task from foraging to directed running

(tapping on 1 of 4 locations in sequence) for food caused place fields to

partially remap. The remapping effect for foraging versus directed search

on a plus maze was much weaker than in the open field, but some remap-

ping did occur. It was shown that the remapping gradually formed across

and ensemble and tended to correlate with the animal acquiring the new

directed behavior. Changing the apparatus with a session to an 8-arm ra-

dial maze also had a total remapping effect, even though the animal was

in the same room. It was also shown that place-fields were less directional

on the open-field than on the 8-arm radial maze (Markus et al., 1995).

This partial remapping effect has recently been demonstrated in en-

sembles of CA1 neurons suggesting that the CA1 representation is mod-

ified proportionally to magnitude of change in the environment (Ander-

son and Jeffery, 2003; Knierim, 2002; Knierim and Rao, 2003; Leutgeb et al.,

2004; Vazdarjanova and Guzowski, 2004). It was demonstrated that in sim-

ilar environments, changing the wall color or scent (e.g. lemon or vanilla)

can cause a partial remapping of the hippocampal network (Anderson and

Jeffery, 2003). Likewise, in experiments where distal and local landmarks

(e.g. cues on the wall and features of the surface of an annular track, re-

spectively) are moved in opposite directions to create at mismatch, some

neurons follow the local cues, some follow the distal cues, and some place
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cells split their place fields (Knierim, 2002). In some neurons, this behav-

ior was dynamically dependent upon the experience of the animal during

the mismatch trial such that spatial firing on early laps was different from

firing on late laps (Knierim, 2002). In a subsequent experiment, it was

shown that translations in the track’s location can result in both reversible

and non-reversible alterations in a place-cell’s spatial firing field (Knierim

and Rao, 2003).

More recently, a similar mismatch paradigm to that used by Knierim

(2002) yielded a dissociation between CA3 and CA1 responses to local

and distal cue manipulations. As in the study by Knierim (2002), CA1

neurons demonstrated a variety of responses including dropping place

fields, adding place fields, following local cues, following distal cues, or

providing an intermediate firing pattern such as splitting a firing field to

follow both local and distal cues. CA3 neurons, however, favored the lo-

cal cue configuration while rarely following distal cues, though ambigu-

ous firing patterns and added or deleted place fields were also observed

(Lee et al., 2004b). As a result, the correlation of the CA1 map between

cue and mismatch trials was very poor, while the correlation of the CA3

map between cue and mismatch trials was merely shifted spatially (Lee

et al., 2004b). This was independently confirmed by two other laborato-

ries (Leutgeb et al., 2004; Vazdarjanova and Guzowski, 2004) �. Leutgeb

�Vazdarjanova and Guzowski (2004) and Leutgeb et al. (2004) each also independently
demonstrated quite conclusively that the CA3 population represents an environment
with a much sparser code than does CA1, in that fewer neurons are activated in CA3
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et al. (2004) exposed animals to similar (same arena or smaller arena with

the same geometry) or different local environments in either similar or dif-

ferent experimental rooms and found that the spatial pattern of activation

in CA1 neurons increasingly differentiated between the different combina-

tions of environmental manipulations (Leutgeb et al., 2004). The CA3 map

was only the same when the animal was exposed to the same local envi-

ronment in the same room, any other combination yielded an independent

remapping such that there was nearly zero overlap between maps and the

correlation between maps was zero (Leutgeb et al., 2004). Vazdarjanova

and Guzowski (2004) used immediate-early gene activation to differenti-

ate between the effects of temporally distinct environmental experiences

on the CA1 and CA3 neuronal populations. They compared groups of

animals that either experienced the same environment twice, experienced

two completely different environments in different rooms, or experienced

some gradation in between. Depending on where along this continuum

of changes in the local and distal environmental cues and animal’s expe-

rience was, the difference in the CA1 neuronal population activated on

the first task from the population activated on the second task was consis-

tent with a graded partial remapping of ensembles. Not until there was

a total change in the local and global environment was there a fully in-

dependent set of neurons activated by the second environment (i.e. total

remapping). The CA3 population, on the other hand, demonstrated an

than in CA1 for a given environment.
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all or none mapping of an environment such that similar environmental

configurations activated the same population of CA3 neurons, and a to-

tal change in the local and global environment triggered an independent

population (Vazdarjanova and Guzowski, 2004).

Taken together these studies suggest that the CA3 representation is a

stable all-or-none mapping of a pattern associated with an environment.

Considering that CA1 gets input from CA3 as well as entorhinal cortex

(see Section 3.4.2) and can form a place representation in the absence of

CA3 input (Mizumori et al., 1989; Brun et al., 2002), this suggests that the

CA1 representation represents the similarity between the entorhinal cor-

tical spatial input and the CA3 localization of the animal to a particular

environment. The partial remapping reported earlier (Quirk et al., 1990;

Markus et al., 1995; Anderson and Jeffery, 2003; Knierim, 2002) must there-

fore reflect identified similarities between environmental and task param-

eters.

Leutgeb et al. (2005) clarified these results by demonstrating that modi-

fying local features (the shape and color of the behavioral enclosure) while

keeping place constant primarily generated changes in the maximal firing

rates of CA3 neurons without changing the actual spatial map. This modi-

fication of spatial firing rates appears to decorrelate the map used to repre-

sent one enclosure from the map used to represent another enclosure even

though the neurons are firing in the same spatial locations; this is termed

rate remapping (Leutgeb et al., 2005). Leutgeb et al. (2005) suggest that rate
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remapping is an independent ensemble code that can be used to differenti-

ate altered cue configurations while preserving the coding for a particular

spatial location. The CA1 ensembles demonstrated a similar phenomenon

that appeared to be coupled to the partial remapping discussed earlier

(Leutgeb et al., 2005). In his commentary on this study, Buzsáki (2005a)

likens this phenomenon to the human experience of simultaneous repre-

sentation of nested environments such as representing our location in a

city reliably whether we are in a bus or a sports car. This process may un-

derlie the task dependent remapping within an identical environment as

observed by Markus et al. (1995).

Switching Reference Frames

These data on reference frame formation (i.e. the generation of a spatial

firing map across a hippocampal ensemble) suggest that the hippocampus

can switch the reference frame used to solve a task depending on the task

requirements. This is consistent with experimental data that required such

a switch of reference frames for proper task performance (Redish et al.,

2000; Rosenzweig et al., 2003). In these studies animals were contained in a

box fixed to a movable linear track. At the beginning of a trial, the box was

opened and animals ran down the track towards a barrier that was fixed in

a location with respect to the room. For an animal to receive reward, it had

to pause in a location that was always a fixed distance from the barrier and

therefore also consistent with respect to the room. Between trials, the box-
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track was moved with respect to the room such that the goal/reward lo-

cation was always a different distance from the release point at the start of

the trial. Animals tended to use one ensemble firing map for representing

their location with respect to their distance from the box (the box-reference

frame) and another for representing their location with respect to the room

(the room-reference frame). When animals correctly found the reward loca-

tion, they had switched to the room-reference frame. On trials when this

switch did not happen, the animal ran past the goal. This ensemble ref-

erence frame switch was detected using a coherency ratio which will be

discussed later (Redish et al., 2000; See also Chapter 4). The switch in co-

herency ratio was more closely related to the time the animal had spent

out of the box than to any other task parameter explored (Redish et al.,

2000). Interestingly, aged animals had to run farther along the track before

switching reference frames (Rosenzweig et al., 2003). These data suggest

that the hippocampus can switch reference frame while performing a task

that requires such a switch, and that this switch may be necessary for suc-

cessful spatial behavior.

Finally, Touretzky and Redish (1996) presented a computational hip-

pocampal model that addressed how the hippocampus may switch be-

tween representational reference frames. They suggested that changing

reference frames results in directionality on the linear track, that the refer-

ence frames may be initially tied to each of the track ends, and that the di-

rectionality develops as an animal becomes “indifferent” to one of the ref-
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erence frames when traveling toward the other end of a track (Touretzky

and Redish, 1996). They state that the hippocampal place cells are there-

fore not direction-sensitive, but reference-frame-sensitive (Touretzky and

Redish, 1996). Similarly, McNaughton et al. (1996) suggested that “each

behaviorally significant location in the environment [may become] a refer-

ence center” resulting in the a directional differences in the hippocampal

map of an environment. In linear environments, the uniqueness of the

directionally dependent view of these reference frames is reinforced with

each experience; while during foraging behaviors where the view of mul-

tiple reference centers can be accessed from multiple directions, this has

modeled using competitive learning (Sharp et al., 1990). Thus, on open-

environments no particular reference frame will have significance and the

environment will be represented with a single map, while on a linear track

where the animal shuttles back and forth, switching reference centers will

switch the hippocampal reference frame (Touretzky and Redish, 1996; Mc-

Naughton et al., 1996; Redish, 1999).

3.2 Overdispersion

While network state is a source of known variability in the firing of neu-

rons, another source is as yet unknown. The firing of place cells is reli-

able enough spatially to infer the rodent’s position to within 1 cm given

only the current firing pattern in a hippocampal ensemble and the spa-



Ch 3. Hippocampus 31

tial tuning of each neuron (Wilson and McNaughton, 1993). Fenton and

Muller (1998) found that place cells exhibit extreme temporal variability

or overdispersion in that their firing patterns are much less reliable tem-

porally than would be predicted by an inhomogeneous Poisson process

based on the neuron’s own tuning curve. Lánksý et al. (2001) character-

ized this overdispersion in terms of a doubly-stochastic Poisson process

that switches between two mean spike emission rates at a mean interval

of between 1 and 2 seconds. They propose that this switching may re-

sult from the animal switching reference frames about once every second

or two (Lánksý et al., 2001; Olypher et al., 2002). Note, this is at a much

larger time scale than can be simply explained by the phenomenon of theta

phase precession (Skaggs et al., 1996), where place cell firing correlates

strongly with the phase of the theta rhythm. One possible explanation for

this phenomenon is that rats switch the cues with which they reference

their position (McNaughton et al., 1994).

3.2.1 Inhomogeneous Poisson Process

One possible model of the behavioral or stimulus dependence of a neu-

ron’s firing is that of an inhomogeneous Poisson point process where the

intensity of the spike emission rate at any given time is dependent on the

stimulus or behavioral value at that moment. This is the approach used

by Fenton and Muller (1998) to examine the variability of hippocampal

neurons as the animal passes through their place field.
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Figure 3.1: Overdispersion of hippocampal place cells on the Open Field task. A his-
togram of z-scores for the number of spikes emitted on a pass through a place field given
the expected number of spikes predicted by a Poisson point process model. Fenton and
Muller (1998) reported that neurons displayed excess variability on the open field forag-
ing task (Figure from Fenton and Muller, 1998: z-scores for 1440 passes).

In an inhomogeneous Poisson point process, the expected number N

of emissions between time t0 and time t1 is given by

N �
� t1

t0

λ�t�dt (3.1)

where λ�t� is the time-dependent intensity function of the point process.

Using this model, the spiking of a neuron can be compared with the

expected firing S given the mean rate of firing Ri for each spatial position i

taken from the tuning curve for each pass through the neuron’s place field.

Since the tuning curve is a discrete estimate of the spike emission intensity

function at each location (i.e. λ�t� � R�x�t��), the expected number of

spikes N emitted by a neuron on a pass depends on the portion of the
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tuning curve traversed as follows:

N � ∑
i

Ri�t (3.2)

where Ri is the firing rate predicted by the tuning curve at each position

sample of the pass and �t is the video sampling rate.

As described in Fenton and Muller (1998), for N � 4, the Poisson dis-

tribution can be approximated by a normal distribution with mean µ � N

and variance σ2 � N. Thus, the Z-transformed distribution of N for all

passes through a place field can be calculated as follows:

Z �

����
���

S�N� 1
2�

N
if S � N,

S�N� 1
2�

N
if S � N.

(3.3)

where S is the number of spikes actually emitted. The factor of 1�2 is a

correction for the discrete distribution.

3.2.2 Doubly Stochastic Inhomogeneous Poisson Process

The doubly stochastic inhomogeneous Poisson point process model pre-

sented by Lánksý et al. (2001) to explain the overdispersion process is sim-

ilar to equation 3.1. However, λ�t� is replaced with a ��t�, a two state

intensity process with intensities λ1�t� and λ2�t�, corresponding to states 1

and 2, respectively. The instantaneous intensity at time t0 therefore de-
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pends on which state the system happens to be in (state 1 or state 2) given

random fluctuations. Thus, the instantaneous intensity at time t0 is either

λ1�t0� or λ2�t0�.

Lánksý et al. (2001) provided a derivation of the Fano factor for such a

doubly stochastic point process. Using the Fano factor of the data from

Fenton and Muller (1998) and assuming equal dwell time, they estimated

the dwell period in either state to be about 1 to 2 s.

3.2.3 Olypher Network Model

Olypher et al. (2002) expanded on the reference-frame switching discus-

sion begun by Lánksý et al. (2001), to speculate on the anatomical origins

of the place cell variability. They framed their ideas in a computational

model to generate quantitative comparisons with the experimental data.

Their model is depicted in Figure 3.2

In their model a subset of inputs randomly alternates between high

and low intensity states. They vary the depth of modulation α and the

average switching period T of these inputs and measure the variability in

the output of their integrate and fire neuron. They suggest that the best

fit to the data reported by Fenton and Muller (1998) is a 10% modulation

depth with a mean switching period of 1 s.
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Figure 3.2: Integrate and Fire Model of Overdispersion: Switching of a subset of the
inputs to a neuron. A Constant intensity inputs (bottom four rasters) to a neuron result
in constant output intensity (top raster). B Switching of a subset of the inputs to a neuron
between high and low firing rates (bottom two rasters) results in large variability in the
output (top raster). The upper two inputs remain unmodulated. (From Olypher et al.,
2002.)

3.3 Goal Tasks

3.3.1 Hippocampal Lesions

Both animals and humans exhibit spatial learning deficites following hip-

pocampal damage (Scoville and Milner, 1957; Milner, 1970; O’Keefe and

Nadel, 1978; Kesner and Novak, 1982; Morris et al., 1982; Squire, 1992; Re-

dish, 1999; Clark et al., 2000). For instance, the patient H. M. discussed

earlier had difficulty learning a stylus maze which required learning of

a specific spatial path or sequence across an experimental board (Milner,
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1970). The board had an array of bolts which, when touched, would count

as an error if the bolt was not part of the path from start to finish of the

maze (Milner, 1970). Likewise, rat trained on a serial position task, per-

formed at chance levels after hippocampal lesions (Kesner and Novak,

1982). More direct links between deficites in goal directed spatial memory

and hippocampal function have also been explored (Morris et al., 1982;

see Redish, 1999 for review). In order to explore the link between the hip-

pocampus and goal memory in rodents, Morris et al. (1982) used a water

maze paradigm where rats were required to navigate to a hidden platform

in order to escape the water. Control rats (sham operated and cortical dam-

age controls) quickly learned the location of the hidden platform reducing

their escape latency and favoring the platforms location on probe trials

where the platform was not present. Animals with bilateral hippocam-

pal lesions are dramatically impaired on both learning measures, although

they eventually would find it each session (Morris et al., 1982).

3.3.2 Over-Representation of Goal

Since tasks that require goal-directed navigation require a intact hippocam-

pus, it is important to understand the effects that spatial goals exert on the

hippocampal network. For instance, it was recently reported that requir-

ing an animal to navigate to a fixed goal can lead to recruitment of place

cells that respond to the goal region resulting in an over-representation

of the goal (Hollup et al., 2001a). This phenomenon was observed on an
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annular water maze task. Constant and variable platform locations were

used to test the goal dependence of place field locations. It was found

that place fields clustered more densely in the platform region and in the

region leading up to the platform for the case of uni-directional swim-

ming. Training with variable platform locations abolished this clustering.

(Hollup et al., 2001a) Thus, static goal locations can have a profound long-

term effect on the hippocampal representation, and this effect can be min-

imized by varying the goal location day-to-day.

3.3.3 Effects on Place Cell Stability

Goal directed navigational requirements have other long-term effects on

the hippocampus. Kentros et al. (2004) recently demonstrated that in-

creasing the cognitive requirements of an experience increases the long-

term stability of place fields in mice. The place fields of mice that were

randomly wandering in an environment were generally quite different

when the mice were re-exposed to the same environment six or more

hours later. Scattering food in the arena resulted in a slight but non-

significant increase in this stability; exposing animals to a novel environ-

ment significantly increased stability above the wandering group; and re-

quiring animals to navigate to a goal region to terminate stress-inducing

cues (noise and bright light) dramatically increased place-field stability

above the other conditions. These effects were modulated by D1 and D5

dopamine receptor pharmacology. (Kentros et al., 2004) These data sug-
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gest that motivational influences in general and goal-directed navigation

in particular affect the stability of the hippocampal spatial representation.

3.3.4 Effects on Place Cell Temporal Variability

Finally, the temporal variability of place-cell firing, or overdispersion, de-

pends on the task requirements. Specifically, place cells fired more reli-

ably during an approach to an invisible goal than during random forag-

ing. Simply introducing a goal-directed navigational requirement reduced

temporal variability in place-cell firing, but place cell firing in the five sec-

onds prior to reaching the goal was more reliable than either the foraging

task or the goal-directed task as a whole. (Olypher et al., 2002)

These studies suggest that introducing a goal-directed navigational re-

quirement to a task critically engages hippocampal circuitry such that the

hippocampal representation is stabilized and perhaps biased towards a

single representational reference frame. These changes are most likely due

to the spatially-dependent cognitive requirements of the task that demand

navigational calculations which depend on the precision of hippocampal

information processing.

3.4 Local Field Potentials

Besides being viewed at the cellular level as action potentials, the electrical

signatures of information processing within the brain can be measured as
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a filtered summation of synaptic inputs across the network in the form of

local field potentials (LFP). While action potential propagation is an elec-

trical event, the LFP has more to do with synaptic transmission within a

region than the propagation of action potentials in the local neuronal pop-

ulation. Thus the LFP is the low-frequency component of a large-scale

superposition of changes in the electric field within a structural region re-

sulting from network-wide synaptic activity.

3.4.1 Generation

The primary mode of information transfer between neurons is through the

chemical synapse. Although there are many types of synapses known to

exist within the nervous system, the general model of a synapse consists

of a pre-synaptic axon terminal on the input-side and a post-synaptic ag-

gregation of receptors on output-side. When an action potential from the

pre-synaptic neuron reaches the axon-terminal, a chain reaction of events

takes place beginning with the activation of voltage sensitive Ca2� chan-

nels, the influx of calcium, and activation of vesicle docking protein com-

plexes which ultimately leads to the vesicular release of neurotransmitter

into the synaptic cleft (the space between the pre- and post-synaptic neu-

ron). The binding of neurotransmitter to receptors in the post synaptic

membrane opens these channels resulting in a depolarizing or hyperpolar-

izing current depending on the selective permeability of the ion channels.

The transfer of ions across the cell membrane is coupled with compen-
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satory currents at the cell body. The summation of the resulting neuronal

currents distributed across a network constitutes a considerable change in

the charge distribution within the structure. This fluctuation in the dis-

tribution of charge alters the local electric field and is measured as a fluc-

tuation in the electrical potential at electrodes placed nearby. Local field

potentials are therefore the compound effect of synaptic transmission in

the brain and depend on the anatomy and cytoarchitecture of the region

of interest. (For review see Niedermeyer and Lopes da Silva, 1999.)

3.4.2 Hippocampal Anatomy

The strength and type of local field potential oscillation observed within a

region depends heavily on the local structural geometry and cytoarchitec-

tural organization. The hippocampal formation consists of the entorhinal

cortex, the dentate gyrus, the hippocampus proper, and the subicular com-

plex (Amaral, 1987; Amaral and Witter, 1989).

Hippocampal Anatomy and Circuitry

The hippocampus proper is divided into 4 major regions: the entorhinal

cortex (EC), the dentate gyrus (DG), Ammon’s horn (cornu ammonis; or

CA region), and the subiculum. The CA region is often subdivided into 3

or 4 sub-regions: CA1, CA2, CA3, and sometimes CA4 �. The CA subre-

�The obscure divisions of the CA4 sub-field corresponds most closely to the polymor-
phic zone of the dentate gyrus (Amaral, 1987)
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gions make up what is generally referred to as the hippocampus (Amaral,

1987). The longitudinal axis of the hippocampus stretches along the lat-

eral ventricle from the septal portion to the amygdala in the temporal lobe

forming a banana or ’C’ shape.

The major cortical input to the hippocampus comes from entorhinal

cortex. The granule cells of the dentate gyrus receive divergent input from

layers II and III of the entorhinal cortex (Amaral, 1987). The input is di-

vergent in that the proportion of DG innervated by a given length of EC is

at least 2.5. This means, a region corresponding to 10% of EC, will project

to a region corresponding to 25% of the dentate gyrus (Amaral and Witter,

1989). The EC projects topographically to DG such that the caudo-lateral

EC is associated with septal regions of DG, and rostro-medial EC is asso-

ciated with the temporal regions of DG (Dolorfo and Amaral, 1998; Bur-

well, 2000). The entorhinal cortex also projects to the CA fields and to the

subiculum (Amaral, 1987; Amaral and Witter, 1989).

The DG granule cells send very narrow mossy fiber projections to CA3

such that a region along the longitudinal axis of a given size in DG is con-

nected to a region of similar size in CA3 (Amaral and Witter, 1989). The

pyramidal cells of the CA3 region, in turn, send out axons which bifurcate

to form broad associational projections and the Schaffer collateral projec-

tions (Amaral, 1987; Amaral and Witter, 1989). The associational projec-

tions distribute widely along the longitudinal (or long) axis of CA3, while

the Schaffer collateral projections go to CA1 and distribute in a broad
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but systematically organized 3-dimensional pattern (Amaral and Witter,

1989). For example, a pyramidal cell in CA3 located midway along the

septo-temporal longitudinal axis and near DG along the transverse axis

would have its axon terminals distributed close to the CA1-CA2/3 border

synapsing on the distal dendrites of CA1 pyramidal cells. Progressing to-

ward the temporal pole would reveal that this CA3 pyramidal cell’s axons

terminate closer to the cell bodies of CA1 pyramidal cells near the CA1-

subiculum border. (Amaral and Witter, 1989)

CA2 pyramidal neurons are much like those in CA3 but they do not

receive mossy fiber input from granule cells of DG, yet they are much

larger than the pyramidal cells of CA1 (Amaral, 1987). CA1 projects to the

subicular complex and back to the entorhinal cortex (Amaral, 1987; Ama-

ral and Witter, 1989). The subicular complex can be subdivided into the

subiculum, the pre-subiculum, and the para-subiculum (in order of their

divisions progressing from CA1 to EC) (Amaral, 1987). The regions of the

subicular complex project to different layers of the entorhinal cortex. The

subiculum projection terminates in EC layer IV, the pre-subiculum projec-

tion terminates primarily in layer III, and the para-subiculum projects to

EC layer II (Amaral, 1987). The simplified loop of EC � DG � CA3 �
CA1 is referred to as the tri-synaptic loop although the shortest path from

EC through the hippocampus back to EC, a true loop, is one synapse (EC

� CA1 � EC) and the longest path is five synapses (excluding recurrent

connections: EC � DG � CA3 � CA1 � Subiculum � EC). (See (Ama-
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ral, 1987) for review.)

Cytoarchitecture of the CA1 Pyramidal cell Layer

Some of our most detailed knowledge of the cellular basis for local-field-

potentials comes from the hippocampus. The regularity of the CA1 sub-

field of the hippocampus is especially striking. It consists of 5 layers: the

stratum oriens, the stratum pyramidale, the stratum radiatum, the stratum

lucidum, and the stratum lacunosum-moleculare. These layers are popu-

lated with a variety of interneurons that release the inhibitory neurotrans-

mitter γ-aminobutyric acid (GABA).There are a wide variety of GABAer-

gic interneurons found in CA1 sub-region of the hippocampus, however

the contribution of only four primary types of interneuron to hippocam-

pal local field potentials have been well studied: the basket cell, the axo-

axonic cell, the bistratified cell, and the O-LM cell. (See top of Figure 3.3

for a diagram of projections)

The Basket Cell. Of the three types of inhibitory basket cell found in

CA1, I will discuss only the GABAergic parvalbumin staining (PV�) bas-

ket cells of the stratum pyramidale since the most is known about their

participation in hippocampal LFP oscillations. PV� basket cells synapse

primarily in the stratum radiatum on the proximal dendrites and cell bod-

ies of CA1 pyramidal neurons, and probably receive glutamatergic in-

put from entorhinal cortex, thalamus, and from pyramidal cells in CA1
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Figure 3.3: The hippocampal circuitry and spiking in response to LFP oscillations.
(From Somogyi and Klausberger, 2005)
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and CA3. Their dendritic arbor can reach from the stratum lacunosum-

molecular to the stratum oriens. These PV� basket cells may be electrically

coupled through gap junctions and also form synapses on other interneu-

rons including themselves (so called autapses; Pawelzik et al., 2003) and on

other PV� basket cells. (Somogyi and Klausberger, 2005)

The Axo-Axonic Cell. Parvalbumin staining axo-axonic cells reside in

the stratum pyramidale, and synapse in the stratum oriens on the den-

drites, somata, and axon initial segments of as many as 1200 CA1 pyrami-

dal neurons. They presumably receive glutamatergic input from entorhi-

nal cortex, from thalamus, and from pyramidal cells in CA1 and CA3.

Like the basket cells, their dendritic arbor can reach from the stratum

lacunosum-molecular to the stratum oriens, however the arborization in

stratum lacunosum-molecular is much more extensive. (Somogyi and Klaus-

berger, 2005)

The Bistratified Cell. PV� bistratified cells also stain positive for so-

matostatin (SM) and neuropeptide-Y. They also reside in the stratum pyra-

midale and probably receive glutamatergic input from entorhinal cortex

and pyramidal cells in CA1 and CA3. The axons of bistratified cells dis-

tribute in the stratum oriens and stratum radiatum and synapse on CA1

pyramidal neurons, basket cells, and other interneurons. Their dendritic

arbor can range from the stratum radiatum to the stratum oriens. (Somo-
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gyi and Klausberger, 2005)

The O-LM Cell. O-LM cells are found in the stratum oriens, stain pos-

itive for parvalbumin and SM, and synapse in the stratum lacunosum-

moleculare on the distal dendrites of CA1 pyramidal cells and on other

interneurons. They presumably and receive projections from entorhinal

cortex and pyramidal cells in CA1 and CA3 as their dendrites are confined

to the stratum oriens. (Somogyi and Klausberger, 2005)

We will discuss the contribution of these interneurons to hippocampal

LFPs as we explore each LFP state. (See top of Figure 3.3 for a diagram of

projections.)

3.4.3 Hippocampal LFP Types

The orderly structure of the hippocampus results in a number of high am-

plitude oscillations in local field potential recordings, the most notable

of which are the sharp-wave associated fast ripples and the hippocampal

theta rhythm.

Theta

The hippocampal theta rhythm or rhythmic slow activity (RSA) is a highly

synchronous LFP state resulting from a complex interplay between the

resonant frequencies of the local circuit of pyramidal neurons in the hip-

pocampus and local inhibitory feedback, GABAergic input from pace-
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Figure 3.4: The response of four interneuron types to prominent hippocampal LFP
oscillations. (From Somogyi and Klausberger, 2005)

maker neurons in the medial septum, and cholinergic modulation from

medial septal inputs (Green and Arduini, 1954; O’Keefe and Nadel, 1978;

Stewart and Fox, 1989; Nerad and McNaughton, 2006). The first thor-

ough analysis of theta in the hippocampus reported that this large am-

plitude nearly sinusoidal 6-12 Hz oscillation was reciprocally related to

synchronization of the cortical EEG, was abolished by septal and fornical

lesions, and was related to the animal’s (rabbits, cats, and monkeys) state
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of arousal (Green and Arduini, 1954).

The primary components of theta rhythm generation involve three com-

ponents: a septal muscarinic cholinergic input which depolarizes hippocam-

pal interneurons and pyramidal neurons, a rhythmic GABAergic septal in-

put to local interneurons, and a local oscillatory circuit comprised of hip-

pocampal pyramidal neurons and GABAergic interneurons (Stewart and

Fox, 1989). The cholinergic input from the septum depolarizes the local

circuit to enable oscillation, the GABAergic input provides rhythmic in-

put to the local circuit inhibitory interneurons to spatially synchronize the

hippocampal theta rhythm (Stewart and Fox, 1989). The septal input ap-

pears to be distributed across the lateral and medial septal nuclei (Nerad

and McNaughton, 2006).

This model is supported by several lines of data. Hippocampal theta

is disrupted by lesions of the fornix and septum and systemic and septal

atropine treatment (O’Keefe and Nadel, 1978; Buzsáki et al., 1983; Stewart

and Fox, 1989). Furthermore, recent evidence suggests that distinct in-

terneuron types participate in the theta rhythm at different phases (Klaus-

berger et al., 2003; Somogyi and Klausberger, 2005). PV� basket cells fire

maximally at falling edge of the theta LFP recorded extracellularly at the

pyramidal cell layer while axo-axonic neurons fire maximally at the peak.

Bistratified cells and O-LM cells fire maximally at the trough of the theta

wave. The distribution of these various inhibitory inputs along the dendro-

somatic axis of CA1 pyramidal cells is consistent with 180Æ phase shift in
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the intracellularly recorded membrane potential from the distal dendrites

to the soma (Klausberger et al., 2003; Somogyi and Klausberger, 2005). (See

Figure 3.3) As a result of this distribution of inputs to the CA1 field, the

theta wave reverses polarity in the stratum radiatum. (See O’Keefe and

Nadel, 1978.)

Behavioral Significance: Theta Phase Precession The theta rhythm is

present during ambulatory movement, stimulus evoked attentive behav-

ior, and during paradoxical (REM) sleep. The highly organized theta rhythm

leads to well ordered spiking of CA1 pyramidal neurons in the spatio-

temporal domain (O’Keefe and Recce, 1993; Skaggs et al., 1996). This

highly ordered spiking compresses behaviorally relevant temporal sequences

into the optimal LTP induction window of approximately 40 ms (see (Bi

and Poo, 2001) for review) while preserving firing order. Such repetitive

stimulation of intrinsic and extrinsic circuits fits the requirements needed

for synaptic modification of hippocampal and cortical target regions such

as the entorhincal cortex (Bliss and Lømo, 1973; Bliss and Gardner-Medwin,

1973; Chrobak and Buzáki, 1998).

LIA

Large-irregular activity (LIA) is observed as a desynchronization of the

hippocampal EEG in comparison with the highly regular theta rhythm.

The primary frequency is slower than theta, with periods of quiescence
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punctuated by sharp deflections in the LFP termed sharp waves (see below

for more information on sharp waves). LIA has often thought of as release

of subcortical inhibition that is present during theta (O’Keefe and Nadel,

1978; Buzsáki et al., 1983).

Behavioral Significance LIA is normally observed in awake animals as

they eat, drink, groom, and rest as well as in sleeping animals in the early

stages of slow-wave sleep.

Sharp Waves A distinctive feature of LIA, sharp-waves (SW) are large

amplitude LFP events that result from the depolarization of CA1 pyrami-

dal neurons by CA3 Schaffer collateral inputs from the CA3 field. This

massive depolarization is often accompanied by a a fast ripple oscillation

of approximately 200 Hz (Buzsáki et al., 1983; Csicsvari et al., 2000). At

least 10% of the CA3 population must fire within about 100 ms to trigger

a fast-ripple event in CA1 (Csicsvari et al., 2000). This fast ripple oscilla-

tion is then driven locally by interactions between the PV� basket cells,

bistratified cells, and the pyramidal cell population (Hirase et al., 2001;

Csicsvari et al., 2000; Klausberger et al., 2003, 2004; Somogyi and Klaus-

berger, 2005). The PV� basket cells and bistratified cells fire phase locked

to the ripple oscillation with peak firing rates occurring just after negative

trough of the SW ripple (Klausberger et al., 2003, 2004). This can be seen

in Figures 3.3 and 3.4 reproduced from Somogyi and Klausberger (2005).
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This results in a temporally alternating current source-sink pattern flank-

ing the stratum pyramidale (See Figure 3.5 reproduced from Ylinen et al.,

1995) during the ripple event (Ylinen et al., 1995). The circuitry activated

during sharp waves is same as that activated during theta (Ylinen et al.,

1995).

Figure 3.5: Current Source Density Dynamics of theta, sharp wave, and sharp wave
associated ripple. (From (Ylinen et al., 1995))

SW are transferred from CA1 through the subicular complex and into

entorhinal cortex. EC layer V-VI neurons spike with SW (Chrobak and

Buzsáki, 1994). SW ripples occur in EC and subiculum shortly after CA1

SW ripples suggesting hippocampus drives cortical outputs during SW

events (Chrobak and Buzsáki, 1996). EC ripples reverse polarity at layer II-

III border possibly due to stimulation of layers V-VI by CA1 and subicular
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SW (Chrobak and Buzsáki, 1996). Thus, the sharp-wave ripple event can

be propagated from the hippocampus out to cortical regions.

Behavioral Significance As mentioned earlier, SW are a hallmark of LIA

which means that they are associated with behaviors such as quiet resting,

grooming, drinking, eating, and slow wave sleep. However, it has been

recently reported that SW also occur during ambulatory movement out-

side of LIA (O’Neill et al., 2006). Neuronal firing during these so-called

exploratory sharp wave ripples (eSWR, to differentiate them from SW occur-

ing during immobility, iSWR) favors a neuron’s place fields such that a

neuron is more active during an eSWR if the animal is in that neuron’s

place field (O’Neill et al., 2006).

SIA

Small Irregular Activity (SIA) is a less well known network state of the

hippocampus characterized by a short-duration (approximately 1 s), low-

amplitude desynchronization of the hippocampal EEG. SIA can be trig-

gered by electrical stimulation of the lateral pathway (nucleus reticularis

pontis caudalis and the lateral raphe nucleus) or the medial pathway (the

septum, or fornix). SIA is eliminated by lesions of the lateral pathway

while it is not affected by septal or fornical lesions. It is therefore thought

that there may be two separate types or modes of SIA: one dependent

upon serotonergic input from the lateral pathway, the other due to hyper-
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activation of the theta generating mechanisms (possibly resulting from

over stimulation in experimental conditions). In the first case, the seroton-

ergic input reduces the theta-rhythmic activity of hippocampal interneu-

rons, while the latter case may be a result of broad neuronal depolariza-

tion. Thus, the induction of SIA by serotonergic input is probably the most

physiologically relevant. (O’Keefe and Nadel, 1978)

Behavioral and Neurophysiological Correlates SIA can be elicited be-

haviorally through startling an animal from sleep (or near sleep), dur-

ing approach to food, during freezing behavior, or during a heightened

level of arousal during sleep (Jarosiewicz and Skaggs, 2004b; O’Keefe and

Nadel, 1978). Recent ensemble recordings suggest that during SIA, the

hippocampal CA1 population represents a static memory of the animal’s

current position by a nearly tonic activation of neurons with place fields at

the animal’s location prior to entering SIA (Jarosiewicz et al., 2002; Jarosiewicz

and Skaggs, 2004a). Thus, manipulating the animal’s position after it en-

ters SIA has no effect on the hippocampal representation; it remains fixed

representing the original location (Jarosiewicz and Skaggs, 2004a).

3.4.4 Hippocampal LFPs Depend Strongly on Electrode Po-

sition

The localization of the source-sink pairs resulting from inhibitory-excitatory

push-pull coupling of pyramidal neurons and interneurons at the pyrami-
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dal cell layer means that sharp waves and their associated ripples reverse

as an electrode is advanced past the hippocampal cell layer. This rever-

sal can be exploited to precisely position an electrode in the hippocampal

pyramidal cell layer. Likewise, as was mentioned earlier, the theta wave

reverses in the stratum radiatum. As electrodes are advanced ventrally

past the CA1 pyramidal cell layer relatively large theta suddenly decreases

and then inverts it phase giving way to a very high amplitude theta os-

cillation near or just below the hippocampal fissure (O’Keefe and Nadel,

1978). Thus, in our experiments a second reference electrode was lowered

into the hippocampal fissure whenever possible to obtain this high signal-

to-noise theta rhythm.

3.5 Reactivation

Due to the orderly structure of the hippocampus, it has been used as one of

the major circuit models for exploring the effects of LTP (Bliss and Lømo,

1973; Bliss and Gardner-Medwin, 1973). The strong spatial response of

neurons in the hippocampus also allows us to probe the effects of spa-

tial experience on the network dynamics of the hippocampus (O’Keefe

and Dostrovsky, 1971; O’Keefe and Nadel, 1978). When coupled with the

clear delineation between local field potentials during the various stages

of sleep and wakefulness (Green and Arduini, 1954; O’Keefe and Nadel,

1978), these features of the hippocampus have allowed neuroscientists to



Ch 3. Hippocampus 55

probe deeply into the effect of learning during awake behavior on post-

processing during sleep (Pavlides and Winson, 1989; Wilson and McNaughton,

1994; Skaggs and McNaughton, 1996; Kudrimoti et al., 1999; Nádasdy et al.,

1999; Louie and Wilson, 2001; Lee and Wilson, 2002) and during on-line

processing during the task (Jackson et al., 2005a,b; O’Neill et al., 2006; Fos-

ter and Wilson, 2006).

Pavlides and Winson (1989) first presented evidence suggesting that

plasticity induced by behaviorally evoked hippocampal neuronal activ-

ity in the waking animal affects the hippocampal activity patterns present

during sleep. The authors recorded 2 or more place cells simultaneously

from rats while they were confined to a portion of the environment con-

taining a place field from only one of the neurons. Then, animals were

allowed to sleep in an area that did not contain a place field from either

neuron (only neurons that did not have a place field in the home cage

were included) while recording from both neurons. The neurons that had

place fields in the location the animal was confined to were more active

and fired more multiple spike bursts during slow-wave sleep (SWS), pre-

REM (PREM), and REM sleep than the neurons whose place fields were

not visited. There were also slight increases in firing during quiet wak-

ing (QA) and still alert (SAL) behavioral states, but these were not signif-

icant. Switching which neuron’s place field the animal was confined to,

switched the offset in firing during sleep such that the neuron that had a

place field in the location the animal was confined to during the second
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test was more active during QA, SWS, PREM, and REM sleep than the

neuron whose place field was not visited. Finally, the authors found that

there was a specific increase in the number of inter-spike-intervals in the

2-4 ms range during QA, SWS, PREM, and REM sleep in the neurons that

had a place fields in the location the animal was confined to than in the

neurons whose place fields were not visited. They argue that this 400 Hz

spike frequency during bursts is optimal for inducing LTP in target struc-

tures (Pavlides and Winson, 1989).

3.5.1 Slow Wave Sleep

Following the observations of Pavlides and Winson (1989), it was not un-

til much later that the first ensemble-level interactions between behavioral

co-activation and reactivation during sleep were examined (Wilson and

McNaughton, 1994). Hippocampal ensembles were recorded before, dur-

ing, and after a behavioral session of either an open field environment or

a linear track environment. The authors demonstrated that neuron pairs

with overlapping place fields had weak cross-correlations before an an-

imal experienced the task, but had strongly correlated firing during the

task and had increased cross-correlations during slow-wave sleep (SWS)

following the task. Neurons pairs with non-overlapping place fields had

significantly lower cross-correlations during the task and in the sleep after-

wards. They showed that the temporal connectivity during behavior was

therefore preserved during sleep after a task (Wilson and McNaughton,
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1994). These data indicate that the firing of neurons during SWS is strongly

related to the firing of neurons during behavior. They also suggest that

performing a task results in spatially dependent co-activation of neurons

which enhances the network-level coupling during sleep such that the

spatial representation present during behavior is recreated in the firing

of neurons during sleep. Thus, the spatially dependent cross-correlations

within an ensemble are reactivated in SWS.

Later, Skaggs and McNaughton (1996) reported that the temporal bias

between neuron pairs during behavior (an indicator of the temporal se-

quence of spiking) was strongly correlated with the bias during SWS after

a task but not during SWS before the task. Furthermore, comparing the

number of neurons with both positive correlations during the task and

during sleep (N��) with the number of neurons with positive correlations

during the task and negative correlations during sleep (N��) revealed in-

creases in N�� over N�� for sleep following task behavior but not for sleep

before the task (Skaggs and McNaughton, 1996). Thus, Skaggs and Mc-

Naughton (1996) demonstrated that the temporal ordering of neuron pairs

during a task is preserved during sleep following a task, but is not present

during sleep prior to the task. This suggests that the temporal sequences

of ensemble activation generated during behavior are replayed in the slow

wave sleep immediately following an experience.

Kudrimoti et al. (1999) followed up these reactivation studies by inves-

tigating the influence of specific LFP states, behavioral experience, task fa-
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miliarity, and reactivation measurements. The authors examined the firing

rate measures of Pavlides and Winson (1989), a correlations measure, and

explained variance. They used explained variance to account for the con-

tribution of pre-existing correlations in sleep prior to task performance,

which was particularly important for their comparison of the effects of

novel versus familiar tasks. The authors explored the specific effects of

reactivation during sharp wave associated ripple complexes in slow-wave

sleep, demonstrating that reactivation occurs during these ripple events.

Their data show a decay in reactivation with increasing time spent sleep-

ing following the task. Novel experiences are also reactivated following

sequential exposure to familiar and then novel environments in the same

session. However, the reactivation of these novel patterns was less than

half the reactivation of the familiar environment even though the animals

were exposed to each environment for the same length of time. There was

no significant reactivation of behavioral firing patterns observed during

REM sleep and REM seemed to have no observable effect on the correla-

tion structure within subsequent SWS epochs. In summary, novel and fa-

miliar environments are reactivated to differing degrees within the sharp

wave ripple events that occur during SWS, and this reactivation decays

during SWS, presumably until it reaches baseline levels prior to the next

session.

Up to this point, only pair-wise evidence for the replay and reactiva-

tion of behavioral cell assemblies had been shown. Likewise, the spik-
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ing depended strongly on the spatial progression of the animal’s behav-

ior. Nádasdy et al. (1999) therefore used template-matching of spike se-

quences and joint-spiking measures to investigate the higher-order tem-

poral ordering of replay in firing patterns reactivated after wheel-running.

The authors reported that the number of repeated spike-sequences during

wheel running was highly improbable given chance activation (as defined

by multiple shuffling controls including across-spike-train shuffling and

within-spike-train shuffling). This suggests that the hippocampal network

generates temporal spiking patterns with an exquisite level of precision

and repeatability during awake behavior even for relatively non-spatial

tasks. This is one primary requirement for inducing plasticity for long-

term storage of information in cell assemblies. Using joint-probability

maps to measure the probability of observing a particular temporal se-

quence of spikes from three neurons revealed that there were a significant

number of spike triplets common to both the run and post-sleep, while

the number of triplets common to run and pre-sleep were not significantly

above chance. Finally, it was found that the most compressed sequences

were correlated with increased power in the sharp-wave ripple band (at

approximately 160 Hz). (Nádasdy et al., 1999) Together, their data sug-

gest that the precise temporal sequences present during awake behavior

are stored and replayed in a temporally compressed manner during sharp-

waves in the sleep following a behavioral episode.

The temporally compressed replay of behavioral ensemble spike se-
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quences was conclusively demonstrated for long strings by Lee and Wil-

son (2002). Ordering neurons by the spatial sequence of their place field

centers on the linear track allowed combinatorial testing for the presences

of these sequences during sharp-wave events during slow-wave sleep.

Highly significant ordered strings of ensemble firing patterns were ob-

served in the sleep following a behavioral session, but rarely in the sleep

prior to the behavioral session. The median compression ratio of the re-

played firing sequences was 19.7 times faster than the behavioral sequences

produced by the animal traversing the track (Lee and Wilson, 2002).

In summary, the temporal ensemble spiking patterns generated dur-

ing behavior are replayed during sharp-wave events in slow-wave sleep

in well-ordered temporally compressed bursts (Nádasdy et al., 1999; Lee

and Wilson, 2002). This reactivation decays during SWS (Kudrimoti et al.,

1999) until very little replay is present during the sleep prior to the next be-

havioral session (Wilson and McNaughton, 1994; Skaggs and McNaughton,

1996; Kudrimoti et al., 1999; Nádasdy et al., 1999; Lee and Wilson, 2002).

However, these sequences, while rarely reactivated in pre-task sleep, are

still present resulting in stronger reactivation for familiar experiences than

for novel experiences (Kudrimoti et al., 1999).

3.5.2 Paradoxical Sleep (REM)

While reactivation during SWS has been well studied, REM reactivation

has not received nearly the same attention. After Pavlides and Winson
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(1989) reported increased firing of neurons whose place fields were acti-

vated during behavior, Kudrimoti et al. (1999) did not find significant reac-

tivation of behavioral firing patterns during REM sleep. They did report,

however, that REM firing patterns were similar to the flanking SWS epochs

which demonstrated reactivation of the behavioral firing patterns (Kudri-

moti et al., 1999). Two years later, Louie and Wilson (2001) demonstrated

temporally compressed replay of ensemble behavioral firing sequences

during REM sleep. The modulation dynamics of theta rhythm power ob-

served during the task sequence were also preserved during REM sleep.

It is possible that the approximately two-fold compression of the replay

during REM episodes could have interfered with the explained-variance

analysis used by Kudrimoti et al. (1999).

3.5.3 Awake Reactivation

It has long been known that SW events occur during awake states such

as grooming, feeding, and quietly resting (See O’Keefe and Nadel, 1978).

However, only very recently has the phenomenon of reactivation been in-

vestigated during awake SW.

In two conferences, we presented evidence that reactivation occurs dur-

ing awake sharp waves in a behaviorally dependent manner (Jackson et al.,

2005a,b). The following year, O’Neill et al. (2006) reported that two types

of SW were emitted by awake animals: immobile sharp waves ripples

(iSWR), and exploratory sharp wave ripples (eSWR). The iSWR is found
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during states such as grooming, feeding, and quietly resting, while the

eSWR is emitted while the animal is moving but in a low theta power

state (O’Neill et al., 2006). Both ripples have very similar properties in

that the firing rate of a pyramidal neuron within these ripples depends on

whether the animal is in the neuron’s place field, and that these ripples

therefore carry sufficient information to constitute a reactivation of the

pattern present during high theta power exploration. O’Neill et al. (2006)

also demonstrated that reactivation increased from the first 10 min to the

last 10 min of their task. Shortly after this result was published, Foster

and Wilson (2006) reported that some awake sharp-waves carry a reverse

replay signal such that the temporal sequence of place-cell firing during

behavior was reversed during SW. While these studies demonstrate that

awake SW ripples are accompanied by the reactivation of firing patterns

occurring during theta, the behavioral dependence of these SW ripples

and the associated reactivation remains unclear. There are many theories

that predict that SW ripple emission should depend strongly on an ani-

mal’s level of experience.

3.5.4 Theories

Theories of hippocampal function (Buzsáki, 1989; Buzsáki et al., 1994; Mc-

Naughton et al., 1996; Shen and McNaughton, 1996; Redish and Touret-

zky, 1998; Redish, 1999) predict that asymmetric plasticity (Levy and Stew-

ard, 1983; Bi and Poo, 2001) applied to recurrent connections within CA3
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through experience of repeated spatial sequences during theta will lead to

storage of sequences within the recurrent connectivity matrix (Levy and

Steward, 1983; Muller et al., 1991; Blum and Abbott, 1996; Redish and

Touretzky, 1998). During states in which the network was uncoupled from

its entorhinal inputs (e.g. slow wave sleep and LIA, Chrobak and Buzsáki,

1994, 1996; Chrobak et al., 2000), uncorrelated noise in the system would

then cascade across these strengthened synapses producing a replay of

this stored information during sharp-waves (Buzsáki, 1989; Buzsáki et al.,

1994; Buzsáki, 1996; Buzsáki et al., 1994; Ylinen et al., 1995; Shen and Mc-

Naughton, 1996; McNaughton et al., 1996; Redish and Touretzky, 1998; Re-

dish, 1999; Csicsvari et al., 2000).

Consolidation

The observation that H. M. could remember temporally remote episodes

and environments but not the events leading up to his surgery or anything

new since, has inspired a number of the theories about the consolidation of

memory (Marr, 1970, 1971; McNaughton, 1983; Buzsáki, 1989; McClelland

et al., 1995; Sejnowski and Destexhe, 2000; Hoffmann and McNaughton,

2002). At the core of these theories, activation of the hippocampus during

behavior modifies the recurrent connectivity matrix within CA3. During

sleep the information stored in this connectivity matrix is played out to

the cortex transferring the memory from a labile medium in to a more

permanent store. This reactivation of stored sequences during sleep is
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thought to underlie the consolidation of memory traces to other brain

regions (Buzsáki, 1989; McClelland et al., 1995; Sejnowski and Destexhe,

2000; Hoffmann and McNaughton, 2002).

The Two-Stage Memory System

Early theories of cortical function were quick to point out the need for a

two-stage learning system (Marr, 1970, 1971; McNaughton, 1983; Buzsáki,

1989; Buzsáki et al., 1994; McClelland et al., 1995; McNaughton et al., 1996;

Buzsáki, 1996; Redish, 1999). In his model of neocortex, Marr (1970) real-

ized that requirements for training cortical classificatory units imposed

constraints that could only be solved by access to a simple associative

memory system (Marr, 1971) that could present collections of data to units

for refinement of their connections. Marr (1970) also saw the need to sep-

arate cortical plasticity mechanisms for training from the normal func-

tioning state of his units. These constraints basically led to a two step

proposal for the construction of class units in his cortical model: 1) on-

line collection of data in an associative memory store; 2) retrieval of data

from the memory store for construction and refinement of classificatory

units (Marr, 1970). Nearly thirty-five years later, one of the most success-

ful, comprehensive, and physiologically-justified theories of memory trace

formation is based on a very similar framework.

A more complete conceptualization emerged in The Two-Stage Model

presented by Buzsáki (1989) which is based on reciprocal interactions be-
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tween the hippocampus and neocortex. Founded on an extensive review

of hippocampal neurophysiology and experiments of his own, Buzsáki

(1989) suggested the following dynamic process:

1. During theta-associated behaviors, the dentate gyrus transfers pro-

cessed entorhinal cortical activation to the CA3 pyramidal cells. The

resulting combination of recurrent CA3 synaptic circuitry, direct en-

torhinal input, and mossy fiber input from the dentate granule cells

results in a weak heterosynaptic potentiation of behaviorally rele-

vant activation vectors. (Buzsáki et al., 1983; Buzsáki, 1989; Buzsáki

et al., 1994; Buzsáki, 1996; Buzsáki, 2005b)

2. The resulting potentiation of the CA3 recurrent connectivity matrix

lends the pyramidal cells of the CA3 field to synchronous popula-

tion bursts when sub-cortical inhibition is released at the termina-

tion of exploratory behaviors. These bursts in CA3 induce long-term

potentiation in the CA3 recurrent network as well as in the Schaf-

fer collateral input to CA1. The depolarization of the CA1 network

by CA3 increases the synchrony of CA1 pyramidal cells resulting

in a population bursts that have a powerful effect on neocortical tar-

gets. (Buzsáki et al., 1983; Buzsáki, 1989; Buzsáki et al., 1994; Buzsáki,

1996; Buzsáki, 2005b; Ylinen et al., 1995; Chrobak and Buzsáki, 1996)

Additional important features of this model are that the neocortical in-

put during theta selects the CA3 population that will trigger the sharp
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wave burst (Buzsáki, 1989). This model differs from a pure Hebbian mech-

anism however in that there are no classical teaching or “detonator” synapses;

cortical, mossy fiber, and recurrent inputs are all modified and play a part

in shaping the connectivity of the CA3 network (Buzsáki, 1989). The per-

forant path inputs to the hippocampus from EC are silent during SW al-

lowing stored information to be replayed without interference from in-

coming information (Buzsáki et al., 1994). The temporally graded po-

tentiation of CA3 recurrents should result in the activation of the most

recently and most highly potentiated synapses first transferring activa-

tion to the least potentiated synapses (assumed to be also the most tem-

porally distant in this model) resulting in a compressed reversed-order

replay of stored inputs at the termination of exploration (Buzsáki et al.,

1994; Buzsáki, 1996). As discussed in an earlier section, this predictions of

compression (Nádasdy et al., 1999; Louie and Wilson, 2001; Lee and Wil-

son, 2002) and reverse replay (Foster and Wilson, 2006) have been recently

confirmed. � It should be noted, however, that the reverse replay has only

been observed in awake sharp waves (Foster and Wilson, 2006), while all

other analyses of SW occurring during SWS reveal forward replay of be-

havioral sequences (Nádasdy et al., 1999; Louie and Wilson, 2001; Lee and

Wilson, 2002). This actually fits well with the processes described in the

series of papers on the the Two-Stage Memory System (Buzsáki et al., 1983;

�This awake “reverse replay” could also be evidence for the self-localization process of
the Redish and Touretzky (1998) model (see below).
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Buzsáki, 1989; Buzsáki et al., 1994; Buzsáki, 1996), however given that the

asymmetric nature of LTP mechanisms expected to underlie hippocam-

pal plasticity (Bi and Poo, 2001) cannot readily explain this phenomenon,

more research is required to understand the differences between these re-

play processes.

According to the Two-Stage Memory System model, disrupting sharp

waves should disrupt memory trace formation (Buzsáki et al., 1994; Buzsáki,

1996). More recent additions to the model include the addition of re-

call to the storage and replay model discussed above (Redish, 1999). The

recall process proposed by Redish (1999), like the self-localization pro-

cess (Redish et al., 1998), involves direct local view input to the CA3 and

CA1 subregions to reset path integration. Another addition to the model

includes viewing the theta rhythm as “an essential temporal organizer”

that allows for navigation in both Euclidean space and in neuronal space

(Buzsáki, 2005b). This is because compression of input sequences coupled

with the rules of synaptic plasticity result in an orderly evolution of se-

quences of cell assemblies leading to higher order associations across spa-

tial and non-spatial (i.e. neuronal) input vectors (Buzsáki, 2005b). Thus,

the “semantic”-like groupings of associated non-spatial input sequences

and “map”-like groupings of associated spatial input sequences that were

presented in a temporally discontiguous manner during theta are assem-

bled, packaged, and transferred back to cortex by population bursts dur-

ing hippocampal sharp waves (Buzsáki, 2005b).
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While the The Two-Stage Memory System discussed above (Buzsáki

et al., 1983; Buzsáki, 1989; Buzsáki et al., 1994; Buzsáki, 1996) is an im-

plicit, or word-based, model in the sense that it is a thorough description

of a phenomenon based on solid neurophysiological evidence, Redish and

Touretzky (1998) presented an explicit model (i.e. a computational instan-

tiation) of the interaction between pattern storage during exploration and

replay during sharp waves. The model consisted of multiple networks cor-

responding to cortical inputs (including entorhinal and polysensory areas)

coupled to a CA3-CA1 model. In their model, SW occurring upon entry

into an environment were associated with a self-localization process that

centered the animal’s hippocampal activity on its current location. Dur-

ing goal directed navigation, a Hebbian learning rule was applied to the

synapses within hippocampal network. They demonstrated explicitly that

a vector field of route information was stored in the CA3 recurrent connec-

tions of their model. Following this “exploratory” phase, in a simulation

of LIA , random input elicited a replay of the animal’s previous goal di-

rected routes. The output of these replays were used to train the corti-

cal networks. Untrained cortical networks (assumed to be similar to hip-

pocampal lesion conditions) were unable to spontaneously navigate to the

goal in subsequent simulations. Trained cortical networks, however, were

able to navigate to the goal with ease. This propagation of path informa-

tion stored in CA3 out to cortex is taken as a model of the phenomenon of

consolidation (see below; Redish and Touretzky, 1998).
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It is interesting to note, that Redish and Touretzky (1998) did not use

the entire reactivation-sequence but only a sub-sampled one to train the

cortical networks during consolidation in order to reduce computer time.

This actually mimics the phenomenon of temporal compression now known

to exist in replayed sequences (Nádasdy et al., 1999; Louie and Wilson,

2001; Lee and Wilson, 2002).

In summary, Redish and Touretzky (1998) successfully implemented

an explicit model of the The Two-Stage Memory System proposed origi-

nally by Buzsáki (1989). They demonstrated quantitatively the feasibility

of this conceptual framework through a simplified abstraction of a com-

plex group of networks known to exist in the brain.

McNaughton et al. (1996) and Shen and McNaughton (1996) have also

suggested that Hebbian plasticity applied to the specific hippocampal maps

that were activated during behavior would result in a reactivation of those

same maps during sleep. Their interest was in the reactivation of the hip-

pocampal maps that were used on a task, as opposed to more general hip-

pocampal activation. In their simulations, Shen and McNaughton (1996)

demonstrated that such sleep-related reactivation occurs in an attractor

model of the hippocampus if one assumes potentiation of overlapping

place cells within a behaviorally activated hippocampal map of an envi-

ronment (an associative mechanism) or a specific reduction of inhibition of

cells within a behaviorally activated map (a non-associative mechanism)

(Shen and McNaughton, 1996).



Ch 3. Hippocampus 70

In conclusion, we can extrapolate from this two-stage model that if

these theories are correct, then the theories discussed above predict that

the emission of awake sharp wave ripple events should increase in num-

ber with experience within a session and that the organization of ensemble

firing during those awake sharp-waves should improve with experience.

These increases in sharp-wave emission and reactivation should depend

on the level of repetition of spatial sequences. Since experimental evi-

dence suggests SW activity in CA3 can initiate CA1 SWs in vivo and in

vitro (Buzsáki et al., 1983; Ylinen et al., 1995; Csicsvari et al., 1999a; Behrens

et al., 2005), any changes in SW activity in CA3 should be observable in

CA1 ripples as well.



Chapter 4

Simulation Studies:

Characterizing and Developing

Ensemble Measures

Abstract

Developments in neurophysiology and data acquisition have enabled the

recording of large ensembles of neurons. These advances provide an op-

portunity to probe the function of networks in the brain. While current

analytical methods focus on extracting the values of variables thought to

be encoded in these networks, little attention has been given to measures

that assess the quality of this encoding or to assessing the network-level in-

teractions between neurons. This chapter presents two ensemble analyses

71
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that address these issues by testing the consequences of our assumptions

about information processing at the network level. We characterize these

analyses using a simulated neural network and demonstrate that the infor-

mation provided by these ensemble measures allows us to detect network

firing patterns that violate our assumptions about the network.

4.1 Introduction

With the advancement of recording technology, the ability to record large

ensembles of neurons simultaneously has allowed us to probe deeper into

information processing in the brain (Brown et al., 2004; Buzsáki, 2004).

These developments in data acquisition have stimulated the invention of

new data analysis tools for extracting information from distributed neu-

ral representations of behavioral variables (Brown et al., 2004). Among

these tools, reconstruction techniques which extract a task variable from

the ensemble firing patterns have been the most widely applied ensem-

ble analyses in neuroscience (Salinas and Abbott, 1994; Brown et al., 2004,

1998; Georgopoulos et al., 1986; Wilson and McNaughton, 1993; Zhang

et al., 1998). Generally speaking, the usefulness of these reconstruction al-

gorithms has been assessed by the error between the reconstructed value

and the actual task variable of interest (Salinas and Abbott, 1994; Wilson

and McNaughton, 1993; Brown et al., 1998; Zhang et al., 1998). However,

when considering the possibility that an animal’s cognitive processes may
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at times be independent of the current stimuli or task parameters (Har-

ris et al., 2003; Hebb, 1949), it is important to note that this reconstruction

error may not be due to a failure of the reconstruction algorithm or due

to “random” noise in the system. The case may be that the neuronal en-

semble could actually be processing that variable in a coherent manner.

Therefore, it is of great importance that we measure the self consistency of

a neural ensemble.

For example, Redish et al. (2000) presented a measure of representa-

tional consistency which they used to determine the reference frame with

which a hippocampal ensemble’s firing pattern was most consistent; they

termed this measure coherency. Redish et al. (2000) used a three-step analy-

sis: calculate the activity packet (a weighted sum of tuning functions based

on the actual activity), calculate the expected activity packet (a weighted

sum of tuning functions based on the expected neural activity), and then

coherency was defined as the dot-product between the two packets. Co-

herency was measured as hippocampal ensembles realigned between two

coordinate systems. They demonstrated that this method was indeed able

to detect the time of transition between representational reference frames

in hippocampal ensembles. Furthermore, this transition was correlated

with the animal’s behavior on the task.

This is an example where considering the “coherency” of an ensemble’s

firing patterns provided deeper insight into the network dynamics. In

this chapter, we will explore variations on two ensemble quality measures
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through simulation studies and will then turn to other concepts for as-

sessing representational quality. The first measure, an improved coherency,

provides information about how consistent the ensemble’s firing pattern is

with the known spatial tuning of each neuron. The next measure, ensemble

consistency (EC), quantifies how consistent a firing pattern is with a dis-

tribution of previously measured firing patterns. These measures will be

characterized using neural network simulations of three examples of dy-

namic phenomena: 1) random network firing vs. a stable activity mode;

2) smooth rotation of the represented value vs. a jump in the representa-

tion to a distant value; and 3) ambiguous (or bimodal) representation vs.

a single value. In our characterization of these measures, we will also dis-

cuss the output of a population vector reconstruction algorithm and the

limited information it provides. Later we will discuss the application of

these methods to neural data.

4.2 The simulations

Simulations provide a fast, efficient, and, most importantly, controlled

means of generating data for the purposes of characterizing ensemble mea-

sures. The attractor network presented here is related to networks used to

model the rodent head direction system (Skaggs et al., 1995; Redish et al.,

1996; Zhang, 1996; Goodridge and Touretzky, 2000; Sharp et al., 2001).

Briefly, this network employed symmetric local excitatory connections be-
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tween neurons with similar preferred directions and global inhibition with

periodic boundary conditions. Thus, this network can be thought of as a

circular ring of neurons with a stable attractor state consisting of a sin-

gle mode of active neurons. This mode can be located anywhere on the

ring. Figure 4.1 provides a schematic visualization of this attractor net-

work. Three issues were examined:

Issue 1: Random Network Firing vs. Stable Activity Mode When started

from random noise, neurons in a ring attractor will compete until a group

of neighbors wins and the network settles to a stable mode of activity at

that location (i.e. representing one direction). Neurons with preferred di-

rections near this direction will have higher firing rates than those distant

from this direction. Thus, the final mode will be randomly selected given

a random input (Wilson and Cowan, 1973; Kohonen, 1977).

Issue 2: Rotation vs. Jump When this system is in a stable state (i.e.

representing one direction), and network inputs drive neurons with pre-

ferred directions near the represented direction (within 60Æ in our net-

work), the represented direction will shift toward the input (Redish et al.,

1996; Zhang, 1996; Samsonovich and McNaughton, 1997; Redish, 1999).

In contrast, when the network inputs drive neurons with preferred direc-

tions far from the represented direction (greater than 60Æ in our network),

the system will non-linearly jump to a new direction if the strength of the
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drive is large enough to overcome the global inhibition (Zhang, 1996; Sam-

sonovich and McNaughton, 1997; Redish, 1999).

Figure 4.1: (top) The attractor is formed by connecting all neighboring excitatory
neurons with weights based on their representational distance (e.g. neurons with
similar preferred directions have stronger excitatory connections). All excitatory
neurons project with equal weights to an inhibitory interneuron which projects
back to all neurons with globally uniform inhibition. All neurons have recurrent
connections as well. (bottom) Applying periodic boundary conditions effectively
creates a ring attractor where each neuron can be thought of as representing a
particular angular position on a circle.
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Issue 3: Ambiguous vs. single valued representations If the network is

started from a bimodal state (i.e. with inputs at two different directions),

the population of neurons representing each input location will compete

until one group (or direction) wins. The result will depend on the noise in

the network.

4.3 Simulation Methods

We used this well-studied attractor network (Wilson and Cowan, 1973;

Amari, 1977; Kohonen, 1984; Redish et al., 1996; Zhang, 1996; Redish, 1999)

in order to facilitated the exploration of known dynamic, transient states

and compare them to known stable states. This allowed a fuller study of

the ensemble measures discussed in this chapter than would have been

possible if we had used experimental data.

This type of network has been used to model a variety of neural struc-

tures, including the head direction system of the rodent (Skaggs et al.,

1995; Redish et al., 1996; Zhang, 1996; Goodridge and Touretzky, 2000;

Sharp et al., 2001), place cells within the hippocampus (McNaughton et al.,

1996; Shen and McNaughton, 1996; Zhang, 1996; Samsonovich and Mc-

Naughton, 1997; Redish, 1999; Káli and Dayan, 2000; Guazzelli et al., 2001),

the formation of ocular-dominance columns (Obermayer et al., 1992; Miller,

1995), control of saccadic error in the superior colliculus (Sparks, 1986;

Munoz et al., 1991; van Opstal and Kappen, 1993; Arai et al., 1994) and in



Ch 4. Ensemble Measures 78

the basal ganglia (Arbib, 1995), and memory storage within cortex (Wilson

and Cowan, 1973; Kohonen, 1982, 1984).

4.3.1 The Network Model

Simulations were based on those presented in Redish (1999). Firing rate

of each unit was continuous and normalized to be between 0 and 1. Con-

tinuous, random, Gaussian noise was added in order to better simulate

physiological conditions. 75 excitatory neurons (voltage, VE
k ; firing rate,

FE
k , and synaptic drive, SE

k ) and 1 inhibitory neuron (voltage, VI ; fir-

ing rate, FI ; and synaptic drive, SI) were used in these simulations. The

excitatory neurons were arranged with uniform spacing of the preferred

directions along a ring topology. This simplified boundary conditions and

other calculations. Specific parameters are given in Table 4.1.

The neural analogs of voltage and firing rate are straight-forward. The

neural analog of synaptic drive is derived by normalizing the synaptic α-

function (here taken to be an exponential decay) by the synaptic weight

(Pinto et al., 1996). Thus, rather than calculating firing rate, multiplying

that by the synaptic weight and then producing a synaptic effect; we cal-

culate firing rate, produce the synaptic effect, and then multiply that by

the synaptic weight.

The voltage for each excitatory neuron was calculated from the synap-

tic drive of each excitatory neuron and from the synaptic drive for the

inhibitory neuron. The weight matrix WE�E was a Gaussian kernel of stan-
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Table 4.1: Neural network simulation parameters

VE
k membrane voltage of excitatory neuron k var

FE
k �t� normalized firing rate of excitatory neuron k var 	 [0,1]

SE
k �t� synaptic drive from excitatory neuron k var

INk�t� extra-network excitatory input to excitatory neuron k var 	 [0,2]
ξG Gaussian noise added to SE

k µ � 0,σ � 0.1
γE tonic inhibition to each excitatory neuron -1.5
τE decay time constant for presynaptic effect of E-neuron 10 ms

VI membrane voltage of inhibitory neuron var
FI�t� normalized firing rate of inhibitory neuron var 	 [0,1]
SI�t� synaptic drive from inhibitory neuron var
γ I tonic inhibition to inhibitory neuron -7.5
τ I decay time constant for presynaptic effect of inhibitory neuron 2 ms

WE�E synaptic weight kernel for E-to-E connections see text
WE�I synaptic weight for I-to-E connections -8.0
WI�E synaptic weight for E-to-I connections 0.88
WI�I synaptic weight for I-to-I connections -4

�t time-step 1 ms

dard deviation 72Æ, providing a local excitation function. The weight WE�I

was a constant providing global inhibition.

VE
k �t� � ∑

j

WE�E�φk �φ j� � SE
j �t��WE�I � SI�t� � γ E � INk�t� (4.1)

where φk and φ j represent the preferred directions of neuron k and neuron

j, respectively. Firing rate was taken as a simple sigmoidal function of
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voltage.

FE
k �t� �

1 � tanh VE
k �t�

2
(4.2)

Noise was added to the excitatory neurons in the synaptic drive equation.

SE
k �t ��t� � SE

k �t� �
�t
τE � �FE

k �t�� SE
k �t�� �ξG�t� � SE

k �t� (4.3)

where ξG was drawn randomly at each time-step from a normal distribu-

tion with variance 0.1 and mean 0. Thus, the actual variance of the injected

noise was signal dependent. Synaptic efficacy was limited to the range

�0, 1�.

Functions for the inhibitory interneuron were similar. However, for

simplicity, noise was not included in the interneuron’s synaptic drive.

VI�t� � ∑
j

WI�E � SE
j �t��WI�I � SI�t� �γ I (4.4)

FI�t� �
1 � tanh VI�t�

2
(4.5)

SI�t � �t� � SI�t� �
�t
τ I � ��SI�t� � FI�t�� (4.6)

As noted above, this network has been well studied. In particular, the ef-

fects of starting conditions and extra-network input are well known (Wil-

son and Cowan, 1973; Samsonovich and McNaughton, 1997; Redish, 1999).

We will focus on three issues:

Issue 1: Random Noise vs. Stable Activity Mode. When random noise
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is in the network, neurons will compete with each other until a group

of neurons with neighboring preferred directions begins to domi-

nate. This group wins and the network settles to a stable mode of

activity representing one direction. Cells with preferred directions

near this direction will have much higher firing rates than those far

away. The direction represented will be a consequence of the random

input (Wilson and Cowan, 1973; Kohonen, 1977). We performed this

simulation by injecting random noise such that INk�t� was uniformly

distributed between 0 and 0.75 for any neuron k at any time t for 500

time-steps.

Issue 2: Rotation vs. Jump. Starting with a stable state (represent-

ing a single direction), an external synaptic current is provided to

a group of neurons off-set from the represented direction, the rep-

resented direction will then shift toward the input, passing through

intermediate values (Redish et al., 1996; Zhang, 1996; Samsonovich

and McNaughton, 1997; Redish, 1999). Gaussian input with a stan-

dard deviation of 21.5Æ (σ2 � 20 neurons) was provided with an

amplitude of 1.5. This input was provided for 200 time-steps fixed at

�86Æ (�1.5 rad), then shifted at 0.3Æ (0.005 rad) per time-step for 600

steps (for a total of 3 rad), and then maintained at +86Æ (+1.5 rad) for

the last 200 time-steps of the simulation. This input-train resulted in

a smooth 172Æ (3 rad) rotation.
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In contrast, when the system is in a stable state and sufficient extra-

network excitatory drive is provided far away from the represented

direction (beyond 60Æ in our simulations), the firing patterns of the

system will change to encode a new value without encoding inter-

mediate values in the interim (Zhang, 1996; Samsonovich and Mc-

Naughton, 1997; Redish, 1999). Gaussian input with a standard de-

viation of 21.5Æ (σ2 � 20 neurons) was provided with an amplitude

of 1.5. This input was provided for 400 time-steps fixed at �86Æ

(�1.5 rad), then shifted to +86Æ (+1.5 rad) for the last 600 time-steps

of the simulation. This input-train resulted in a 172Æ (3 rad) jump.

Issue 3: Ambiguity. When a simulation is started with extra-network

drive provided at two inputs, the system will settle to represent a

unique direction depending on the random noise in the units (Re-

dish, 1999). Two Gaussian inputs with an amplitude of 0.75 and a

standard deviation of 21.5Æ (σ2 � 20 neurons) were provided for 100

time-steps fixed at �86Æ (�1.5 rad) and +86Æ (+1.5 rad), to prime

the network into an ambiguous, bimodal state. These inputs were

then terminated and the two modes of activity competed for the re-

maining 400 time-steps of the simulation. This input-train resulted

in two competing modes of activity separated by 172Æ (3 rad), and

ended with a single winning mode at either �86Æ (�1.5 rad) or +86Æ

(+1.5 rad).
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4.3.2 Constructing the Training Set

In order to generate the tuning curves for neurons in the attractor network

and probability distributions for our coherency and consistency measures,

an attractor network simulation was run for 10000 time-steps. This stable

training set is a smooth rotation and represents the null hypothesis that no

jumps or ambiguous states are present in the network (see below).

Tuning curves

The activity Fk�t� of each neuron k was averaged for each position of the

input x�t� to yield the neuron’s tuning to all input directions:

Tk � mean�Fk�t��x�t�� (4.7)

Empirical Cumulative Distribution

The probability density function f of a continuous random variable z follows

the rule that the probability P�z � �z � z � z � �z� of observing a value

z within some range 
�z is given by the formula:

P�z� �z � z � z � �z� �
� z��z

z��z
f �Z�dZ (4.8)

The cumulative distribution function F of a continuous random variable z

follows the rule that the probability P�z � Z� of observing a value of z
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smaller than the value Z is given by the formula:

P�z � Z� � F�z� �
� Z

��
f �z�dz (4.9)

We approximated the cumulative distribution function of the data in the

training set by finding the proportion of the values in the training set ẑ that

were less than the value of interest z. This “empirical cdf” was determined

by the following equation:

cdfẑ�z� � Prop�ẑ � z� (4.10)

where cdfẑ�z� is the empirical cumulative distribution function of variable z

given the values in sample ẑ, and Prop�ẑ � z� is the proportion of values

in sample ẑ that are less than the value z.

4.3.3 Reconstruction

Many methods have been used for reconstruction (Georgopoulos et al.,

1983; Wilson and McNaughton, 1993; Salinas and Abbott, 1994; Rieke et al.,

1997; Zhang et al., 1998). For a uniform ring-topology such as the one used

here, the simplest is the weighted vector mean (Mardia, 1972; Batschelet,

1981) also known as the population vector (Georgopoulos et al., 1983, 1988).

Let �vk be the preferred vector for excitatory neuron k, defined as the unit

vector in the direction of the preferred direction φk of neuron k: �vk �
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�cos�φk�, sin�φk��). The reconstructed vector �R is the weighted mean of

the preferred vectors:

�R � ∑
k

FE
k ��vk (4.11)

The reconstructed direction ϕ̂ is taken from the orientation of resultant

vector �R from this vector sum. While we use this method for simplicity,

it is important to note that coherency (defined below) works with any re-

construction method. It can also be used as a comparison between neural

activity and expected neural activity given the real behavioral values.

4.4 Coherency

The first measure we will discuss is the coherency measure of Jackson and

Redish (2003). This measure improves upon the one presented by Redish

et al. (2000). While the coherency measure used by Redish et al. (2000)

was capable of detecting a transition in an ensemble’s representation, the

measure itself was not statistically justified nor was it well characterized.

The coherency measure needed rethinking and needed to be tested under

standardized network conditions. Therefore, using a standard ring attrac-

tor neural network, an improved method was characterized to show that

indeed network dynamics could be measured.

The primary objective of the “new and improved” coherency is to first

measure how different the actual representational state is from the ex-

pected representational state and then set a statistical threshold beyond
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which the observer believes the actual state is “significantly” different

from the expected state.

4.4.1 The mathematics of the coherency measurement

As specified by Redish et al. (2000), an important step in measuring the

population properties is to quantify the contribution of all neurons to our

knowledge of the representational space. This was done by constructing

an activity packet: a weighted sum of tuning curves. Jackson and Redish

(2003) presented a modified computation of the activity packet as follows.

If Tk�x� is the tuning curve of neuron k over the representational space

x and Fk�t� is its firing rate at time t, then the ensemble’s activity packet

A�x, t� is given below:

A�x, t� �
∑k Tk�x� � Fk�t�

∑k Tk�x�
(4.12)

where ∑k is the sum over all neurons in the ensemble.

Likewise, the redundant information contained in the tuning curves

allows us to reconstruct the expected ensemble firing pattern given either

the current value of x or the value of x inferred from the current neural

firing pattern (designated x̂). Thus, our best estimate given x̂ of what the

firing rate of cell k at time t should be is the previously measured average

firing rate of cell k when the animal experiences x. This is precisely the

definition of the tuning curve: Tk�x� � E�Fk�t��x�t��. So, the expected
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activity packet Â�x, t� is simply

Â�x, t� �
∑k Tk�x� �E�Fk�t��x̂�t��

∑k Tk�x�
(4.13)

or

Â�x, t� �
∑k Tk�x� �T�x̂�t��

∑k Tk�x�
(4.14)

The actual and expected activity packets can be compared using any of a

variety of comparisons. As mentioned previously, Redish et al. (2000) used

a dot product to measure the similarity between the actual and expected

activity packets:

CDP�t� � Â�x, t� � A�x, t� (4.15)

Here, we use a C to denote that the measure CDP measures the similarity,

or consistency, between the actual and expected representations. Subse-

quently, Jackson and Redish (2003) used a root-mean-squared-error (RMSE)

measure of the difference between the actual and expected activity pack-

ets:

IRMS�t� �

��
x�A�x, t�� Â�x, t��2dx�

x Â�x, t�dx
(4.16)

where the integration is done over the entire representational space. We

use I to emphasize that IRMS measures how incoherent, or inconsistent, the

actual representation is with the expected representation. Later, Johnson

et al. (2005), used a measure of the variance of the difference between the
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two activity packets:

IVAR�t� �
varx�A�x, t�� Â�x, t���

x Â�x, t�dx
(4.17)

Note, that IVAR can be translated into the same units as IRMS by taking the

square-root of the numerator; this is equivalent to calculating the standard

deviation of the difference between the two representations. We will de-

note this ISTD:

ISTD�t� �
stdevx�A�x, t�� Â�x, t���

x Â�x, t�dx
(4.18)

It should also be noted that alternative measurements can be used to com-

pare the two activity packets depending on the objectives of the analysis.

In the case of CDP, one might be more interested in testing how similar

an ensemble activity pattern is to a hypothesized representation. IRMS

might be used when interested in identifying absolute differences across

the population firing pattern, whereas ISTD (or IVAR) might be invoked to

measure relative differences between actual and expected ensemble ac-

tivations since these measures subtract off the contribution of the mean

difference between the two activity packets.

One of the primary contributions of Jackson and Redish (2003) was

to provide a statistical interpretation of coherency. The coherency of the

ensemble was defined as the probability of accepting the null hypothesis
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that the actual and expected activity packets are the same, denoted

H0 : A�x, t� � Â�x, t� (4.19)

The probability of accepting the null hypothesis was found by empirically

determining the probability distribution of the measurement of choice and

calculating the probability of match between the expected and observed

activity packets. Coherency is then defined as this probability of match. If

the measure implemented detects differences between the activity pack-

ets, this probability is equal to the probability of seeing a larger difference

between the actual and expected representation given the data in a care-

fully constructed training set Itr: Coherency � P�H0� � 1� cdfItr�I�t��. If

this probability is sufficiently small, the actual and expected activity pack-

ets are more different than a large majority of the samples in our training

set and we can reject the null hypothesis that the actual representation is

the same as the expected representation.

Likewise, if the measure implemented detects similarities between the

activity packets (e.g. the dot product measure), the probability of a match

is equal to the probability of seeing a smaller amount of similarity be-

tween the actual and expected representation: Coherency � P�H0� �

cdfCtr�C�t��. If this probability is sufficiently small, the actual and expected

activity packets are less similar than a large majority of the samples in our

training set and we can reject the null hypothesis that the actual represen-



Ch 4. Ensemble Measures 90

tation is the same as the expected representation.

The CDF can be calculated by running a simple experiment where the

population is known to be representing the null hypothesis (i.e. that no

dynamic anomalies are occurring in the network). This was done in the

simulations below by forcing a slow rotation through five turns in both

directions (See section 4.3.2). This stable training set represents the null

hypothesis that no jumps or ambiguous states are present in the network.

Given this null hypothesis, we can set a threshold below which the

expected and actual activity packets are significantly different. If the CDF

is constructed correctly, system activity consistent with the tuning curves

should evenly explore the range from 0 to 1. Thus, a significance threshold

of 0.05 could be defined such that the system should spend 5% of the time

with I�t� values that give a p-value � 0.05. For example, in a simulation

with a continuous directional input at 180Æ, 4.9% of the values out of 5000

time-steps had RMSE values below the α � 0.05 level.

For ensemble firing patterns that differ from the state predicted by the

tuning-curves, the p-value will be very close to zero, indicating a system

state that is incompatible with the activity predicted by the tuning curves,

even after accounting for the variability due to the stochasticity of neu-

ronal firing rates. Due to the non-linearity of the various I�t� measure-

ments discussed, a very small significance value is preferred to reduce

false alarms. When the firing patterns are inconsistent with each other,

they fall well below even reasonably small significance levels. Thus, we
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will use a significance level of α � 0.001 for the rest of the simulations.

In our simulations, all 3 cases could be cleanly dissociated using any of

the coherency measures discussed above.

4.4.2 Coherency differentiates representational quality (Is-

sue 1)

As noted above (Issue 1), when an attractor network is started from ran-

dom, noisy values, it settles to a stable state such that only cells with pre-

ferred directions near a specific orientation are active. Figure 4.3 shows an

example of a network settling. Reconstruction always provided an orien-

tation and did not differentiate the random and settled states (Figure 4.3).

In contrast, coherency differentiated the random and settled states (Fig-

ure 4.3). Because of the non-linearities of the measure, coherency de-

tected the time of settling accurately, displaying a stark difference between

the two states. While in the random state, the coherency measurement

showed that the random state was significantly different from the expected

“bump” of activity (p � 0.005). After the network transitioned to a stable

representational state at approximately time-step 342, coherency showed

a higher probability of match.
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4.4.3 Coherency can detect dynamic changes in network

activity (Issue 2)

When an attractor network is in a stable state, providing synaptic input to

neurons with preferred directions near the direction being represented by

the network forces a rotation in the represented direction. Chaining this

extra-network excitation to the represented direction forces the network

to rotate continuously. In contrast, if sufficient extra-network excitation is

provided to a group of neurons with preferred directions far from the en-

coded direction, the firing patterns of the system will change to encode the

value consistent with the excitation without passing through intermediate

values in the interim (Redish et al., 1996; Zhang, 1996; Samsonovich and

McNaughton, 1997; Redish, 1999; Issue 2, above).

Reconstruction showed a smooth transition through intermediate ori-

entations in both the rotation condition (Figure 4.4) and the jump condi-

tion (Figure 4.5). Reconstruction thus suggested that both of these transi-

tions were simple rotations, yet the dynamics of these two transitions were

fundamentally different. Coherency, however, detected the difference. In

the jump condition, IRMS and ISTD showed a strong transient increase at the

time of transition (IRMS: time-steps 562–609, p � 0.005; ISTD: time-steps

561–609, p � 0.005; see Figure 4.5B,C), but no corresponding increase dur-

ing the rotation (time-steps 200–800, p � 0.005, see Figure 4.4B,C). Like-

wise, similar results were found using the dot-product measure of activity
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packet similarity. In the jump condition, CDP showed a strong transient

decrease at the time of transition (time-steps 580–604, p � 0.005, see Fig-

ure 4.5D), but no corresponding increase during the rotation (time-steps

200–800, p � 0.005, see Figure 4.4D).

4.4.4 Coherency can be used to detect the resolution of am-

biguity (Issue 3)

When the attractor network simulation begins with synaptic input to one

group of neurons with nearby preferred directions, the network will settle

to a bump of activity centered on that group. In other words, there will

be one value represented by the network: the value consistent with the

preferred direction of the most active neurons (Wilson and Cowan, 1973;

Kohonen, 1977). However, when the attractor network simulation begins

with synaptic input to two separate groups of neurons, the network will

transiently display bimodal activity. In other words, there will temporarily

be two bumps of activity, one at the center of each input, and therefore two

values represented. The system will quickly settle to a state where only

one value is represented; the result is dependent on the separation of the

inputs (Redish, 1999).

When the two inputs are separated by a large enough distance (when

the difference in preferred direction is greater than 60Æ in our network),

the two values compete: the final represented value is equal to one or the
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other of the two input values (See Figure 4.6).

The network can be seen as resolving ambiguity by forcing a multi-

modal input to settle to a unimodal firing pattern. The representation of

the eventual steady-state of the system can be measured using a standard

reconstruction algorithm. However, as in the earlier examples, reconstruc-

tion provided no information as to the time at which the system resolved

the ambiguity. Reconstruction provided incorrect results at time-steps 0–

110 in the distantly-separated case (Figure 4.6).

Coherency, on the other hand, did provide that timing information.

When the representation was still ambiguous, the system was incoherent

(p � 0.005, Figure 4.6). In the well-separated case (in which the inputs

compete, Figure 4.6), coherency transitioned from a highly significant, low

probability of match to within the non-significant range at time-step 113

(IRMS and ISTD) and 107 (CDP), indicating that the network had success-

fully resolved the ambiguity (Figure 4.6). The low probability of match

(p � 0.005) at early time-steps indicated that reconstruction provided in-

valid results, while the high probability of match afterwards indicated that

the reconstructed directions after approximately time-step 110 were valid.

Thus, coherency successfully detected the time of transition to a stable

state.

In summary, coherency is a robust measure of the state of a neural en-

semble. It distinguished between consistent and inconsistent representa-

tional states by differentiating a random noise state from a coherent repre-
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sentational state. Coherency detected transient changes in the state of the

neural ensemble when it distinguished between smooth rotations, where

intermediate values were encoded, and jumps, where intermediate values

were not encoded. These two transitions were ambiguous using tradi-

tional reconstruction techniques. Coherency also differentiated between

ambiguous bimodal states and stable unimodal states.

4.5 Ensemble Consistency

Like the coherency measure described above, Ensemble Consistency (EC)

can be used to measure the quality of a neural representation within an en-

semble. However, the EC method has two specific advantages: it does not

require explicit knowledge of the neuronal response parameters (the tun-

ing curves), nor does it require an explicit hypothesis of the encoded value.

In other words, EC makes fewer assumptions about what neurons are en-

coding. Thus, it is possible to measure the consistency of the dynamic

relationship between neurons in an ensemble with little or no knowledge

about what they encode.

EC relies on the assumption that if neurons in an ensemble are working

together to represent some behaviorally-relevant parameters, their firing

rates will maintain the same relationships under similar conditions. This

assumption, therefore, stems from the cell assembly hypothesis (Hebb,

1949).
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4.5.1 The Mathematics of Ensemble Consistency

EC was assessed by defining an N-dimensional firing rate vector f�t�:

f�t� � � f1�t�, f2�t�, f3�t�, ..., fN�t�� (4.20)

where fi�t� is the firing rate of neuron i at time t, and N is the number of

neurons in the ensemble. If the ensemble firing patterns maintain the same

relationship across neurons for similar conditions, these points should be

grouped in the same region of firing-rate-space.

To test the similarity of an ensemble firing pattern to firing patterns

previously recorded, one has only to find the probability of observing that

point given the previously recorded firing patterns. In this way, one can

measure how consistently an ensemble responds to a stimulus and behav-

ioral conditions.

In order to measure the likelihood of observing a sample point relative

to an expected distribution, we estimate the density of the distribution

at the sample point. Density estimation is commonly done by dividing

a space into bins and estimating the average density in each bin. This

method has two major problems: its memory usage can be enormous, and

the resolution is limited by bin size. For example, a data set consisting

of just 15 simultaneously recorded neurons at a 15-bin resolution would

require 3.5 exabytes of memory (3.5 billion GB).

To overcome this limitation, we adopted the method of Kernel Den-
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sity Estimation (KDE) (Silverman, 1986). In this method, each point in

the group is assigned Gaussian parameters to spread out its contribution

to the overall density. Normalizing this distribution gives an estimate of

the joint probability density distribution. The local density of the sample

point can be calculated by evaluating the density contributed by each in-

dividual Gaussian in the group and summing the result. Thus, the group

of training set points is transformed into a continuous estimate of the local

density at the sample point. Figure 4.7 shows an example for a two cell

ensemble taken from our training set.
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Figure 4.2: A smooth rotation induced in the network yields a stable training set. (A) The
neural activity. Time is shown in milliseconds on the x-axis. Neurons ordered by their
preferred direction (0Æ – 360Æ) along the y-axis, shaded according to their firing rate. (B)
The IRMS measure of inconsistency between actual and expected activity packets. (C) The
ISTD measure of inconsistency between actual and expected activity packets. (D) The CDP

measure of consistency between actual and expected activity packets.
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Figure 4.3: A simulation started with
random input to the network settles to
a stable state. (A) The neural activ-
ity. Time is shown in time-steps on the
x-axis. Neurons ordered by their pre-
ferred direction ( 0Æ – 360Æ) along the
y-axis, shaded according to their firing
rate. White dots indicate the direction
extracted from the population activity
using population-vector reconstruction.
Note, that the reconstruction algorithm
yields a position whether or not there is
an actual mode of activity present at that
location. (B) The IRMS measure of incon-
sistency between actual and expected ac-
tivity packets. During the random state,
the discrepancy between the actual and
expected activity packets is high (p �
0.005, red zone). Upon reaching the sta-
ble state at time-step 342, the difference
drops (p � 0.005, green).(C) The ISTD

measure of inconsistency between actual
and expected activity packets. As in B,
during the random state, the discrepancy
between the actual and expected activity
packets is high (p � 0.005, red zone).
Upon reaching the stable state at time-
step 342, the difference drops (p � 0.005,
green).(D) The CDP measure of consis-
tency between actual and expected ac-
tivity packets. During the random state,
the similarity between the actual and ex-
pected activity packets is low (p � 0.005,
red zone). Upon reaching the stable state
at time-step 343, the similarity increases
(p � 0.005, green).
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Figure 4.4: A smooth rotation induced
in the network yields stable results. (A)
The neural activity. Time is shown in
time-steps on the x-axis. Neurons or-
dered by their preferred direction ( 0Æ –
360Æ) along the y-axis, shaded accord-
ing to their firing rate. White dots indi-
cate the direction extracted from the pop-
ulation activity using population-vector
reconstruction. The reconstructed posi-
tion follows the activity of the network
faithfully. (B) The IRMS measure of in-
consistency between actual and expected
activity packets. Throughout the rota-
tion, the network maintains a stable state
with a small difference between the ac-
tual and expected activity packets (p �
0.005, green).(C) The ISTD measure of in-
consistency between actual and expected
activity packets. As in B, throughout
the rotation the network maintains a sta-
ble state with a small difference between
the actual and expected activity packets
(p � 0.005, green).(D) The CDP mea-
sure of consistency between actual and
expected activity packets. Throughout
the rotation, the network maintains a sta-
ble state with a strong similarity between
the actual and expected activity packets
(p � 0.005, green).
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Figure 4.5: Coherency detects a discon-
tinuity. (A) The neural activity. Time is
shown in time-steps on the x-axis. Neu-
rons ordered by their preferred direc-
tion (0Æ – 360Æ) along the y-axis, shaded
according to their firing rate. White
dots indicate the direction extracted from
the population activity using population-
vector reconstruction. Note that the re-
constructed position shows a smooth ro-
tation from the initial position of activity
before the jump, through positions where
there is no network activity, to the final
location of activity after the jump. (B)
The IRMS measure of inconsistency be-
tween actual and expected activity pack-
ets. The discrepancy between the actual
and expected activity packets is low dur-
ing the stable state, before and after the
jump (p � 0.005, green), but high dur-
ing the transient bimodal activity state
at the moment of the jump from time-
steps 562–609 (p � 0.005, red zone). (C)
The ISTD measure of inconsistency be-
tween actual and expected activity pack-
ets. As in B, the discrepancy between
the actual and expected activity packets
is low during the stable state, before and
after the jump (p � 0.005, green), but
high during the transient bimodal activ-
ity state at the moment of the jump from
time-steps 561–609 (p � 0.005, red zone).
(D) The CDP measure of consistency be-
tween actual and expected activity pack-
ets. The similarity between the actual
and expected activity packets is high dur-
ing the stable state, before and after the
jump (p � 0.005, green), but low dur-
ing the transient bimodal activity state at
the moment of the jump from time-steps
580–604 (p � 0.005, red zone).
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Figure 4.6: A simulation started with
competing inputs settles to a single mode
of activity. (A) The neural activity.
Time is shown in time-steps on the x-
axis. Neurons ordered by their pre-
ferred direction (0Æ – 360Æ) along the
y-axis, shaded according to their firing
rate. White dots indicate the direc-
tion extracted from the population activ-
ity using population-vector reconstruc-
tion. Note that the reconstructed posi-
tion shows a smooth rotation from the
mean position, where there is no net-
work activity to the winning location. (B)
The IRMS measure of inconsistency be-
tween actual and expected activity pack-
ets. The discrepancy between the actual
and expected activity packets is high dur-
ing the initial bimodal state before the
competition is resolved (p � 0.005, red
zone), but low afterwards (p � 0.005,
green). (C) The ISTD measure of incon-
sistency between actual and expected ac-
tivity packets. As in B, the discrepancy
between the actual and expected activity
packets is high during the initial bimodal
state before the competition is resolved
(p � 0.005, red zone), but low afterwards
(p � 0.005, green). (D) The CDP mea-
sure of consistency between actual and
expected activity packets. The similar-
ity between the actual and expected ac-
tivity packets is low during the initial bi-
modal state before the competition is re-
solved (p � 0.005, red zone), but high
afterwards (p � 0.005, green).
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Figure 4.7: Density distribution of a two cell ensemble taken from our training set. The
firing rate of cells 1 and 2 are represented by the x and y -coordinates, respectively. (left)
The set of observed firing patterns fi. (right) The probability density distribution result-
ing from variable-width Gaussian kernel density estimation on fi. Black represents max-
imum density and white represents zero probability of observing a firing pattern. Note:
plot is shaded by the logarithm of the density.

Mathematically, we write:

Ct � ∑
i��

βi � exp �
���f�t�� fi��2

σ2
i

� (4.21)

where f�t� refers to the ensemble firing pattern of the point of interest at

time t and fi refers to the ith firing pattern of the expected distribution

� , also called the training set. βi is the constant of normalization for the

symmetric Gaussian associated with fi:

βi �
�σi

2�
��N�2�

�
2π �N�

(4.22)

where N is the number of neurons in the ensemble, N� is the number of

samples in the training set � , and σi is the width or standard deviation of

the Gaussian associated with the ith sample of � .
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Finally, we call Ct the Ensemble Consistency (EC) since it is a measure

of how consistent f�t� is with � . To improve our estimate of the density,

we can let βi depend on the nth-nearest neighbor distance of fi. First, the

nth-nearest neighbor distance D�n�
i is found for each training set point i

using the Euclidean distance measure. The standard deviation σi of the

Gaussian associated with fi was defined as σi � k �D�n�
i . For this data

set, k � 4 provided a good overlap between neighboring Gaussians. The

order of the nearest neighbor distance, n � 10 was selected because the

average nth order nearest neighbor distance was found to be very noisy

for low n, to rise quickly as n increases, then to temporarily plateau. The

beginning of this plateau represents how closely the points in the training

set are packed and serves as a good reference for choosing the order, n,

of the nearest neighbor. For our simulations, n � 10 provided a robust

density estimation.

To reduce the dependence of EC on the overall ensemble firing rate, one

could implement any number of normalizations. � One method would be

to normalize each firing rate vector to unit length by dividing each vec-

tor by the modulus (square root of the sum of squared components). This

normalization projects all points to the positive quadrant of the unit hy-

persphere. Another method could be to normalize all firing rate vectors to

sum to one. This projects all points to the hyper-plane with vertices inter-

�The formulation and physical meaning of these normalizations arose from ideas gen-
erated in discussions with Adam Johnson, who first attempted to apply EC after normal-
izing all firing rate vectors to sum to 1.
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secting all axes at 1. Both, methods will result in a bias toward the center of

the positive quadrant of the space if firing rates are uniformly distributed

prior to normalization. However, depending on the type of network inhi-

bition, it is possible that these normalizations could result in uniform pro-

jections. For instance, an architecture that relies on a divisive inhibition

that is proportional to the sum of the activities of the excitatory neurons

would be best suited for using the later normalization (i.e. normalizing all

firing rate vectors to sum to 1). In our simulations, we characterized EC

applied to the raw firing rate vectors as well as EC applied to the firing

rate vectors normalized to sum to 1.

In summary, Ensemble Consistency is the local probability density of

the N-dimensional firing rate vector at a point in time t. Low probability

densities represent firing patterns unlikely to occur under the conditions

of the training set, and high probability densities represent firing patterns

that were often seen in the ensemble under training-set conditions.

4.5.2 Statistical Justification of EC

As stated before, EC measures density not probabilities. Transforming

these density measurements into a probability of seeing a density less than

or equal to the observed density is complicated by the fact that these den-

sities are unlikely to be unimodal, as can be seen in Figure 4.7. This multi-

modality occurs because neurons have overlapping tuning curves: the fir-

ing of one cell may occur either with or without the firing of the other cell.
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Figure 4.8: A smooth rotation induced in the network yields a stable training set. (A)
The neural activity. Time is shown in milliseconds on the x-axis. Neurons ordered by
their preferred direction (0Æ – 360Æ) along the y-axis, shaded according to their firing rate.
(B) The EC measure of local probability density. (C) The EC measure calculated from
normalizing each firing rate vector to sum to 1. Note: the same set was used as in figure
4.2

The likelihood of observing a particular density was estimated through

a “leave-one-out” approach. For each sample fi in the training set � , the

density at fi was measured using Equation 4.21 summing over all samples

in � except for fi. This provided a set of densities found in the ensemble
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under normal (training) conditions. The training set used here was the

same set used in the Coherency section. As stated earlier, was created by

forcing a rotation of the network through the full range of directions for

five revolutions and then a reverse rotation through the same number of

revolutions. This sampled the parameter space evenly. These densities

were used to construct a cdfECtr of expected log-density values for one-

sided significance testing as in the Coherency section (See Eq 4.10). The

null hypothesis H0 � fi 	 � was rejected if the probability of observing

a smaller density than the local density at fi was small. A stringent sig-

nificance threshold of α � 0.001 was used to reduce the false-alarm rate.

4.5.3 EC differentiates representational quality (Issue 1)

Figures 4.10–4.13 show the results of a 15-neuron ensemble taken from the

population of 75 excitatory neurons in the attractor network simulation.

The cells are ordered by their preferred direction with the preferred di-

rection of each neuron being 4.8Æ from its neighbor. Similar results were

obtained with randomly sub-sampled ensembles as long as the compo-

nent tuning curves spanned the parameter space. Smaller ensembles were

particularly dependent on fortuitous choices of the component neurons in

the ensemble to span the parameter space.

Figure 4.10 shows a simulation started with random activity. As re-

viewed above, this network favors a single “bump” of activity, and soon
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Figure 4.9: The empirically derived
cdfECtr for both EC measures given the
training set. (A) The cdfECtr of the EC
measure of local probability density. (B)
The cdfECtr of the EC measure calculated
from normalizing each firing rate vector
to sum to 1.

settled to a stable state with only a few neurons in an excited state. While

the network was in the random state, EC was very near zero (p � 0.001),

but transitioning to the stable state resulted in higher densities. Thus, EC

differentiated between random and stable activity.

4.5.4 EC can detect dynamic changes in network activity

(Issue 2)

EC was stable during a smooth rotation of the network activity (see Fig-

ure 4.11). However, when the representational state jumped discontinously,
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Figure 4.10: A simulation started with
random input to the network settles to a
stable state. (A) The neural activity. Time
is shown in milliseconds on the x-axis.
Neurons ordered by their preferred di-
rection along the y-axis, shaded accord-
ing to their firing rate. (B) Ensemble Con-
sistency (EC). During the random state,
the probability density, or EC, is low (p �
0.001, red zone). Upon reaching the sta-
ble state at time-step 348, EC rises (p �
0.001). (C) The same is true if the firing
rate vectors are normalized. During the
random state, the probability density is
low (p � 0.001, red zone). Upon reach-
ing the stable state at time-step 337, the
density rises (p � 0.001).

EC detected the period of discontinuity (see Figure 4.12). Thus, EC differ-

entiated between a jump in the representation and a stable rotation of the

network firing pattern. Ensemble Consistency remained stable through-

out the rotation (Figure 4.11). During the jump, EC was very low (p �

0.001, red zone, Figure 4.12), signifying a group of firing patterns far from

the distribution of training set values (i.e. a dynamic instability that did

not occur during training).
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Figure 4.11: EC is stable throughout a
rotation. (A) The neural activity rotates
smoothly. Time is shown in milliseconds
on the x-axis. Neurons are ordered by
their preferred direction along the y-axis
and shaded according to their firing rate.
Whether using the raw firing rate vector
(B) or the normalized firing rate vector
(C), Ensemble Consistency (EC) shows a
high probability density throughout the
rotation (p � 0.001).

4.5.5 EC can be used to detect the resolution of ambiguity

(Issue 3)

Figure 4.13 shows a simulation started with two inputs separated by 170Æ.

Since this network favors a single “bump” of activity, the two modes com-

peted until one won and the network settled to a stable state with only a

few neurons active. While the network was in this ambiguous state, EC

was very low (p � 0.001), but transitioning to the stable state resulted in

higher densities. Thus, EC differentiated between ambiguous and coher-
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Figure 4.12: EC detects a discontinu-
ity. (A) The neural activity jumps dur-
ing a dynamic instability. Time is shown
in milliseconds on the x-axis. Neurons
are ordered by their preferred direction
along the y-axis and shaded according to
their firing rate. Whether using the raw
firing rate vector (B) or the normalized
firing rate vector (C), Ensemble Consis-
tency (EC) shows a low probability den-
sity during the jump (Raw: time-steps
567–608, p � 0.001; Normalized: time-
steps 578–605, p � 0.001; red zone). EC
is high during the stable state, before and
after the jump (p � 0.001, green).

ent activity.

In summary, the EC method can assess the consistency of an ensem-

ble with little or no knowledge of the neural encoding. This is a powerful

method for examining learning in structures that have complex represen-

tations of cognitive function and may be especially useful for examining

deep brain structures where the behavioral parameters signalled by the

neural activity are controversial or unknown.
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Figure 4.13: A simulation started with
competing inputs settles to a single mode
of activity. (A) The neural activity jumps
during a dynamic instability. Time is
shown in milliseconds on the x-axis.
Neurons are ordered by their preferred
direction along the y-axis and shaded
according to their firing rate. Whether
using the raw firing rate vector (B) or
the normalized firing rate vector (C),
the probability density is low during
the competition (Raw: time-steps 0–113,
p � 0.001; Normalized: time-steps 0–
107, p � 0.001; red zone). Upon resolv-
ing the ambiguity and settling to a single
value, EC rises (p � 0.001, green).

4.6 Discussion

The simulations in this chapter have shown that ensemble-level measures

of network activity such as EC and Coherency provide useful informa-

tion about network dynamics. This information is not readily available

from reconstruction techniques such as population vector reconstruction.

These ensemble quality measures can distinguish between random or am-

biguous bimodal states in the network and the stable states predicted by

the tuning-curves yielding statistical information that an observer can use
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to test hypotheses of network function.

In order to avoid the strict assumptions made by standard parametric

statistics, our methods require the assumption that the data used to con-

struct the tuning curves and the training set be taken during a stationary

period that represents the null hypothesis for an experiment. This is not a

new or special assumption; it is a fundamental statistical concept and an

assumption intrinsic to the concept of the tuning-curve. After this mea-

surement is made, coherency is capable of detecting non-stationary events

and other deviations from the control, or training, set.

It is possible, however, to apply these ensemble measures without con-

structing a training set. For example, in the case where fluctuations in

the network’s state are expected to coincide with other variables, one may

find correlations between coherency or EC and the variables of interest.

Johnson et al. (2005) used this approach in analyzing recordings from the

rodent head-direction system. They found that low coherency values were

strongly correlated with larger errors in reconstructing the animal’s head-

direction from the firing of neural ensembles in the post-subiculum. In a

later chapter, this approach will be applied to examine the source of vari-

ability in hippocampal place-cells.

We are not the first to measure the reliability of a reconstruction es-

timate. There have been statistically based methods that use the length

of the reconstructed population vector (Moore, 1980; Smyrnis et al., 1992;

Ashe et al., 1993) but these methods require nearly complete revision when
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attempting to apply them to other systems with different symmetries. For

example, applying such a framework based on unimodal tuning curves

to systems with bimodal, multimodal, or spatial tuning curves (O’Keefe

and Conway, 1978; O’Keefe and Speakman, 1987; Sharp, 1996; Blair et al.,

1997) would require a complete re-derivation of the statistics. In contrast,

the methods presented in this chapter are general and will work for any

type of tuning without modification.

While this chapter has focused on using coherency and EC to analyze

an attractor network with a uniform ring topology, it should be noted that

coherency is applicable to any neural system. Thus, multi-dimensional

systems with bimodal, multimodal, or even heterogeneous tuning-curves

are accessible to the coherency method. For example, some hippocam-

pal place cells exhibit multiple place fields. The coherency method pre-

sented here requires no modifications to accommodate an ensemble with

a mixture of multimodal and unimodal responses; the only requirement is

the ability to calculate a tuning curve for each individual cell. Knowing

the tuning curve allows the construction of an expected activity packet, to

which the actual activity packet can be compared. Likewise, EC is also a

general method, yet it circumvents the need to construct tuning curves. In-

stead of making assumptions about the encoding, Ensemble Consistency

measures the dynamic relationship between neurons by using a density

estimate to measure how close the current firing pattern is to other firing

patterns observed in the training set. In this way, EC is like an abstracted
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method of generalized template matching. This freedom from explicit as-

sumptions of neuronal tuning allow EC to be applied to structures that

have complex representations of cognitive function and may be especially

useful for examining deep brain structures where the behavioral parame-

ters signalled by the neural activity are controversial or unknown.

EC is limited, however, by its sensitivity to the training set. Because

there is no normalization for the number of training set points collected for

each stimulus, EC requires an even sampling of parameter spaces. Other-

wise, densities of some firing patterns could be over- or underestimated.

But, it is important to note that many behavioral tasks can be constructed

such that the animal evenly samples the entire parameter space on every

trial. Schmitzer-Torbert and Redish (2002) use a continuous T maze which

requires the animal to make a series of T choices before receiving food

reward along a return ramp without turning around. This required the

animal to sample each portion of the task equally on each lap. Averbeck

et al. (2002) recorded ensembles from monkeys copying geometric shapes.

Each component of the shape is sampled equally on each trial. Note that

this restriction only applies to the training set. Thus, a rat running a circu-

lar track will sample all head directions equally. Using the circular track

as a training set, EC could be used with ensembles of head-direction cells

to examine questions in an open-field in which directions are not sampled

equally.

Any simultaneously recorded neural ensemble that can be used to re-
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construct a behavioral variable can also be used to measure coherency.

Reconstruction with simultaneously-recorded neural ensembles has been

used in place cells (Wilson and McNaughton, 1993; Brown et al., 1998;

Zhang et al., 1998) and in motor cortex (Salinas and Abbott, 1994; Aver-

beck et al., 2000). Accurate coherency measures can be taken from as few

cells as are needed to provide adequate coverage of the parameter space

by their tuning curves (i.e. enough to have reliable reconstruction). Our

examples in the results section were based on 75-cell ensembles. The EC

examples presented in Jackson and Redish (2004) used only 15-cell ensem-

bles from similar simulations. The key to smaller ensembles is how well

the neuronal responses span the parameter space. Note that EC is not de-

pendent on uniformity of the neuronal responses. Thus, a 15-cell ensem-

ble with tuning curves that span the space of potential stimuli, but are not

uniformly distributed will provide a sufficient basis for the EC method. In

our simulations, we found accurate detection of the three dynamic tran-

sitions discussed above with as few as 10 cells (data not shown). With

modern recording technologies, simultaneous recordings of 20–100 cells

are common. Coherency and EC can therefore be used with any of these

recordings to detect differences in representational quality as well as tran-

sient representational events.



Chapter 5

Methods:

Experimental Procedures and

Analyses

5.1 Introduction

In order to explore the biological relevance of concepts of network co-

herency developed in our simulations, we decided to apply these ideas

to two poorly understood phenomena that result in highly variable fir-

ing in the hippocampus: sharp-wave associated population bursts and

the excess-variability observed in the firing patterns of single units. An

important factor in choosing the hippocampus as our model system was

that the morphology of this structure allows large-scale chronic record-

117



Ch 5. Methods: Experimental 118

ings of up to 100 or more neurons simultaneously in awake-behaving an-

imals. Since the spatial firing of hippocampal units is task dependent, we

recorded from rats as they ran on each of three task that varied in spa-

tial and behavioral complexity: a linear shuttle task, a foraging task in a

cylindrical arena, and a goal-directed spatial navigation task in the same

cylindrical arena.

5.2 Subjects

Male Brown-Norway Fisher-344 hybrid cross rats were housed individu-

ally in a specific pathogen-free (SPF) vivarium maintained on a synchronous

Day/Night cycle. Animals were handled daily for 15 min for at least one

week prior to beginning behavioral training. One day prior to commence-

ment of behavioral training, animals were denied access to food in their

home cage while water access remained ad libitum. Subsequently animals

received their full daily complement of food on the tasks based on their be-

havioral performance. All procedures were approved by the University of

Minnesota IACUC and met all NIH guidelines for animal use in research.

5.3 Behavioral training

Food deprived rats were trained to run on a series of multiple tasks, in-

cluding shuttling back and forth along a 137 cm by 15 cm linear track (LT),
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foraging for scattered pellets in an 92 cm-diameter cylindrical arena (OF),

or navigating to a small, invisible goal for food reward in the same cylin-

drical arena (OFG).

The linear track was constructed of gray carpeted ply-wood elevated

above the experimental table top by 2
 4 lumber blocks (Figure 5.1). An-

imals shuttled back and forth on the track to trigger food reward upon

entry into the goal zone surrounding a feeder; this goal zone was not re-

armed until the animal had triggered the opposite goal zone.

The cylindrical arena consisted of a flat, 94 cm diameter circular table

top inserted into a tree tub with cylindrical walls and a cue card spanning

approximately deg 90 (Figure 5.2). In the OF random foraging task, the

rat retrieved food pellets as they scattered randomly at Poisson intervals.

OFG used the same cylindrical arena as the foraging task, but delivered

food only after the rat entered a 7 cm diameter goal region, randomly se-

lected each day. Once the rat entered the goal region, a tone was played

and the feeders were triggered. The goal was randomly placed each ses-

sion, but remained constant within a session. Like the foraging task, the

food scattered randomly upon dispensing. The goal was not re-armed un-

til the rat had been outside of the goal and its 14 cm surrounding region for

4 seconds. Since OFG and OF used the same arena, the arena was wiped

down with 70% isopropyl alcohol before each OF and OFG task to reduce

the carry-over of odor cues from task to task.

Naive rats were trained on each task individually until proficient. Train-
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Figure 5.1: The Linear Track Task. (left) Diagram of the linear track. Red dotted lines
indicate goal zone surrounding feeder locations. (right) Photograph of an animal on the
linear track. Note feeder at near end on right side, and at far end on left side of the track.
Animal in photograph has a boom for tracking head direction; the boom was not used on
most animals in our data set.

ing began with single 30� 40 min sessions on a single task (task train-

ing order counter-balanced across rats) until an animal was proficient on

that task: full coverage of arena on OF; at least 30 successful goal en-

tries on OFG; at least 50 laps on LT. Animals were then trained on the

next task to proficiency. This continued until animals had been trained

on each task individually. This usually took about one week per task.
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Next, animals were trained for at least four days on the three-task pro-

tocol such that they encountered each ordering at least once: LT-OF-OFG;

LT-OFG-OF; OF-OFG-LT; OFG-OF-LT. Thus, final-training and the post-

Figure 5.2: The Open Field and Open Field Goal Tasks. (top) Photograph of an animal
the arena. Note feeder tubes enter at the top of the arena wall near the bottom-center
of the photo and on the top right and left sides. This configuration in combination with
the pellet velocity and scattering after bouncing on the arena floor resulted in a highly
uniform pellet landing distribution. Animal in photograph has a boom for tracking head
direction; the boom was not used on most animals in our data set. (left) Diagram of the
open field. (right) Diagram of the open field goal task. Red dotted lines indicate the
invisible goal zone which varied from session to session.
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implantation recording sessions consisted of 20 minute exposure to each

of the three tasks pseudo-randomly ordered each day (goal location also

varied pseudo-randomly each day) with a 5 minute rest period before and

after each task.

5.4 Surgery

Once a rat was running proficiently on all three tasks, it was implanted

with a 14-tetrode microdrive (Kopf Neuro-Hyperdrive, David Kopf In-

struments, Tujunga, CA; 12 tetrodes and 2 references) at Bregma (�3.8 mm

A/P, 2.0� 2.5 mm M/L). Rats were deeply anesthetized with an intra-

paritoneal injection of Nembutal (sodium pentobarbital, 40-50 mg�kg, Ab-

bot Laboratories, North Chicago, IL), shaved on the scalp, and placed on

a stereotax. A 0.5-2.0% isofluorane-oxygen mixture was then provided

to maintain general anesthesia. 0.1cc Dualcillin (Phoenix Pharmaceutical

Inc., Saint Joseph, MI) injections were administered to each hind limb. The

scalp was disinfected first with alcohol then with Betadine (Purdue Fred-

erick, Norwalk, CT). Skin and fascia were removed from the skull around

the implantation site, and the wound was cauterized. Holes were drilled

for the 8-9 jeweler’s screws and 1-ground screw which were distributed

around the implant to anchor it to the skull. Once the screws were in

place, a craniotomy was opened above the target (A/P Bregma -3.8mm,

M/L +2.0mm; Paxinos and Watson, 1998) using a surgical trephine (Fine



Ch 5. Methods: Experimental 123

Science Tools, Foster City, CA), and the hyperdrive was lowered into place.

A steel wire from the hyperdrive ground terminal was connected to the

steel wire soldered onto the ground screw using Amphenol pins. A Silas-

tic (Dow Corning 3140) barrier filled the space between the hyperdrive

bundle and the skull. Dental acrylic (Perm Reline and Repair Resin, The

Hygenic Corp., Akron, OH) was used to fix the hyperdrive to the bone

screws and seal the wound. After removal from the stereotax, 3 cc saline

was administered subcutaneously. Some rats received regimens of 0.1 cc

Baytril (2.27% enrofloxacin, Bayer Corp., Shawnee Mission, KS) injected

subcutaneously each day following surgery for three days. Animals re-

ceived 0.8 cc Children’s Tylenol orally immediately upon waking and in

their water supply (25 mL mixed in 0.275 L water) during recovery.

5.5 Electrode Positioning

Recordings were then taken from the pyramidal layer of the CA1 region

of hippocampus. The pyramidal layer was identified by the presence of

strong high-frequency (100–200 Hz) ripples (Ylinen et al., 1995).

5.6 Recordings

Recordings were carried out in 10 foot 
 10 foot room enclosed in copper

screen. All electrophysiological and video tracker recordings were digi-
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Figure 5.3: Histology showing representative recording sites in the CA1 region (R048).
White arrows indicate localization of two electrode traces to the CA1 pyramidal cell layer.
Scale bars are 1 mm. Diagram modified from Paxinos and Watson, 1998

tized and synchronously time-stamped by Neuralynx 64 channel Cheetah

Data Acquisition system and recorded to disk.

5.6.1 Neurophysiology

Rats were implanted with a 14 tetrode array (Kopf Neuro-Hyperdrive).

Each tetrode was made of four strands of polyamide-insulated 13 �m nichrome

wire (Kanthal Precision Wire, Palm Coast, FL) gold plated to an impedance
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of 0.3-1.0M�. Each tetrode was individually drivable.

Extracellular action potentials were recorded at 32kHz in 1 ms when

the voltage crossed a threshold set by the experimenter on any of the four

channels on a tetrode. The one millisecond window of data was taken for

each action potential. The signals were first amplified at the headstage

with unity gain amplifiers, then passed through multistrand cables and a

commutator before reaching variable gain amplifiers (1-50,000x). There,

they were band pass filtered from 600-9000Hz for spike recordings using

48 channels of a Neuralynx 64 channel Cheetah system, or filtered from

1-475Hz and sampled at 2 kHz for local field potential recordings (LFP)

using 16 channels of a Neuralynx 64 channel Cheetah system (Neuralynx,

Tucson, AZ). Binding of recording cables due to rotation of the rat was

minimized by a torque-sensing, motorized 72-channel commutator (Neu-

ralynx, Tucson, AZ; Dragonfly, Ridgeley, WV; AirFlyte, Bayonne, NJ).

5.6.2 Behavioral tracking and Behavioral Control

The positions of LEDs mounted on the animal’s head stage were recorded

by a camera mounted in the center of the recording room’s ceiling. The

video frame data was sampled at 60 Hz and digitized and time-stamped

by a Cheetah data acquisition system (Neuralynx, Tucson, AZ); pixels

that crossed thresholds set by the experimenter were recorded to disk.

Real-time position data was accessed by in-house behavioral control soft-

ware implemented in Matlab (The Mathworks, Natick, MA). This soft-
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ware used the serial ports to communicate with an experimental control

box (constructed by JCJ) to trigger food delivery (45 mg pellets: Research

Diets, New Brunswick, NJ; food dispensers: Med-Associates, St. Albans,

VT) and simultaneously signal the Cheetah recording system for a syn-

chronous food delivery time-stamp (each feeder had a unique digital iden-

tification).

Position data were then pre-processed for post-hoc analysis by extract-

ing the center of mass of all supra-threshold pixels. Video interlacing ef-

fects were removed from the data through linear interpolation of odd and

even position samples (two 30 Hz time-series) to produce two 60 Hz time

series, which were then averaged to yield a single, stable 60 Hz time se-

ries.

Lap Times: Linear Track Since the linear track was aligned along the

x-direction of the video data, the x-position was taken as the linearized 1-

dimensional projection of the animal’s behavior. The x-velocity was calcu-

lated using a 64th order low pass FIR filter with a 2 Hz high frequency cut

off by filtering forwards and backwards (to eliminate phase shifts). Plots

of the x-position versus x-velocity displayed a clustering of low velocity at

the track ends. These clusters were selected manually for each session and

lap times were either defined as the time from departure from one end of

the track to the next departure from the same end. Inter-lap-intervals were

defined as the time spent in these low-velocity clusters at the track ends
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(1.7 cm�s 
 2.5 cm�s; mean speed 
 SD).

Goal Entry Simulations To quantify goal-directed behavior, the animal’s

behavioral output with respect to the goal could be compared to the same

animal’s behavior with respect to the same goal on a different task (e.g.

foraging in the open-field) or to a pseudo-goal region of the same size

randomly selected within the arena. These pseudo-goal-entry simulations

were constructed the same as the task-control code such that after the an-

imal’s position entered the pseudo-goal, the entry time was saved and

a 4-second time-out was imposed before the next pseudo-goal-entry was

recorded. Thus, actual goal-entry behavior could be compared to behavior

with respect to locations with no task-related significance.

5.7 LFP analysis

Generally noisy channels were removed from the analysis. Any event of

max/min voltage (during which the amplifiers reached the � or � rails)

on any channel was removed from all channels including 0.5 s before and

after.

5.7.1 SW detection

SW events were extracted by down-sampling the LFP traces by a factor of

2 (using an anti-aliasing low-pass filter), and bandpass filtering from 100-
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250Hz. Amplitude for each trace was found via Hilbert-transform and

then averaged across traces. The distribution of log-transformed average

amplitude was used to find samples more than 2.5σ from the mean power.

Higher and lower values of σ (e.g. 2σ , 3σ , 4σ) yielded qualitatively simi-

lar results. Visual inspection of a subset of the data revealed ripple events

synchronous across LFP channels. Threshold crossings shorter than 20ms

were removed, the remaining events were concatenated if less than 100ms

apart. 20 ms was added to the beginning and end of each SW to cap-

ture the tails of the SW. Raw threshold detections were also analyzed and

yielded qualitatively similar results, likewise merging threshold crossings

less than 100ms apart before discarding short (� 20 ms) events yielded

qualitatively similar results. To reduce the possibility of non-LIA, high-

frequency events contaminating the analysis we removed all SW events

detected during high-theta/low-delta periods. Thus, the SW represented

in our analyses would be most analogous to the immobile sharp-wave

ripple (iSWR) events of O’Neill et al. (2006). The results in this paper are

from this conservative set, however there was little qualitative difference

introduced by including all SW events. (See Figure 5.4)

5.7.2 Theta Detection

A similar method was used for detecting theta epochs. Theta times were

extracted by down-sampling the LFP traces by a factor of 5 (using an

anti-aliasing low-pass filter), and bandpass filtering from 6-10Hz to ob-
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µ = 0

2.5 σ

200 µV

100 ms

Figure 5.4: Sharp wave ripple event detection. Time is on the x-axis, voltage is plotted
on the y-axis; scale bar indicates 100 ms and 200 �V, respectively. (top) The raw voltage
trace. (middle) Same voltage trace as above band pass filtered from 100 Hz to 250 Hz.
(bottom) Z-score of instantaneous power averaged across all EEG channels. Thick, red
dashed line indicates the detection threshold of 2.5 standard deviations above mean (ses-
sion mean of the average signal). Note that power trace drops below threshold; threshold
crossing times were found then merged if they occurred within 100 ms of another event
(solid green and red lines)

.

tain theta-band signals, and from 2-4Hz to obtain delta-band signals. Am-

plitude for each trace’s band was found via Hilbert-transform and then

averaged across traces to obtain two averaged signals: an average theta-

band amplitude and an average delta-band amplitude. The distribution

of the log-transformed ratio (theta/delta) of average amplitudes was used

to identify samples with a low power-ratio more than 1σ from the session

mean, these were taken to be non-theta brain states. Higher and lower val-

ues of σ (e.g. 0.5σ , 1.5σ , 2σ) yielded qualitatively similar results. Visual

inspection of a subset of the data revealed low theta amplitude epochs
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that clustered at locations of immobility (i.e. the linear track ends). These

non-theta epochs were concatenated if less than 500 ms (the low frequency

cutoff for the delta-band) apart, and events smaller than 100 ms (the high

frequency cutoff for the theta-band) were removed. Raw threshold detec-

tions were also analyzed and yielded qualitatively similar results. Theta

epochs were taken as the complementary set of times; these high theta

band power and low delta band power epochs tended to coincide with

times when the animal was moving.

5.8 Unit Recording

Tetrodes allow the discrimination of extracellularly recorded spikes from

multiple different units by comparing spike waveform properties across

channels. This is because the voltage traces resulting from spikes from

a neuron will be distributed differentially across the four channels de-

pending on the spatial relationship to the tetrode (See Figure 5.5). Like-

wise, spikes from other neurons will form different patterns of voltage

distributions across the tetrode since two neurons cannot occupy the same

physical location. These patterns can be exploited through clustering tech-

niques to isolate the spikes of putative individual units, thereby allowing

the recording of up to 20 or more neurons per tetrode depending on the

packing of the local neuronal population.
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5.8.1 Clustering

Waveform features were calculated from the 1 ms, 32-sample spike wave-

forms and clustered using a combination of automatic and manual cluster-

ing algorithms (MClust, A.D. Redish et al, http://mclust.sourceforge.

net, Klustakwik, K.D. Harris et al, http://klustakwik.sourceforge.

Figure 5.5: tetrode diagram. The tetrode is depicted as 4 black strands intertwined. Volt-
age traces resulting from spikes from neuron A will be larger on channel 1 than on chan-
nels 2 and 4 and much larger than channel 3. Likewise, spikes from neuron C will be
larger on channel 3 and 4 than on channels 1 and 2. Simply plotting the peak voltage of
waveforms recorded on this tetrode on the Channel 1 - peak voltage � Channel 3 - peak
voltage axes will result in a clustering of spikes from neuron C at large values for voltage
on channel 3 and small values for channel 1 and the clustering of spikes from neuron A
at large values for voltage on channel 1 and small values for channel 3. Thus, the spikes
from neuron A will be separated from C on this projection of waveform features. Contin-
uing this process will allow the separation of spikes from neuron B from those emitted
by A and C.
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net). Only clusters with firing rates below 2 Hz were used; these tended to

have the characteristic bursting inter-spike interval typical of hippocam-

pal pyramidal neurons. All analyses were also run only including clus-

ters with high quality (Schmitzer-Torbert et al., 2005) (Lratio � 0.2 and

ID � 15). For example, cluster 10 on Figure 5.6 would be excluded from

further analysis based on low cluster quality since it has Lratio � 0.2 (ac-

tual Lratio � 0.76) and ID � 15 (actual ID � 10.5). Qualitatively similar

results were obtained when the full data set was used. Neurons included

in our analyses had few interspike intervals less than 3 ms and exhib-

ited a strong bursting phase. �Neurons whose waveforms were not stable

�Cluster Isolation Quality: The separation of a cluster from other signals recorded on
the same tetrode was quantified using the Lratio and isolation distance (ID) metrics pre-
viously described (Schmitzer-Torbert et al., 2005). Briefly, Lratio and ID are measures of
the number of points surrounding a cluster and the distance of the cluster from all other
points (i.e. all other recorded signals), respectively. Both measures are calculated using
the 8-dimensional space of waveform energy (on each of 4 channels) and the first princi-
ple component of the waveform (on each of 4 channels). First, calculate the Mahalanobis
distance D2

i,C of point i from the center C of the cluster of interest as

D2
i,C � �xi �µC�

T��1
C �xi �µC� (5.1)

where µC is the vector pointing to the mean of cluster C in the 8-D feature space, xi is the
location of point i in the feature space, and �C is the covariance matrix of cluster C. Lratio

is then calculated using the following formula:

Lratio �
∑i��C 1�CDFχ2

df
�D2

i,C�

nC
(5.2)

where the sum is over all points i not contained in cluster C, CDFχ2
df

is the cumulative

distribution function of the χ2 distribution, df is the number of degrees of freedom (the
number of dimensions in our feature space), and nC is the number of spikes in cluster
C. ID is simply the Mahalanobis distance D2

i,C of the nth
C nearest point not included in

the cluster. Lratio and ID are highly correlated with the Type I and Type II error rates
associated with clustering spikes. ID is most correlated with Type I clustering errors
(incorrect inclusions or false alarms), and Lratio is most highly correlated with Type II
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enough across the entire session to reliably cluster or whose waveforms

drifted towards the spike detection threshold were not clustered and were

excluded from further analysis.
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ID =  97.0
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Figure 5.6: Example tetrode recordings: clustering, waveforms, and firing patterns.
Spikes were clustered according to multiple waveform features including peak spike am-
plitude, energy, and principle components. Clustered spikes are shown with different
colors for each cluster on two projections: peak spike amplitude on channel 1 versus
channel 2, and peak amplitude on channel 3 versus channel 4. One millisecond wave-
forms for 8 of the 16 separable clusters are shown below color coded by cluster color.
Interspike interval (ISI) histograms from each neuron are typical of hippocampal pyra-
midal neurons. Cluster quality values are inset within each cluster’s ISI histogram. All
scale bars are 100 �V. Data from R048-2004-07-14 TT7.

clustering errors (incorrect exclusions or misses).



Chapter 6

Overdispersion:

Behavioral and Network Sources

of Excess Variability in

Hippocampal Place Cell

Discharge

Abstract

While the firing of hippocampal pyramidal neurons is highly specific spa-

tially, the temporal variability of single unit firing patterns is actually quite

large. In this chapter, we replicate previous studies by demonstrating a

134
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similar degree of variability in our hippocampal recordings taken from

rats as they forage for food and find that goal-directed behavior in the

same environment reduces this variability in a manner similar to previous

reports. We then explore the hypothesis that this variability observed at

the single-unit level is related to modulation at the network-level result-

ing from the animal using multiple spatial reference frames. We demon-

strate that hippocampal responses on the linear track, a task that induces

reference-frame switching in the hippocampus, can emulate the highly

variable patterns observed during our foraging task. Finally, we apply the

concept of the cell-assembly to derive multiple spatial maps and demon-

strate that the network-level switching between these maps is consistent

throughout the task and depends on the task-related goals of the animal.

6.1 Introduction

The rodent hippocampus is most noted for the strong spatial selectivity

of its pyramidal cells, or place cells (O’Keefe and Dostrovsky, 1971). Much

work has revealed many aspects of hippocampal network dynamics in-

cluding the modulation of place cell activity by well-known brain states

such as the theta rhythm and sleep (Vanderwolf, 1971; O’Keefe and Nadel,

1978). There are also different theories about the how the manner in which

information is processed by the hippocampus should modulate place cell

firing (O’Keefe and Nadel, 1978; Buzsáki et al., 1983; Redish, 1999). For
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example, if the hippocampus uses multiple reference frames to represent

the environment while an animal is performing a navigational task, then

switching reference frames constitutes switching the cues to which each

pyramidal cell is responsive and will, therefore, switch the distribution of

cells that are active (Touretzky and Redish, 1996; Redish and Touretzky,

1997; Redish et al., 2000). There is some evidence that this reference frame

switching may be a regular phenomenon. Fenton and Muller (1998) found

that while place cells are reliable spatially, they exhibit much more tempo-

ral variability than would be predicted by a Poisson process. This excess

variability, or overdispersion, is task dependent (Olypher et al., 2002). It has

been suggested that this overdispersion may be the result of the rat switch-

ing reference frames at a mean rate of 1 to 2 times per second (Lánksý et al.,

2001; Olypher et al., 2002).

Little is known about the hippocampal dynamics of reference frame

switching. The primary goal of this chapter will be to examine the dynam-

ics and variability of hippocampal place cell firing patterns in the context

of the rest of the network. To explore these issues, we begin by replicating

the the original findings of Fenton and Muller (1998) in the open-field for-

aging task (OF). We then attempt to replicate the task-depedent decrease

in overdispersion observed by Olypher et al. (2002). To explore the possi-

bility that reference-frame switching may contribute to overdispersed fir-

ing, we introduce the linear track, a task with directionally-dependent hip-

pocampal firing that resembles a switch between reference frames. Next,
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we consider behaviorally-related modulations in place-cell firing such as

velocity dependence, path variability, and path repetition. Finally, we ap-

ply the concept of the cell-assembly (Hebb, 1949) to split ensemble spatial

firing-patterns into two separate maps. We show that while coherency is

unable to detect a network-wide fluctuation given whole-session average

firing maps, the times when network firing patterns were clustered to one

or the other map represent significant switches in the coherency of one or

the other map. These switching times are strongly modulated by the be-

havioral parameters of our goal-directed tasks and yield lower variability

than is observed in session-average maps.

6.2 Tuning Curve Construction

The tuning of a cell is the average or expected firing rate of a neuron mea-

sured over a given behavioral variable; in this case, this variable is the

animal’s spatial location. Tuning curves were constructed by binning the

task area into 11 pixel 
 11 pixel bins and creating two 2-dimensional his-

tograms: a histogram of the number of spikes emitted in each bin and a

histogram of the number of video-tracker samples in each bin. The occu-

pancy time for each bin was determined by dividing the number of posi-

tions samples per bin by the video sampling rate. The firing rate per bin

was determined by dividing the spike count in each bin by the occupancy

time in that bin.
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Figure 6.1: Tuning Curve. An example of
a tuning curve of a place cell recorded on
openfield. R031-2003-05-14 TT04-01

6.3 Dispersion measurement

One possible model of the behavioral or stimulus dependence of a neu-

ron’s firing is that of an inhomogeneous Poisson point process where the

intensity of the spike emission rate at any given time is dependent on the

stimulus or behavioral value at that moment. This is the approach used by

Fenton and Muller (1998) to examine the variability of hippocampal neu-

rons as the animal passes through their place fields. In order to compare

the results of our experiment with previous reports of overdispersion, we

implemented the analysis described in their paper (Fenton and Muller,

1998).

First, a neuron’s place field was taken as the largest contiguous body

of tuning curve pixels with non-zero firing rate. Therefore, every pixel in

a place field shared a border with at least one other pixel in the place field.

The center of a place field was taken as the 3
 3 group of pixels with the

highest mean firing rate.
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An animal’s pass through a place field was only considered if it satis-

fied all of the following conditions: (1) the pass went through the center

of the place-field (2) the pass lasted longer than 1 s, (3) the tracking of the

animal was continuous throughout the pass with high theta rhythm and

not interrupted by sharp-waves. The spiking of a neuron was compared

with the firing expected given its tuning curve during each pass through

its place field that met the above conditions.

6.4 Replication of overdispersion result

Fenton and Muller (1998) reported that hippocampal place cells have sur-

prisingly highly variable firing rates. They compared the number of spikes

fired by place cells to the number of spikes predicted by an inhomoge-

neous Poisson point process with rate parameters based the spatial tuning

of the cells. If neurons were as variable as this maximally variable model,

then a z-score based on the expected mean and variance should follow

a Gaussian distribution with zero mean and unit variance. The number

of spikes actually emitted by the neurons were much more variable than

their model predicted, exhibiting a non-zero mean (µ � 0.18) and a vari-

ance almost 6 times that predicted by the model (σ2 � 5.9). This excess

variance is termed overdispersion (see Fig 6.2).

On our open-arena foraging task (OF), we observed a similar phe-

nomenon of high variance (σ2 � 6.0, Npasses � 4034, nrats � 6). Figure 6.2
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Figure 6.2: Overdispersion of hippocampal place cells on the Open Field task. Both fig-
ures contain histograms of z-scores for the number of spikes emitted on a pass through
a place field given the expected number of spikes predicted by a Poisson point process
model. (left) Fenton and Muller (1998) reported that neurons displayed excess variability
on their open field foraging task (figure from Fenton and Muller (1998): z-scores for 1440
passes). (textitright) Place cells on our open field foraging task also exhibited a compa-
rable amount of excess variability (4034 passes). Note the peak in our distribution also
appears on the Fenton and Muller (1998) distribution, but is shifted left.

shows the distribution of z-scores comparing the number of spikes emit-

ted on each pass through a place field to the expected distribution of spikes

give an inhomogeneous Poisson process mode. The thin gray line shows

the expected distribution with zero-mean and unit variance. Note the peak

in our distribution also appears on the Fenton and Muller (1998) distribu-

tion, but is shifted left. This peak is the result of passes through place fields

when no spikes were fired. Removing no-fire passes results in a smooth,

unimodal distribution of the same width (data not shown).
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6.5 Task dependence: LT vs. OF vs. OFG

Three years after Fenton and Muller (1998) described the overdispersion

phenomenon, Lánksý et al. (2001) presented a doubly stochastic Poisson

process model where, in addition to the average spike output expected

from the firing field, they assume a temporal rate switching process such

that the average spike output is given by the temporally weighted mean of

two rates. Lánksý et al. (2001) conjectured that if overdispersion is related

to a switching or modulation resulting from interaction between CA1’s

two main inputs, entorhinal cortex and CA3, then this excess variance may

be due to a switching between cognitive states such as using rat-centered

and room-centered coordinates for navigation.

Later, Olypher et al. (2002) extended the mathematical model of Lánksý

et al. (2001) into an artificial neural network model that included two in-

put sources (e.g. CA3 and entorhinal cortex). They varied the modula-

tion amplitude and duration of one of the inputs and compared the re-

sults of this parameterization to the data originally presented by Fenton

and Muller (1998). A modulation depth of 10% with a period of approx-

imately 1 s best fit the original data. Olypher et al. (2002) then used an

experimental paradigm that conditioned animals to use primarily room-

based coordinate frames and compared the results to those of control an-

imals running the same task as in Fenton and Muller (1998) (expected to

be switching coordinate frames). In their paradigm, an animal was either
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allowed to forage for randomly scattered pellets (control), or required to

navigate to a hidden goal, stable in room coordinates, to receive reward

(navigator). They found that as animals approached a goal, the variabil-

ity in firing rates of CA1 pyramidal neurons converged towards the vari-

ance predicted by unmodulated inhomogeneous Poisson process (as low

as σ2 � 1.74 during the 5 s prior to reaching the goal). However, for the

foraging animals the variance was high (σ2 � 4.87).

Our three-task experiment was designed to replicate and extend the ex-

perimental conditions in Olypher et al. (2002), adding a further condition

(the linear track). Since it is known that hippocampal place fields exhibit

directional firing on the linear track (McNaughton et al., 1983; O’Keefe and

Recce, 1993), the hippocampal representation of linear track effectively

consists of two separate maps, or reference frames. It is thought that this

results from the use of two reference frames (corresponding to the two

directions of travel; Redish and Touretzky, 1997; Redish, 1999). If this is

true, then we can predict when an animal will be in a particular reference

frame on the linear track. Ignoring directionality should approximate a

doubly stochastic process where spike emission rates switch between the

rates computed for each direction. Thus, we predicted that on the lin-

ear track, a non-directional analysis would yield overdispersion compara-

ble to that observed previously (Fenton and Muller, 1998; Olypher et al.,

2002) and a directional analysis would yield a dispersion z-score distri-

bution approaching unit variance. A comparison across tasks therefore
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should yield insight into the viability of the map-switching hypothesis:

since the claim is that map switching can generate overdispersed firing,

hippocampal neurons on a task that switches maps should demonstrate

overdispersed firing distributions. As we shall see, further comparisons

across tasks will also be instructive.

As mentioned earlier, our neurons on the OF task were highly variable

(σ2 � 6.0, Npasses � 4034, nrats � 6), which compares favorably with previ-

ous work (σ2 � 5.9 in Fenton and Muller, 1998 and σ2 � 4.87 in Olypher

et al., 2002). On OFG, however, we did not observe the same magnitude

of reduction in variance as Olypher et al. (2002)(5 s pre goal: σ2 � 5.1,

Npasses � 896, nrats � 6). There was however, a reduction in the variance

as the animals approached the goal: σ2
4 s � 4.9, σ2

3 s � 5.1, σ2
2 s � 4.6 (See

Figure 6.3). In sum, we were unable to replicate the over-all decrease in

variance on our OFG task that was observed by Olypher et al. (2002), but

we were able to show a decrease in variance as the animal approached

the goal. This decrease was not as striking as the σ2 � 1.74. These dif-

ferences may be due to differences in our behavioral paradigm. Olypher

et al. (2002) required rats to pause for 1 s in a 20 cm diameter goal region

that was stable across sessions. In our experiment, we required no pause

after entry� into our randomly placed 7 cm goal region which varied from

session to session. Eliminating the pause requirement may have allowed

unplanned goal entry to trigger food delivery, mixing planned and un-

�This reduced the likelihood of the animal slipping into LIA after entering the goal.
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planned data into our analysis and increasing variability. We attempted

to reduce these unplanned goal entries by reducing the goal region’s di-

ameter. Indeed, observing the animals’ behavior revealed apparent goal-

directed movements with occational goal triggers that appeared to be ac-

cidental.
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Figure 6.3: Overdispersion on
OFG. (A) Overall variability on
the OFG task (σ2 � 6.6972,
Npasses � 4675) . (B) 5 sec-
onds prior to goal entry (σ2

5 s �
5.0936, Npasses � 896). (C) 4 sec-
onds prior to goal entry (σ2

4 s �
4.9051, Npasses � 678). (D) 3 sec-
onds prior to goal entry (σ2

3 s �
5.0829, Npasses � 462). (E) 2 sec-
onds prior to goal entry (σ2

2 s �
4.6395, Npasses � 189). Note that
the primary change to the dis-
tribution of z-scores observed as
the animal approaches the goal,
is the reduction in the low-z-
score peak associated with no-
fire passes and an increase in the
positive tail of the distribution.
This indicates that the chance
that at least some spikes are fired
is increasing along with the over-
all firing rate.



Ch 6. Overdispersion 145

Table 6.1: Task dependent variability

Task σ2 Npasses

LT 7.0 4139
LT A � B 2.1 1005
LT B � A 2.8 1505

OF 6.0 4034

OFG 6.7 4675
OFG 5s 5.1 896
OFG 4s 4.9 678
OFG 3s 5.1 462
OFG 2s 4.6 189

Our predictions of the effects of switching behavior on the neuronal re-

sponse variability in linear track were confirmed. Ignoring directionality

yielded a highly variable distribution of firing rates (σ2 � 7.0, Npasses �

4139, nrats � 6). However, splitting by direction resulted in a trend to-

wards convergence of the actual firing rates with the Poisson-process based

model (See figure 6.4; LT A � B: σ2 � 2.1, Npasses � 1005; LT B � A:

σ2 � 2.8, Npasses � 1505; nrats � 6). In our data, we can substantiate that

there is a dramatic difference between the reference frames represented in

the hippocampus on the two directions of the linear track since there is

strong neurophysiological evidence to suggest that this is true: the pat-

tern of place fields in one direction is independent of the pattern in the

opposite direction. Thus, at least at the hippocampal level, there are effec-
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tively two unique maps observed on the linear track. This dramatic shift

in reference frame on LT results in a highly variable discharge of place cells

when firing is compared with a tuning curve that was averaged over both

reference frames (σ2 � 7.0, see Figure 6.4A). Splitting cell firing by the

reference frame in use and comparing to the appropriate reference frame

reduces (or explains) a large portion of the variability of these firing rates

(σ2 � 2.1, Figure 6.4B; σ2 � 2.8, Figure 6.4C). These data suggest that

network-wide modulation such as the reference frame switching on linear

track can indeed produce variability on the order of that observed in the

open-arena foraging task. However, this does not confirm that reference

frame switching is responsible for the excess variability observed on the

open-arena foraging and goal tasks.

6.6 Cell Assemblies

Harris et al. (2003) and Harris (2005) presented data suggesting the ex-

istence of cell-assembly dynamics in the hippocampus. Cell assemblies

as first hypothesized by Hebb in his landmark book (Hebb, 1949), are

neurons bound together by mutual inputs and local interactions. If cell-

assembly dynamics are taking place in the hippocampus we should see

the following effects on dispersion: activation of neurons should be re-

lated to

1. the activation of cells with neighboring place fields;
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Figure 6.4: Overdispersion on
LT. (A)Ignoring directionality a
highly variable distribution of
firing rates (σ2 � 7.0, Npasses �
4139, nrats � 6). How-
ever, splitting by direction re-
sulted in a trend towards conver-
gence of the actual firing rates
with the Poisson-process based
model: (B) LT A � B — σ2 �
2.1, Npasses � 1005; (C) LT B �

A — σ2 � 2.8, Npasses � 1505.

2. the sequence of activation of cells with neighboring place fields (e.g.

B differs if A � B � C or C � B � A); and

3. the amount of repetition of activation sequences.

6.6.1 Cell pair correlations

One of the most interesting questions surrounding the phenomenon of

overdispersion is whether this is a network-wide phenomenon or not.

Could overdispersion be solely due to a noise process intrinsic to the neu-
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ron and independent of network level processing? This question is tied

to the cell assembly hypothesis mentioned above. The first attempt at

answering this question was by Fenton and Muller (1998) in their origi-

nal paper reporting overdispersion. Fenton and Muller (1998) performed

pair-wise correlations of z-scores between two pairs of cells with overlap-

ping place fields. They found no significant correlation for either pair of

simultaneously recorded cells on their open arena foraging task.

Since these analyses, Lánksý et al. (2001); Olypher et al. (2002) tried to

theoretically explain the source of overdispersion by fitting the data with

models that assumed upstream modulation of the hippocampus. Olypher

et al. (2002) also went one step further, implementing a behavioral control

to bias animals into one hypothetical cognitive state. They required an-

imals to navigate to a hidden goal to receive food reward expecting that

this would force animals to only a room-based reference frame during nav-

igation to the goal. The weakness in these data is that they do not and

cannot substantiate that the animals are indeed using different mixtures

of coordinate systems during the goal and foraging tasks. Both studies

also propose mechanisms (viz. reference frame switching) that should re-

sult in pair-wise correlations contrary to the findings of Fenton and Muller

(1998).

We, therefore, looked for correlations in the dispersion z-score between

pairs of simultaneously recorded neurons in our data. The overlap of tun-

ing curves for all neuron pairs in an ensemble was measured as the num-
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ber of pixels above zero firing rate in both neurons’ tuning curves. The dis-

tribution of overlap values was divided such that pairs in the upper 75%

of overlap scores for each task were chosen for analysis. The pass times

for each neuron in a pair were then compared to find all passes that over-

lapped temporally by any amount. The dispersion z-score values for these

matched passes were then added to the pool of pair-wise data. Correla-

tions were then performed on this pooled data. Higher and lower overlap

cutoffs (50% and 95%, when possible) were also assessed and qualitatively

similar results were obtained. Randomizations consisted of randomizing

one neuron’s z-score values across passes prior to matching the pass times

for the pair.

Since our experiments generated large ensembles of simultaneously

recorded neurons, it was possible to replicate these pair-wise analyses. For

each task, the dispersion of all cell pairs with the most overlap was com-

pared (the pairs with overlap in top 75% of overlap among all pairs on a

task). To control for non-path-specific interactions between neurons, we

randomized the order of the z-scores for the mutual passes (passes that

went through both neurons’ place-fields) for one neuron in the pair. On

the open field task we found that there were indeed weak but highly sig-

nificant positive correlation between dispersion z-score for neurons with

overlapping place fields (ρ � 0.047, P�ρ � 0� � 0.0048, Npairs � 966).

This correlation was absent in randomized controls (ρ � 0.0092, P�ρ �

0� � 0.59) suggesting that sheer increases in the number of points were
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not resulting in a false appearance of coupling between cells. On the

OFG task, there was a similar level of correlation (ρ � 0.049, P�ρ �

0� � 0.00095, Npairs � 1105) which was absent in the randomized con-

trols (ρ � 0.016, P�ρ � 0� � 0.27). This correlation almost doubled

when considering the five seconds prior to goal entry (ρ � 0.095309,

P�ρ � 0� � 0.036457, Npairs � 323).

The linear track with it’s two-reference-frame nature was, however,

not correlated significantly under any condition (LT non-directional: ρ �

�0.010616, P�ρ � 0� � 0.48112, Npairs � 897; LT A � B: ρ � �0.018438,

P�ρ � 0� � 0.59647, Npairs � 222; LT B � A: ρ � 0.036874, P�ρ � 0� �

0.11463, Npairs � 359). The randomized controls were also not significant

(LT: ρ � �0.018, P�ρ � 0� � 0.24; LTAB: ρ � �0.028, P�ρ � 0� � 0.42;

LTBA: ρ � �0.015, P�ρ � 0� � 0.53).

The significant correlation of z-score across cell pairs on OF and OFG

suggests that there is indeed a process coupled across cells, perhaps at the

network level, that is influencing their variability. The fact that we do not

see this on LT suggests that either the expected anti-correlation between

place-cells that prefer opposite directions is swamping the expected cor-

relation between cells that prefer the same directions or that hippocam-

pal dynamics are fundamentally different on LT compared to tasks in the

open arena. If the former is true (that the anti-correlated neuron pairs

are swamping the contributions of the correlated neuron pairs), it remains

possible that the overdispersion on OF and OFG is due to a network-wide
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process such as reference frame switching. The evidence in favor of this is

that there is a dramatic increase in correlation between cell pairs on LT

when we exclude all passes when either neuron in a pair did not fire,

however this increased correlation does not reach significance (ρ � 0.037,

P�ρ � 0� � 0.078, Npairs � 897). Furthermore, it may be that if there

exists a switching process, on OF and OFG the switch is between corre-

lated maps such that the cell pair correlations would not have a strong

anti-correlated component between maps. Thus, the depth of modula-

tion between reference frames could underlie the difference between LT

and the open-arena tasks (OF and OFG). On LT, the two-directions have

nearly orthogonal maps such that the correlation between maps for each

direction are small (data not shown) and the modulation between maps is

therefore nearly 100%. However, if the hippocampal dynamics truly are

fundamentally different on LT compared to tasks in the open arena, then

these data may argue against a clean switching process on OF and OFG.

This is because our example of a switching process (LT), has very different

pair-wise interactions than the highly significant interaction seen on OF

and OFG.

Thus, we have partial evidence that prediction #1 (from our cell as-

sembly discussion, Section 6.6) may be true: there is significant correlation

between z-scores of cell pairs. These data suggest that the neuronal fir-

ing variability may be due to transient interaction or coupling between

subsets of neurons with overlapping place fields. This type of interaction
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fits Hebb’s (1949) conceptualization of the cell assembly (Hebb, 1949; Mc-

Naughton and Morris, 1987; Harris, 2005). The fact that this correlation is

weak (ρ � 0.05 and is not found in some cell pairs (Fenton and Muller,

1998) indicates that #2 and #3 may be important.

6.6.2 Testing Ensemble Modulation: Overdispersion vs. Co-

herency

Since, a weak but highly significant positive correlation between the z-

scores of cell pairs suggested that the phenomenon of overdispersion may

be a network-wide modulation of the hippocampal system on OF and

OFG, we predicted that the dispersion z-score should be correlated with

the ensemble measures discussed earlier. To test this, we compared the

dispersion z-score to the IRMS and ISTD measures of ensemble deviations

from expected tuning. The IRMS measure was used since it is specifically

sensitive to deviations in the firing levels of the ensemble. The ISTD mea-

sure was used since it is insensitive to ensemble wide increases in activity,

but it measures relative differences in the activity across the tuning space.

Coherency analysis method

As stated in the Simulation Methods, coherency is a comparison of the ac-

tual and expected activity of an ensemble, represented by the actual and ex-

pected activity packet (A�x, t� and Â�x, t�, respectively). The activity packet
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is well defined for any given state of any system. Thus, comparing ac-

tual and expected activity packets can provide a measure of the state of

the system at any given moment in time. We therefore applied measures

derived from the simulation studies to our neurophysiological data to test

questions regarding fluctuations in the state of the hippocampal network.

Actual and expected activity packets were calculated from the tuning

curves of each neuron and from the firing rates of each neuron at a time

t given the spatial tuning T�x, y� of each neuron in the ensemble. The

actual and expected activity packets were compared using the IRMS and

ISTD measures (See Equations 4.16 and 4.18, respectively).

As mentioned earlier, the IRMS measure is sensitive to absolute differ-

ences in ensemble firing across the population while the ISTD measure is

sensitive to relative differences in ensemble firing across the population.

In the leave-one-out coherency analyses discussed next, the neuron of in-

terest was excluded from the construction of both activity packets. Since

the experimental coherency analyses were intended for comparison with

other variables, there was no need to construct a training set. Instead,

correlations were performed to measure the strength of any relationship

between the I measures and the variable of interest.

leave-one-out analysis

We calculated the IRMS and ISTD measures for the entire ensemble exclud-

ing the neuron for which we were computing the dispersion z-score (see
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Figure 6.5). The mean correlation between the absolute z-score and IRMS

across sessions on OF was �0.0015
 0.069 (mean 
 SE) and for ISTD was

�0.026
 0.042 (mean
 SE). These correlations were not significantly dif-

ferent from zero (IRMS: P�mean � 0� � 0.76, ISTD: P�mean � 0� � 0.62;

two-sided Wilcoxon sign rank test). A similar result was found for OFG.

The mean correlation between absolute z-score and IRMS across sessions

on OF was 0.0012
 0.026 (mean 
 SE) and for ISTD the mean correlation

was �0.048 
 0.042 (mean 
 SE). As in OF, these correlations were also

indistinguishable from zero (IRMS: P�mean � 0� � 0.68, ISTD: P�mean �

0� � 0.23; two-sided Wilcoxon sign rank test).

The mean correlation between z-score and IRMS across sessions on LT

was 0.017 
 0.039 (mean 
 SE) and for ISTD was 0.010 
 0.044 (mean


 SE). Neither correlation was above zero (IRMS: P�mean � 0� � 0.78;

ISTD: P�mean � 0� � 0.55; two-sided Wilcoxon sign rank test). Splitting

LT by direction, there was no significant positive correlation between ei-

ther measure with the dispersion z-score (IRMS A � B: �0.070 
 0.030,

P�mean � 0� � 0.027, B � A: �0.0016 
 0.047, P�mean � 0� � 1.00;

ISTD A � B: 0.047
 0.032, P�mean � 0� � 0.19, B � A: 0.0010
 0.042,

P�mean � 0� � 0.52).

If this generalized lack of significance were due to a lack of overlapping

cells with which to estimate ensemble firing (i.e. if the z-scored cell had

the only place-field that the animal was passing through) then we would

expect to see a positive dependence of the correlations on ensemble size.
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Figure 6.5: Leave-One-Out: Coherency vs.
Dispersion. Each neuron’s z-score is com-
pared with the coherency of the ensemble ex-
cluding that cell. The correlation between
dispersion z-score and each ensemble mea-
sure (IRMS on the left, ISTD on the right) is
plotted for each task: (A) LT; (B) LT A � B
; (C) LT B � A; (D) OF ; and (E) OFG. The
bars show the mean correlation across ses-
sions, and the circles show the session corre-
lations. The circle size is proportional to the
ensemble size. P-values for the null hypothe-
sis that the mean correlation is zero are above
each bar. An asterisk above the P-value indi-
cates significance at the level of P � 0.05.
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However, there was no significant effect of ensemble size on the correla-

tion for the IRMS measure with dispersion z-score (OF: P�mean � 0� �

0.60; OFG: P�mean � 0� � 0.34; LT: P�mean � 0� � 0.16; LT A � B:

P�mean � 0� � 0.93; LT B � A: P�mean � 0� � 0.90), nor was there a

significant correlation between ISTD and z-score (OF: P�mean � 0� � 0.70;

OFG: P�mean � 0� � 0.27; LT: P�mean � 0� � 0.42; LT A � B: P�mean �

0� � 0.43; LT B � A: P�mean � 0� � 0.62). Finally, the analyses in

this section required cells to share at least 20 pixels of overlap with at least

one other cell. Increasing the stringency of the analysis by requiring cells

to have a higher degree of overlap (even up to 100 pixels) with at least

one neighbor did not improve the correlation between z-score and IRMS or

z-score and ISTD (data not shown).

In summary, since LT did not have a significant correlation between

coherency and absolute z-score when this task is known to demonstrate

switching, this implementation of the coherency measurement is unable

to detect ensemble-wide modulation that is related to the fluctuations in

a single neuron’s firing pattern as observed in the dispersion z-score mea-

surement. If switching between multiple maps is responsible for overdis-

persion, this failure is likely due to our inability to know a priori what maps

to expect on OF and OFG, in other words we were using tuning curves

constructed by averaging over firing from all maps used throughout the

session. Thus, if the hippocampus spends roughly equal time using each

map (i.e. using each reference frame), then each map is equally incoherent
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compared with the average of these maps and we would see no modula-

tion effect.

6.6.3 Correlation of dispersion z-score with

the number of passes through a place-field

If the cell assembly hypothesis is true, it may be possible that some groups

of cells are more tightly bound temporally than others, regardless of spa-

tial firing. Since there appeared to be very little network-wide modulation

that correlated with dispersion of a neuron’s firing, one possible expla-

nation for the significant pair-wise dispersion correlation result could be

that small groups of neurons are modulated together, but that this modu-

lation is separate from the rest of the ensemble. One possible mechanism

for this is the experience-dependent modification of place-fields observed

by Mehta et al. (1997) whose authors report that place-fields expand back-

wards (firing earlier with each approach) and increase their firing rate as

an animal repetitively passes through the place-field. To examine the ef-

fect of this phenomenon in our data, we asked whether the dispersion z-

score was correlated with the number of times the animal passed through

a place field. On the open field, there was no significant correlation be-

tween a neuron’s z-score on a particular pass and the cumulative number

of passes through that neuron’s place field up to that pass (ρ � 0.024,

P�ρ � 0� � 0.13). However, there was a significant positive correlation on
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OFG (ρ � 0.043, P�ρ � 0� � 0.0030). Thus, neurons fired more (higher

z-scores) as animals passed through their place fields more. On the linear

track, the dispersion z-score was also correlated with the number of passes

whether ignoring directionality or splitting by direction (LT: ρ � 0.047,

P�ρ � 0� � 0.0024; LT A � B: ρ � 0.086, P�ρ � 0� � 0.0064; LT B � A:

ρ � 0.056, P�ρ � 0� � 0.029).

6.6.4 Correlations between Dispersion and Behavioral En-

tropy

To further test this correlation of z-score with spatial behavior, the prob-

ability of transitioning from one pixel to any other pixel was determined

for each pass through the pixel. The average entropy of the set of tran-

sitions for each pass through a place field was then calculated. Thus, for

each movement, an average cumulative entropy could be determined for

that movement. Therefore, for each pass through a place-field resulting

in a dispersion z-score, we could compare that z-score of the cumulative

entropy of all behavior in that same region. This tests item #2 of our pre-

dictions from the cell assembly hypothesis (see above): is the activation of

a neuron dependent upon the sequentiality of the animal’s behavior?
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Cumulative Behavioral Entropy Calculation Per Pass Through Place Field.

The x, y-position data was binned into identical bins as the tuning curves:

11 pixel 
 11 pixel blocks ( 3 cm
3 cm) and the transition probability

from each bin into every other bin was updated as the animal transitioned

from one bin to another as above. With each transition (e.g. moving from

bin j to bin k), the Shannon entropy Hj of the transition probability from

bin j to all other bins was calculated for the previously occupied bin:

Hj �
N

∑
i

�pi, jlog2 pi, j (6.1)

Thus, a cumulative record of the entropy of every location traversed in

the animal’s path throughout the session was compiled. For comparison

with the dispersion z-score of each pass through a place fields, the average

cumulative entropy of the path during that pass was used.

Dispersion and Behavioral Entropy

As before, we used the absolute z-score since we expect that more variable

spatial behavior should produce more variable firing. Since the variability

in behavior is measured in entropy which increases monotonically with

increasing disorder, the absolute z-score provides the appropriate com-

parison, increasing monotonically with larger deviations from the mean

expected firing.There were significant positive correlations between an an-

imal’s behavioral entropy and the magnitude of the dispersion observed



Ch 6. Overdispersion 160

on the linear track and the open-field goal task (LT: ρ � 0.078 
 0.020

P�ρ � 0� � 0.0022; OFG: ρ � 0.081 
 0.029 P�ρ � 0� � 0.0085). This

correlation was even stronger on OFG when considering the five seconds

leading up to goal entry (ρ � 0.18908 
 0.048353 P�ρ � 0� � 0.0015).

Splitting by direction on LT yielded significant negative correlation in the

A � B direction (ρ � 0.12
 0.051 p�ρ � 0� � 0.049), and near zero cor-

relation in the B � A direction (ρ � �0.0069 
 0.059 P�ρ � 0� � 0.91).

There was no significant correlation on OF (ρ � 0.013
 0.045 P�ρ � 0� �

0.57). These data are shown in Figure 6.6
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Figure 6.6: Magnitude of dispersion is correlated with behavioral entropy. The correla-
tion between the absolute dispersion z-score and the average cumulative transition entropy
of the locations used to calculate the z-score. The bars show the mean correlation across
sessions, and the circles show the session correlations. The circle size is proportional to the
ensemble size. P-values for the null hypothesis that the mean correlation is zero are below
each bar. An asterisk above the bar indicates significance at the level of P � 0.05. OFG5 is
for the 5 s preceding goal entry.

These data indicate that the less ordered the behavior is in a specific re-

gion of space, the less reliable the activation of any neuron that fires prefer-
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entially within this region. These results indeed fit with the prediction #2.

However, the task dependence of this difference (e.g. high correlation on

OFG and low correlation on OF) is interesting; this suggests that another

variable may be influencing the overdispersion effect.

6.6.5 Correlations with Speed

The small but significant pair-wise correlations and correlations with num-

ber of passes and behavioral entropy would not fully explain the large

variance observed in the over-dispersion phenomenon. Likewise, the lack

of significance of the coherency in the leave-one-out analysis argues against

a clear network-wide modulation. However, there have been reports of

speed and direction modulation of place cell activity (McNaughton et al.,

1983; Markus et al., 1995; Huxter et al., 2003). Therefore, we examined the

relationship between speed and the dispersion z-score. On all tasks, the

correlations between z-score and velocity were positive and highly signif-

icant (see Table 6.2).

We tested this trend by performing a regression on each cell’s disper-

sion as a function of velocity. The average slope was significantly above

zero on OF and OFG (OF: slope= 0.019
 0.0044, P�slope � 0� � 0.000048;

OFG: slope= 0.018 
 0.0047, P�slope � 0� � 0.00022; slopes are mean 

SE). This relationship was also found on LT and LT A � B, but was not

significant on LT B � A (LT: slope= 0.010
 0.0049, P�slope � 0� � 0.037;

LT A � B: slope= 0.0077 
 0.0028, P�slope � 0� � 0.010; LT B � A:
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Table 6.2: Velocity vs. Z-score Correlation

Task ρ P�ρ � 0�

LT 0.13 6.3 � 10�16

LTAB 0.11 0.0014
LTBA 0.099 0.00043
OF 0.14 3.9 � 10�18

OFG 0.12 6.8 � 10�15

OFG 5s 0.17 3.1 � 10�7

slope= 0.0036
 0.0033, P�slope � 0� � 0.29; slopes are mean 
 SE). The

intercepts were significantly negative on all task conditions except on LT

B � A (negative, but not significant; data not shown).

6.7 Splitting Representational Maps

The evidence thus far has been pointing to a sub-ensemble modulation of

neuronal firing, however, it remains to be seen whether there is indeed

multiple spatial maps that underlie this partial-network or cell-assembly-

like binding of pair-wise firing. To examine the spatial properties of sub-

ensemble interactions, we clustered the firing patterns that occurred within

each pixel of an environment to construct multiple whole-environment

spatial firing maps. Briefly, for each pixel, the firing patterns consisting of

a collection of all firing rate vectors for each video tracker sample where

the animal was detected in that pixel were clustered using a k-means algo-
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rithm �. Figure 6.7 shows two patterns isolated from one 11 cm 
 11 cm

pixel. Based on these two ensemble firing-pattern clusters for each pixel,

we constructed two 2-dimensional firing rate maps by sorting each pixel’s

clusters into one or the other map by maximizing correlations with neigh-

boring pixels. Finally, the times when the animal’s firing patterns were

detected in each map were extracted and used to partition the behavior

into either of the two representational states.

6.7.1 Map Splitting Method

To examine the spatial properties of sub-ensemble interactions, we clus-

tered the firing patterns that occurred within each pixel of an environment

to construct multiple whole-environment spatial firing maps.

Map Splitting by Clustering:

For each 11 pixel 
 11 pixel bin (3 cm 
 3 cm) bin, all ensemble firing

patterns observed when the animal was in that bin were clustered us-

ing a k-means algorithm using correlation as the distance metric. Since

previous research has suggested that the overdispersion phenomenon is

best described using a two-state model (Lánksý et al., 2001; Olypher et al.,

2002), we set the k-means algorithm to output 2 clusters, however larger

�Since previous research has suggested that the overdispersion phenomenon is best
described using a two-state model (Lánksý et al., 2001; Olypher et al., 2002), we set the
k-means algorithm to output 2 clusters. Larger numbers of clusters were tried, but there
was insufficient data for such analyses.
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numbers of clusters were also tried. Extracting more than 2 clusters frag-

mented the data for most analyses, thus there was insufficient data for

dispersion analyses with more than 2 clusters. Figure 6.7 shows two pat-

terns isolated from one 11 cm 
 11 cm pixel. Based on the clusters for

each pixel, we constructed two 2-dimensional firing rate maps by sorting

each pixel’s clusters into one or the other map by maximizing correlations

of the cluster’s mean firing pattern with the mean firing pattern of clusters

in the neighboring pixels. Finally, the times when the animal’s firing pat-

terns were detected in each map were extracted and used to partition the

behavior into either of the two representational states. These times were

referred to as the switching times.

Dispersion (Leave-One-Out):

In order to examine the dispersion of neuronal firing rates, a leave-one-

out approach was implemented. For each neuron in an ensemble, the

switching analysis was performed on the ensemble excluding that neu-

ron to obtain switching times for the ensemble. These ensemble switch-

ing times were applied to the left-out neuron to partition the position and

spike data into separate states for the construction of tuning-curves for

each state. The dispersion analysis was then run for the state times us-

ing the tuning-curves associated with that state, just as was done for the

linear-track directional task. To control for the partitioning of states, the

tasks were divided in half and the dispersion was run on those halves.
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Map Switching Analyses:

Whole-ensemble switching times were used for the rest of the analyses de-

scribed below. Dwell time in each state was calculated as the product of

the position sampling period and the number of position samples detected

in each respective state, divided by the number of transitions into each

state. Similarly, the switching rate was calculated as the number of transi-

tions into each state divided by the product of the position sampling pe-

riod and the total number of position samples detected on the task. These

values were averaged over the 10 sessions used in this analysis.

For the peri-event time histogram (PETH) switching analysis, the time

of switching was measured relative to the onset of key task events such

as food delivery (on OF and LT) or to the qualifying tone (on OFG). The

number of switching times at each time lag were binned into 0.1 s bins

for the 6 s before and after each event, summed for all event times, and

normalized by the number of positions samples detected in each bin to

yield the transition rate at each time lag from the event. The rates for

each session were averaged and the standard error of the mean was cal-

culated for each bin. The transition rate after an event was compared

to the transition rate before the event using an unpaired t-test given the

mean across sessions. The 95% confidence intervals corrected for multi-

ple comparisons were found using a bootstrap. For each session, 50 ran-

domly selected event times were drawn from a uniform distribution and

PETH of switching times were created for each of these pseudo-sessions.
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The distribution of 50 runs 
120 bins followed a normal distribution very

closely. The mean and standard deviation of this distribution were used

to calculate the 95% confidence intervals corrected for multiple compar-

isons �.025�Ntimes, .975�Ntimes�, where Ntimes � 120 (the number of bins

per PETH).

Coherency Calculation:

The whole-ensemble switching times were also used for the coherency

calculation. The actual and expected activity packets were compared us-

ing three measures: IRMS�t� (Equation 4.16); ISTD�t� (Equation 4.18); and

CDP�t� (Equation 4.15).

As stated earlier, the IRMS measure is sensitive to absolute differences in

ensemble firing across the population while the ISTD measure is sensitive

to relative differences in ensemble firing across the population. CDP mea-

sures the similarity between the actual and expected activity packets and

is sensitive to absolute firing differences. To calculate the coherency ratio

CR1�2
method to examine the maps derived from in the Map-Switching Analysis

(See 6.7.1), the data set was split in half by interleaving minutes. Thus, one

half of the data set consisted of all odd one-minute blocks of data, and the

other consisted of all even one-minute blocks of data. One half was used to

derive the state-dependent tuning curves for the other given the switching

times between maps and visa-versa. This eliminates issues of tautology.

The ensemble measure (IRMS, ISTD, or CDP) of one half was then calculated
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given the tuning curves of the other half and visa versa.The coherency

ratio was used to detect state-switching (see State-Switching Analysis):

CR1�2
method � �Coherency1 � Coherency2���Coherency1 � Coherency2�

where method was either RMS, STD, or DP, Coherency1 and Coherency2

are the coherency values for maps 1 and 2, respectively. Coherency was

defined as the proportion of times in the same data set that the actual and

expected activity packets matched as well or better than the sample of in-

terest:

Coherency � 1� cdfI�t��I�t�� (6.2)

OR

Coherency � cdfC�t��C�t�� (6.3)

where cdfmeasure�measure� means that the IRMS, ISTD, or CDP values from

each half were concatonated and used to calculated the cumulative distri-

butions cdf. �

This index CR1�2
measure of how coherent one state was with respect to the

other will be above zero if the ensemble firing pattern is more similar to

map 1 than to map 2, and less than zero if ensemble firing is more similar

to map 2 than to map 1. The coherency of firing patterns occurring in

one half of the session was calculated using tuning curves derived from

ensemble firing given the switching times in the other half of that session,

thereby circumventing any tautological issues. The coherency index was

�This does not result in a tautology since this used for a relative comparison. At most,
this concatonation only lowers our sensitivity working against a significant result.
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then aligned to switching times from one state to the other for each task

for the half of the data that was not used to construct the tuning curves.

It was then binned into 1 s bins. Similar results were found when the

tautology was used. The coherency ratio in the one second after an event

was compared to the coherency ratio in the one second before the event

using an unpaired t-test given the session means.

6.7.2 Results of Map Splitting

Figure 6.8 shows that this method can isolate both directional representa-

tional states observed on LT. Times when the firing patterns were clustered

into any pattern that was associated with map#1 are in red and times when

firing patterns were clustered into map#2 are in green; all position samples

are shown in black. Since our method could separate putative representa-

tional states of the hippocampus, we constructed spatial tuning curves for

each state. On the linear track, these state-derived tuning curves closely

matched the tuning curves based on the animal’s direction of movement

(See Figure 6.8). This same process was applied to OF and OFG data.

Applying this analysis to split the OF and OFG maps resulted in similar

splits on both tasks. Within the same task, there were clear instances where

multiple-place-field neurons had one place field split between maps, where

place-fields were entirely assigned to one map and not the other, or where

a place field in one map had a higher firing rate than in the other map.

These are all classic examples of partial remapping and rate remapping.
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Both types of remapping have been observed to occur when animals are

placed in different enclosures within the same environment (Leutgeb et al.,

2005; Anderson and Jeffery, 2003) and when changing tasks within the

same environment (Markus et al., 1995). Buzsáki (2005a) hypothesized

that this may be the way that animals keep track of nested environments

(e.g. driving your car – you have an environment within and the environ-

ment without). For example, a hippocampal representation of the animal’s

location with respect to the room may be similar to the representation of

its location in the arena in that the majority of neurons may fire in the same

locations in both maps with differences between these two maps coded by

a differences in the firing rate distributed across the ensemble. Thus, if the

animal is switching between two (or more) maps while using the task, the

tuning-curves used to calculate the dispersion z-score will be a time av-

erage of these maps and splitting these maps should reveal tuning curves

with partial rate remapping across the states.

Next, we examined the variability of neuronal firing within these two

states. Table 6.3 shows that there was much greater dispersion for the

whole-task maps than for the task split maps. In fact, the task splits were

often less than half the variance of the original data �. The larger variance

(as compared to the expected unit-variance distribution) was due almost

exclusively to a skew towards higher firing rates, rather than a symmetric

�Task original values are different from the data in Table 6.1, because they are from
the subset of sessions with more than 20 neurons recorded simultaneously.
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Table 6.3: Dispersion of firing patterns on each task before and after splitting by repre-
sentational map: a Leave-One-Out analysis.

Task Original Map1 Map2
LT 6.7 2.9 2.4
OF 5.2 2.5 4.6
OFG 5.8 3.5 2.8

distribution around zero as in the original maps. To test whether this de-

crease in the variance was simply an artifact of dividing the task into two

states, the dispersion of each task divided in half was examined. There

was no comparable reduction in variance (data not shown).

An interesting question that follows from this splitting of hippocampal

representational states is whether these artificially derived states are of

any relevance to the animal. We examined this in two ways: 1) testing

whether these states were consistent enough to be useful to higher brain

regions; and 2) testing whether the switching times are in anyway related

to the task requirements.

We tested the consistency of these states using coherency to compare

network states derived from a subset of the data to the switching dynam-

ics of the rest of the data from that session. To do this, we used a method

similar to that of Redish et al. (2000). As expected, there was a signifi-

cant increase in the coherency index as the ensemble switched from state

2 to state 1, and a significant decrease in the coherency index when the
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Table 6.4: Significant Changes in Coherency at Transitions. The probability that the
coherency index CR1�2

method � �Coherency1�Coherency2���Coherency1 �Coherency2�
of both states was not increased for transition �S2 � S1� or decreased for transition
�S1 � S2� was calculated for each transition between states data shown in Figure 6.10.

Task Transition PRMS�be f ore � a f ter� PSTD�be f ore � a f ter� PDP�be f ore � a f ter�

LT �S1 � S2� 3.2 � 10�5 0.010 6.7 � 10�8

OF �S1 � S2� 2.5 � 10�8 3.6 � 10�10 4.1 � 10�14

OFG �S1 � S2� 3.3 � 10�7 3.3 � 10�7 2.5 � 10�13

Task Transition PRMS�be f ore � a f ter� PSTD�be f ore � a f ter� PDP�be f ore � a f ter�

LT �S2 � S1� 1.4 � 10�8 1.1 � 10�12 8.6 � 10�13

OF �S2 � S1� 4.1 � 10�17 0.034 8.0 � 10�24

OFG �S2 � S1� 9.4 � 10�16 1.5 � 10�5 1.0 � 10�16

ensemble switched from state 1 to state 2 (for statistics, see Table 6.4). This

indicates that these states are stable and represent real differences in the

ensemble firing pattern, suggesting a real network oscillation.

The temporal dynamics of state switching were next explored. Ta-

ble 6.5 shows the transition statistics for the state switching processes de-

scribed above. The average switching rate µ#
switch was approximately 3.2 Hz,

with the average cycle rate µ#	#
switch of approximately 1.6 Hz. The in-state

dwell was approximately 380 ms; thus, these states often persisted through

multiple theta cycles on average.

To examine the relation of these temporal dynamics to the task be-

havioral parameters, a peri-event time histogram (PETH) was constructed
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Table 6.5: State transition Statistics.

Task µswitch (Hz) dwell (sec)

LT 1.5 0.35
OF 1.6 0.31
OFG 1.6 0.33

from all state transition times derived from the ensemble state to yield the

transition rate ratio leading up to each task event (viz. food delivery on

LT or OF, and the qualifying tone on OFG). These normalized PETHs are

shown in Figure 6.11. There were significant increases in switching rates

following reward related events an all tasks (LT: mean�post� pre� � 0.019,

P�pre � post� � 0.0045, t � 2.9; OF: mean�post � pre� � 0.014, P�pre �

post� � 0.0014, t � 3.3; OFG: mean�post � pre� � 0.021, P�pre � post� �

0.0023, t � 3.1, 2 sample unpaired t-test). These results suggest that the

state transition analysis above is pulling out ensemble dynamics relevant

to the animal’s behavior. If one also considers the coherency results that

suggest a network-wide modulation occurring at these transition times,

these data indicate that key task events such as food reward are associ-

ated with shifts in the representational state of the network. Given that

these shifts occur at a greater frequency than the task behavioral cycle, it is

possible that these shifts in network state correspond to internal cognitive

shifts in motivation or behavioral planning such as spatial target selection
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(e.g. switching from pellet search behavior to targeted navigation on OF).

6.8 Conclusions

In this chapter we explored evidence for reference frame switching in the

hippocampus using three different tasks: the linear track (LT), foraging

in the open-arena (OF), and goal-directed navigation in the open-arena

(OFG). We were able to replicate findings of excessive variance in place

cell discharge on OF and the findings of reduced variability as animals ap-

proached a goal. We demonstrated that on a task with known reference-

frame switching (LT), splitting by representational state (LT-directional)

resulted in greatly reduced variability. We presented evidence that, con-

trary to previous research, there were significant local interactions between

some neurons with overlapping place-fields, but that overall this effect

was weak. We showed that in accordance with the cell-assembly hypoth-

esis, these effects are correlated with the local behavioral variability and

level of repetition. Finally, we were able to extract different spatial fir-

ing maps based on a separation of ensemble firing patterns. These firing

maps are indicative of separate reference frames being used in an alter-

nating pattern on the task. The variability of firing patterns within these

reference frames is greatly reduced, approaching the variance expected by

a single point-process stochastic model.

One question that comes to mind when considering the results of the
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coherency analysis is why the leave-one-out analysis yielded no signifi-

cant relationship between the ensemble measures and the dispersion mea-

sure if there truly is a switching process. The answer lies in the null result

for the leave-one-out analysis on the non-directional linear track. This tells

us that if we have two maps used on one task, that the tuning-curves will

be an average of both maps. Assuming each map is active approximately

the same amount of time as the other map, then when either map is ac-

tive, the error in the ensemble activation is equally high. In other words,

a switch from one map to the other results in similar IRMS and ISTD mea-

sures.

One possible interpretation for this reduced variance of the split times,

is that it is simply a phenomenon of explaining the variance by adding

another parameter. This may be the case, however it would have to be

argued that it was a judicious parameter choice because splitting the map

in other ways does not result in lowered variance (e.g. splitting the tasks

in half — first 10 min versus second 10 minute; data not shown). Re-

gardless of whether or not the smoothing that results from maximizing

correlations with neighboring pixels within a map is responsible for the

reduction in variance after splitting, there remains the temporal signifi-

cance of the transition times between maps. The maps correlate well with

the maps corresponding to the directions of travel on linear track and tend

to switch right after reaching the opposite feeder. Likewise, on the OFG,

the transition between maps corresponds closely with the reward, with an
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increase in transition rate between maps after the qualifying tone.

What do these data tell us about cell assemblies? Cell assemblies are by

definition neurons bound together by common inputs and reciprocal con-

nections such that their spiking is more interrelated within an assembly

than across an assembly. If we apply this definition to our hippocampal

data, we see that there are multiple continuous cell assemblies. Multiple in

the sense that distinct spatial tuning maps result from clustering the firing

patterns observed on the task. Continuous in the sense that each map is

extended in time and space such that the pattern of neurons active within

one map gradually evolves as the animal moves through space until the

hippocampus switches to the next map. Testing our continuity assump-

tion is beyond the scope of this chapter. It is the assumption of spatial

continuity that allowed us to define the switching times between maps.

The evidence for these cell assemblies is in the pair-wise correlations.

If neurons are part of the same cell assembly they could be bound together

spatially and temporally, while neurons from a different cell assembly may

be bound together spatially and remain temporally independent. This is a

recently reported phenomenon (Harris et al., 2003; Harris, 2005). These

data also fit with recent observations of non-spatial network coding in

the hippocampus reported by Lin et al. (2005). Using a multiple compo-

nents analysis they found that specific patterns of activation across the hip-

pocampal network could be used to reliably discriminate between salient

task events such as air-puffs, shaking the environment, and sudden down-
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ward displacement of the animal’s cage. The ensemble activation patterns

in our data overlapped to some extent in that there was a generalized sim-

ilarity between the two maps extracted from OF and OFG with variations

in firing rate depending on which state the network was in and occasional

remapping of a few neuronal responses to new preferred locations in the

environment. This level of overlap is reminiscent of the the overlap in

activation patterns (neural cliques) observed by Lin et al. (2005).

Our results argue for a faster switching rate with deeper modulation

than suggested by Olypher et al. (2002). As mentioned earlier, the promi-

nent, left-shifted peak in our data (see Fig 6.2) is due to no-fire passes.

Figure 6.9 depicts numerous state-remappings where a place field exists

in one state and is absent in the other state. If an animal runs through this

region in one state, spikes will be fired, while in the other state spikes

will not be fired. Markus et al. (1994) reported the remapping of spa-

tial responses in an environment to changes in the task reward contin-

gencies within same session. It may be that training our animals on two

behaviorally different tasks has produced hippocampal spatial represen-

tations that contrast these behaviorally different tasks ultimately resulting

in deeper modulation between maps used by our animals. This would in-

crease the incidence of no-fire passes on both tasks and contribute a large

left-shifted component to the distribution of z-scores.

One further question remains: we can account for half the variance

in the overdispersion of place-cell firing by splitting the ensemble map
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into two temporally independent spatial reference frames, but there is

still two to three times the variance expected given a Poisson point pro-

cess. While we have thus provided more direct evidence for the reference

frame switching hypothesis, there remains as yet unexplained variability

in the hippocampal neuronal firing rates. This variability is likely gener-

ated from a number of sources such as speed modulation, variations in

plasticity as a function of experience and the regularity of spatial behav-

ior. There also remains the distinct possibility that other internal cognitive

processes such as navigational planning also influence the temporal vari-

ability observed in hippocampal neurons.
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Figure 6.7: Two distinct firing
patterns isolated within a sin-
gle pixel. Firing rate vectors
from each video tracker sample
found within an 11 cm � 11 cm
pixel were clustered using a k-
means algorithm. Shown at left
is the firing rate for each neuron
(shading by firing rate) for each
time detected in the pixel of in-
terest. Times have been sorted
into one of two clusters. Times
when no firing occurred within
the ensemble are not shown.
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Figure 6.8: Two distinct maps correspond to two directions of travel on LT. Firing rate
vectors were clustered in two clusters using a k-means algorithm and sorted into one of
two maps by maximizing correlations with neighboring pixels based on cluster means.
Times corresponding to which firing rates were clustered to which map are plotted in red
(map 1) or green (map 2). All position samples are plotted beneath in black. Note that
the red and green times segregate to movement in one direction or the other. Scale bar is
1 minute, movement along the x-direction is approximately 1 m. Gaps in x-position data
are either due times removed when the animal was in a non-theta LFP state, sharp-wave
times, or poor video tracking.
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Figure 6.9: Two distinct maps are found on OF and OFG. Firing rate vectors were clus-
tered in two clusters using a k-means algorithm and sorted into one of two maps by maxi-
mizing correlations with neighboring pixels based on cluster means. Small number in the
lower right-hand corner of each group is the firing rate associated with dark red on th map.
Not all neurons are represented. The assignment of Map 1 and Map 2 for OF and OFG was
based on which map (or stack of tuning curves) on OF correlated best with Map 1 vs Map 2
on OFG. Note there are instances of switched maps from OF to OFG, instances of dropped
place-fields from Map 1 to Map 2, and even instances of rate remapping between Maps
where one field has a higher firing rate in one map than in the other.
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Figure 6.10: States are stable features of ensemble information processing. The co-
herency index CR1�2

measure � �Coherency1 � Coherency2���Coherency1 � Coherency2�
given each ensemble measure was calculated from non-overlapping sets of data to avoid
tautological issues. (A) On LT, coherency ratio increases when transitioning from state 2
to state 1. Results are shown for each ensemble measure. (B) LT transitions from state 1
to state 2 show a significant drop in coherency ratio. (C) On OF, coherency ratio increases
when transitioning from state 2 to state 1. (D) OF transitions from state 1 to state 2 show a
significant drop in coherency ratio.(E) On OFG, coherency ratio increases when transition-
ing from state 2 to state 1. (F)OFG transitions from state 1 to state 2 show a significant drop
in coherency ratio. Error bars show standard error of the mean over sessions. Statistics are
provided in Table 6.4.
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Figure 6.11: State switching dynamics lead-
ing up to and following key task events.
(top-left) State switching is suppressed dur-
ing approach to the feeder on LT (P�pre �
post� � 1 � 10�8, 2 sample unpaired t-
test comparing 6 s before and after food
delivery). There is a significant drop in
state switching (blue arrow) during running
(green) with an abrupt increase at food de-
livery (red arrow; note animal is still in mo-
tion). Black gradient depicts departure-time
distributions. (top-right) There is no visible
change in the transition rate between maps
on OF (P�pre � post� � 0.87, 2 sample un-
paired t-test comparing 6 s before and after
food delivery). (bottom-left) There is a sig-
nificant increase in the rate of state switch-
ing (red arrow) following the qualifying tone
(P�pre � post� � 0.0023, 2 sample unpaired
t-test comparing 6 s before and after food de-
livery). The solid red line is the mean of
the boot-strapped distribution, the dotted red
lines are the 95% confidence intervals cor-
rected for multiple comparisons.



Chapter 7

Sharp-wave Emission:

Experience Dependent

Hippocampal Dynamics.

Abstract

Network-level modulation that contributes to the variablility in the firing

of hippocampal units is evident in the difference between theta-related ac-

tivity and the activity present during sharp-waves. Hippocampal firing

patterns present during behavior when 6-10 Hz theta oscillations dom-

inate the local field potential (LFP) record are reactivated during sharp

waves, transient LFP events, present in rest and subsequent slow-wave

sleep. Theories of hippocampal processing suggest that sharp-waves arise

183
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from strengthened plasticity during theta-related behaviors. We tested

these predictions by recording neural ensembles and LFPs from rats run-

ning tasks requiring different levels of behavioral repetition. The number

of sharp-waves emitted increased during sessions with more regular be-

haviors. Reactivation became more similar to behavioral firing patterns

across the session. This enhanced reactivation also depended on the reg-

ularity of the behavior. These results confirm the predictions made by

current theories and support the hypothesis that sharp-waves arise from

potentiated synapses within the hippocampal network.

7.1 Introduction

As discussed earlier, damage to the hippocampal formation causes mem-

ory deficits in the storage of facts, temporal episodes, and new spatial

environments. Analogous deficits are observed in both humans and an-

imals following hippocampal lesions (Scoville and Milner, 1957; O’Keefe

and Nadel, 1978; Kesner and Novak, 1982; Morris et al., 1982; Squire, 1992;

Redish, 1999; Clark et al., 2000; Fortin et al., 2002). In rodents, neural cor-

relates of spatial aspects of this memory are found in the strong spatial

tuning of the hippocampal pyramidal neurons (place cells, O’Keefe and

Dostrovsky, 1971; Redish, 1999). Tasks with repetitive spatial components

have been used to study reactivation of spatially-dependent firing pat-

terns during slow-wave sleep (Wilson and McNaughton, 1994; Skaggs and
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McNaughton, 1996; Kudrimoti et al., 1999; Nádasdy et al., 1999; Lee and

Wilson, 2002). It is thought that this reactivation of stored sequences dur-

ing sleep underlies the consolidation of memory traces to other brain re-

gions and that the loss of the hippocampus therefore leads to anterograde

memory deficits (McNaughton et al., 1983; Marr, 1970, 1971; Buzsáki, 1989;

Squire, 1992; McClelland et al., 1995; Sejnowski and Destexhe, 2000).

In the hippocampus, network states are characterized by distinct os-

cillatory patterns in the local field potentials (LFP). In rats, hippocampal

LFPs show two clearly identifiable oscillatory patterns, (1) a 7–10 Hz regu-

lar oscillation (theta), seen during attentive behaviors, such as running, as

well as REM sleep, and (2) a more broad-spectrum pattern (LIA), seen dur-

ing other behaviors, such as grooming, eating, and slow-wave sleep (Van-

derwolf, 1971; O’Keefe and Nadel, 1978). LIA is punctuated by transient

LFP events termed sharp waves (SW), identified by high-frequency (100-

250) Hz ripple oscillations (O’Keefe and Nadel, 1978; Buzsáki et al., 1983;

Ylinen et al., 1995). During wakefulness, LIA and SW brain states similar

to those activated during sleep are observed (Vanderwolf, 1971; O’Keefe

and Nadel, 1978; See Figure 7.2). During these awake sharp-waves, en-

semble firing patterns are re-activated and this activity appears to grow

with time (O’Neill et al., 2006).

Theories of hippocampal function (Shen and McNaughton, 1996; Buzsáki,

1989; Redish and Touretzky, 1998; Redish, 1999) predict that asymmet-

ric plasticity (Levy and Steward, 1983; Bi and Poo, 2001) applied to re-
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current connections within CA3 through experience of repeated spatial

sequences during theta will lead to storage of sequences within the re-

current connectivity matrix (Levy and Steward, 1983; Muller et al., 1991;

Blum and Abbott, 1996; Redish and Touretzky, 1998). During states in

which the network was uncoupled from its entorhinal inputs (e.g. slow

wave sleep and LIA, Chrobak and Buzsáki, 1994, 1996; Chrobak et al.,

2000), uncorrelated noise in the system would then cascade across these

strengthened synapses producing a replay of this stored information dur-

ing sharp-waves (Buzsáki, 1989; Ylinen et al., 1995; Redish and Touretzky,

1998; Redish, 1999; Csicsvari et al., 2000). These theories predict that the

emission of awake sharp wave ripple events should increase in number

with experience within a session and that the organization of ensemble

firing during those awake sharp-waves should improve with experience.

These increases in sharp-wave emission and reactivation should depend

on the level of repetition of spatial sequences. Since experimental evi-

dence suggests SW activity in CA3 can initiate CA1 SWs in vivo and in

vitro (Behrens et al., 2005; Buzsáki et al., 1983; Csicsvari et al., 1999a; Yli-

nen et al., 1995), any changes in SW activity in CA3 should be observable

in CA1 as well.

We explicitly examined the task-dependence of sharp wave emissions

and hippocampal ensemble reactivation in well-trained rats running three

tasks of varying complexity. Hippocampal neural ensembles and local

field potentials were recorded from the CA1 region of six rats as they ran



Ch 7. Sharp-wave emission 187

three behavioral tasks daily. The tasks included shuttling back and forth

along a linear track (LT), foraging for scattered pellets in a cylindrical arena

(“open field”, OF), and navigating to a goal for food reward in the same

cylindrical arena (OFG). We demonstrate that both sharp wave emission

and ensemble reactivation during sharp waves increased with experience.

These increases depended on both the behavioral repetition and the regu-

larity (measured as path entropy). These data were also presented in the

previous chapter (See Chapter 6).

7.2 New Analyses

Since the past experimental results have demonstrated forward replay of

reactivated ensembles (Wilson and McNaughton, 1994; Skaggs and Mc-

Naughton, 1996; Nádasdy et al., 1999; Lee and Wilson, 2002) with recent

reports of backward replay (Foster and Wilson, 2006) and since both for-

ward and backward replay is predicted by various theories (Levy and

Steward, 1983; Buzsáki et al., 1994; Buzsáki, 1996; Redish and Touretzky,

1998), we developed a non-directional ensemble reactivation analysis, that

takes into account the ensemble activation patterns present in theta and

during sharp-waves. Also, since we infer from these theories that specific

aspects of the spatial behavior (e.g. the regularity and repetition) are re-

sponsible for engaging the mechanisms of sharp wave generation and as-

sociated ensemble reactivation, we therefore developed a new behavioral
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analysis: behavioral entropy.

7.2.1 Co-firing Reactivation Analysis

Using only spikes that occurred in strictly high theta states (see Methods:

Theta Detection), all neuron pairs that fired more often within 
 half the

median theta cycle given a spike from each neuron of interest (i.e. all

other neurons in the ensemble not on the same tetrode) were considered

to co-fire. This was assessed by finding the maximum bin of the cross-

correlation. If the maximum of the cross-correlation was at the zero bin,

that pair of neurons “co-fired” during theta.

The same co-firing criterion was applied to the spikes emitted during

SWs except that the median SW duration was used for the bin-width of

the cross-correlations between non-tetrode cell pairs. Since the mean SW

duration did not significantly change over laps (see Results), this measure-

ment of co-firing was unlikely to be artificially inflated by any changes in

SW period. Using the median SW duration partially compensates for the

compression of replay shown during slow-wave sleep (Lee and Wilson,

2002; Nádasdy et al., 1999) since the SW length was approximately half

the length of theta (45
 5.1 %; approximately 2 times compressed), which

is already up to 10 times compressed relative to behavior (Skaggs et al.,

1996). If the maximum of the cross-correlation was at the zero bin, a pair

of neurons “co-fired” during SWs. Any noise in determining this measure

would only detract from the signal, therefore this definition of co-firing
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enforces the conservative nature of the analysis below.

7.2.2 Pattern Identification

Computing the temporal co-firing for all cell pairs from different tetrodes

yielded a pattern of 1’s and 0’s for the theta state sθ and for the SW state

sSW (1 = co-firing, 0 = not co-firing; see example 7.1 and 7.2).

sSW � 10111 . . . 100 (7.1)

sθ � 00011 . . . 100 (7.2)

These two ensemble co-firing patterns were compared as follows: (1) sc

was computed as the exclusive OR (XOR) of the the two binary patterns

sSW and sθ (see example Eq. 7.3) ;

sc � sSW � sθ � 10100 . . . 000 (7.3)

(2) given the null hypothesis H0 that sSW and sθ are independent with re-

spect to each other and randomly related, the probability Prob�k � nc�N, pc�

of observing a particular number of 1’s, where nc � ∑ sc or less (1’s are mis-

matches between sSW and sθ) in the pattern sc can be computed from the

binomial cumulative distribution (Eq. 7.4) with parameters pc (the proba-
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bility of observing a 1; Eq. 7.7), and the length N of pattern sc.

Prob�k � nc�N, pc� �
nc

∑
k�1

N!
k!�N � k�!

pk
c�1� pc�

N�k (7.4)

pc, the probability of observing a 1 in sc, is determined from the proportion

of ones pSW in the SW co-firing pattern and the proportion of ones pθ in

the theta co-firing pattern (7.7).

pSW �
∑ sSW

N
(7.5)

pθ �
∑ sθ

N
(7.6)

pc � pSW�1� pθ� � pθ�1� pSW� (7.7)

This is a one-tailed measure of how significantly different from ran-

dom the similarity between two patterns is. If sSW and sθ are very similar,

sc has very few ones, and nc is smaller than expected by random chance;

therefore, Prob�k � nc�N, pc� is low. Because the probability of a mis-

match pc is calculated from the proportion of 1’s and 0’s in the SW and

theta co-firing patterns, Prob�k � nc�N, pc� is robust to differences in over-

all proportions of ones and zeros between the two patterns. Furthermore,

since the null hypothesis assumes the patterns are randomly related, de-

pendencies between elements within either pattern are therefore expected

to be randomly related. The result is that the individual elements of the

output of the XOR operation are expected to be independent and identi-
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cally distributed. Violations arising out of dependencies that occur in both

sets argue for a rejection of the null hypothesis. Our analytical calculations

and empirical simulations found that the binomial approximation is con-

servative and will underestimate significance levels. This is because, of

lower and upper limits to the number of possible matches, which reduces

the possibility of seeing low probability events (i.e. events that argue for a

rejection of the null hypothesis). These limits come increasingly into play

as the proportion of 1’s and 0’s in the two patterns deviates from 50%, as

is often the case in our data. Thus, as the proportion of 1’s and 0’s gets

farther from even in either or both patterns, the measure becomes more

conservative with nc approaching either N � pc or N � �1� pc�.

Correlations between the sSW and sθ patterns yielded temporal trends

and differences between the experimental group and randomized controls

qualitatively similar to the above reactivation analysis for each task. Thus,

results presented in the paper hold for other methods of comparing the

ensemble co-firing patterns.

Finally, it is important to note that this analysis uses the entire ensemble

co-firing pattern, exploiting information about neurons that are not active

on the task or pairs that did not have overlapping place-fields. Thus, we

are not measuring whether neuron pairs correlated in theta are increas-

ing their correlation in SW; we are testing whether the same cell assem-

bly is present in SW that was present in theta. In other words, if neuron

pairs were co-activated during SW that were not co-active during theta
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(or visa versa), our measure would show a lower value than for matched

co-activations in both states. Our application of this method here is not

temporally biased, and is therefore insensitive to the ordering of the reac-

tivated patterns. Furthermore, as stated earlier, any noise in our estimation

of co-activations would reduce the similarity of the sSW and sθ patterns and

argue in favor of the null hypothesis. However, to reduce the likelihood of

clustering artifacts influencing the analysis (Quirk and Wilson, 1999), only

neuron pairs recorded across tetrodes were included in the analysis.

7.2.3 Randomized Ensemble Controls

Two randomized controls were used for comparison with experimental re-

activation. The first randomized control (SWAP) randomizes spike iden-

tity across the ensemble while maintaining the over-all ensemble state

dependent firing. The second randomized control (SHUFF) shuffles the

inter-spike-intervals (ISI) of each neuron preserving neuronal firing statis-

tics but disrupting state-dependent firing and controlling for the contribu-

tion of silent cells to the reactivation analysis. (See Fig 7.1). Both random-

izations were run 8 times for each session and the data for each session

were averaged for within-session comparisons.
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SWAP SHUFF

Figure 7.1: Methods: Randomized controls for cell-assembly similarity. Diagrammatic.
The top three rasters represent spikes from three simulated neurons. Time runs along
the x-axis. SWAP: The spikes are shuffled across neurons preserving their timing but
changing the neuron they are assigned to. This preserves the overall ensemble firing
patters with respect to the oscillatory state shown at top. SHUFF: The intervals between
spikes are shuffled within each neuron’s spike train in the bottom rasters, preserving
each neuron’s firing statistics but disrupting ensemble state-dependent temporal firing
patterns.

7.2.4 Behavioral entropy

For each task on each day, the x, y-position data was binned into 40 pixel
 40 pixel

blocks (11 cm
11 cm) and the transition probability from each bin into

every other bin was calculated for each block of time. Thus, our 640
 480

video capture yielded a 16 
 12 bin array and a 192
 192 transition ma-

trix, containing the transitions between the bins. The transition matrix’s

Shannon entropy was calculated using all non-zero transitions as

H �
N

∑
j

N

∑
i

�pi, jlog2 pi, j (7.8)
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where pi, j is the time-independent probability of transition from bin j to

bin i and N � 16 � 12 � 192 is the total number of pixels.

7.3 Results

696 spike-trains were recorded over 24 sessions in ensembles of up to 96

neurons/session (30 
 31 neurons/session; mean 
 SD); LFP data from

17 additional sessions were included for which spike-trains were not un-

available. Sharp waves (SW) were identified by a threshold applied to the

average amplitude across tetrodes of the Hilbert-transformed local field

potentials, band-pass filtered from 100 to 250 Hz. As observed in previ-

ous experiments (O’Keefe and Nadel, 1978; Buzsáki et al., 1983; Christian

and Deadwyler, 1986), SW occurred during the tasks (LT, OF, OFG) con-

centrated when the rat paused in running (See Figure 7.2). Overall, the

number of SW events per time spent in non-theta states increased with

laps on each task (slope � 0, P�slope � 0� � 0.0003). See Figure 7.3.

To determine whether these sharp wave events were also associated

with experience dependent changes in neuronal firing, we examined the

cross-neuron co-firing probabilities. When averaged over the entire 20 min

session, over all tasks, the pattern of neuron pairs that were co-active dur-

ing awake sharp waves were significantly more similar to the pattern that

were co-active during theta than would be expected given random neu-

ronal activity (ANOVA, P � 10�7, F � 19.41). These results were com-
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pared to two randomized controls: SWAP, in which the spike identity

was swapped within the ensemble, preserving timing and ensemble fir-

ing properties, and SHUFF, in which the spike times were shuffled within

spike train, preserving each neuron’s overall firing rate. Both randomiza-
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Figure 7.2: Awake Sharp waves were detected. (top) The rat’s location when the sharp-
wave (below) was detected. Time is on the x-axis, position along the length of the track
is plotted on the y-axis. Bullseye indicates location of rat when SW occurred, just prior
to beginning the journey to the next feeder. (bottom) Sharp wave ripple event. Time is on
the x-axis, voltage is plotted on the y-axis. Scale bar indicates 100 ms
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tions removed the effect. See Figure 7.4.

The similarity between SW firing and theta firing also increased across

the session. For each session, this was measured by dividing the num-

ber of SWs in the session in half (first half, second half), and compar-

ing the similarity of co-active firing in each half with the co-active firing

in theta. Overall, the similarity tended to increase (one-sided Wilcoxon

paired signed rank test comparing reactivation during the first n
2 SW to re-

activation during the second n
2 SW, p � 0.02). See Figure 7.5. While there

was a strong overall effect, the strength of the effect on each task differed.

We next consider each task individually.

7.3.1 Linear Track.

Sharp waves occurred during the linear track task, concentrated at the

ends of the track where the rat received food and paused between each

lap (0.19 
 0.11 SW/sec in non-theta; mean 
 SE). The number of SW

events per lap increased throughout the session (slope � 0, P�slope �

0� � 0.00002, see Fig. 7.3). This increase in SW could not be attributed to a

change in performance, behavior at the track ends, changes in time spent

in non-theta states or changes in rate of transition between non-theta and

theta (see controls, below). The duration of the SW showed no detectable

change across the session (P�slope � 0� � 0.30, ns), however there was a

significant increase in the amplitude of the SW (P�slope � 0� � 0.00005).

Awake SWs are associated with reactivation of the ensembles active dur-
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ing theta (O’Neill et al., 2006; Foster and Wilson, 2006) as are SWs that

occur in slow-wave sleep after a session (Wilson and McNaughton, 1994;

Kudrimoti et al., 1999; Hoffmann and McNaughton, 2002; Nádasdy et al.,

1999). The SW emitted during waking states were also associated with

reactivation of firing patterns observed during the theta-associated com-

ponents of behavior (ANOVA, P � 10�10, Fig. 7.4). The proportion of

neurons included in each sharp wave did not significantly change within

each session (P�slope � 0� � 0.84, ns). Nor did the average firing rates

occurring within a SW change within a session (P�slope � 0� � 0.94,

ns). The reactivation itself, however, did increase in similarity to co-firing

patterns observed during theta across the task (one-sided Wilcoxon paired

signed rank test comparing reactivation during the first n
2 SW to reactiva-

tion during the second n
2 SW, P � 0.05, see Fig. 7.5).

Linear track controls. The increase in SW emission rate on the linear

track could have been caused by an increase in the time spent resting be-

tween laps at the track ends, however there was no detectable increase in

lap duration (P�slope � 0� � 0.88, ns) nor in the resting time between laps

(P�slope � 0� � 0.79, ns). Neither was there a corresponding increase in

the rate of transition out of theta (P�slope � 0� � 0.28, ns), nor in the time

spent in non-theta brain states (P�slope � 0� � 0.14, ns). Since we did not

have video image data (only LED coordinates), an analysis of specific be-

haviors was not possible (e.g. grooming, resting, chewing, etc.). However,
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to test for changes in the activity level at the track ends, we compared how

the mean and standard deviation of the animal’s speed while at the track

ends changed across laps. There was no change in either of these measures

of activity level (mean movement speed P�slope � 0� � 0.55, ns; standard

deviation of movement speed P�slope � 0� � 0.36, ns). As a final con-

trol, to check for the possibility that increases in overall LFP power with

experience could affect SW detection, we ran the equivalent analyses with

the band pass filter set to the theta band power. No detectable increases in

threshold crossings, neuronal recruitment, or firing rate were observed at

the theta band, suggesting that the increase in SW event detection is due

to a specific enhancement in the SW frequency band. Thus, the robust in-

crease in SW emission on LT cannot be explained by overt changes in the

animal’s state of arousal or intensity of behavior over the first 30 laps.

7.3.2 Two-Dimensional Tasks.

Since the increase in SW emission during awake states was obtained on a

linear track where the animal repetitively traversed the same path, which

presumably would allow for repeated strengthening of the network’s con-

nectivity, we examined whether these increases occurred in more complex

environments and tasks with less spatial behavioral regularity. Each day,

in addition to the linear track session, each rat ran two additional 20 min

sessions: one session in which the rat foraged for food randomly dis-

tributed in a 92 cm diameter cylindrical arena (“open-field”, OF) as well
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as one session in a goal-oriented foraging task (“open-field with goal”,

OFG). In the goal-oriented task, whenever the rat crossed the hidden goal,

2–5 pellets were delivered. Once the goal was triggered, the rat had to

remain outside of the goal for 4 seconds in order to re-arm the goal. The

goal-location changed pseudo-randomly from day to day, but remained

constant within each day. The landing location of pellets was randomly

distributed throughout the environment on both OF and OFG.

Sharp waves also occurred on OF and OFG concentrated where the

rat paused to receive food or rest (OF: 0.11 
 0.10 SW/sec in non-theta,

mean 
 SE; OFG: 0.042 
 0.061 SW/sec in non-theta, mean 
 SE). The

rate of SW emission did not increase significantly on the open-field task

(P�slope � 0� � 0.12), nor was there a detectable change in SW amplitude

(P�slope � 0� � 0.16, ns). As in LT, there was no detectable change in the

duration of the sharp wave (P�slope � 0� � 0.10, ns). When averaged

over the entire 20 min session, the pattern of neuron pairs that were co-

active during awake sharp waves were significantly more similar to the

pattern that were co-active during theta than would be expected given

random neuronal activity for both tasks (P � 10�9, F � 31.23, Fig. 7.4).

The similarity between cell assemblies active during SW and theta showed

no significant increase in the OF task, (one-sided Wilcoxon paired signed

rank test, P � 0.28, ns, Fig. 7.5).

On the open-field goal (OFG) task, the occurrence of SW showed a

strong trend (approaching, but not reaching significance when corrected
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for multiple comparisons, P�slope � 0� � 0.002, Fig. 7.3; ns due to

multiple comparisons). As in OF, the duration of SWs did not change

significantly (P�slope � 0� � 0.57, ns), nor did the amplitude of SWs

(P�slope � 0� � 0.44, ns). When averaged over the entire 20 min session,

the set of neuronal pairs that were co-active during awake sharp waves

were significantly more similar to the set that were co-active during theta

than would be expected given random neuronal activity for both tasks

(ANOVA, P � 10�9, F � 23.39, Fig. 7.4). The similarity between cell as-

semblies active during SW and theta on OFG did not show a detectable in-

crease (one-sided Wilcoxon paired signed rank test, P � 0.10, ns, Fig. 7.5).

Two-dimensional task controls. For the two-dimensional tasks, there

was no significant increase in lap duration (OFG, P�slope � 0� � 0.70,

ns), neither was there a corresponding increase in the rate of transition

out of theta (OFG, P�slope � 0� � 0.74, ns) nor in the time spent in

non-theta brain states (OFG, P�slope � 0� � 0.10 ns). Because the lap

times used in the OF task were taken from the matched OFG task oc-

curring on the same day, these times were not useful in terms of behav-

ioral controls for the open-field; however, the brain state controls exhib-

ited trends towards a slight increase in both the rate of transition out of

theta (OF, P�slope � 0� � 0.02) and the time spent in non-theta (OF,

P�slope � 0� � 0.01), but neither was significant when multiple com-

parisons were taken into account. This may be due to differences in food
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delivery contingencies, particularly that food delivery was not linked to

behavioral output in the OF task.

7.3.3 Comparisons across tasks.

A two-way ANOVA comparing SW emission across laps and tasks re-

vealed a strong effect of task (F � 19.1,P � 1 � 10�8). SW emission rates

were significantly higher on LT than on either OF or OFG. (P � 0.05,

Tukey HSD criterion for multiple comparisons); SW emission rates on

OFG were higher on OF than on OFG (P � 0.05, Tukey HSD criterion

for multiple comparisons).

Since SW emission rates and reactivation time courses differed across

tasks, we tested whether those differences in SW emission rates correlated

with differences in spatial sequence behavior. To test this, each spatial task

was binned into 40 pixel 
40 pixel blocks ( 11 cm 
11 cm) and the transi-

tion probability from each bin into every other bin was calculated for each

block of time. (See Methods.) As expected, an ANOVA comparing the

entropy of these transition probabilities across tasks and time revealed a

strong effect of task-type (F � 101.3, P � 10�12) with LT having signifi-

cantly lower transition entropy compared with either OF or OFG. Consis-

tent with the linear track being a 1-dimensional task and both open-field

tasks being 2-dimensional, LT had approximately half the spatial transi-

tion entropy of the behavior on OF and OFG (LT: 27.4 
 15.2 bits ; OF:

53.7
 28.9 bits; OFG: 56.2
 27.0 bits, mean 
 SD).



Ch 7. Sharp-wave emission 202

Because sequential behavior is thought to engage hippocampal plastic-

ity mechanisms (Mehta et al., 1997; Ekstrom et al., 2001; Shen et al., 1997),

and both SW emission and reactivation increased with time (Figs. 7.3, 7.5),

we tested the extent to which SW emission and reactivation were depen-

dent on the interaction of the two factors of behavioral regularity. Because

a sufficient number of SWs were available to measure emission as a func-

tion of lap, the emission rate of SWs in non-theta states was measured as

a function of lap and the entropy of all behavior leading up to that lap

(“cumulative entropy”). SWs were more likely to be emitted earlier with

more regular behavior (stepwise multiple linear regression: significant ef-

fect of lap number P � 0.00001, and of entropy P � 0.00001, with a strong

interaction P � 0.00001,F � 52.9; See Fig. 7.6).

This same trend could be seen in each task. On LT sessions, SWs were

more likely to be emitted earlier with more regular behavior. (stepwise

multiple linear regression: significant effect of lap number P � 0.00001,

and of entropy P � 0.0005, with a strong interaction between the two

P � 0.00001, F � 15.0; Fig. 7.6). On OF sessions, a similar interaction

effect was observed (stepwise multiple linear regression: weak effect of

lap number P � 0.002 ns, by multiple comparisons; an effect of entropy

P � 0.001; and an interaction between the two P � 0.00005, F � 10.9;

Fig. 7.6). OFG sessions demonstrated a similar interaction (stepwise mul-

tiple linear regression: weak effect of lap number P � 0.002 ns, by multi-

ple comparisons; no significant effect of entropy P � 0.31 (ns); however,
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the interaction between the two was significant P � 0.0005, F � 7.88;

Fig. 7.6).
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Figure 7.3: Experience dependent changes in SW ripple events. Mean and SE (blue solid
line) of SW ripple events emission rate normalized by the time spent in non-theta was
calculated from individual averages across animals. Linear regression line (dark gray)
and 95% regression confidence intervals (light gray) show an increase in the SW emission
rate for all four conditions. (ALL) Overall, including all three tasks: R2 � 0.063, F �
14, P�slope � 0� � 0.0002. (LT) Linear track, R2 � 0.098, F � 19, P�slope � 0� �
0.00002. (OF) Open field, R2 � 0.011, F � 2.3, P�slope � 0� � 0.12. (OFG) Open field
with goal, R2 � 0.056, F � 10.3, P�slope � 0� � 0.002.
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Figure 7.4: Sharp waves during awake behavior include the same cell assemblies as
occur during theta. The similarity between cell co-firing during SWs and during theta
are shown for each condition (see Methods). A one-factor ANOVA was used to compare
each condition. The difference between the true similarity and the randomized controls
was checked with Tukey post-hoc statistics (Zar, 1999). For all four conditions, the cell
assemblies active during SW were more similar to those seen during behavior (theta)
than would be expected from either random control, including SWAP (preserving timing
and ensemble firing properties) and SHUFF (preserving each neuron’s overall firing rate).
Note that the ALL condition is an analysis over all sessions, not an average of the other
three conditions. (ALL) Overall, including all three tasks: P � 10�10, F � 80.4. (LT)
Linear track, P � 10�10, F � 31.23. (OF) Open field, P � 10�9, F � 23.39. (OFG) Open
field with goal, P � 10�8, F � 19.41.
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Figure 7.5: The assemblies became more coherent through the session. The sharp
waves in each session were divided into two halves by the median occurring sharp
waves, providing the same number of sharp waves in two blocks (an early block, and
a late block). If the cell assemblies co-firing in the sharp waves become more similar to
the cell assemblies occurring during theta, we would expect the similarity to increase
between the two blocks. The similarity did increase for the linear track, and for the over-
all condition. But the increase was not significant for the two dimensional conditions.
One-sided nonparametric Wilcoxon signed rank tests were used (Zar, 1999). (ALL) Over-
all, including all three tasks: P � 0.02. (LT) Linear track, P � 0.05. (OF) Open field,
P � 0.28. (OFG) Open field with goal, P � 0.10.
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Figure 7.6: Dependence of sharp wave emission on the sequential repetitiveness of the
behavior.# SW events normalized by time spent in non-theta states as a function of lap
number and behavioral entropy. SW emission increased with lower entropy (more reg-
ular paths) and on later laps (with more experience). (ALL) Each lap for each session on
each task (LT, OF, or OFG) contributed one 3-dimensional point to the analysis. For each
bin, points were radially averaged to determine average SW emission given the cumula-
tive regularity and experience. Stats: stepwise regression on raw (i.e. unaveraged) data
showed an effect of lap number P � 0.00001, an effect of entropy P � 0.00001, and an
interaction between the two P � 0.00001. (LT) Same as ALL except only LT sessions were
used. Stats: stepwise regression on raw data showed an effect of lap number P � 0.00001,
an effect of entropy P � 0.0005, and an interaction between the two P � 0.00001. (OF)
Same as ALL except only OF sessions were used. Stats: stepwise regression on raw data
showed an effect of lap number P � 0.002 (ns, by multiple comparisons), an effect of en-
tropy P � 0.001, and an interaction between the two P � 0.00005. (OFG) Same as ALL
except only OFG sessions were used. Stats: stepwise regression on raw data showed
an effect of lap number P � 0.002 (ns, by multiple comparisons), an effect of entropy
P � 0.31 (ns), and an interaction between the two P � 0.0005.
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Because reactivation could not be measured for each lap, the total time

spent in theta was used as the temporal measure. Theories suggest that

information storage in hippocampus occurs during theta (Buzsáki, 1989;

Hasselmo and Bower, 1993; Redish, 1999). Reactivation similarity also

increased with more regular behaviors and time spent in theta as is ev-

idenced by a gradient from high-entropy/low laps (upper left) towards

low-entropy at higher laps (lower right). This effect was significant (step-

wise multiple linear regression: significant effect of entropy P � 0.005,

and of time spent in theta P � 0.05, with a strong interaction P � 0.001).

The low number of data points for this analysis was sufficient only for the

pooled data from the three tasks, not for individual task comparisons of

reactivation as a function of spatial regularity and experience. See Fig. 7.7.
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Figure 7.7: Dependence of reactivation
on the sequential repetitiveness of the
behavior. Reactivation similarity (mea-
sured as negative log likelihood of simi-
larity relative to randomness) as a func-
tion of behavioral entropy and total time
spent in theta. Note gradient from high-
entropy/low laps (upper left corner) to-
wards low-entropy at higher laps (lower
right corner). Stats: stepwise regression
showed an effect of entropy P � 0.005, for
time in theta P � 0.05, and an interaction
between the two P � 0.001.
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7.4 Discussion

Taken together, these data confirm predictions that both sharp waves and

reactivation develop with experience across multiple behavioral tasks. This

increased probability of sharp wave emission depended on repetition and

the regularity of the behavior. Ensemble firing patterns during task per-

formance were reliably reactivated during sharp waves emitted on task.

The similarity between the ensemble firing patterns in sharp waves and

theta increased across the task and also depended on the regularity of the

behavior.

On the linear track and multiple-T tasks, the animal’s trajectories were

highly repeated with specific reward delivery sites (back and forth along

a thin track, around a loop on a track, respectively). In contrast, on the

open-field tasks, the trajectories were highly variable and the average re-

ward distribution was uniform. These differences in behavior and reward

distribution may account for the higher rate of reactivation on LT. On the

goal-oriented task (OFG), the repeated approach to the goal may account

for the increase in SW emission rate with experience, which was not ob-

served in the foraging task (OF). It is possible that instrumental activation

of reward may also be important. Quantitative analysis of these varia-

tions in behavioral structure between LT, OF, and OFG revealed a grada-

tion in the repetition of spatially sequential behavior. As shown in Fig. 7.6,

combining the lap-to-lap variability of individual sessions across all tasks
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showed that an increase in the occurrence of SW was strongly related to

the cumulative sequential repetitiveness of behavior.

Since the density of SW emission during non-theta states depended on

the behavioral structure of the task, our results are consistent with SWs

being generated by the sequential firing of neurons as a result of plasticity

induced by sequential behavior (Skaggs and McNaughton, 1996; Nádasdy

et al., 1999; Csicsvari et al., 1999a; Redish, 1999). Our data are consistent

with the SW itself being a consequence of a noise-driven firing cascade

across potentiated synapses within CA3 (Ylinen et al., 1995; Shen and Mc-

Naughton, 1996; Redish and Touretzky, 1998; Csicsvari et al., 1999a, 2000;

Behrens et al., 2005). Experimental evidence suggests SW activity in CA3

initiates CA1 SWs (Behrens et al., 2005; Buzsáki et al., 1983; Csicsvari et al.,

1999a; Ylinen et al., 1995). Likewise, Jackson et al. (submitted) demon-

strated an experience-dependent increase in SW emission in both CA1 and

CA3 regions of the hippocampus. Theories of hippocampal function sug-

gest that information is stored in the hippocampus during the theta state

and replayed out via ripple activity during LIA (Marr, 1971; McNaughton

et al., 1983; Buzsáki et al., 1983; Redish and Touretzky, 1998; Redish, 1999).

Theories predict that asymmetric plasticity (Levy and Steward, 1983; Bi

and Poo, 2001) applied to recurrent connections within CA3 through ex-

perience of repeated spatial sequences (Levy and Steward, 1983; Blum and

Abbott, 1996; Redish and Touretzky, 1998) results in replay of this stored

information. Our data strongly support this hypothesis — increases in
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SW emission and reactivation were dependent on the level of repetition of

regular spatial sequences.

Finally, it cannot be completely ruled out that gross physiological changes

may underlie the neurophysiology reported here. For example, the in-

creased rate of SW emission may depend on other variables correlated

with experience such as increased body/brain temperature associated with

prolonged behavioral output (Moser et al., 1994). However, these effects

can be argued against in part due to persistence of the experience depen-

dent SW emission increase on LT whether it was the first task in the series

or the last task (data not shown) and to the stability of the non-theta state

and the behavior on the LT task.



Chapter 8

Discussion

8.1 Coherency

8.1.1 Reconstruction versus Coherency:

Implications for understanding complex network states.

In the introduction, I asked “what is recall or confusion and how does the

brain represent competing values in ambiguous situations?” In chapter 4,

possible network interpretations of these situations were implemented:

ambiguity that results from random activity and ambiguity that results

from multimodal states (e.g. the transient states of the jump and com-

petition simulations). While the traditional application of reconstruction

techniques tend to avoid these issues, we have demonstrated that simple

assumptions about neuronal tuning or about the binding of cell assem-

212
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blies allow the construction of ensemble measurements that can detect the

transient network anomalies mentioned above.

In our simulations studies (Jackson and Redish, 2003, 2004; see chap-

ter 4), we compared the output of a standard reconstruction algorithm

(Georgopoulos et al., 1983) to two classes of ensemble coherency measures.

The population vector reconstruction of the direction represented by the

network always yielded a answer even when random or bimodal activ-

ity patterns were present. This simplistic comparison addresses a more

general trend in the application of reconstruction techniques. Reconstruc-

tion alone can not be used to infer internal states of an animal’s sensory

and cognitive networks such as the difference between random firing and

well-represented variables. This is particularly important when consider-

ing issues of memory and recall. One function of memory is to appropri-

ately link a current experience to a past experience; in the case of the hip-

pocampus, this may mean using the same spatial map as was previously

used in an environment. However, a primary usefulness of a memory is

in its ability to influence disconnected experiences through recall of past

events or episodes (see O’Keefe and Nadel, 1978 and Redish, 1999 for re-

view). In this case of recall, one would expect that neuronal firing would,

by definition, be disconnected from the current behavioral state of the ani-

mal. Recall may be detected by reconstruction methods as a reconstructed

value that is very different from the current behavioral value. Usually,

these values are considered noise to be removed from a reconstruction al-
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gorithm (for example, see Zhang et al., 1998). Using a coherency method

like those presented here, will allow an investigator to judge whether these

aberrant reconstructions are truly valid representational events.

Johnson et al. (2005) demonstrated the power of these properties in the

rodent head direction system. They recorded neuronal ensembles from

the rodent post-subiculum and compared the coherency measure of equa-

tion 4.17 with the error in the reconstructed head direction signal com-

puted using three methods: population vector reconstruction (Eq. 2.1; Geor-

gopoulos et al., 1983, 1988), the optimal linear estimator method (Eq. 2.2;

Salinas and Abbott, 1994), and a Bayesian method based on a Poisson

firing assumption (See Eq. 2.3; Zhang et al., 1998). They found a high

correlation between reconstruction error and coherency such that high co-

herency was associated with low reconstruction error while low coherency

values co-occurred with high reconstruction errors. This indicates that in

the head direction system, reconstruction error is not associated with the

representation of head orientations different from the current physical ori-

entation in the same environment. Coherency of the head-direction sys-

tem may therefore be an important part of an animal’s internal sense of

directional certainty.

In short, coherency and reconstruction can be used as complementary

tools to investigate the implications of our assumptions about neuronal

tuning, information processing, and network states in the brain. Fur-

thermore, since assumptions of neuronal tuning are required to imple-
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ment any reconstruction methods, coherency allows the formulation of

hypotheses about network function to statistically test the network-level

implications of these assumptions.

8.1.2 Representational versus Non-Representational Coherency

One important aspect of ensemble coherence measures addressed in this

dissertation is that assumptions about network function lead to testable

hypotheses in the ensemble domain. To explore this assertion, we demon-

strated that making assumptions about the tuning properties of neurons

allows the construction of a representational quality measure such as co-

herency. To complement this analysis, we also demonstrated how simple

assumptions of distributed processing and the formation of cell assemblies

lead to hypotheses that can be tested with measures like ensemble consis-

tency. These two measures constitute members of two classes of ensemble

self consistency measures.

How Does One Choose Whether Representational or Non-Representational

Measures Should Be Used? Simply put, representational measures are

useful when representational questions are being asked, while non-representational

measures can avoid the bias of assuming a particular network function

and may allow the testing of the effects of experimental manipulations

on networks of unknown function. It may seem like representational and

non-representational measures are interchangeable, but the power of non-
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representational measures arises when exploring brain structures of un-

known or controversial function.

For example, representations in deep brain structures such as the nuclei

of the basal ganglia are not well understood. The neuronal responses to be-

havioral variables in these structures are complex and there is much con-

troversy in the literature as to the exact function and tuning of neurons in

these networks. In such instances, questions related to learning and refine-

ment in these networks can still be assessed using a non-representational

measure such as ensemble consistency. This may avoid the complications

involved in interpreting and communicating the results that might be ob-

tained using a representational method.

On the other hand, a representational method may prove useful in

testing specific hypotheses regarding the tuning of neurons in these struc-

tures. One could imagine assuming that striatal projection neurons encode

limb movement direction, constructing a training set and tuning curves in

one experimental paradigm and testing the coherency of the same ensem-

ble under a different behavioral paradigm. If the behavioral context is

important, the neuronal responses in the second paradigm would not fit

the tuning derived from the first paradigm and the coherency would be

very poor. It may be, however, that this network of neurons is still work-

ing in the same way and that cell assemblies are preserved. In such a case,

a non-representational measurement would be relatively unchanged be-

tween the two paradigms.
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Pitfalls of using Representational or Non-Representational Measures

The freedom from tuning-assumptions provided by our non-representational

ensemble consistency measure comes at a cost. Since we are measuring

the probability density of previously observed firing patterns at the loca-

tion of a test firing pattern, this density will depend on the time the ani-

mal/network spent exploring that region of firing-rate space. Ultimately

this is affected by how evenly a behavioral task requires the network to ex-

plore the range of possible factors that cause these firing patterns. There-

fore, there is an implicit requirement placed on the experimenter to un-

derstand the possible tuning properties of the neurons in the network of

interest and to either design experiments that evenly explore these vari-

ables or to shape the questions and analyses to avoid the adverse influence

of this behavioral dependence. Thus, some representational knowledge is

required.

Using the representational formulation of our coherency measurement,

by contrast, allows us to normalize for behavioral effects from the begin-

ning. This is done in the construction of the tuning curve, where the num-

ber of spikes observed at a given value of our behavioral variable is di-

vided by the time spent at that value. The greatest challenge lies in the

proper construction of the tuning curves for the question of interest. If one

averages over events of interest, they will be undetectable since standard

events and interesting events will both be seen as fluctuations around the

mean. For instance, applying our coherency analysis to LT, OF, and OFG
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using tuning curves constructed from the entire session did not reveal any

state-switching effects that correlated with fluctuations in the dispersion

z-score in our overdispersion analyses. This is because the tuning curves

represent the average of both reference frames and both reference frames

constituted consistent deviations from the expected network activity pre-

dicted by the tuning curves. Thus, one reference frame was not more or

less “coherent” than the other. Once we had split the reference frames, we

did see a difference in coherency associated with a map switch.

Our Use of Representational and Non-Representational Measures In

our exploration of the overdispersion phenomenon, we employed a repre-

sentational coherency measure to distinguish between the representation

of one reference frame from another. To apply a non-representational mea-

sure such as the ensemble consistency method, we could have constructed

training sets based on firing patterns from each map and measured how

similar firing patterns before or after a switch were to one or the other

training set. This would certainly have been acceptable, however the re-

sults would not have been nearly as simple to relate back to our represen-

tational assertions since we ultimately wanted to test the representation of

reference frames.

In contrast, our exploration of reactivation during awake sharp wave

ripples employed a non-representational measure to avoid the bias of com-

paring reactivation to spatial measures of behavior and to capture the tem-
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poral aspects of encoding and reactivation laid out in the theoretical lit-

erature. For example, if map-switching can result in two neurons with

similar place fields on opposite maps being active on a task, then those

two neurons may never be simultaneously active. The Two-Stage Model

(See Section 3.5.4) suggests that it is the simultaneous activation of neu-

rons during theta that leads to the reactivated ensemble pattern during

sharp waves. A naive representational measure would therefore, ignore

the map-switching effects of our overdispersion result and predict reacti-

vations that are not consistent with the theories we wanted to test.

Rate versus Timing Finally, we should note that the coherency measures

in our simulations and overdispersion analyses are rate based. This has

limitations when considering the precise timing of spikes and especially

for dealing with bursting neurons. For instance, recent modeling had

demonstrated that bursts are robust, quantal events, that allow the encod-

ing of stimuli through spike count with low temporal variability between

spikes (Kepecs and Lisman, 2003). This indicates that the highest infor-

mation throughput in networks of bursting neurons may be contained in

the number of spikes per burst, not in the firing rate (Kepecs et al., 2002;

Kepecs and Lisman, 2003). The reactivation measure used in our sharp-

wave ripple analyses, however, was based on the cross correlation be-

tween neurons. This is therefore a timing based measure that would be

enhanced by mutual bursting of neurons.
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8.1.3 Bayesian Methods and Uncertainty

There is much more that can be done to understand the consequences of

our assumptions about the distributed encoding of information in neu-

ronal populations. For instance, if one assumes that networks can encode

probability distributions over behavioral variables, then ensemble mea-

sures can be formulated in probabilistic terms. For example, as briefly

introduced in the introduction, it is possible to use Bayes rule to derive the

probability of seeing a particular behavioral variable given the neuronal

activity recorded in the ensemble. We write this as:

P�X�S� � P�S�X�P�X�

P�S�
(8.1)

where P�X�S� is the probability of seeing a particular behavioral variable

X given current neuronal activity S, P�S�X� is the probability of observing

neuronal activity S given behavioral variable X was observed, P�X� is the

probability of observing behavioral variable X, and P�S� is the probability

of seeing activity S. The reconstructed value X is then taken as the value

that maximizes P�X�S�.
In the context of the results presented in the Overdispersion chapter,

possible applications of this approach could include a Bayesian decoding

paradigm with the explicit specification of a state modulation parameter

related to the spatial reference frame being represented within the net-

work. Instead of the simple spatial encoding model above, state variables
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could be introduced such that equation 8.1 can be rewritten to include a

state modulation parameter:

P�X�S,�� �
P�S��, X�P���X�P�X�

P���P�S��� (8.2)

where the added variable � is a state variable that affects the way an en-

semble responds to some internal state. We may want to try to infer the

probability of observing a particular state given the ensemble firing pat-

tern and the behavioral variable X:

P���X, S� �
P�S��, X�P�X���P���

P�X�P�S�X�
(8.3)

Since P��� is unknown, a maximum likelihood method would be needed

to reverse infer these parameters that we think influence �. This would

amount to a Bayesian inference problem similar to that of a Hidden Markov

Model. P�S��, X� would then contain our state dependent maps.

Other attractive possibilities associated with probabilistic methods of

ensemble analysis include the use of entropy to measure the amount of

disorder in the distribution of the represented variable (e.g. equation 8.1).

High entropy distributions would be analogous to disordered firing of

neurons in the ensemble, while low entropy distributions would corre-

spond to all neurons agreeing more or less on the same variable. A possi-

ble interpretation of the entropy of P�X�S�, therefore may be the network’s

uncertainty with respect to variable X. Higher entropy would correspond
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to greater uncertainty and visa versa. This may serve as quantitative mea-

sure of confusion and uncertainty and may represent an estimate of the

amount of information needed to “convince” the network to choose on a

particular value of X.

8.1.4 Coherency in the Brain

Our discussion of coherency so far, has revolved primarily around what

coherency means to the researcher. Perhaps a more interesting question is,

“what does coherency mean in the context of the brain?” In other words:

1. Does coherency matter to the network?

2. Does coherency matter to downstream structures?

Does coherency matter to the network? The answer to this question

may depend substantially on the architecture of the network in question.

But, first let us consider some sources or factors influencing coherency:

input coherency and connectional coherency.

One major influence on a network’s coherency is the information im-

pinging on a network. It should be fairly obvious that uniform random

noise on the network inputs will be less helpful in organizing a network’s

activation pattern than a single unambiguous network pattern. Further-

more, if the network is plastic such that it is learning from inputs, such

as an associative network, an input that is similar to one the network has
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seen before should result in more coherent activation than an input pat-

tern very different from all previous inputs. This leads us to the other

main factor, connectional coherency.

Whether a network can detect (i.e. is affected by) its own coherency

depends on its internal connectivity. For example, if there is broad in-

hibition that is driven by broad input from excitatory neurons, coherent

activation may mean that only a few cells are highly activated. In this

case, incoherent activation could include the firing of a large number of

neurons, which would then shut down the network via inhibitory feed-

back resulting in generally low firing rates. In such a case, sparse activity

within a window of time is favored and broad network activation is ex-

tinguished. This, however, says nothing about which groups of cells are

activated, if indeed more than one neuron is activated. Thus, the only

constraint formed by a broad inhibition on what is considered “coherent”

activtiy would be that the activity must somehow be sparse. Another ex-

ample of the interaction of coherency and network connectivity would be

the in the case of recurrent connectivity. In this case, the network forms

attractor states such that particular patterns of activity are favored over

others (Hopfield, 1982). Coherency would then be related to the depth of

a pattern in the energy space. The most coherent patterns would be defined

as those with the lowest energy �.

�Incoherent activity would be molded into a coherent output pattern by the attractor
dynamics of the network in this case. The length of time this takes should depend on the
energy space of the attractor such that an incoherent pattern that lies in a portion of the
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Does coherency matter to downstream structures? The temporal effects

of coherent activity on output structures is especially important in spiking

networks where the relative timing of spikes across inputs is important.

This is especially evident in biological systems where spike-timing depen-

dent plasticity (STDP) is a common feature (Bi and Poo, 2001). In this case,

one may imagine that a coherent activation in one network would orga-

nize the members of that pattern with of a higher probability of being ac-

tive within some window of time. Such a coordination would increase the

probability of spikes reaching neurons in a downstream structure more

closely spaced in time, thereby increasing the potential for depolarizing

a neuron and invoking plasticity mechanisms within the critical temporal

window. If an asymmetric plasticity rule is in effect, the relative coherency

within and between multiple input networks becomes increasingly impor-

tant, such that coherent activation across multiple network will lead to

maximal induction of plasticity.

8.2 Overdispersion

8.2.1 Reference Frames

Touretzky and Redish (1996) suggested that changing reference frames

based on the track ends results in directionality on the linear track. Mc-

space that has a small gradient and is far from any basin will take longer to converge to a
coherent representation than a pattern near a basin with a steep energy gradient.
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Naughton et al. (1996) suggested a similar framework where the map that

an animal uses may be related to which navigational goal or landmark is

most significant for the animal’s immediate behavior. In models reviewed

by Koene et al. (2003), the entorhinal cortex specifies potential goal loca-

tions given goal related input from pre-frontal cortex, CA3 specifies the

animal’s current location, and CA1 decides the appropriate next position

to pursue in light of this goal information. Experimental data from Wood

et al. (2000) and Ferbinteanu and Shapiro (2003) show that some CA1 pyra-

midal neurons may fire only when a specific goal location is intended by

an animal and may also depend on the path taken.

The CA3 representation is a stable all-or-none mapping of a pattern

associated with an environment (Lee et al., 2004b; Leutgeb et al., 2004;

Vazdarjanova and Guzowski, 2004). CA3 has been shown to demonstrate

at least two independent methods for orthogonalizing its representation:

complete remapping for changes in the global environment (Lee et al.,

2004b; Leutgeb et al., 2004; Vazdarjanova and Guzowski, 2004; Wills et al.,

2005) and rate remapping to differentiate local environmental changes while

preserving the coding for a particular spatial location with respect to dis-

tal cues (Leutgeb et al., 2005). Considering that CA1 gets input from CA3

as well as entorhinal cortex and can form a place representation in the

absence of CA3 input (Mizumori et al., 1989; Brun et al., 2002), this sug-

gests that the CA1 representation is related to the similarity between the

entorhinal cortical spatial input and the CA3 localization of the animal to
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a particular environment. Thus, the degree of partial remapping (Quirk

et al., 1990; Markus et al., 1995; Anderson and Jeffery, 2003; Knierim, 2002)

might therefore reflect the difference between environmental and task pa-

rameters.

Given these data (Mizumori et al., 1989; Wood et al., 2000; Brun et al.,

2002; Ferbinteanu and Shapiro, 2003; Lee et al., 2004b; Leutgeb et al., 2004;

Vazdarjanova and Guzowski, 2004; Wills et al., 2005; Leutgeb et al., 2005)

and the theoretical framework presented above (Touretzky and Redish,

1996; McNaughton et al., 1996; Koene et al., 2003), it makes sense to dif-

ferentiate between entorhinal cortical input and CA3 input. Olypher et al.

(2002) speculated that different inputs to the CA1 place cell may have dif-

ferent temporal dynamics; these data are therefore compatible with this

idea. We suggest that it is in this sense of goal directed navigation that a

reference frame is useful for describing an animal’s location within a con-

figuration of local and distal cues.

The model presented by Olypher et al. (2002) accounted for place cell

variability by modulating a subset of inputs, randomly alternating be-

tween high and low intensity states. They varied the depth of modulation

and the average switching period of these inputs and suggested that the

best fit to the data reported by Fenton and Muller (1998) is a 10% mod-

ulation depth with a mean switching period of 1 s. The mean switching

periods found in our data were about one third of this duration, approx-

imately 350 ms or 3 theta cycles. To obtain such a large overdispersion
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would require a deeper modulation than was suggested by Olypher et al.

(2002). As can be seen in our data, this modulation can be up to 100%

with entire place fields being turned on and off with each switch. It is pos-

sible that the partial remapping represented by this deep modulation is

due to an interference between entorhinal input representing various goal

locations and CA3 input representing the animal’s current location. The

model presented by Olypher et al. (2002) is actually similar to recent goal-

directed navigation models (See Koene et al., 2003 for review). Our map-

switchting data also fit with data from Ferbinteanu and Shapiro (2003)

and Wood et al. (2000) where the firing of some CA1 pyramidal neurons

depended on the specific goal location intended by an animal and on the

path taken. It is still not clear, however, whether the entorhinal cortex

carries such goal-related information, in that the most extensive studies

of entorhinal cortical neurons reveal grid-like firing resembling a semi-

Cartesian representation of space (Fyhn et al., 2004; Hafting et al., 2005)

that may be modulated by the animal’s direction and velocity depending

on the cortical layer of the neuron (Sargolini et al., 2006).

If this goal related input exists in entorhinal cortex, switching between

goals may result in a switch to a different entorhinal cortical input pattern

to CA1. This switch would have a partial remapping effect. Behaviorally,

this switch could be as simple as a switch from wandering to chasing a

pellet, or from chasing pellets to navigating to a hidden goal. In our data

it is clear that there is a consistent switch happening on all three tasks we
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examined. While it is not clear what causes a switch on the open field, the

switching on the linear track and on open field goal occurred at goal loca-

tions consistent with the hypothesis that the switching of goals is commu-

nicated to the CA1 layer of hippocampus. This is evident in the significant

suppression of reference frame switching prior to arrival at the goal on

OFG or LT, and the significant increase in reference frame switching after

goal entry.

The fact that the two reference frames and switching times produced

by our analysis did not reduce the variability in neuronal firing to the unit

variability expected from a Poisson point process model may suggest that

more than two goal states are used by the animal. In OFG, there are at least

three different motivational states that can be named: searching for pellets,

chasing pellets that have just been delivered, and navigating to the goal.

Others may include navigating to the wall (a preferred location of refuge

for our rats) and navigating to the cue-card that spans a section of the wall

(for some reason all of our rats tend to favor this location above all oth-

ers). Applying these alternative motivational “goals” to OF we arrive at

four potential motivational states that may effect CA1: searching for pel-

lets, chasing pellets that have just been delivered, navigating to the wall,

and navigating to the cue-card. The variability on LT was very low after

accounting for state-switching, but it did not reach unity. This level may

indicate the lower limit of our ability to predict place-cell firing with tun-

ing curves based only on space. It has been suggested that velocity is also
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encoded in the firing rate of hippocampal neurons (McNaughton et al.,

1983; Huxter et al., 2003). We explored the possibility that this variability

may be a summation of multiple influences including velocity, experience

dependent plasticity, and the regularity of the animal’s path through the

place-field. None of these demonstrated a sufficient correlation to account

for the excess variance observed, even after splitting representational ref-

erence frames. It was also noted that the majority of this remaining excess

variability was due to a long tail of higher firing than would be predicted

by the tuning curves derived for each state. Thus, variability may be due

to the above influences as well as attentional or neuromodulatory levels.

Given the overall shape of the firing distributions after accounting for the

possible effects of reference-frame switching, however, it appears that the

majority of the dispersion salient to the questions of this thesis has been

accounted for.

Could CA3 show overdispersion? The model discussed so far for gen-

eration of overdispersion in CA1 is as follows: goal information filtered

by entorhinal cortex directs the partial remapping of CA1 to reflect a ref-

erence frame with respect to this goal. CA3 receives direct entorhinal in-

put as well as dentate granule input. The recurrent connections within

CA3 are thought to generate an attractor network (McNaughton and Mor-

ris, 1987; McNaughton et al., 1996; Shen and McNaughton, 1996; Zhang,

1996; Samsonovich and McNaughton, 1997; Redish and Touretzky, 1997,
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1998; Tsodyks, 1999; Redish, 1999; Káli and Dayan, 2000; Guazzelli et al.,

2001). Recent experimental evidence has bolstered this notion (Lee et al.,

2004b; Leutgeb et al., 2004; Vazdarjanova and Guzowski, 2004; Leutgeb

et al., 2005). If it is possible for CA3 to rapidly switch between rate maps

and/or spatial maps then this could also generate overdispersion. This

switching would add further variability to the CA1 representation.

8.3 Experience Dependent Sharp Waves Ripples

and

Awake Reactivation

8.3.1 Sharp waves in CA1 are highly regulated network

events

In our data, we observed substantial changes in sharp-wave emission rates

and sharp-wave amplitude with experience. This increased amplitude is

related to the level of population participation in CA3 and population syn-

chrony (Csicsvari et al., 1999b). As discussed in section 3.4.2, there are a

number of neuron types that regulate the sharp wave ripple oscillation.

After a population burst from CA3 depolarizes CA1 pyramidal neurons

and interneurons in the CA1 field, the ripple is initiated by axo-axonic

and/or O-LM cell firing which hyperpolarizes the membrane of the pyra-
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midal cells and de-inactivates the voltage sensitive ionic-channels prepar-

ing them for rebound bursting (Klausberger et al., 2003, 2004). The oscil-

lation is then driven locally by interactions between the PV� basket cells,

bistratified cells, and the pyramidal cell population (Hirase et al., 2001;

Csicsvari et al., 2000; Klausberger et al., 2003, 2004; Somogyi and Klaus-

berger, 2005). The PV� basket cells and bistratified cells fire phase locked

to the ripple oscillation with peak firing rates occurring just after negative

trough of the SW ripple (Klausberger et al., 2003, 2004). The termination of

the sharp wave may occur after axo-axonic and/or O-LM cell firing. In our

data, we do not see an increase in the ripple duration or in place cell firing

rates. However, we did see an increase in sharp-wave ripple amplitude

which is related to the strength of input from CA3 (Buzsáki et al., 1983;

Csicsvari et al., 1999b). This suggests that the ripple duration is tightly

regulated by the CA1 network of inhibitory interneurons, each with its

own regulatory function within the sharp wave: the maintenance of firing

rates through within-ripple inhibition by PV� basket cells and bistratified

cells and the maintenance of ripple duration by axo-axonic and/or O-LM

cell firing (Klausberger et al., 2003, 2004; Somogyi and Klausberger, 2005).

8.3.2 Brain State and Sharp Wave Ripple Emission

There are many possible reasons why sharp wave ripple emission rates

might grow with experience on a task. One reason for the growth in this

emission rate could be that animals are simply more tired. It is known that
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sharp waves are a feature of LIA, an EEG defined brain state that is com-

mon when animals rest (See O’Keefe and Nadel, 1978 for review). If ani-

mals spend more time in LIA, then one would expect more sharp-waves

to be emitted. To control for this, we reported the rate of SWR emission

as the number of sharp waves per second spent in LIA. We also measured

the time in LIA on LT and found that there was no significant change over

the window of behavior we were examining. Likewise, in case the SWR

emission depended on the actual transition into LIA or on crossing some

threshold of time spent in LIA, we measured the rate of transition into LIA

and found no significant change on LT. Thus, changes in gross brain state

were not likely to be the cause of increased SWR emission. To measure

the outward behavioral indications of exhaustion, we looked at the time it

took to run each lap and the time spent resting between laps, these did not

change on LT. We also examined the sessions when LT was first versus the

sessions when animals ran LT last, there was no noticeable difference in

the SWR emission slope on these. Together, these data indicate that the in-

creases in SWR emission are due to behaviorally induced changes within

the brain.

One possible explanation for this increase in SWR emission also related

to exhaustion would be sleep deprivation issues. Since rats are noctur-

nal and our rats were maintained on a synchronous day/night cycle, they

were running during their sleep period. Recently it was shown that sleep

deprived animals show a rebound in sharp wave ripple emission (Pono-
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marenko et al., 2003). Ponomarenko et al. (2003) measured rebound of

sharp-wave ripples after sleep-deprivation and stimulant treatment (am-

phetamine and two dosages of modafinil). Sharp wave ripple emission

was dramatically higher after sleep-deprivation and stimulant treatment.

This rebound in ripple emission was significantly correlated with the time

the animal was awake (Ponomarenko et al., 2003). One could imagine that

as animals run a task longer, they become more likely to nod off into early

stages of slow wave sleep and then this rebound mechanism kicks in. Such

a scenario may explain our increase in sharp-waves; however, this would

argue for increased sharp-wave emission through out the entire session,

which as discussed above was not observed comparing early and late lin-

ear track tasks. Furthermore, Ponomarenko et al. (2003) suggest that the

increased theta activity resulting from modafinil and amphetamine treat-

ment is the driving factor behind the sharp-wave ripple emission rebound.

If this was the case, then the increased time in theta for their animals

means more time for storage of information and argues in favor of our

results, not against our results.

8.3.3 Replay generation

An important issue repeated throughout the reactivation literature is that

there is no reactivation in slow-wave sleep prior to a task but enhanced re-

activation in the sleep following a task (Wilson and McNaughton, 1994;

Skaggs and McNaughton, 1996; Kudrimoti et al., 1999; Nádasdy et al.,
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1999; Lee and Wilson, 2002). However, there has been no direct connection

between the behavioral activity during a task with the development of this

reactivation. Our results connect the behavioral dependence of previous

slow-wave-sleep studies to specific task parameters, namely that the rep-

etition of behavioral sequences is specifically responsible for the increased

reactivation following a behavioral session. Furthermore, we explicitly

examined the assumptions that theta-dependent ensemble-activity leads

to the plasticity mechanisms that generate sharp waves. If Hebbian-like

mechanisms underlie this increase in sharp waves, we also would expect

that the regularity of the animal’s path and hence the repeatability of neu-

ronal activation sequences would also be important. In support of this

hypothesis, sharp wave emission depended on both the repetition (the

number of laps) and the regularity of this repetition (the path entropy).

Since these LTP-like mechanisms are expected to underlie the formation

of cell assemblies that are reactivated during sharp waves, we developed

a measure of co-firing that specifically tested for the similarity in the cell

assembly patterns between the theta and sharp wave states. The similar-

ity in cell assemblies increased with both the time spent in theta states and

the regularity of the behavior. These increases in SW emission and reac-

tivation were robust on the linear track without concomitant increases in

behavioral states or LFP states that are naturally associated with higher

sharp wave emission. The other tasks provided a means of comparing the

results of highly regular behavior to goal oriented two-dimensional explo-
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ration and to random foraging. Taken together, these results confirm the

predictions that arise from the Two-State Model: that theta-related plas-

ticity is fundamental to the generation of sharp waves. These results are

therefore consistent with the Two-State Model.

NMDA-dependence of Sharp Wave Emission Finally, plasticity mecha-

nisms that could serve the general theoretical roles mentioned earlier (See

section 3.5.4) have been observed experimentally (Bliss and Lømo, 1973;

Bliss and Gardner-Medwin, 1973; Bi and Poo, 2001; Behrens et al., 2005;

Kentros et al., 1998; Ekstrom et al., 2001; Shen et al., 1997). Temporally-

asymmetric plasticity (Bi and Poo, 2001), SW observations in slice (Behrens

et al., 2005), and place field modulation with experience (place-field ex-

pansion, Mehta et al., 1997) are dependent on NMDA-receptor integrity

(Collingridge et al., 1983; Bi and Poo, 2001; Behrens et al., 2005; Kentros

et al., 1998; Ekstrom et al., 2001; Shen et al., 1997). These data imply

that experience-dependent effects on sharp-wave emission should also

depend on NMDA-receptor integrity. While waking SW have been in-

cluded in previous analyses (Kudrimoti et al., 1999; Foster and Wilson,

2006; O’Neill et al., 2006), neither the task-dependent properties nor the

NMDA-R-dependence of sharp waves emitted during waking states have

been explicitly studied. Collaborating with Adam Johnson, preliminary

evidence suggests that sharp wave emission is also dependent on the in-

tegrity of NMDA-receptor mediated synaptic transmission (See Figure 8.1).
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Together with the results in this thesis, these data would support learning

theories which suggest that NMDA-dependent mechanisms strengthen

cell-assemblies during tasks and that sharp waves reactivate those cell-

assemblies in subsequent rest states. Cell assemblies have been directly

observed in theta during behavior (Wilson and McNaughton, 1993; Harris

et al., 2003; Leutgeb et al., 2005; Wills et al., 2005). Stabilization of a cell-

assembly in a novel environment is dependent on intact LTP-mechanisms

(Austin et al., 1990; Barnes et al., 1997; Kentros et al., 1998). Even in famil-

iar environments, place fields expand along the direction of travel with

experience within a session (Mehta et al., 1997; Lee et al., 2004a) and this

expansion is NMDA-receptor dependent (Ekstrom et al., 2001; Shen et al.,

1997), which implies that NMDA-receptor dependent LTP-like effects are

occurring during behavior. As has previously been shown in vitro, sharp

waves can be generated from CA3 (dissociated from its entorhinal cor-

tex inputs), and NMDA-receptor dependent LTP induction increases the

probability of sharp wave occurrence (Behrens et al., 2005). While extra-

hippocampal effects of NMDA-receptor blockade cannot be excluded, our

data nonetheless suggest that a mechanism necessary for LTP is also im-

portant for sharp wave emission in vivo and that the behavioral regularity

thought to induce NMDA-receptor dependent plasticity in the hippocam-

pus can also produce increases in sharp wave events as well as the reacti-

vation of cell-assemblies.



Ch 8. Discussion 237

8.3.4 Forward versus Reverse Replay

As discussed earlier (See sections 3.5.3 and 3.5.4), reverse replay has been

observed in awake sharp waves (Foster and Wilson, 2006), while other

studies of SW occurring during SWS reveal forward replay of behavioral
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Figure 8.1: Dependence of sharp wave emission on NMDA receptor integrity. (left)
Mean SW emission. # SW events per unit time spent in non-theta states as a function of
lap number on their multiple-T (MT) task after IP injection of the NMDA-receptor antago-
nist (�)-3-(2-Carboxypiperazin-4-yl)propyl-1-phosphonic acid (CPP), MT after saline in-
jection, and all MT sessions (all sessions prior to Saline or CPP administration sessions).
Comparing SW emission across laps and pharmacological groups revealed a strong ef-
fect of pharmacological group (P � 2 � 10�6,F � 26.2, two-way ANOVA: saline vs.
CPP). In a separate ANOVA comparing a MT-untreated experiment with the saline and
CPP sessions, SW emission rates on MT and MT-saline were not significantly different
(P � 0.05, Tukey HSD criterion for multiple comparisons). SW emission rates after treat-
ment with the NMDA receptor antagonist CPP (MT-CPP) were significantly lower than
emission rates on either MT or after treatment with vehicle (MT-saline; P � 0.05, Tukey
HSD criterion for multiple comparisons). (right) SW emission slope. Regression slope
of SW emission per lap (z-score) and 95% confidence intervals of regression slope are
shown for each treatment. SW emission increased in untreated (MT sessions prior to
Saline or CPP, P�slope � 0� � 0.00001, n � 7) and saline injected animals (MT-Saline,
P�slope � 0� � 0.0002, F � 16.3, n � 3). This increase in slope was not observed after
CPP (MT-CPP, P�slope � 0� � 0.76, F � 0.09, n � 3, ns). Using sessions with at least as
irregular paths as the best MT-CPP session did not abolish the increase in SW-emission
(MT-high entropy, P�slope � 0� � 0.00001).
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sequences (Skaggs and McNaughton, 1996; Nádasdy et al., 1999; Louie

and Wilson, 2001; Lee and Wilson, 2002). Based solely on the NMDA-

receptor depend mechanisms discussed above (Collingridge et al., 1983;

Shen et al., 1997; Kentros et al., 1998; Bi and Poo, 2001; Ekstrom et al., 2001;

Behrens et al., 2005), the theories we have discussed would predict that re-

play should be forward due to the asymmetric post-synaptic long-term

potentiation of behaviorally activated synapses (Buzsáki, 1989; Buzsáki

et al., 1994; McNaughton et al., 1996; Shen and McNaughton, 1996; Redish

and Touretzky, 1998; Redish, 1999). However, one of these theories has

explicitly stated that they predict reverse replay (Buzsáki, 1989; Buzsáki

et al., 1994; Buzsáki, 1996). Buzsáki (1989) suggest that temporally graded

potentiation of CA3 recurrents should result in the activation of the most

recently and most highly potentiated synapses first transferring activation

to the least potentiated synapses (assumed to be also the most temporally

distant in this model) resulting in a compressed reversed-order replay of

stored inputs at the termination of exploration (Buzsáki, 1989; Buzsáki

et al., 1994; Buzsáki, 1996). This prediction of reverse replay is based on

a labile potentiation of synapses in the CA3 recurrent matrix that is so-

lidified by LTP mechanisms invoked during sharp-wave bursts (Buzsáki,

1989; Buzsáki et al., 1994; Buzsáki, 1996). This reverse replay mechanism

would require a rapid decay in the potentiation of synapses. Such a rapid

decay is observed shortly after LTP induction and is referred to as short-
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term synaptic enhancement (STE �; see Fisher et al., 1997 for review). The

STE phase is presynaptic, is comprised of at least four components, and

can last milliseconds to minutes (Fisher et al., 1997). If this STE mecha-

nism is behind the generation of reverse replay, we would predict that it

should become forward-ordered as STE decays to baseline and LTP dom-

inates.

In the behavioral context, a trip from one end of a linear track to the

other would result in a rapid progression through theta-modulated firing

of place-cells with place-fields along the way. The most recently activated

place fields would have the highest STE, while the others would have al-

ready begun to decay. The mechanism described by Buzsáki (1989) would

therefore lead to a reverse replay of the previously activated sequence as

observed in Foster and Wilson (2006). However, as the STE phase decays

to a stable potentiated level (viz. LTP), there should be a dis-ordering and

then a reordering in the forward direction within minutes of ceasing be-

havior and commencing sleep.

We did not test these effects in our data, because we were interested in

the more general cell assembly related reactivation effects that depend on

experience. The measure that we employed was decidedly non-directional,

such that ordering effects would not add noise to our results. However, it

would be interesting to test these ordering effects directly by (1) block-

ing STE without effecting LTP and conversely (2) blocking LTP without

�One component of STE is post-tetanic potentiation (PTP)
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effecting STE. One would expect that (1) should block reverse replay leav-

ing forward replay intact, while (2) should block or reduce forward replay

with little or no effect on reverse replay immediately after a lap on the

linear track. Hippocampal LTP can be blocked through NMDA-receptor

antagonists, and through interference with intracellular signalling mech-

anisms such as the Ca2�/calmodulin-dependent kinase pathway in the

post-synaptic structure, while STE is dependent upon multiple different

Ca2�-dependent pathways in the presynaptic terminal that can be differ-

entiated by various pharmacological and genetic manipulations such as

interfering with mitochondrial Ca2� release (Fisher et al., 1997).

Self-localization versus Reverse Replay An alternative explanation of

the reverse replay discovered by Foster and Wilson (2006), is that it could

be construed to constitute the self-localization signal predicted by and

demonstrated in the simulations of Redish and Touretzky (1998). In the

case of their simulations, ambiguous sensory input upon entering an en-

vironment is filtered via the attractor dynamics of CA3 to localize the an-

imal in the environment. This settling process would look like a “reverse

replay” in that the hippocampal activity would converge on the animal’s

location. If this were a linear track with the animal placed at one end,

the activity in one reference frame would appear to move backward while

the activity in the other reference frame would appear to move forward.

Depending on whether or not one reference frame dominates the attrac-
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tor dynamics, either or both possibilities may be observed. They assume

that the animal has had previous experience on the environment such that

the local views and path-integration coordinates have been learned and

a “cognitive graph” (Muller et al., 1991; basically the spatial representa-

tion of this environmental reference frame) has been stored in the CA3

recurrent connections. One way to distinguish between a reverse replay

and the self localization process would be the noisiness of the initial state

which should be low in the case of a reverse replay, but should start high

in the self-localization state and converge on the animal’s location. In fact,

the data presented by Foster and Wilson (2006) show both types of phe-

nomena (supplemental online material, Foster and Wilson, 2006). This

difference in noise should be testable using the coherency methods pre-

sented here. The self-localization hypothesis is an interesting possibility

that would conflict with the STE interpretation of the mechanism behind

reverse replay since Redish and Touretzky (1998) envisioned this as an im-

portant part of memory recall when an animal enters an environment.

Given the theoretical underpinning of the Redish and Touretzky (1998)

self-localization process, it would not be expected to be modified by ma-

nipulations of LTP or STE within the same session, since it should depend

on already established connections. A further way of differentiating be-

tween self-localization and reverse replay is that reverse replay should be

coherent at fine time scales (20-50 ms), while self-localization should start

out as incoherent random activation and converge to a coherent represen-
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tation at the animal’s location. The coherency measures presented here

should provide such information. A critical issue that may help resolve

this question is whether or not sensory information can influence the hip-

pocampus during awake sharp waves.

Does sensory information influence awake sharp waves? It is known

that removing CA3 input to CA1 does not abolish the strong place selec-

tivity in CA1 (Mizumori et al., 1989; Brun et al., 2002). Furthermore, the

anatomical data indicates that CA1 neurons receive direct EC inputs and

project back to the same cortical columns from which those inputs came

(See Buzsáki, 1996 for review). Considering the anatomical data in con-

junction with the experimental data, it is most likely that CA1 reactivates

the patterns where the conjunction between entorhinal and CA3 input is

most consistent. This is because the Schaffer collateral inputs from CA3

that synapse on CA1 cells receiving strong activation from EC will have

relatively more advantage over synapses on CA1 cells without strong EC

activation during a behavioral experience. The awake sharp waves re-

ported by O’Neill et al. (2006) suggest that sensory information does in-

fluence neuronal firing during awake sharp waves ripples. In their data,

the firing rates of neurons during a SWR depended on the location that

the sharp-wave was emitted. If the SWR was emitted inside a neuron’s

place field, that neuron would have higher firing rate than if the SWR was

emitted outside it’s place field (O’Neill et al., 2006). The effect is strong
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enough that spatial tuning during SWRs looks very similar to spatial tun-

ing during theta-related exploration (O’Neill et al., 2006). In some of our

preliminary analyses (data not shown), it appears that on average the re-

construction is centered on the animal’s current location. These data sug-

gest that entorhinal input may be biasing the CA3 sharp-wave initiation

sight and/or interacting through CA1 processing with the Schaffer collat-

eral inputs that are carrying the sharp wave to ultimately carry informa-

tion about the animal’s current location.

If sensory information is indeed influencing hippocampal processing

during sharp waves, this argues in favor of the Redish and Touretzky

(1998) model of self localization, suggesting that the reverse replay ob-

served by Foster and Wilson (2006) may be guided by sensory input to at

least some extent. Whether or not the animal uses this information to local-

ize itself in an environment remains an open question. If the awake SWR

is self localization, then disrupting this process should result in increased

instability in place fields according to the Redish and Touretzky (1998)

model. In their model, the self-localization process is a path-integration

reset. Disrupting path integration would disrupt the spatial reference nec-

essary for maintaining register between local view inputs and self motion

information.

In our data, we saw very low sharp-wave ripple emission at the begin-

ning of a task which increased with experience. Since our animals were

highly trained, the behavioral need for self-localization processes was un-
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likely. Although we have not tested this, it is quite possible that the reac-

tivation on our task may contain a mixture of reverse, forward, and dis-

ordered replays. This is because these highly-trained animals presumably

start with well-organized connectivity between CA3 pyramidal neurons

for these tasks, but further behavioral induction of potentiation and STE

mechanisms will temporarily change the hierarchy of short-term synap-

tic potentiation in these synapses. As this short-term potentiation due to

STE mechanisms swamps the stored connectivity in CA3, we would ex-

pect increased disorder of the reactivated patterns and initiation of more

reverse-directed replays.



Chapter 9

Conclusion

In this thesis, we have explored the consequences of some basic concepts

of ensemble coherency and neural information processing and through

these ideas confirmed decades old predictions and discovered new in-

sights into hippocampal function.

First, ensemble measures such as the various reconstruction methods

discussed in the introduction have proven a useful means of probing the

brain’s networks to examine the ability of an ensemble to process behav-

ioral variables (Georgopoulos et al., 1983; Wilson and McNaughton, 1993;

Johnson et al., 2005). What is new is our expanded understanding of the

ensemble: the importance of representational coherency and it’s relation-

ship to network function. We demonstrated through simulation studies

that applying concepts based on assumptions fundamental to the concepts

of distributed representation and the cell assembly confers the ability to
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probe the dynamics of neuronal information processing. After characteriz-

ing these ensemble consistency and representational coherency measures

in a simulation environment, we demonstrated their applicability to phys-

iological data. The concepts conveyed in this thesis are merely a drop

in an ocean of possibilities. There still remains much work to be done

to examine the theoretical, methodological, and biological implications of

distributed representations.

Our application of concepts of distributed representations then allowed

us to examine network related sources of place cell firing variability. It had

already been known that the hippocampus can switch between reference

frames on special tasks that require this cognitive switch for proper task

performance (Redish et al., 2000). It was also known that goals exert a

special influence on the hippocampus (Hollup et al., 2001b) and that re-

moval of the hippocampus disrupts goal-directed navigation on uncued

tasks (Morris et al., 1982; O’Keefe and Nadel, 1978; Redish, 1999). Further-

more, evidence existed that goal-directed tasks stabilized the variability in

the firing of single cells in CA1 (Olypher et al., 2002; Kentros et al., 2004),

but there was no clear network-level data that suggested reference frame-

switching was related to this phenomenon. The novel contributions of

the data presented in this dissertation are many in these regards. First,

we have demonstrated that reference-frame or map switching is a stan-

dard operational process within the hippocampus on tasks as “simple” as

random foraging. Reference frame switching is strongly related to or in-
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fluenced by goal-directed behavior. This was made evident by the signifi-

cant modulation of reference-frame switching in precise temporal relation

to reward-related task cues on the linear-track and on our goal-directed

open-field task. Interestingly, even though we have long known that in-

dividual directions on the linear track are often represented as separate

maps, we were able to determine the precise time the animal switched be-

tween these maps: a the time of food delivery, before reaching the end

of the track. This switching phenomenon explains, in part, the excess

variability of place-cell firing reported in the hippocampus (Fenton and

Muller, 1998) and supports hypotheses of the source of this variability

(Lánksý et al., 2001; Olypher et al., 2002). However, the analyses presented

here were unable to fully explain the excess variability in place-cells indi-

cating that this model of reference-frame switching is not complete. More

work needs to be done to understand the construction of reference frames

within the networks of the hippocampus and surrounding cortices. It is

also possible, that while our map-splitting analysis found two maps, the

analysis may not have optimally stitched these maps together since our

hill-climbing algorithm may settle at local maxima. Furthermore, it is cer-

tainly possible to apply the map-splitting analysis to extract more than

two maps. While we did not have sufficient data to thoroughly exam-

ine more than two maps, experiments specifically targeting the details of

this map-switching phenomenon could address this issue. For instance,

longer recordings with probe trials or shifts in task parameters could be
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employed to collect more data and specifically examine the dependence

of the switch on reward parameters.

Finally, we set out to examine a long known source of spatial and tem-

poral firing variability in the hippocampus: the awake sharp wave. We

were able to confirm the detection of awake sharp waves in our task. We

demonstrated that indeed, the same sub-ensembles activated during theta

(the storage state) were reactivated during these awake sharp waves. Most

importantly, it has been long hypothesized that the emission of sharp-

waves should be dependent upon the level of potentiation between active

neuronal assemblies during theta-related behavioral exploration. While

recent in-vitro evidence confirmed the influence of hippocampal long-term-

potentiation on the emission of sharp-waves (Behrens et al., 2005), we

were able to confirm the behavioral consequences of repetition and reg-

ularity on the sharp wave emission rate. We demonstrated that increased

behavioral regularity and repetition interacted to increase both the sharp-

wave emission rate and the completeness of the reactivated cell assem-

blies. What remains to be understood is how these sharp wave events

affect cognitive performance and the network coherency within the hip-

pocampus and in down-stream cortical output structures. Specifically,

it has been hypothesized that disrupting these sharp wave ripple events

should disrupt memory trace formation. It is expected that the reactiva-

tion of cell-assemblies during these sharp wave bursts is critical for high-

order associations that span discontiguous temporal episodes (Buzsáki,
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1989; Buzsáki et al., 1994; Buzsáki, 1996; McNaughton et al., 1996; Buzsáki,

2005b; Kudrimoti et al., 1999; Redish, 1999). Therefore, experimentally in-

tervening in the generation or transfer of sharp wave-related information

should have specific effects on an animal’s ability to form complex link-

ages between the cause-and-effect contingencies within tasks with tem-

poral delays and interruptions. Indeed, there is strong evidence that the

hippocampus is necessary for learning sequences of this type from various

modalities (Scoville and Milner, 1957; Milner et al., 1968; Smith and Mil-

ner, 1981; Morris et al., 1982; Kesner and Novak, 1982; Reed and Squire,

1998; Redish, 1999; Clark et al., 2000; Fortin et al., 2002; Burman et al.,

2006). In conclusion, assuming that information is processed in a dis-

tributed manner, applying the concept of the cell-assembly, and looking

at within-ensemble dynamics has allowed us to probe more deeply into

the subtleties of information processing dynamics in biological neural sys-

tems in vivo. This has enlightened our understanding of variability at both

the single cell and network levels. We were able to use this understand-

ing to discover the network-level modulation that results from various re-

quirements placed on behavioral activity during awake, alert states. We

examined how this activity and what kind of activity affects hippocampal

on-line and off-line processing through the analysis of state-switching and

sharp wave associated reactivation, respectively.
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Buzsáki G, Bragin A, Chrobak JJ, Nadasdy Z, Sik A, Hsu M, A Y (1994)
Oscillatory and intermittent synchroy in the hippocampus: relevance
to memory trace formation. In: Temporal Coding in the Brain (Buzsáki
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