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Abstract

Cognitive maps were proposed as an alternative to stimulus-response explanations of animal
behavior. Although the concept of cognitive maps advanced treatments of complex animal
behavior, it has remained resistant to theoretical definition. A simplified perspective on
cognitive maps that focused on spatial behavior and the construction of spatial maps has
provided an important approach to understanding the role of the hippocampus in spatial
behavior and spatially modulated neural activity, particularly within the hippocampus.
However, this perspective leaves open many questions on how spatial maps and neural
activities within the hippocampus are used and how they contribute to selection of adaptive
actions.

A reinforcement learning approach to animal behavior was used to develop a theory of
cognitive map function. Reinforcement learning provides a theoretical framework within
which the components of cognitive map function can be readily defined and explored. This
approach addresses long-standing criticisms of cognitive map theory by explicit mapping
of stimuli to action via specific, albeit behaviorally unobservable, computations. Flexible
behavior associated with cognitive maps implies the use of transition models in reinforce-
ment learning algorithms. In contrast to model-free algorithms that depend on current
experience only, model-based reinforcement algorithms represent sensory or state informa-
tion beyond the modeled animal’s current sensory experience. As a result, model-based
reinforcement learning provides a principled approach to analysis of neural representations
and the dynamic processes that support cognition.

Neurophysiological recordings in the hippocampus showed that apparent noise present in
spatially modulated place cell activity could be explained as coherent spatial representations
that deviated from the animal’s position on the maze. These non-local representations were
associated with fast spatial representation dynamics and were typically found when the
animal was at feeder locations or choice points. Non-local representations at choice points
shifted forward of the animal to potential future spatial positions and were associated with
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theta and gamma local field potential activity. Forward-shifted spatial representations were
associated with vicarious-trial-and-error behaviors and were task and experience dependent.
In sum, these results suggest how cognitive maps in the hippocampus can contribute to
selection of adaptive actions through the construction of past events and potential future
experiences.

v



Contents

1 Cognition and cognitive maps 1

1.1 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Early observations and the formation of cognitive maps . . . . . . . . . . . 2

1.2.1 Tolman and cognitive maps . . . . . . . . . . . . . . . . . . . . . . . 3
1.2.2 Subsequent readings and perspectives . . . . . . . . . . . . . . . . . 10
1.2.3 Current behavioral approaches to cognitive maps . . . . . . . . . . . 11
1.2.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.3 Cognitive maps and the hippocampus . . . . . . . . . . . . . . . . . . . . . 20
1.3.1 Spatial behavior and the hippocampus . . . . . . . . . . . . . . . . . 22
1.3.2 Place cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
1.3.3 Cell assemblies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
1.3.4 Mental time travel, spatial imagery and episodic memory . . . . . . 31
1.3.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

1.4 Multiple memory systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
1.4.1 Outcome valuation within instrumental tasks . . . . . . . . . . . . . 35
1.4.2 Instrumental contingencies . . . . . . . . . . . . . . . . . . . . . . . 36
1.4.3 Goals and outcomes . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
1.4.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

1.5 A modern theoretical/statistical/Bayesian approach to cognitive maps . . . 41
1.5.1 Experimental evidence . . . . . . . . . . . . . . . . . . . . . . . . . . 45
1.5.2 Discussion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

1.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2 Reinforcement learning 49

2.1 Basic formalisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
2.2 Model-free reinforcement learning . . . . . . . . . . . . . . . . . . . . . . . . 51

vi



2.3 Model-based reinforcement learning . . . . . . . . . . . . . . . . . . . . . . . 53
2.3.1 Multiple memory systems . . . . . . . . . . . . . . . . . . . . . . . . 53
2.3.2 Arbitration of behavioral control – Daw et al. (2005) . . . . . . . . . 54
2.3.3 Memory dynamics in reinforcement learning . . . . . . . . . . . . . . 57
2.3.4 Analysis of working and episodic memory – Zilli and Hasselmo (2008) 58

2.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3 State dynamics and learning 64

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.2 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.2.1 Reinforcement learning. . . . . . . . . . . . . . . . . . . . . . . . . . 65
3.2.2 The practice signal. . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
3.2.3 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.4.1 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
3.4.2 Predictions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
3.4.3 Open questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4 Statistical methods 77

4.1 Neural representations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.2 Analysis of neural representations . . . . . . . . . . . . . . . . . . . . . . . . 78

4.2.1 Encoding and tuning curves . . . . . . . . . . . . . . . . . . . . . . . 78
4.2.2 Population decoding . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.2.3 Decoding at fast timescales . . . . . . . . . . . . . . . . . . . . . . . 80
4.2.4 Memory and cognition as non-local representations . . . . . . . . . . 81

4.3 Consistency analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
4.3.1 Basic consistency analysis . . . . . . . . . . . . . . . . . . . . . . . . 85
4.3.2 Consistency and coherency . . . . . . . . . . . . . . . . . . . . . . . 86
4.3.3 A Bayesian approach to consistency . . . . . . . . . . . . . . . . . . 88
4.3.4 Multiple models in hippocampus . . . . . . . . . . . . . . . . . . . . 89
4.3.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

vii



5 Experiments 95

5.1 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
5.1.1 Subjects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
5.1.2 Behavioral training . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
5.1.3 Surgery and electrode implantation . . . . . . . . . . . . . . . . . . . 98
5.1.4 Recordings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
5.1.5 LFP analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
5.2.1 Behavior. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
5.2.2 Electrophysiology. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
5.2.3 Extra-field firing at the high-cost decision-point. . . . . . . . . . . . 103
5.2.4 Extra-field firing during error-correction. . . . . . . . . . . . . . . . . 106

5.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
5.3.1 Non-local representations. . . . . . . . . . . . . . . . . . . . . . . . . 121
5.3.2 Planning paths with cognitive maps. . . . . . . . . . . . . . . . . . . 122
5.3.3 Does the representation have to reach the goal to be useful for planning?122
5.3.4 Vicarious trial and error. . . . . . . . . . . . . . . . . . . . . . . . . 123
5.3.5 Phase precession . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
5.3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

6 Discussion 125

6.1 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
6.2 Methodological considerations . . . . . . . . . . . . . . . . . . . . . . . . . . 128

6.2.1 Place cell instability and multiple maps . . . . . . . . . . . . . . . . 129
6.2.2 Place cell instability and fast representational dynamics . . . . . . . 130
6.2.3 Statistical treatment . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
6.2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

6.3 Conclusions and open questions . . . . . . . . . . . . . . . . . . . . . . . . . 136

Bibliography 138

viii



List of Figures

1.1 Basic circuitry of the hippocampus. Superficial layers of the entorhinal cortex
project to hippocampus; layer II projects to dentate gyrus and CA3 while
layer III directly projects to CA1. Dentate gyrus projects to CA3. CA3
contains a dense set of recurrent connections (not shown), projects to the
contralateral CA3 and CA1 via the anterior commissure, and projects to
CA1. CA1 projects to subiculum and deep layers of entorhinal cortex (after
Neves et al., 2008). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

ix



1.2 A graphical comparison of instrumental and Pavlovian conditioning and spa-
tial learning. Balleine and colleagues have described goal directed behavior
as sensitive to both outcome devaluation and contingency degradation. A

Basic instrumental conditioning can be described as an action-outcome asso-
ciation. Animals display sensitivity to outcome devaluation only during early
training (Adams and Dickinson, 1981; Balleine and Dickinson, 1998) and de-
veloping devaluation insensitivity is dependent on the dorsolateral striatum
(Yin et al., 2004, 2006). B Multiple action-outcome paradigms have been
used to assess the dependence of action-outcome contingencies for behavior.
Action-outcome associations are dependent on prelimbic mPFC (Corbit and
Balleine, 2003a) and the entorhinal cortex (Corbit et al., 2002). These tasks
are dependent on context (shown as an open box). C More recently Balleine
has shown that multi-action-outcome associations are dependent on medial
agranular premotor cortex (unpublished observations). Note that Balleine’s
goal directed behavior is independent of stimulus information. D Pavlovian
conditioning is described as stimulus dependent behavior wherein the uncon-
ditioned response to an outcome is associated with a conditioned stimulus s.
E Pavlovian decision tasks are dependent on the basolateral amygdala and
orbitofrontal cortex (Schoenbaum et al., 1998; Pickens et al., 2003; Ostlund
and Balleine, 2007). F Spatial learning involves multi-step interaction of both
stimulus and action -based processing. This is similar to causal texture of
the environment proposed by Tolman and Brunswik (1935). . . . . . . . . 42
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1.3 Hierarchical approaches to Bayes’ rule for cognitive research (after Tenen-
baum et al., 2006). The left column shows the basic structure for hierarchi-
cal Bayesian analysis. Observations are interpreted based on an inferential
hierarchy. At the lowest level of this hierarchy are structured probabilis-
tic models that are explicit hypotheses on the distribution of observations.
Higher levels allow comparison of multiple probabilistic models relative to
data and abstract domain principles. And these hierarchies can be further
extended to include higher order theoretical principles. The central column
shows how hierarchical Bayesian analysis has been used for taxonomic infer-
ence for pictures by Tenenbaum and Xu (2000). Within this example, low
hierarchical levels are used for analyzing picture contrast and higher hierar-
chical levels are used for category and word selection (taxonomy). The right
column shows an interpretation of Tolman’s ideas on cognitive inference us-
ing a hierarchical Bayesian approach. Tolman argued that animals learn the
causal texture of the environment and led to the formation of cognitive maps
and higher order cognitive structure (Tolman and Brunswik, 1935; Tolman,
1948, 1949). Hierarchical Bayesian approaches explicitly suggest how cogni-
tive maps fundamentally alter an animal’s perception of its environment, its
remembrance of prior experience and, consequently, its inference (Tolman,
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3.1 Summary of the multiple-T task and model. The task consisted of a sequence
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3.2 Comparison of learning in TDRL models with and without developing replay-
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Chapter 1

Cognition and cognitive maps

1.1 Problem statement

The basic question of this thesis is how animals construct, evaluate and implement plans.
To make this question more tractable it has been approached within the context of navi-
gation, cognitive maps and hippocampal place cells. Animal behavior, within and beyond
the laboratory, suggests that animals form complex representations that allow them to con-
struct near-optimal patterns of behavior (Stephens and Krebs, 1987; Gallistel, 1990). The
approaches of Tolman (1948), O’Keefe and Nadel (1978), and Redish (1999) have provided
a foundation for the following discussion that asks how cognitive maps contribute to the
organization of behavior. By asking this question the trajectory of cognitive maps begun
by Tolman (1948) seems to have come full circle; while previous work has focused on the
construction of cognitive maps (O’Keefe and Nadel, 1978; Gallistel, 1990; Redish, 1999)
at the expense of explanations of the specific use of cognitive maps, this thesis focuses on
understanding how cognitive maps organize behavior.

The following discussion of cognitive maps is organized in three parts. The first part
provides a simple explanation of cognitive maps. The first chapter provides a brief review
of cognitive maps, cognitive map-based behavior and current perspectives on the neural
substrates of cognitive maps. The second part outlines a simple theoretical framework for
analysis of cognitive map function. Chapter two introduces and briefly reviews reinforce-
ment learning and several prominent models that have been used to model flexible behavior.
Chapter three outlines a simple reinforcement learning model that supports flexible behav-
ior, connects reinforcement learning signals to experimentally observed neural signals and
makes several experimentally testable predictions. Part three outlines several experiment
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findings that indicate how cognitive maps in the hippocampus are potentially used. Chap-
ter four outlines an analytical approach to identification of covert, cognitive signals within
neural activity. Chapter five presents several basic experimental findings that support the
use of cognitive maps within the hippocampus during decision-making. Chapter six summa-
rizes the basic theoretical perspective, analytical approach, and experimental findings and
provides a short discussion of these perspectives and findings in light of Tolman’s original
ideas on cognitive maps.

1.2 Early observations and the formation of cognitive maps

There is a basic question of why we should return to old papers and ideas about cognition.
This question is all the more important when those papers and ideas predate so many
conceptual and methodological breakthroughs. The simple answer to our question is in
reframing our own perspectives on cognition. The descriptions, analogies, reasoning and
insights of these original papers and their ideas are unfettered by our modern conceptual
and methodological perspectives. Where these original papers lack modern precision, they
offer a candid view of cognition that does not divide cognition into the neat little boxes and
areas that we might today. And it is for exactly this reason that we should return to the
writings of these astute observers of behavior and puzzle over the connections they make,
particularly those that seem most foreign to us.

One of the basic questions of cognition is whether cognition can exist in animals other
than humans and, if so, what is it and how might it be manifested through behavior?
This was the central question within Edward Tolman’s work and remains a central issue in
subsequent interpretation of Tolman’s ideas and our modern discussions of cognition.

The majority of Tolman’s work was conducted as psychology struggled to assert itself
as a scientific discipline. The struggle to define psychological science resulted in heated dis-
cussion on the division between topics that were scientifically tenable and those that were
too airy or imprecise for solid scientific treatment, no matter how interesting they might
be. And animal cognition was and remains close in proximity to this divide. Tolman’s pre-
ferred perspective on cognition was based on animal rather than human behavior. He wrote:

There are many ... findings which suggest the operation of something like a pure cognitive
or curiosity need in animals and also findings which indicate the nature of the dependence
or the independence of this pure cognitive drive upon such more practical wants as thirst,
hunger, sex, fear. Furthermore, we, or at any rate I, see these facts and relationships about
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cognitive needs more clearly when they have been observed in rats or apes than when they
have been merely noted in a common-sense way in human beings. – Tolman, 1954

In these comments, Tolman distinguishes himself from many of his behaviorist contempo-
raries who would not treat cognition in either humans or animals. Tolman’s perspectives
can also be directly contrasted to later views of cognition that emphasized human (and
quite often very ‘book-ish’) aspects of cognition.

For reasons that are not entirely clear, the battle between these two schools of thought [S-R
learning versus cognitive learning] has generally been waged at the level of animal behaivor.
Edward Tolman, for example, has based his defense of cognitive organization almost entirely
on his studies of the behavior of rats — surely one of the least promising areas in which to
investigate intellectual accomplishments. – Miller et al., 1960 (p.8)

Consequently Tolman’s writings, though influential, have often lacked a comfortable place
in the history of psychology. A variety of recent investigations of animal behavior have once
again emphasized the role of cognition and more recent investigations of human cognition
have wondered about correspondences with animal behavior. And so it is that we revisit
Tolman’s perspectives on cognition.

The following sections revisit Tolman’s development of cognitive maps, particularly
the underlying features of his earlier work that gave rise to these ideas. Tolman (1948)
reviewed a series of five experiments as the basis for cognitive maps. Exploring each of
these experiments in turn, the following discussion examines Tolman’s original definitions
and their evolution through Tolman’s later work with links to more recent investigation.

1.2.1 Tolman and cognitive maps

Tolman developed the idea of a cognitive map as an alternative to the then-common
metaphor of a central office switchboard for learning and memory, typical of stimulus-
response formulations. He wrote,

We assert that the central office itself is far more like a map control room than it is like an
old-fashioned telephone exchange. The stimuli, which are allowed in, are not connected by
just simple one-to-one switches to the outgoing response. Rather, the incoming impulses are
usually worked over and elaborated in the central control room into a tentative, cognitive-like
map of the environment. And it is this tentative map, indicating routes and paths and en-
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vironmental relationships, which finally determines what responses, if any, the animal will
finally release. – Tolman, 1948

The origins of the cognitive map are evident even in Tolman’s early writings (Tol-
man, 1932; Tolman and Krechevsky, 1933; Tolman and Brunswik, 1935). Tolman’s anti-
reductionist emphasis on purpose and macroscopic or molar behavior stood in stark con-
trast to many of the learning theories of his contemporaries. Though Tolman was greatly
influenced by Watson’s behaviorism and considered himself a behaviorist throughout the
majority of his career, his framing of behavioral questions, particularly in relationship to
expectancies, signalled a key difference from his contemporaries. This initial position was
called purposive behaviorism (Tolman, 1932) and provided the foundation for Tolman’s later
perspectives on animal cognition. Purposive behaviorism can be most succinctly summa-
rized as the idea that animals develop expectancies of their dynamic world and through
these expectancies they organize their behavior.

What is expectancy?1 Tolman struggled with this question throughout his work. His
early writings described an expectancy as an animal’s multifaceted interaction or commerce
with its environment. For instance, Tinklepaugh (1928) observed that monkeys would en-
gage in ‘surprise hunting behaviors’ when one food type was substituted for another expected
food type. When the animal found a reward that differed from its previous experience –
even though the reward the animal found was supposedly ‘just as rewarding’ – it would
continue to search for a stimulus that matched its previous experience. Such behaviors
signaled to Tolman that animals, even those as simple as rats, maintained a set of complex,
integrated expectancies of their world (Tolman, 1932). Tolman would later call these com-
plex integrated expectancies cognitive maps (Tolman, 1948). His later writings emphasized
the use of multiple expectancies to inform behavioral performance, particularly when an
animal is faced with a choice (Tolman, 1954).

Because the expectancies an animal holds and its use of them develop with experience,
different cues or sets of cues that underlie behavior change as a function of experience
(Tolman and Brunswik, 1935; Tolman, 1949). That is, both the content and the use of
cognitive maps change with experience. From our modern perspective, this statement and
its ramifications may be readily apparent; rats, for instance, tend to navigate using map-like
place-learning given certain sets of environmental conditions and experiences whereas they

1It should be noted that this question is tightly coupled with the question of representation (Schneidman
et al., 2003): a question that was not adequately addressed by Tolman or his contemporaries and continues
to cause debate.

4



Cognition and cognitive maps 1.2

tend to navigate using response-learning given other sets of environmental conditions and
experiences (O’Keefe and Nadel, 1978; Packard and McGaugh, 1996). These ramifications
were less evident during Tolman’s era and led to one of the more contentious debates on the
basis of rat navigation (Hull, 1943; Tolman, 1948). Tulving and Madigan (1970) describe
the debate between place-learning, a position advocated by Tolman, and response-learning,
a position advocated by Hull, by stating: ‘place-learning organisms, guided by cognitive
maps in their head, successfully negotiated obstacle courses to food at Berkeley, while their
response-learning counterparts, propelled by habits and drives, performed similar feats at
Yale’ (p. 440). The debate’s resolution has been that animal behavior is dependent on rich
sets of cue information during early performance of novel tasks and with overtraining this
behavior becomes dependent on an increasingly smaller and more specific set cue informa-
tion. As such, it is worth noting that Tolman was primarily interested in the case of early,
relatively novel learning while many of his contemporaries (such as Hull) were investigating
the case of later, overtrained learning (Restle, 1957).

In his original formulation of cognitive maps, Tolman (1948) discussed five basic exper-
iments to develop his perspectives on cognition:

Latent learning : Learning can occur without observable changes in behavioral perfor-
mance. This form of learning can be accomplished with a completely random (e.g.
passive) method of exploration.

Vicarious trial and error : Learning occurs through active investigation, either in terms
of investigating the signaling stimulus definition or its signaling contingencies. This
form of learning depends on coincident signalling stimulus and contingency learning.

Searching for the stimulus: Learning occurs through active investigation by the animal
– highly salient outcomes yield a search for a cause. This search, however, does not
indicate how credit assignment is made in terms of consistency and valence.

Hypotheses: Development of expectancies requires testing and outcome stability. Hypoth-
esis behavior is based on a previous set of behavioral expectancies – that some given
change in behavior should produce a change in environmental outcome.

Spatial orientation or the short-cut : The efficient use of hypothesis behavior in a novel
circumstance.

The majority of these ideas have gained a multitude of meanings since Tolman originally
presented his formulation of the cognitive map. In order to understand more thoroughly
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Tolman’s conceptualization of cognitive maps, we revisit his earlier writings and investigate
why he draws on these experiments.

Latent learning

Latent learning can be defined as learning that occurs in the absence of generally observ-
able changes in behavioral performance. Given appropriate experimental conditions, this
learning can be subsequently uncovered. Tolman highlighted latent learning as the first
experimental elaboration of cognitive maps to demonstrate that learning occurs across mul-
tiple modalities and that learning generally occurs even when that learning is not manifest
in behavior. This integrated learning across multiple modalities provides the basis for an
animal to perform different sets of behaviors as different needs arise (e.g. thirst, hunger,
etc.).

In a traditional example of latent learning (Spence and Lippitt, 1946), two sets of fully
fed and fully watered animals are allowed to navigate a Y-maze. Food is available at the
end of one arm of the Y and water is available at the end of the other arm. The first set
of rats is then water deprived while the second set of rats is food deprived. When the two
sets of rats are then placed on the Y-stem, each set runs to the appropriate arm at levels
much greater than chance (rats deprived of water run to water and rats deprived of food
run to food).

Latent learning provides the fundamental basis for cognitive maps by allowing for or-
ganisms to learn covertly. Animals need not display all that they have learned at a given
moment. By beginning with latent learning, Tolman explicitly argues against the assump-
tion that a lack of performance is synonymous with a failure to learn. Performance, Tolman
maintains, is not a simple mixture of rewarded responses, but an interaction of need and
expectancy. The cognitive map is useful only insofar as it allows an organism to learn and
develop a set of expectancies that anticipate potential future needs (in the Y-maze example
for instance, the rats did not know whether they would be water or food deprived).

Vicarious trial and error

Vicarious trial and error is a set of experimentally observable behaviors where an animal
attends to and sometimes approaches a specific choice option but does not commit to it
(Muenzinger, 1938; Tolman, 1938, 1939). At choice points within T mazes or radial arm
mazes, vicarious trial and error appears as a vacillation between potential options; the rat
orients toward one maze arm then re-orients toward another until it finally makes its choice.
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Although the term vicarious trial and error (VTE) carries with it a variety of mean-
ings, Tolman appears to have used this description to emphasize the changing interaction
an animal has with its environment. Within the context of cognitive maps, Tolman specif-
ically identifies the temporal relationship between VTE behavior and task performance as
a significant point of interest. In tasks where VTE occurs, rats usually display an increase
in VTE behaviors immediately before dramatic improvements in task performance. Once
performance reaches ceiling, vicariously trial and error behaviors diminish. If the task is
suddenly changed or the discrimination is made more difficult, rats will again display in-
creased VTE behavior as they learn the new set of contingencies. Tolman’s hypothesis is
that VTE signals a state of cognitive map re-organization that provides the substrates for
changing behavioral performance.

Tolman’s earlier writings suggest a distinction between learning the causal (or coinci-
dent) couplings in the environment and the effects of the organism’s own behavior (Tolman
and Brunswik, 1935; Tolman, 1938). As developed by Tolman, vicarious trial and error be-
haviors are hypothesized to display the tension between two driving forces: (1) the learning
of the set of signaling cues within a task (e.g. a grey cue card located at one arm) and (2) the
task contingency (e.g. food is located at the end of the alley with the grey cue card). Failed
behavioral performance can occur due to either an inability to distinguish the signifier, to
learn the signalled contingency, or to link the two. For example, a grey cue card that signals
the rewarded arm on a Y-maze likely holds no distinction in a rat’s perception until the
rat learns that there is some correlation between its environment and reward availability.
Now the rat must discriminate the boundaries of the correlation between environment and
reward availability, namely the grey cue card. As a result, the animal orients toward one
maze arm in a search for some potential incoming signal that stably correlates with the rat’s
previous experience (Tolman, 1938, 1939). The interactive quality of identification of cues
(signifiers) and their contingencies provide a central feature of cognitive maps: beyond a
form of random exploration that might be used in latent learning, an organism actively at-
tends to a given stimulus set in order to determine its boundaries and identify its signalling
contingencies.

Searching for the stimulus

An organism’s search for a causal stimulus continues Tolman’s development of active inter-
action between an organism and its environment. The set of experiments highlighted by
Tolman (1948) describe searching for a stimulus as the post-hoc attribution of an outcome
(in most cases a shock) to a stimulus. When the paired stimulus was removed immediately
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following the outcome, the stimulus attribution was incorrectly made to another stimulus
if it was even made at all. This attribution is what has come to be known as the credit
assignment problem. Tolman’s focus on the active assignment of credit and the temporal
order of this assignment (outcome leads stimulus) contrasted with much previous research
that focused on the passive transfer of the value or valence of an unconditioned reinforcer
to a previously activated stimulus (stimulus leads outcome).

Tolman’s perspective is predicated on a set of pre-existing expectancies that an organ-
ism has about its environment. It is important to note that the searching for the stimulus
described by Tolman (1948) is novel, single-trial learning; that is, an experimental ma-
nipulation greatly deviates from the organisms set of pre-existing expectancies. When the
organism’s expectancies are violated, the organism investigates and assigns credit. While
searching for stimulus behaviors are indicative of active credit assignment in single trial
learning, an organism will develop another set of active credit assignment behaviors when
faced with multiple different problems of the same class. Tolman called these behaviors
hypotheses.

Hypotheses

In their paper on The organism and the causal texture of the environment, Tolman and
Brunswik (1935) provide an explanation for objective hypotheses: the appearance of sys-
tematic rather than chance distributions of behavior. The term ‘objective’ denotes the raw
statistical nature of the behavior rather than a subjective hypothetical experience within
the organism. Such a statement can be interpreted as either non-sensically trivial or ex-
cruciatingly complex. The behavioral performance of an animal that displays hypothesis
behavior may not appear to be different than random at a macroscopic level; however, on
closer inspection these animals switch from one strategy to another in a rather discrete
manner. Citing Krechesvsky (1932), Tolman illustrates this point with observations from
a sequential Y decision task: for instance, a rat might first attempt all left turns, then all
right turns, then a progressive mixture of the two by alternating between right and left
turns.

A basic problem with observations of this type is how they should be reported – a point
that is particularly salient because animals rarely follow the same trajectory through a
given hypothesis space. At a macroscopic level, animals might select one option at chance
probabilities; at a microscopic level, the patterns of behavior might not be predictable.
Standard statistical treatments of learning typically describe behavioral patterns in terms
of averages. However, such averages across multiple animals often mask abrupt transitions
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from chance performance on a task to nearly perfect performance within a single animal
(Gallistel et al., 2004). Because modern change point analysis were not available (see Smith
et al., 2004 as an example), Tolman resorts to reporting multiple single cases in an attempt
to describe the behavior of rats at spatial choice points (Tolman, 1938, 1939).2

The basis for hypothesis behavior is functional chunking of the environment. Tolman and
Krechevsky (1933) emphasize that animals do not attempt nonsense intermediate strategies
(e.g. attempting to go straight on a T-maze and hitting the wall) but rather shift from one
coherent molar pattern of behavior to another. In essence what Tolman has done is to have
allowed the organism to be a good scientist: it maintains a consistent behavior to determine
the predictability of the environmental (task) outcome. Tolman’s theoretical development
suggests that hypotheses are composed of functional chunks, or to use his term, expectancies.
A rather simplistic version of hypothesis behavior might be used to explain behavior on the
Y-maze during the test portion of latent learning: an approach functional chunk (here a set
of motor outputs) combined with the previous learning experience produces a hypothesis –
approach deprived outcome. The hypothesis is utilized as a complete chunk and is rewarded.
This simple hypothesis behavior is typical of the Y-maze but is easily elaborated to produce
much more interesting behaviors within other more complex tasks as we will see.

Spatial orientation

Much has been made of the short-cut behavior highlighted by Tolman in the sunburst maze
(Lashley, 1929; Tolman et al., 1946). In this task, rats are pre-trained to navigate through
an indirect single sequence of alleys to a food reward site. During the test phase, the alley
sequence from pre-training is blocked and instead multiple radial paths are presented. One
of these radial paths leads directly to the food site. The majority of rats select the short-cut
– the radial path that leads directly to food (Tolman et al., 1946).

While a number of methodological issues have been identified in this experiment (e.g.
a light was placed above the food site in the original experiment; O’Keefe and Nadel,
1978), Tolman argues that ‘the rats had, it would seem, acquired not merely a strip-map
to the effect that the original specifically trained on path led to food but rather, a wider
comprehensive map...’ (Tolman, 1948). The short-cut behavior arises from the capacity to
combine pre-existing behavioral expectancies with environmental cues which have not been
explicitly rewarded. The appeal of the short-cut has, at its basis, an efficiency argument;
the short-cut is the most efficient task solution. The resulting question is over what cue

2Abrupt transitions in behavioral performance appear to be hallmarks of certain choice tasks, particularly
those which elicit vicarious trial and error.
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sets and manipulations can an animal continue to produce the most efficient method of
task solution. Tolman’s use of the term width to describe cognitive maps seems to denote a
measure of efficiency or level of energy-savings over a broad variety of environmental cues
and manipulations.

The width of a map might be considered to be a question of specificity and generaliza-
tion. In contrast to others’ subsequent interpretation of cognitive maps (e.g. O’Keefe and
Nadel, 1978), Tolman (1948) does not indicate how wide or narrow a cognitive map should
be or what specific set behaviors are indicative of the cognitive map. Beyond the basic
set of illustrative behaviors listed above, Tolman simply states that certain conditions such
as brain damage, inadequate environmental cues, over-training, very high motivational or
emotional states lead to narrower, strip-like maps behavior. Given appropriately impover-
ished conditions, cognitive maps can be reduced to very narrow stimulus-response maps;
however, the crux of Tolman’s formulation of cognitive maps suggests that the deductive
approach will not yield the complex interactions made possible through broad cognitive
maps and observed in less-impoverished environments.

1.2.2 Subsequent readings and perspectives

An early reading of Tolman by MacCorquodale and Meehl (1954) emphasized the similarity
of his learning theory with other learning theories. The observation that Tolman’s use of
the term expectancy contained multiple different meanings and implications led MacCorquo-
dale and Meehl (1954) to describe Tolman’s formulations as unnecessarily imprecise and,
perhaps, even shoddy. Their “precise” reformulation considers Tolman’s learning theory
in terms of learning to rather than learning that (MacCorquodale and Meehl, 1954). The
end result of their action-based reformulation was a set of functional and mathematical
relations that were virtually indistinguishable from other contemporary theories of learning
(c.f. Hull, 1943). The similarity of his reduced theory to Hull’s theory and others was
not disputed by Tolman (1955) and to a certain extent this perspective was anticipated by
Tolman (1948), but neither did Tolman fully agree with this position.

Two critical points identified by MacCorquodale and Meehl (1954) were to become a
powerful central influence in subsequent readings of Tolman. These are first that “Tolman’s
complex cognition-statements are not themselves truth-functions of their components” and
second that when a rat’s expectancies are discussed rather than its habits, the questions of
reference and intention become unavoidable. Each point highlights the increasingly promi-
nent position that representation would come to hold within descriptions of animal be-
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havior and particularly within the nascent field of cognitive psychology.3 The first point
highlights the subjective component of animal behavior and begins to move away from
the perspective that the animal somehow extracts purely objective information about its
task or more specifically that an animal might infer something about its task that was
not simply derived from bottom-up processes. The second point highlights the required
discussion of establishing representations relative to specific reference points or intentions.
The place-learning/response-learning debate (Hull, 1943; Tolman, 1948; Restle, 1957) can
be interpreted as an argument of the representational substrates of learning. And it was
such conceptual developments of place representations within cognitive maps that aroused
the interest of later cognitive and neurobiological research.

1.2.3 Current behavioral approaches to cognitive maps

Research on cognitive maps continues to be an area of current active interest. This interest
is based on two fundamental sets of observations – place cells in the hippocampus (O’Keefe
and Nadel, 1978; Redish, 1999) and comparative ethological approaches to animal foraging
and navigation (see review by Gallistel, 1990).

In their influential book The Hippocampus as a Cognitive Map, O’Keefe and Nadel
(1978) suggested that the recent discovery of place cells within the hippocampus (O’Keefe
and Dostrovsky, 1971; O’Keefe, 1976) provided the neurobiological substrates of the cogni-
tive map. O’Keefe and Nadel (1978) elaborated this hypothesis with an extensive review
of the behavioral consequences of damage to the hippocampus and the mechanisms of
hippocampal function that potentially supported learning spatial maps. This assertion re-
vitalized discussion of cognitive maps which had waned within laboratory settings following
the arguments by MacCorquodale and Meehl (1954) and Restle (1957) that Tolman’s learn-
ing theory was, at its basis, equivalent to Hull’s theory (Hull, 1943). O’Keefe and Nadel
explicitly argued against treating the learning described by Tolman (1948) and the learning
described by Hull (1943) as two phases of a single learning process. Instead they suggested
a distinction between multiple memory systems: a locale system based on hippocampal
function that supported spatial learning and a series of taxon systems that supported other
simpler forms of learning. Based on the phenomenology of neuropsychology and neuro-
physiology of the hippocampus, O’Keefe and Nadel (1978) argued that the hippocampus

3It should be noted that while an emerging field of research that would become cognitive psychology was
developing in the 1950s, these researchers were primarily physicists, mathematicians and engineers who had
become interested in behavior (von Neumann and Morgenstern, 1944; Simon, 1955; Newell and Simon, 1972;
Turing, 1992) and whose perspectives were relatively independent of Tolman’s ideas (Hilgard and Bower,
1975).
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provided the neural basis for cognitive maps.
The idea that animals use maps to navigate in their natural environment has its roots in

folk psychology and its modern origins in ethology. The observed search patterns in many
species suggest that animals combine various classes of sensory information to compute
spatial location (see reviews by O’Keefe and Nadel, 1978; Gallistel, 1990; Redish, 1999).
The complex spatial behaviors of animals as simple as arthropods suggest the use of metric
spatial information and construction of cognitive maps. The ethological approach to spatial
behavior is typified by the mathematical perspective of Gallistel (1990). Based partially on
evolutionary considerations of animal behavior, this perspective suggests that the strategies
animals use to navigate approach optimal patterns of behavior. In contrast to the multiple
memory systems perspective within the treatment of O’Keefe and Nadel (1978), ethologi-
cal perspectives typically hold that a single integrated (or unified) system informs spatial
behavior.

While there are many differences between these modern perspectives on cognitive maps,
they share a common emphasis on the pure spatial (or geometric) component of cognitive
map function. Observations that animals can navigate even in the absence of spatial cues
(by dead reckoning) suggests that spatial maps are based on metric information and that a
large class of geometric relations can be used for spatial inference and wayfinding (Gallistel,
1990). In sum, these perspectives on cognitive maps have been devoted to explaining
how animals construct and use spatial representations that underlie the complex patterns
of spatial behavior observed both within the laboratory and more naturalistic settings.
Although these perspectives retain certain aspects of the original treatment of cognitive
maps (e.g. spatial short-cut behavior), they also underscore the great divergence of modern
theories of cognitive maps from Tolman’s ideas.

Place learning and cognitive maps

The original conceptualization of cognitive maps was based on five clear experimental ob-
servations and an opaque formal behavioral learning theory (Tolman, 1948). O’Keefe and
Nadel (1978) presented a more formalized approach to cognitive map function that empha-
sized the spatial components of Tolman’s original theory and specifically place learning.
The basic psychological premise of the theory4 forwarded by O’Keefe and Nadel (1978) was
the distinction between routes and maps (see Table 1.1).

4This discussion is focused on the psychological contributions to cognitive maps made by O’Keefe and
Nadel (1978) and leaves discussion of their neurobiological contributions to the next section.
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Route Map
Motivation The final stimulus is the No object or place on the

goal; the route is built map is a goal; the map is
with this in mind usually built out of

curiosity
Flexibility Routes are rather rigid; Maps are extremely flexible,

the are rendered useless and relatively invulnerable
by any damage, or by the to noise and damage
loss of a guidance, or direction

Speed Very fast Relatively slow
Information Relatively little; each Maps are one of the most
content route contains only a efficient information storage

small amount of data devices known, with very large
capacity

Access No specialized knowledge Special knowledge of coding
is required for access; no strategies required
coding strategies

Manipulation None Maps can be compared; places
on maps can be compared

Table 1.1: Properties of routes and maps hypothesized by O’Keefe and Nadel (1978) in
their treatment of cognitive maps (Table 1 from O’Keefe and Nadel, 1978, p.89).
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Route-based navigation, argued O’Keefe and Nadel, was based on a sequence of stimulus-
response pairings. Several important consequences emerge from this perspective on routes
(Table 1.1). Routes are created based on a goal and established as a means for obtaining
that goal. They contain a simple set of stimulus related information that allows for the
development of subgoals; and this spatial information is organized relative to the current
heading of the animal rather than a environment-based coordinate system. While these
characteristics make route information easily accessed and fast to use, they also underscore
the relative inflexibility of routes and the heightened susceptibility to becoming lost when
using route information. As a final note, routes are not reversible; inverting a route in
order to retrace one’s steps produces a myriad of complications that are typically insoluble
beyond the most trivial of circumstances.

O’Keefe and Nadel (1978) contrast route based navigation with map based navigation.
They argued that map based representations allow for the use of multiple spatial transfor-
mations and that other non-spatial forms of information are embedded or symbolized within
the map. This treatment of map based navigation leads to several important consequences.
O’Keefe and Nadel argued that maps are constructed on the basis of curiosity rather than
on the basis of obtaining a specific goal. They have high information content and confer
great navigational flexibility on the animal using maps. Map availability suggests that even
when an animal becomes lost, it can quickly recover its location and resume its journey.
However, maps require special coding strategies and are relatively slow to access.

Given the basic phenomenology of wayfinding behaviors in human and non-human ani-
mals and the organization and function of the hippocampus (treated below), O’Keefe and
Nadel (1978) hypothesized two types of memory systems: a locale system subserved by the
hippocampus and a series of taxon systems mediated by extra-hippocampal areas. O’Keefe
and Nadel (1978) argued that map-based behavior was based on locale system function
while route-based behavior was based on the functions of the various taxon systems. As
suggested by the title of their book, they primarily focused on treatment of the proper-
ties and functions of the locale system. Table 1.2 outlines the basic characteristics and
functionality of the taxon and locale systems.

Several important differences between taxon and locale systems mark O’Keefe and
Nadel’s theoretical formulation of cognitive maps. In contrast to incremental learning within
taxon systems, learning in the locale system is accomplished through an all-or-none mech-
anism. Because locale system learning progresses in following an all-or-none rule, abrupt
shifts in behavioral performance or hypothesis behaviors emerge (Krechesvsky, 1932; Tol-
man and Krechevsky, 1933). Furthermore, each system uses cue (stimulus) information
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Taxon Locale
Motivation for learning Biological need: to obtain Cognitive curiosity: to con-

reward or avoid punishment struct and update maps of
the environment

Learning change Incremental or decremental All-or-none
Persistence High esp. orientation Low

hypotheses
Temporal changes Marked changes in threshold Minimal changes with time
after activation and strength as a function of after activation; insensitive

time after activation: sensitive to intertrial interval
to intertrial interval

Interference between High Low
similar items

Table 1.2: Properties of taxon and locale systems hypothesized by O’Keefe and Nadel (1978)
in their treatment of cognitive maps (Table 2, from O’Keefe and Nadel, 1978 p.100).

differently. While specific sets of cue (stimulus) information are critical for appropriate
taxon system function, no single cue is necessary for appropriate locale system function.
Place inference within the locale system is mediated by a specific constellation of cue (stim-
ulus) information that is robust to single cue perturbations and interference between similar
items. Finally, taxon and locale systems can be contrasted in the interaction between sen-
sory and motor function. The locale system combines sensory and motor information within
spatial representations through a dead-reckoning system. In contrast, taxon systems are
primarily organized and controlled by sensory stimulus patterns that release a specific motor
program.5

O’Keefe and Nadel (1978) provide only a terse discussion on the arbitration of control
between taxon and locale systems. The two primary factors considered in arbitration of
control are reinforcement and uncertainty. Reinforcement, in O’Keefe and Nadel’s view,
serves to maintain the current balance of control between taxon and locale systems and
non-reinforcement leads toward changing the balance of control. Similarly and perhaps
consequently, uncertainty can produce changes in arbitration of control. O’Keefe and Nadel
(1978) suggest that increased uncertainty associated with a single cue used by a taxon

5This distinction between the integration of stimulus and action information within taxon and locale
systems results in a specific prediction regarding pavlovian and instrumental conditioning. O’Keefe and
Nadel (1978) explicitly suggest that although taxon systems mediate all forms pavlovian conditioning and
many forms of instrumental conditioning, certain types of instrumental conditioning are dependent on locale
systems (p.316). However, it should be noted that O’Keefe and Nadel further argue that learning that
generalizes across contexts is based on taxon rather than locale systems.
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system will shift behavioral control to the locale system while increased variability in the
cues used for place inference will shift behavioral control away from the locale system and
toward taxon systems.

More recent treatments that follow from O’Keefe and Nadel (1978) have further elabo-
rated the mechanisms and function of cognitive maps. Redish (1999), for instance, outlines
five different forms of navigation: random, taxon, praxic, route and locale navigation.
These different forms of navigation each require different sets of underlying computations.
Supporting these distinctions, he reviewed the hippocampal and extra-hippocampal de-
pendence of these patterns of navigation and specified a formal computational theory of
cognitive map function based on attractor dynamics (McNaughton et al., 1996; Touretzky
and Redish, 1996; Samsonovich and McNaughton, 1997; Redish, 1997; Redish and Touret-
zky, 1997, 1998a). This theory of cognitive maps based on attractor dynamics has been
used to reproduce many of the behavioral phenomena hypothesized by cognitive map func-
tion (as defined by O’Keefe and Nadel, 1978 – particularly experimental results similar to
experiments 1,3 and 5 from Tolman, 1948) and hippocampal place cell activity.

Although Redish (1999) moves toward the use of multiple maps related to goals, his
treatment maintains a primary focus on the construction of cognitive maps rather than
specifying their use, a perspective central to the original treatment of O’Keefe and Nadel
(1978). This perspective shared by O’Keefe and Nadel (1978) and Redish (1999) rests on
the tenet that once an animal locates itself on a given map, it will immediately be able to
construct a goal location toward which the animal can move. Although this perspective
represents an important contribution, it leaves open several questions related to the for-
mation, evaluation and use of goals within behavior. Clearly these goal related functions
depend on an interaction between route and map-based systems that are absent within the
competitive control based formulations of O’Keefe and Nadel (1978). Part of this neglect
is due to the hippocampus-centric view found within research on the neural substrates of
cognitive maps. A more integrated view of cognitive maps and their use within spatial
navigation comes from ethological observations.

Ethological approaches to cognitive maps

In contrast to psychological and neurobiological approaches to cognitive maps that empha-
size differentiation of multiple memory systems, ethological approaches typically focus on
whole, intact behavior and the interactions between the animal and its environment (Gal-
listel, 1990). The ethological approach to cognitive maps builds on development of metric
information and subsequent inclusion of specific stimulus information within a constructed
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metric space.6 This unified approach begins with a simplified view of goal behavior in terms
of path integration and elaborates this view of goal behavior in terms piloting.

Animals make circuitous trajectories as they forage for food. However, even after for-
aging over long periods and great distances, they find their way back to the nest. Rather
than retracing their trajectory, many animals select a nearly direct path home (Mittelstaedt
and Mittelstaedt, 1980; Wehner and Srinivasan, 1981; Müller and Wehner, 1988). At its
simplest, this form of navigation requires only the storage of metric information relative
to a starting position. The cumulative displacement relative to a starting position that
develops through the trajectory can be subsequently used to compute an approximate di-
rection and radial distance. This computation is called path integration (Mittelstaedt and
Mittelstaedt, 1980; Wehner and Srinivasan, 1981) or dead reckoning (Gallistel, 1990). Many
animals, from arthropods to mammals, choose paths in the appropriate direction of their
initial starting position and break off their search at the appropriate distance even when
landmarks that might otherwise be used for navigation has been removed (Mittelstaedt and
Mittelstaedt, 1980; Wehner and Srinivasan, 1981; Müller and Wehner, 1988; Gallistel, 1990;
Etienne et al., 1996).

Animals’ search strategies reflect both path integration and use of environmental fea-
ture information. Piloting represents a process that is described by Gallistel (1990, p.41) as
moving “around unobserved obstacles toward unobserved goals by reference of observable
features of the land and to a map that records the geometric relationship” between per-
ception and the goal (whether it is to be found or avoided). In this description of piloting,
Gallistel (1990) articulates a method for construction and evaluation of goal information.
Goals are produced as a consequence of the content of a cognitive map and spatial behaviors
represent the use of geometric- and feature-based inference in an attempt to realize these
goals. The feature dependence of search strategies (Collett and Land, 1975; Collett, 1987;
Arolfo et al., 1994) suggest that animals somehow represent the content of goal location
(e.g. a snapshot or a sketch of landmark information) such that goal locations can be recog-
nized and approached (Gallistel, 1990, p.121). How these goal acquisition behaviors are
implemented remains an open question.

Within many theoretical treatments of an objective geometric spatial representation
within cognitive maps, routes are defined as direct trajectories toward a location that end

6This discussion is heavily based on the discussion of navigation by Gallistel (1990) and will be generally
focused on the development of goal representations. It should be noted that although Gallistel (1990) takes
a modular approach to describing the processes that underlie behavior, these are part of a complete and
unified framework. The organization of learning hypothesizes that a set of fully integrated modules produce
near optimal behavior given natural environmental conditions.
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with recognition of the predicted target. In simple theories, animal behavior at that tar-
get location is little more than random search. More complex theories have considered
the organization of search processes. For instance, search patterns observed in ants fol-
lowing dead reckoning to a fictive target emanate in increasingly large concentric circles
centered on the fictive target location (Wehner and Srinivasan, 1981). Beyond the use of
uncertainty information within search, animals also actively perform information gathering
behaviors similar to those described by Tolman (1948) as animals searched out a stimulus
and performed vicarious trial and error behaviors.

In an interesting study on the active use of dynamic cue information in estimating
distance, Ellard et al. (1984) describe information gathering behaviors of gerbils faced with
the task of jumping across a gap. Gerbils estimated gap distance according to two type of
parallax information (as reviewed by Gallistel, 1990). The loom or expansion of the visual
image of the target was used when the runway preceding the gap was long enough to allow
the animal to dart toward the target. Head bobbing was used when the track was sufficiently
shortened to make darting impossible. These behaviors are a direct consequence of spatial
problem solving. In order for animals to produce these behaviors they necessarily identified
the problem to be solved (crossing the gap) and inferred a general solution strategy (a
jump) for a given goal (reaching the target). These dynamic behaviors (darting toward the
target on long runways and head bobbing on short runways) represent the explicit search
for information related to (parameterization of the) solution of the problem rather than a
simple headlong attempt toward goal acquisition.

In sum, ethological approaches to cognitive maps suggest a specific interaction between
objective map information and the construction of subjective routes. Although the con-
struction of goals and the spatial inference that provides the engine for realizing these goals
remains poorly specified compared to the rigorous formulation of the spatial components of
these theories, the movement toward explicit on-line integration of multiple computational
processes (modules) represents a critical step forward.

1.2.4 Conclusions

The central question motivated by the previous discussion is how animals use the content
of cognitive maps to inform behavior. How, exactly, does an animal formulate a trajectory
through a map to a goal location? How, exactly, does an animal define and create goals?
How does the search for a goal progress? The perspectives of O’Keefe and Nadel (1978)
and those of ethologists differ in their treatment of goals within cognitive map function.
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O’Keefe and Nadel (1978) remove the influence of goals and motivations from the locale
system in order to simplify their discussion of cognitive maps. Instead they argue that

One thing is clear: routes imply goals which imply motivations. Why do you want to go to
Upshire? The second stimulus in each S-R-S link can be looked on as a subgoal in the over-
all goal-directed chain. Routes direct attention to particular objects or specify turns within
egocentric space. They are inflexible, must be use in the correct sequence, and only rarely
allow freedom of choice to the traveler. – O’Keefe and Nadel, 1978

O’Keefe and Nadel (1978) argue that route-based navigation has the great potential for
becoming lost and contrast this with the much more robust form of map-based navigation.
One problem in the argument forwarded by O’Keefe and Nadel (1978) is how cognitive maps
are used for motivated behavior. The statement shown above suggests that all motivated or
goal-based behavior is left to route-based taxon systems. Perhaps this explains why map-
based navigation has such small potential for becoming lost because how can an animal
become lost if it has no goal? And perhaps more importantly, we might ask, like Guthrie
(1935) about how cognitive maps inform action.

O’Keefe and Nadel (1978) suggest that cognitive maps within the locale system are free
of distortion potentially produced by motivation but leave open the interaction between
the locale system and the various taxon systems which might use the contents of cognitive
maps, form goals and inform action. Reinforcement within the locale system is included
within the content of a map just as any other stimulus information would be. In contrast,
reinforcement acts as a specialized channel for taxon systems. The suggestion that rein-
forcement information is included within cognitive map content implies some interaction
between locale and taxon systems in the construction of cognitive map based routes. But
how such routes are constructed remains unclear.7

Ethological perspectives have further developed the interaction between cognitive maps
and spatial behavior strategies, particularly those related to search. However, these per-
spective leave open a number of important questions. Are goal locations identified and
created based on previous experience – that is, were they tagged as potential goal locations
at the time they were originally (or subsequently) visited. If so, how is the tagging of goal
locations accomplished and is this subject to specific motivational influences? If, alterna-

7It is interesting to note that in contrast with taxon systems, O’Keefe and Nadel (1978) argue that the
locale system and the hippocampus in particular “is specifically designed to produce variability in behaviour”
(p.318). While the variability produced by curiosity might be considered as random, it could also be used
to inform search processes – although it is not clear how this would be accomplished.
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tively, goal locations are not tagged and are constructed after they were originally visited,
how is this process organized?

Modern theoretical development of cognitive maps has primarily focused on the con-
struction of objective spatial representations and the computational transformations re-
quired to support observed spatial behavior (O’Keefe and Nadel, 1978; Gallistel, 1990;
Redish, 1999). This development has only peripherally examined the construction, evalu-
ation and use of goals (O’Keefe and Speakman, 1987; Redish, 1999). As current research
on cognitive map function and its neurobiological substrates has begun to consider these
questions, it has returned to a more integrated view of cognitive map function that is con-
sistent with Tolman’s original formulation of cognitive maps. This research has focused on
the relatively underdeveloped aspects of Tolman’s theory (1948)8, specifically hypothesis
and vicarious trial and error behaviors (Hu and Amsel, 1995). The following section further
elaborates the cognitive map function and its neurobiological instantiation.

1.3 Cognitive maps and the hippocampus

Damage to the hippocampus produces broad deficits in spatial learning and memory (O’Keefe
and Nadel, 1978; Redish, 1999). The profound behavioral deficits in hippocampal lesioned
animals combined with the discovery of place cells led O’Keefe and Nadel (1978) to hypoth-
esize that the hippocampus formed the neural substrate for cognitive maps. Indeed O’Keefe
and Nadel’s original development of cognitive maps flows from the proposed equivalence of
spatial cognitive map function9 and hippocampal function: the hippocampus does what
cognitive maps do and cognitive maps are what the hippocampus does. While this propo-
sition has provided a rich framework for studying the functional properties of hippocampal
place cells and interpreting the consequences of hippocampal lesions, it has also created
an oddly moving definition of cognitive maps based on emerging evidence of hippocampal
mechanisms and function. The conclusion of such a proposition is that any hippocampal-
or cognitive-map- based function must be related to the place qualities of maps (O’Keefe,
1999); as a result, behaviors such as acquisition of trace conditioning (Solomon et al., 1986;
Beylin et al., 2001) and retrieval of episodic memories which are also dependent on the
hippocampus are considered epiphenomena of the mechanisms of cognitive map function.

8Although the authors of many of these studies tacitly claim their data disprove the existence or use of
cognitive maps, their arguments seem directed toward the strong spatial cognitive map hypothesis forwarded
by O’Keefe and Nadel (1978).

9I use the term spatial cognitive map function to denote the strong spatial position taken by O’Keefe
(1999) wherein all cognitive map function is tied to place information.
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The relationship between cognitive map function and the hippocampus proposed in
the following discussion is less stringent than the strong spatial cognitive map proposal by
O’Keefe (1999). Instead, it is focused on the interaction between processes which locate
an animal on a cognitive map and those that inform animal behavior and through the
evaluation and production of routes. So within the nomenclature developed by O’Keefe and
Nadel (1978), this proposal of cognitive map function is based on the interaction between
locale and taxon systems. Consequently, the neurobiological approach to cognitive map
function within the present proposal extends beyond the hippocampus (and closely related
hippocampal areas) and identifies the hippocampus as an important component within a
system that mediates cognitive map function.

The basic organization of the hippocampal archicortex has been described as a tri-
synaptic circuit (see Figure 1.1). Entorhinal cortex (layer II) sends projections to the dentate
gyrus via the perforant path; dentate gyrus sends projections to CA3 via mossy fibers; CA3
sends projections to CA1 via Schaffer collaterals; and CA1 sends its projections out of the
hippocampus to either subiculum or entorhinal cortex. The hippocampus further contains
recurrent projections within the CA3 region which have generated much speculation on
the potential computational functions conferred by this architecture (Marr, 1971; Levy,
1996; Lisman, 1999; Treves, 2004; Koene et al., 2003; Koene and Hasselmo, 2008). The
hippocampus and related parahippocampal areas receive projections from and project to
many cortical and subcortical areas (Johnston and Amaral, 1998). The organization of
these projections and the connectivity differences between the rodent dorsal and ventral
hippocampus10 suggest that the specificity of spatial information is much higher within
dorsal hippocampus than in ventral hippocampus (Jung et al., 1994; Johnston and Amaral,
1998; Moser and Moser, 1998).

Early hippocampal recordings distinguished between local field potential activity asso-
ciated with volitional movement and exploration characterized by strong 7-12Hz (theta)
oscillations and activity associated with awake or asleep immobility characterized by large
irregular activity (LIA) fluctuations and 2-4Hz low frequency (delta) oscillations (Vander-
wolf, 1969, 1971). Hippocampal local field potentials also display brief periods of coordi-
nated sharp wave activity that contain high frequency ∼ 200Hz ripples during LIA epochs
(O’Keefe and Nadel, 1978, more recent investigations have also found ripples during theta
epochs as well; see O’Neill et al., 2006). The relationship between single unit spiking activity

10The dorsal or septal hippocampus in the rodent roughly corresponds with the posterior hippocampus in
the primate and the ventral or temporal hippocampus in the rodent roughly corresponds with the anterior
hippocampus in the human.
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Figure 1.1: Basic circuitry of the hippocampus. Superficial layers of the entorhinal cortex
project to hippocampus; layer II projects to dentate gyrus and CA3 while layer III directly
projects to CA1. Dentate gyrus projects to CA3. CA3 contains a dense set of recurrent
connections (not shown), projects to the contralateral CA3 and CA1 via the anterior com-
missure, and projects to CA1. CA1 projects to subiculum and deep layers of entorhinal
cortex (after Neves et al., 2008).

and the phase of one or more of these oscillations has been used to characterize the various
types of projection neurons and interneurons found in the hippocampus (Klausberger et al.,
2003; Somogyi and Klausberger, 2005). Hippocampal projection neurons (pyramidal neu-
rons in CA1 and CA3 and granule cells in dentate gyrus) display sparse spiking activity that
is modulated by theta oscillations during waking behavior and by sharp wave ripple activity
during sleep/awake immobility (O’Keefe and Nadel, 1978; Klausberger et al., 2003; Somo-
gyi and Klausberger, 2005; Buzsáki, 2006). Because projection neurons ostensibly provide
the primary pathway for neural information transmission, the relationship between spatial
behavior, single unit spiking activity and local field potential activity has been viewed as a
critical component in understanding the contribution of the hippocampus to cognitive map
function and spatial behavior. These relationships are discussed below.

1.3.1 Spatial behavior and the hippocampus

A standard characterization of the hippocampus dependent map-based spatial behavior
is provided by a series of experiments using the water maze (Morris et al., 1982, 1986).
Within the water maze an animal learns to find a platform hidden beneath the surface
of the water by using location information derived from distal landmarks (Morris, 1981).
Animal behavior on the water maze is characterized by increasingly direct paths to the
platform location from any initial position over the course of training and, in the absence
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of the platform, selective search of the location of the missing platform. In agreement
with other forms of hippocampus dependent spatial behavior (O’Keefe and Nadel, 1978),
behavior on the water maze is dependent on distal cues and shifts of these distal cues
produce corresponding shifts in the selectively searched quadrant (Morris, 1981). Further
evidence suggests that water maze behavior is dependent on a constellation of cues rather
than individual cues: removal of a subset of spatial cues, or the use of partial distal cue
information, causes negligible behavioral deficits (Nakazawa et al., 2002). Hippocampal
lesions or inactivation produce massive deficits in acquisition and performance within the
water maze as measured by either path length or search selectivity (Morris et al., 1982,
1986). In the partial cue version of the water maze, CA3 specific genetic ablation of NMDA
receptor compromises quadrant selective search patterns (Nakazawa et al., 2002). Animals
with lesions to the hippocampus are capable of solving the water maze if initially placed
in an identical location and orientation within the water maze apparatus across training
(Eichenbaum et al., 1990). Similarly, water maze behavior becomes independent of the
hippocampus when animals are trained with a constant initial position and orientation
(Whishaw and Mittleman, 1986; Eichenbaum et al., 1990).

Behavior on the water maze is characterized by the interaction of spatial information
(map-relations) and goal information (map-content) that leads to the production of an
efficient route to the platform. Protocols that compromise access to visual information in-
terfere with normal water maze acquisition and performance and suggest that behavior on
the water maze is at least partially dependent on a continuous stream of visual information
(Arolfo et al., 1994). This evidence supports a tight coupling between spatial location and
the expected sensory content for a given location as would be suggested within piloting-
based navigation. But how and when are these trajectories constructed? While it might
be argued that an efficient trajectory to the platform is constructed immediately following
identification of the animal’s position in the water maze (Redish and Touretzky, 1998a),
the continued use of sensory input suggests that trajectory computations integrate sensory
information throughout the trajectory (Arolfo et al., 1994). Moreover, the search trajecto-
ries are also dependent on previously experienced patterns of reward (Olton, 1979). The
active integration of environmental cue information and patterns of previous reward become
critical considerations within more naturalistic foraging situations where trajectories must
be constructed and coordinated with respect to multiple potential reward sites.

The organization of multiple goal trajectories and its relationship to spatial working
memory has been studied in a series of experiments by Olton and colleagues. The radial
arm maze is characterized by a set of alleys emanating from a central platform (Olton and
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Samuelson, 1976; Olton et al., 1979, 1980). In the (non-delayed) spatial working memory
version of the task, each arm is baited once within a session. In the delayed version of the
spatial working memory task animals are removed from the track after several arm entries
and returned after a delay. Errors are classified as entries into unbaited (previously selected)
arms. Spatial working memory on the radial arm maze is hippocampus dependent in the
delayed version of the task (Rawlins, 1985; Jarrard, 1993; Redish, 1999; but see Barnes,
1988 for a contrasting view). It is also dependent on the the connections between ventral
CA1/subiculum and prelimbic mPFC in the delayed version of the task and connections
between ventral CA1/subiculum and ventral striatum in the non-delayed version of the task
(Floresco et al., 1997). These studies suggest that interactions between the hippocampus
and other brain areas, specifically the ventral striatum and prelimbic mPFC, organize goal-
directed spatial behavior.

Rats within the radial arm maze display organized spatial trajectories and rarely visit
previously visited arms even across long delays (Olton and Samuelson, 1976; Olton et al.,
1979). Moreover, the decision to select a given arm is primarily related to whether it was
previously visited; most evidence suggests that each decision is independent of the order of
the previously visited arms (Olton and Samuelson, 1976; Brown, 1992; an upper bound of
approximately 15 items has been calculated for the capacity of working; as noted by Olton,
1979). This suggests that rats do not utilize a single generalized problem solving strategy
for solution of the radial arm maze but determine trajectories according to spatial working
memory as a sequential decision process. Consistent with a sequential decision process,
maze arm entry is often associated with vicarious trial and error or microchoice behavior
(Brown, 1992). Vicarious trial and error behaviors are dependent on the hippocampus (Hu
and Amsel, 1995) and correlated with increased hippocampal metabolism (Hu et al., 2006).
The macroscopic and microscopic organization of goal-directed behavior within the radial
arm maze and its relationship to hippocampal function suggests that the hippocampus
contributes to a sequential decision process based on spatial working memory stores, but
does not address what specific contribution the hippocampus makes (e.g. what is the content
of spatial working memory) to the creation of different goal trajectories.

A recent study by Tse et al. (2007) on the construction and use of spatial schemata
provides an important insight on the contribution of the hippocampus to the organization
of behavior. Rats in this study were initially trained on odor-place paired associates. The
presentation of a specific odor indicated that a reward was available at a specific position
(food-well) within the task arena. Animals were initially trained with six paired associates
and slowly acquired the task over multiple sessions. Hippocampal lesions prior to train-
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ing impaired basic task acquisition. Intact rats were trained on two new paired associates
following initial training of the six paired associates. These animals displayed nearly im-
mediate acquisition of the new paired associates. Subsequent lesions of the hippocampus
produced no behavioral deficits for either the initial six paired associates or the subsequently
learned two paired associates but did block further odor-place paired associate learning. In
contrast, hippocampus intact animals quickly learned subsequently presented paired asso-
ciates. The explanation of these data by Tse et al. (2007) suggests that the hippocampus
mediates the construction of integrated spatial representations or spatial schemata that
allow fast integration of new information. Hippocampal lesions suggest that the hippocam-
pus is required for construction of spatial schemata and integration of new information into
existing schemata. Although the hippocampus is not required for production of previously
learned cue-specific spatial trajectories, these results suggest that previously learned spatial
information directly contributes to the construction of trajectories relative to novel cues
within the paired-associate task.

In order to understand how the intrinsic organization of information within spatial
schemata contributes to learning, Tse et al. (2007) explored the the effects of consistent
versus inconsistent paired-associate training. In this experiment, rats were trained with six
consistent odor-place pairings in one room and trained with six odor-place pairings that
varied throughout training in a second room. These animals were then trained on two novel
odor-place pairings (and these novel pairs were identical between the experimental rooms
– identical odors and relative positions). The rats learned the two new odor-place pairings
in the consistent condition room while the rats did not learn in the inconsistent condition
room.11 Tse et al. (2007) suggest that the rats were able to form a spatial schema that
contributed to later learning and behavioral performance in the consistent condition while
they were unable to do so in the inconsistent condition.

The study by Tse et al. (2007) suggests that a search trajectory constructed on the basis
of a cognitive map is much more efficient than one formed without access to the hippocampal
component of a cognitive map because it includes information about what locations were
not suggested by the cue as well as what locations were suggested by the cue. Furthermore,
the studies described above suggest an intriguing interaction between the hippocampus and
other brain areas (e.g ventral striatum and prelimbic mPFC) in the organization of flexible,
goal-directed spatial behavior, particularly during early learning regimes. These results

11It would be interesting to see whether rats with hippocampus lesions in the inconsistent condition learn
the novel paired associates more quickly than hippocampus intact animals due to hippocampus-mediated
interference.
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underscore the organization of cognitive map-based behavior and the specific contribution
of the hippocampus. These observations further suggest the computations performed by
the hippocampus and a set of potential coding strategies and dynamics within hippocampal
neural activity.

1.3.2 Place cells

Observed patterns of single unit spiking activity within the hippocampus are highly corre-
lated with an animal’s spatial location (O’Keefe and Dostrovsky, 1971; Ono et al., 1991a,b;
Ekstrom et al., 2003; Ulanovsky and Moss, 2007). Hippocampal pyramidal neurons or place
cells show increased spiking activity at a specific location called a place field (O’Keefe and
Dostrovsky, 1971; O’Keefe and Nadel, 1978). Individual place fields for a single cell are
stable within a single experimental session and can be stable between experimental sessions
separated by periods up to several months (Thompson and Best, 1990). Like many of the
spatial behaviors discussed above (Morris, 1981), place cell activity is closely coupled with
distal visual cues and place field shifts are predicted by experimental cues shifts (Muller
and Kubie, 1987). But place cells are not wholly dependent on distal visual cues; they are
stable following cue removal (O’Keefe and Conway, 1978; Muller et al., 1987; Markus et al.,
1994) and experientially decouple from highly variable cues (Knierim et al., 1995). These
basic results suggest that place fields form a consistent map of the animal’s environment by
integrating distal multisensory cue information.

Place fields appear to be randomly and equivalently distributed across a given environ-
ment over a wide variety of tasks (O’Keefe and Nadel, 1978; Redish et al., 2001). Although
several studies (Hollup et al., 2001b,a; Hok et al., 2007) have found slightly increased density
of place fields associated with goal locations, place cell activity and place field distributions
are generally independent of reinforcement. Further studies have examined the distrib-
ution of place fields relative to anatomical position within the hippocampus. In contrast
with other brain areas which display a topographic anatomical organization of a represented
information, analysis of the place field distributions suggests that no such anatomical topog-
raphy is found within the hippocampus (O’Keefe and Nadel, 1978; Redish et al., 2001).

Map stability and spatial performance. Place cells display different place fields in
different environments (O’Keefe and Conway, 1978; Muller and Kubie, 1987). The distri-
bution of place fields in one environment does not predict the distribution of place fields
in a second environment and suggests that the hippocampus maintains independent maps
of each environment (Muller and Kubie, 1987; Guzowski et al., 1999; Redish, 1999). Place
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cells display pattern separation/pattern completion characteristics in animals that have
been previously trained in two different environments (e.g. circle versus square) and were
subsequently tested in cue-conflict or intermediate environments (Lee et al., 2004b; Wills
et al., 2005; Leutgeb et al., 2005a). The coherent, coordinated shifts in place field distri-
butions correspond to several predicted computations related to attractor dynamics and
suggest that the hippocampus competitively selects a single map for a given environment
over long timescales (Redish and Touretzky, 1997; Samsonovich and McNaughton, 1997;
Redish and Touretzky, 1998a; Tsodyks, 1999; Doboli et al., 2000; Tsodyks, 2005).

A variety of studies have examined the stability of spatial maps within a single envi-
ronment. Manipulation of behavioral tasks (or task contingencies) influence map stability
and the distribution of place fields within a single environment (Markus et al., 1995; Moita
et al., 2004; Kentros et al., 2004). Aged rats displayed increased place field instability
across repeated sessions of the same task compared to controls (Barnes et al., 1997). Moita
et al. (2004) showed that contextual fear conditioning produced place field remapping in
rats. And Kentros et al. (2004) showed that whereas place fields were relatively unsta-
ble for a standard open-field foraging task in mice, they were much more stable in an
attention-demanding version of the task. Kentros and colleagues further demonstrated that
NMDA receptor blockade compromised the development of long-term place field stability
in novel environments (Kentros et al., 1998) and a D1/D5 dopamine agonist (SKF 38393)
facilitated place field stability even without a behavioral task while a D1/D5 dopamine an-
tagonist (SCH 23390) compromised place field stability within a foraging task. A number
of studies have also shown a link between the observed hippocampal map and behavior and
suggest the active use of hippocampal spatial representations underlies spatial navigation
(O’Keefe and Speakman, 1987; Lenck-Santini et al., 2001, 2002; Rosenzweig et al., 2003).
These observations suggest that place field maps support spatial behavior and map stability
is related to the cognitive demands of the behavioral task.

Trajectory coding. In contrast with place fields observed on random foraging tasks,
place fields on alley-based tasks are sometimes dependent on the rat’s running trajectory.
Place fields on the linear track are dependent on the rat’s running direction (McNaughton
et al., 1983) and place fields on the common stem of spatial alternation tasks are dependent
on the (R → L, L → R) trajectory (Wood et al., 2000; Frank et al., 2000). Ferbinteanu
and Shapiro (2003) extended these initial observations to show that separate trajectory
dependent place cell populations predict the direction the rat will turn and the direction
from which the rat came on a plus maze task while a third population displayed no trajectory
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dependence. Although trajectory dependent place fields have been examined on tasks more
complicated than linear track and spatial alternation tasks, the trajectory dependence of
place fields is task dependent (Eichenbaum et al., 1987; O’Keefe and Speakman, 1987;
Ainge et al., 2007a,b) and also dependent on the specific training regimen used (Bower
et al., 2005).12 These observations suggest that the hippocampus parses behavioral tasks
into spatial components. Further evidence also suggests a similar parsing of non-spatial task
components (Eichenbaum et al., 1987; Wood et al., 1999; Griffin et al., 2007) and supports
the general hypothesis that hippocampal pyramidal neurons code task relevant information
in both hippocampus dependent and hippocampus independent tasks.

1.3.3 Cell assemblies

In an attempt to describe the neural substrates of learning, Hebb (1949) formulated the
concept of the cell assembly. Hebb (1949) hypothesized that cell assemblies were formed
from multiple correlated cellular activities based on the rule that coincident activation of
two neurons with shared connections strengthened these connections and subsequently al-
lowed the activity of one cell to propagate to another. Hebb (1949) identified two primary
consequences of this formulation of learning. First, a cell assembly provided the basis for
construction of an integrated representation across multiple stimuli (similar to the proposal
of Gestalt psychologists). This is a forerunner of modern pattern recognition and pattern
completion algorithms (Hopfield, 1982; Hertz et al., 1991). Second, the temporal dynamics
of cell assemblies suggested that the coordinated, sequential propagation of cell assemblies
(what Hebb called a “phase-sequence”) allowed access to information not present in im-
mediate sensory experience. Evidence for the basic plasticity rule Hebb proposed was first
discovered in the hippocampus (Lomo, 1971, but has now been found in many other brain
areas Bear, 1996) and further evidence suggests that hippocampal pyramidal neurons form
cell assemblies (Harris et al., 2003; Jackson and Redish, 2007).

Cell assemblies within the hippocampus Place cell activity is much more variable
than would be expected given the set of model parameters typically used to describe single
unit place field activity (e.g. position dependent spike emission as a Poisson process; Fenton
and Muller, 1998). Fenton and colleagues hypothesized that this unexplained variability
could result from fast-switching between multiple maps (Olypher et al., 2002). Consistent

12It should be noted, however, that the functionality of these observed codes remains in question. Ainge
et al. (2007a) showed that place fields on a hippocampus dependent task displayed reduced trajectory
dependence relative to place fields on a hippocampus independent task.
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with this hypothesis, place cell activity on a linear track is better predicted by a combination
of position, theta phase, and the set of simultaneously active cells than by a combination
of position and theta phase alone (Harris et al., 2002). Harris et al. (2002, 2003) suggested
the set of simultaneously active place cells represented cell assemblies. Jackson and Re-
dish (2007) decomposed hippocampal place cell activity into two maps and showed that
these maps dynamically shift during task performance and that dynamical map-switching
could account for much of the previously unexplained variability observed within place cell
activity. These data support the hypothesized formation of cell assemblies as coordinated
simultaneous activity within hippocampal place cells. Further evidence for cell assemblies
in the hippocampus comes from observations on the dynamics of place cell activity and
hippocampal replay.

Place cell activity replays previously observed task activity during sleep episodes. Early
observations indicated that place cell activity during task performance was predictive of sub-
sequent cellular activity during sleep (Pavlides and Winson, 1989; Wilson and McNaughton,
1994). Skaggs and McNaughton (1996) showed that the temporal ordering of place cell spik-
ing activity (as identified by cross correlations) during subsequent sleep episodes was similar
to activity observed during task performance. And evidence from linear track tasks showed
reactivation of full temporal sequences within sharp wave ripple activity during slow wave
sleep (Nádasdy et al., 1999; Kudrimoti et al., 1999; Lee and Wilson, 2002) and during REM
sleep (Louie and Wilson, 2001). Based on these observations, the term forward route replay
has been used to describe the time compressed reactivation observed during sleep because of
the similarity between the temporal ordering of place cell spiking activity observed during
sharp wave ripple activity and the temporal ordering of place cell spiking activity observed
during task performance. Finally, replay observed during sleep following task performance
is much more frequent and temporally ordered than replay observed during sleep prior to
task performance (Wilson and McNaughton, 1994; Skaggs and McNaughton, 1996; Kudri-
moti et al., 1999; Lee and Wilson, 2002) and suggests that replay develops as a function of
experience.

More recent observations suggest that route replay occurs during both periods of sleep
and wakefulness. Patterns of local field potential patterns within the hippocampus during
awake behavior shift between epochs of high theta power associated with task performance
and LIA epochs associated with periods of awake immobility (Vanderwolf, 1969, 1971).
Much like LIA observed during sleep, sharp wave ripple activity observed in periods of
awake immobility (O’Keefe and Nadel, 1978) are associated with replay (Jackson et al., 2006;
O’Neill et al., 2006; Diba and Buzsàki, 2007; O’Neill et al., 2008). Sharp wave associated
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replay during awake states displays more complicated dynamics than those observed during
sleep and include backward route replay (Foster and Wilson, 2006; Csicsvari et al., 2007;
Diba and Buzsàki, 2007), forward route replay (Diba and Buzsàki, 2007) and mixed replay
dynamics (personal observation and observations from Matt Wilson). Foster and Wilson
(2006) showed that backward route replay occurs on the first lap of a linear track task
and decays with experience. In contrast, sharp wave ripple-associated reactivation develops
as a function of experience and behavioral repetition (Jackson et al., 2006; O’Neill et al.,
2008) and suggests that forward and backward route replay are supported by fundamentally
different neural mechanisms. These observations are consistent with cell assembly dynamics
proposed by Hebb (1949) and suggest the formation of cell assemblies within hippocampal
place cell activity.

Cell assemblies beyond the hippocampus. Hebb’s cell assembly proposal suggested
that a cell assembly was “... a diffuse structure comprising cells in the cortex and dien-
cephalon, capable of acting briefly as a closed system, delivering facilitation to other such
systems” (Hebb, 1949). This suggests that cell assembly dynamics observed within the
hippocampus likely extends beyond the hippocampus to other structures. Current evi-
dence supports this hypothesis (Qin et al., 1997). Hoffman and McNaughton (2002) found
coordinated reactivation across multiple neocortical sites. Tatsuno et al. (2006) showed
reactivation associated with a novel experience persisted in both the prefrontal cortices and
hippocampus; while hippocampal reactivation lasted much longer than prefrontal reactiva-
tion after a single novel experience, Euston and McNaughton (2007) showed that prefrontal
reactivation persists across much longer periods following practice. Ji and Wilson (2007)
showed that sharp wave associated hippocampal replay observed during sleep coincided with
replayed activity in primary visual cortex in a visually complex spatial alternation task and,
like hippocampal replay, coordinated replay in the hippocampus and visual cortex devel-
oped experientially. And evidence from Pennartz et al. (2004) suggests that hippocampal
sharp wave ripple activity propagates to ventral striatum during sleep. The observed cor-
respondence between sharp waves and neocortical up-states (Battaglia et al., 2004) and
that hippocampal replay slightly precedes cortical replay (by approximately 50ms; Ji and
Wilson, 2007) suggests replay is centrally organized by the hippocampus during sleep.

Although these observations support the theory of cell assembly formation across multi-
ple brain areas, there remains little evidence on the functional contribution of cell assemblies
to online behavior. McClelland et al. (1995) suggested that memories are quickly stored
as cell assemblies in the hippocampus and that these memories are subsequently consoli-
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dated to neocortex through slow organization of neocortical cell assemblies. The memory
consolidation proposal is consistent with the broad connectivity of the hippocampus and
the temporal gradient of hippocampal memory dependence (Zola-Morgan and Squire, 1990;
Squire and Zola-Morgan, 1991; Squire and Alvarez, 1995; Teng and Squire, 1999) but sug-
gests that the hippocampus makes no contribution to online behavior – it is simply a
fast-learning observer and its contribution occurs through offline training of the neocortex.

The proposal by McClelland et al. (1995) for the development of cortical cell assem-
blies is consistent with Hebb’s description of cell assemblies that could be used to support
perceptual learning (Hebb, 1949). However, it markedly contrasts with the functional de-
scription originally presented by Hebb (1949) in which cell assemblies further provided the
neural mechanisms for sequence prediction. While this online functional perspective on cell
assembly function seems well aligned with the anatomy of the hippocampus, its patterns
of place cell activity, and its necessity for behaviors such as vicarious trial and error, it
is currently unknown whether the hippocampus organizes cortical and subcortical activity
during waking behavior as it appears to do during sleep.

1.3.4 Mental time travel, spatial imagery and episodic memory

Discussions of human hippocampal function and the deficits caused by its damage are
traditionally centered on episodic memory (Tulving, 1983, 1984, 2002). Episodic memory
is characterized by mental time travel or the ability to re-experience a previous sequence of
events based on memory. While damage to the hippocampus in humans produces profound
deficits in episodic memory (Squire, 1992; Corkin, 2002; Tulving, 2002; Squire et al., 2004),
debate on a non-human analog of episodic memory has been contentious (Tulving, 2002;
Clayton and Dickinson, 1998; Roberts, 2002; Clayton et al., 2003; Emery and Clayton, 2004).
Early descriptions of episodic memory were described as memories that united what-where-
when information (Tulving, 1983, 1984). Tulving’s more recent descriptions of episodic
memory are focused on the autonoetic experiential recollection of one’s own past (Tulving,
2002). This experiential definition has precluded most if not all non-human investigations
of Tulving’s version of episodic memory.

The term episodic-like memory has been used to describe recent observations that ani-
mals are capable of organizing behavior with respect to what-where-when information (Clay-
ton and Dickinson, 1998; Eacott and Norman, 2004) and in response to the changing de-
finition of episodic memory (Tulving, 2001, 2002). Because scrub-jays were able to locate
a preferred food item based on how much time had passed since it was stored, Clayton
and Dickinson (1998) argued for the presence of episodic-like what-where-when memory in
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scrub-jays. However, the specific nature of the temporal component of memory continues
to be debated. Roberts et al. (2008) showed that memory performance in rats was bet-
ter predicted by “how long ago” than by “when” while Eacott and Norman, 2004 have
suggested that the temporal components of episodic-like memory are related to and embed-
ded contextual information (what-where-which) that is dependent on the hippocampus and
parahippocampal cortices.

More recent considerations of episodic memory have focused on mental time travel as the
construction of previous experience and its potential for construction of future experience.
Studies of long-term memory highlight the constructive aspects of human memory and its
susceptibility to errors via post-hoc suggestion (Loftus and Palmer, 1974; Schacter, 1995).
Within these studies, experimental manipulations that provide information following the
original to-be-remembered-experience interfere with the original memory. Subjects within
these studies recollect something they did not witness and do so with high confidence (Loftus
and Palmer, 1974). In contrast to Tulving’s approach to episodic memory that suggests
mental time travel retrieves only previous experience (Tulving, 2002), a construction-based
perspective suggests that mental time travel allows for false (unexperienced) memories to
be constructed as well. Functional (Atance and O’Neill, 2001, episodic future thinking) and
evolutionary arguments (Suddendorf and Corballis, 1997; Suddendorf and Busby, 2003)
suggest that mental time travel allows an animal to experientially navigate both the future
and the past. Indeed, Suddendorf has argued that the ability to re-experience the past is an
epiphenomenon related to the evolution of the ability to think-ahead and imagine potential
futures (Suddendorf and Corballis, 1997; Suddendorf and Busby, 2003; Suddendorf and
Corballis, 2007). These function-based arguments (Atance and O’Neill, 2001; Suddendorf
and Corballis, 1997; Suddendorf and Busby, 2003; Suddendorf and Corballis, 2007) on
episodic memory are centered on the ability of an organism to predict the future and,
consequently, organize its behavior appropriately.

Investigations of neurobiological substrates of mental time travel, spatial imagery and
episodic memory have focused on a fronto-temporal network (Buckner and Carroll, 2007;
Buckner et al., 2008). A recent study by Hassabis et al. (2007) demonstrates that individ-
uals with damage to the hippocampus have profound deficits in spatial imagination. The
hallmark of these deficits is not a failure to visualize any particular element of a scene, but
an ability to integrate these elements into a coherent whole. These ideas parallel those of
Buckner and Schacter (Buckner and Carroll, 2007; Schacter and Addis, 2007a,b; Schacter
et al., 2007) who suggest that a critical aspect of cognition is the ability to richly imagine
potential future circumstances. Functional imaging during spatial and episodic memory
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function is punctuated by coordinated activation of the hippocampus and frontal lobes
(Buckner and Carroll, 2007).

1.3.5 Conclusions

Previous research on the neural substrates of cognitive maps has centered on the hippocam-
pus. O’Keefe and Nadel (1978) hypothesized that cognitive maps were constructed within
the hippocampus based on the observed deficits in many flexible spatial behaviors following
damage to the hippocampus and the observation of hippocampal place cells. Many research
findings on the hippocampal dependence of spatial behavior and place cell function have
supported and elaborated this hypothesis. While O’Keefe and Nadel’s hypothesis contin-
ues to provide insight into hippocampal function, some critics have argued that the strong
spatial requirements and hippocampal focus have limited the utility of cognitive maps as a
hypothetical construct (Cheng et al., 2007).

More recent research on place cell activity has focused on the formation and dynamics
of cell assemblies. Place cells form stable maps and display pattern completion/pattern
separation characteristics at long timescales (Leutgeb et al., 2005a; Wills et al., 2005). At
fine timescales, place cell activity is organized into multiple cell assemblies (Harris et al.,
2002, 2003; Jackson and Redish, 2007). Further evidence for the Hebbian cell assemblies
comes from observations of hippocampal route replay and associated activity across multiple
cortical (Qin et al., 1997; Hoffman and McNaughton, 2002; Euston and McNaughton, 2007;
Ji and Wilson, 2007) and subcortical (Pennartz et al., 2004) areas during sleep. Although
these studies on the formation and dynamics of cell assemblies have primarily focused on
cell assembly phenomenology rather than function, they parallel recent research on the
functionality conferred by episodic memory.

Recent studies of episodic memory have examined its role in planning and decision
making. In contrast with previous purely phenomenological treatments of episodic memory
(Tulving, 2002), recent efforts have focused on the utility of representational dynamics
that underlie episodic (or episodic-like) memory (Clayton and Dickinson, 1998; Atance
and O’Neill, 2001; Suddendorf and Corballis, 1997; Suddendorf and Busby, 2003; Eacott
and Norman, 2004; Suddendorf and Corballis, 2007). These conceptualizations of episodic
memory suggest that episodic memory13 provides the basis for an organism to plan behavior
according to a predicted or imagined experiential sequence of events. One particularly
salient aspect of these descriptions of episodic memory is the coordinated integration of

13Or episodic-like memory for non-human animals.
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multiple sensory modalities or contextualization of imagery. Integrated spatial imagery in
humans is dependent on the hippocampus (Hassabis et al., 2007) and the contextualization
of memory is dependent on the hippocampus and parahippocampal cortices in the rat
(Eacott and Norman, 2004). And recent imaging studies have identified a fronto-temporal
network that includes the hippocampus in the consideration of future events (Buckner and
Carroll, 2007).

How such cognition is manifest in action continues to be a relevant, open question in
research on spatial decision-making, planning and imagery. Although some critics have
suggested that cognitive maps provide little utility for understanding the organization and
neural substrates of behavior, this argument (Cheng et al., 2007) appears directed toward
O’Keefe’s hippocampus-centric proposal of spatial cognitive maps (O’Keefe and Nadel, 1978;
O’Keefe, 1999). Indeed many recent of perspectives on hippocampal and episodic memory
function are consistent with a more generalized conceptualization of cognitive maps (Tol-
man, 1948; Redish, 1999). These perspectives continue to emphasize the importance of
spatial cognition, particulary as a vehicle for understanding human and animal cognition,
but have disregarded many of the constraints suggested by purely spatial perspectives of
cognitive map function. Furthermore, these perspectives have also emphasized active in-
teractions between the hippocampus and other brain areas highlighted by research on cell
assemblies (Harris et al., 2002, 2003; Jackson and Redish, 2007; Lee and Wilson, 2002; Jack-
son et al., 2006; Diba and Buzsàki, 2007; Foster and Wilson, 2006; Ji and Wilson, 2007)
and the frontotemporal network activated during construction and consideration of possible
future events (Buckner and Carroll, 2007). These perspectives suggest that cognitive map
function occurs through interactions with other learning and memory systems that extend
beyond the hippocampus.

1.4 Multiple memory systems

One critical development within general theoretical formulations of learning was the iden-
tification of multiple memory systems (O’Keefe and Nadel, 1978). That some mnemonic
functions are devastated following brain area specific damage while other functions remain
intact suggests that memory was not the single unified system previously hypothesized
(Scoville and Milner, 1957; Cohen and Squire, 1980). Within this context, O’Keefe and
Nadel (1978) suggested that cognitive maps mediated by the hippocampus comprise one
memory system while another set of extra-hippocampal brain areas subserve a second set
of memory function in which learning occurs through processes much like those proposed
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by Hull (1943).14

Analysis of behavior on navigation tasks (Restle, 1957; Barnes, 1979; Packard and Mc-
Gaugh, 1996) demonstrates that the information used to solve a task and the set of brain
areas that underlie behavior are experience and task dependent. On a simple plus maze
task, rats initially use a hippocampus dependent place-strategy during early learning phases,
but switch to a dorsal striatum dependent response-strategy with increasing experience in
later learning phases (Restle, 1957; Packard and McGaugh, 1996; Barnes, 1979). This type
of switch between multiple memory systems is typical of simple tasks within a sufficiently
stationary environment (Redish, 1999). The switch from a place-strategy to a response
strategy is highlighted by a developing insensitivity to environmental information. For in-
stance, an animal that uses a response strategy and is released at an atypical location within
an environment will produce a typical series of responses even though this response pattern
leads to a previously non-rewarded location (Packard and McGaugh, 1996) or leads the rat
directly into a wall at full speed (Carr and Watson, 1908). The reinforcement consequences
of such task failures suggest that animals should quickly shift back toward an increased en-
vironmental sensitivity. And in many navigation tasks, rats quickly modify their behavior
based on relevant environmental stimuli following failure to discover an expected reward or
some more adverse consequence such as running into a wall at full tilt.

In sum, these examples from animal navigation suggest a dynamic interaction of multiple
memory systems. This division produces a series of distinctions between systems based on
the relative insensitivity to specific environmental changes and the hypothesized predictions
or expectations used by an animal in task solution. The following discussion provides a brief
overview of multiple memory systems from several non-spatial conditioning perspectives in
order to further examine the specific predictive computations or expectation components
that influence spatial behavior and cognitive map function.

1.4.1 Outcome valuation within instrumental tasks

Choice behavior can be characterized as the selection of actions that lead to reinforcement.
The organization of action has been broadly studied using instrumental conditioning tasks
in which reward delivery is contingent on a specific action (see Figure 1.2A). Multiple
instrumental tasks display developing insensitivity to devaluation and support a distinction
between multiple memory systems (Balleine and Dickinson, 1998; Adams and Dickinson,
1981). In a typical instrumental experiment, rats initially learn to press a lever for a food

14Given only behavioral observations, Tolman (1949) anticipated many features of the multiple memory
systems debate and even provided a rudimentary outline of what he called multiple types of learning.
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reward. When the lever-press response is subsequently devalued by changing the reward
contingency, pre-feeding the animal to satiety prior to test, or pairing the food reward
with illness (usually induced with lithium chloride), the lever-press response patterns are
dependent on the extent of prior training. Animals within early learning phases quickly
cease lever pressing following devaluation protocols, while animals within later, overtrained
learning phases continue to perform the same pattern of lever-press response and appear
oblivious to devaluation protocols. Sensitivity to devaluation is dependent on multiple
brain areas including the ventral striatum (Balleine and Dickinson, 1998), prelimbic medial
prefrontal cortex (prelimbic mPFC Killcross and Coutureau, 2003; Corbit and Balleine,
2003b), and posterior dorsomedial striatum (Yin et al., 2005). Developing insensitivity
to devaluation protocols is dependent on anterior dorsolateral striatum (Yin et al., 2004)
and infralimbic medial prefrontal cortex (Coutureau and Killcross, 2003) and compromised
function within these areas leads to prolonged sensitivity to devaluation protocols.

Animal behavior within both instrumental learning and spatial learning tasks displays
progressive formation of action habits that are insensitive to changes in outcome. Progres-
sive development of behavioral habits in both instrumental and spatial learning is dependent
on the dorsolateral striatum (Yin et al., 2005; Packard and McGaugh, 1996). The similari-
ties between instrumental learning and spatial learning observed during habit regimes, both
in terms of behavior and neural substrates, does not appear to extend to flexible and dy-
namic learning regimes. For instance, while spatial learning is typically dependent on the
hippocampus (O’Keefe and Nadel, 1978; Redish, 1999), projection sparing lesions of the
hippocampus produce no changes in the sensitivity to devaluation within simple instru-
mental conditioning (Corbit et al., 2002). These differences are likely attributable to the
differential use of stimulus information; simple instrumental learning tasks are described
in terms of action and outcome only while spatial learning tasks are described in terms of
stimuli, actions and outcomes (see Figure 1.2). Dickinson and Balleine (2000) have argued
that goal-directed action and causal cognition requires only (1) representation of current
value of an outcome and (2) representation of the causal relationship between an action and
its outcome. As such, experiments that test sensitivity to outcome devaluation provide only
partial support for goal directed action and require further experimental tests for sensitivity
to action-outcome degradation.

1.4.2 Instrumental contingencies

The observation that rats are sensitive to contingency degradation within instrumental tasks
(Balleine and Dickinson, 1998) suggests that rats are capable of goal-directed action (Dick-

36



Cognition and cognitive maps 1.4

inson and Balleine, 2000). Analysis of the neural substrates for contingency representations
has been performed in a series of studies by Balleine and colleagues (Balleine and Dickinson,
1998; Corbit and Balleine, 2000; Corbit et al., 2002; Corbit and Balleine, 2003a).

Corbit and Balleine made an interesting methodological variation to examining instru-
mental contingencies within their studies. Typical approaches to contingency degradation
fully compromise a given contingency by modifying all action outcomes. Within lever-
pressing tasks, contingency degradation protocols usually compromise the outcomes of lever
pressing and non-lever pressing responses (Bolles, 1972). In contrast, contingency degra-
dation in the studies by Corbit and Balleine was accomplished by modifying the outcome
for only the no-lever press condition. Following typical instrumental conditioning protocols,
Corbit and Balleine trained rats to lever-press for specific rewards (e.g. left lever for sucrose
solution and right lever for food pellets). Following acquisition of instrumental responding,
non-contingent reward of a single type was provided probabilistically at each lever (non-
contingent sucrose solution was provided at each lever). For one lever, the non-contingent
reward matched the contingent reward; for the other lever, the non-contingent reward did
not match. Contingency degradation was hypothesized to be evidenced by reduced respond-
ing at the lever on which the contingent and non-contingent rewards matched.15

Corbit and Balleine (2000) initially examined the role of the hippocampus in encoding
the causal relationship between actions and their consequences. This hypothesis followed
from earlier work by (Devenport and Holloway, 1980; Devenport et al., 1981) that suggested
that animals without a hippocampus were dependent on simple response relationships rather
than richer action-outcome expectancies. In order to examine the type of expectancy infor-
mation mediated by the hippocampus, Corbit and Balleine (2000) examined instrumental
behavior following electrolytic lesions of the hippocampus and specifically sought to deter-
mine the dependence on reward devaluation and contingency degradation on hippocampal
function.

Lesions of the dorsal hippocampus produced no deficits in devaluation but produced
clear deficits in contingency degradation. Similar to sham-controls, hippocampus-lesioned
rats responded much less for (satiety) devalued reward. In contrast, hippocampus-lesioned
rats displayed reduced responding following contingency degradation protocols but did not
distinguish between degraded and non-degraded contingency outcomes as sham-controls did.
These results demonstrated that rats with electrolytic hippocampal lesions were unable to
integrate multiple contextual action-outcome contingencies but were able to integrate new

15It should be noted that all tests of contingency degradation were performed during extinction; that is,
no rewards were provided in these sessions.
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value information into action selection.
A complication of electrolytic lesions is the potential for damaging fibers that project

to downstream areas. To better assess the specific contribution of the hippocampus and
related areas to instrumental learning, Corbit et al. (2002) examined contingency degrada-
tion following NMDA lesions to the dorsal hippocampus, subiculum, and entorhinal cortex.
Replicating their earlier findings (Corbit and Balleine, 2000), electrolytic lesions of the dor-
sal hippocampus produced deficits in contingency degradation. In contrast, NMDA lesions
of the hippocampus did not produce deficits in contingency degradation. Devaluation re-
mained intact in rats with NMDA lesions of the hippocampus. Instead NMDA lesions of
the retrohippocampal cortex caused deficits in contingency degradation but did not affect
devaluation and can account for earlier observations (Corbit et al., 2002). Furthermore dis-
connecting the hippocampus and entorhinal cortex produced clear deficits in contingency
degradation while no deficits were found for NMDA disconnection of the subiculum and
hippocampus. These results indicate that the entorhinal cortex and input projections that
pass through the dorsal hippocampus are required for acquisition and use of instrumental
contingency information within behavior.

Theory

The contingency-based inference examined by Corbit and Balleine can be described using
Bayes’ rule. The goal of instrumental contingency inference is to determine whether a given
action ai will provide a given desired outcome ô any more than a set of alternative actions
aj for all j �= i.

p(ai|ô) =
p(ô|ai)p(ai)∑
j p(ô|aj)p(aj)

(1.1)

A typical stimulus-response treatment hypothesizes that acquisition of a response occurs
independently of other actions and outcomes. This is equivalent to the argument that an-
imals learn about a single action ai given a desired outcome p(ai|ô) rather than p(a|ô) for
all actions. In contrast, the A-O approach used by Corbit and Balleine suggests that non-
contingent actions (aj where j �= i) also contributes to selection of action ai. In the protocol
used by Corbit and Balleine, p(o|lever press) p(lever press) and p(o|no lever press) p(no lever press)
were very different during initial conditioning. Because p(o|lever press) p(lever press) >>

p(o|no lever press) p(no lever press), the probability of the desired outcome was much greater
for pressing the lever than for not pressing the lever. However, p(o|lever press) p(lever press)
and p(o|no lever press) p(no lever press) were approximately equal for the degraded contin-
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gency lever following contingency degradation. Consequently, neither pressing the lever nor
not pressing the lever provided any greater access to the given desired outcome.

Contingency degradation protocols can be contrasted with reward devaluation protocols
by considering the outcome of an action in the context of other potential actions. Reward
devaluation protocols produce a change in the outcome of the single learned contingent
action given a (supposedly) desired outcome p(ai|o) rather than in other non-contingent
actions implied by p(o|aj) (where j �= i). As a result, reward devaluation is a specific
manipulation of the desired outcome o or motivation rather than any manipulation of con-
tingencies p(o|ai) that are used for the development of causal or contextual expectancies.

1.4.3 Goals and outcomes

Tolman and Brunswik (1935) suggested that an animal learns the “causal texture” of its
environment and, furthermore, that such learning provided the basis for the development of
expectations and goal directed action (Tolman and Brunswik, 1935; Tolman, 1948, 1949).
This approach to causal cognition fundamentally differs from Dickinson and Balleine’s ap-
proach to causal cognition as goal-directed action (Balleine and Dickinson, 1998; Dickinson
and Balleine, 2000) in its integration of stimulus information into action selection. Within
this combined stimulus-action context, goals are composed of stimulus information that
includes outcome (reward) information.

The influence of stimulus information on action has been most thoroughly explored
within Pavlovian conditioning (Pavlov, 1927; Mackintosh, 1974). The action within a
Pavlovian task is an unconditioned response (e.g. startle) initiated by the presentation
of an unconditioned stimulus (e.g. shock). Both the unconditioned response and the un-
conditioned stimulus are species specific, inflexible and, presumably, a result of evolution.
Pavlovian conditioning describes a process wherein a conditioned stimulus predictive of
the unconditioned stimulus comes to illicit a conditioned response. The conditioned re-
sponse is identical to the unconditioned response (and most often inflexible, evolutionarily
defined). And though action is typically used to assess learning, Pavlovian conditioning
is most often conceptualized as learning a stimulus-outcome association (Figure 1.2D).
Pavlovian conditioning, like instrumental conditioning, is sensitive to post-training manip-
ulations of outcome value (Holland and Straub, 1979). However, because it is not clear
whether ‘true’ Pavlovian conditioning is sensitive to contingency degradation, Dickinson
and Balleine (2000) argue that Pavlovian conditioning does not meet the criteria for goal-
directed behavior but can contribute to instrumental responding (Kruse et al., 1983, Pavlov-
ian instrumental transfer).
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Investigations on the neural substrates of Pavlovian conditioning suggest a variety of
brain areas and neural signals support this type of learning. One particularly salient ob-
servation is the correspondence between activity of midbrain dopaminergic neurons (Ljung-
berg et al., 1992; Schultz et al., 1993) and theoretical predictions of Pavlovian conditioning
(Rescorla and Wagner, 1972; Sutton and Barto, 1981; Schultz et al., 1997). Midbrain
dopamine neurons display increased activity following reward receipt during initial learning
in Pavlovian conditioning tasks (Ljungberg et al., 1992; Schultz et al., 1993, 1997; Pan et al.,
2005; Roesch et al., 2007). With further training, this heightened dopamine response asso-
ciated with reward shifted to the conditioned stimulus. Consistent with the hypothesis that
increased midbrain dopamine activity is associated with reward prediction, reward omis-
sion after acquisition of the Pavlovian association produced transient reductions in spiking
activity relative to baseline spiking. Although midbrain dopaminergic activity clearly corre-
sponds to predictive learning signals within simple Pavlovian conditioning tasks, the specific
contribution of dopaminergic activity to decisions and action remains a matter of debate
(Montague et al., 1995, 1996; Schultz et al., 1997; Schultz, 1998; Berridge and Robinson,
1998; Schultz, 2002; Berridge, 2006).

Midbrain dopamine neurons project to a variety of areas implicated in Pavlovian con-
ditioning including the ventral striatum, amygdala and prefrontal cortex. Dopaminergic
activity in the ventral striatum (Dalley et al., 2005) and medial prefrontal cortex (Grace
and Rosenkranz, 2002) is required for acquisition of simple appetitive Pavlovian tasks. Le-
sion and inactivations studies have shown that Pavlovian decision tasks are dependent on
the basolateral amygdala and orbitofrontal cortex as well (Schoenbaum et al., 1998; Pickens
et al., 2003; Ostlund and Balleine, 2007). And neural signals associated with Pavlovian out-
comes have been found in the ventral striatal (nucleus accumbens) (Nicola et al., 2004a,b;
Yun et al., 2004) orbitofrontal cortex (Schoenbaum et al., 1998, 1999, 2000, 2005; Tremblay
and Schultz, 1999; Padoa-Schioppa and Assad, 2006), and amygdala (Schoenbaum et al.,
1998; Saddoris et al., 2005; Schoenbaum et al., 1999, 2000).

While these findings have important implications for more complicated decision processes,
relatively little is known about the signals that support complex goal construction and eval-
uation. These complex goal processes are likely supported by coordinated neural activity
across multiple brain areas. And though a portion of the signals and brain areas implicated
in simple goal-directed behavior will play a role in more complex behaviors, how exten-
sible these signals are for more complex goal-related behaviors remains an open question.
Clearly, other signals and brain areas will likely be recruited for these more complex decision
processes. A recent study by Ramus et al. (2007) showed that anticipatory activity observed
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within the OFC during a delayed matching task is dependent on the hippocampus and sug-
gests that goal related activity observed in more complex tasks may be supported by a more
complex network than required for simple tasks. This also suggests that some simple goal-
related signals (and perhaps brain areas) may no longer be critical for complex goal-directed
behavior. This raises the intriguing question of whether simple goal expectancy signals like
dopamine activity continue to show reward correlates for covert cognitive processes that
remain behaviorally unrealized.

1.4.4 Conclusions

Discussions of multiple memory systems often present each memory system as independent
(O’Keefe and Nadel, 1978 – locale map versus taxon systems; Cohen and Squire, 1980 –
what versus how systems; etc.). Although there are clear distinctions to be made between
these systems in very simple behaviors, there are also clear interactions between these
multiple memory systems in more complex, goal behaviors (Tolman, 1949; Kruse et al., 1983;
Squire, 1987; Zola-Morgan and Squire, 1993). Cognitive maps were originally hypothesized
to examine the interaction of these different memory systems (Tolman, 1948, 1949). While
much progress has been made in delineating different memory systems and their neural
substrates, less is known about their potential interactions, particularly as these interactions
support cognitive function.

1.5 A modern theoretical/statistical/Bayesian approach to

cognitive maps

A systematic formulation of Tolman’s learning theory was first approached by MacCorquo-
dale and Meehl (1954). Its reductionist perspective clearly frustrated Tolman (Tolman,
1955), but Tolman and the entire field lacked much of the appropriate vocabulary and math-
ematical and algorithmic sophistication to clearly articulate their ideas. Tolman’s treatment
of learning seems to fall much in line with recent hierarchical Bayesian approaches to be-
havior, reasoning and inference (Tenenbaum et al., 2006; Kemp et al., 2007; Griffiths and
Tenenbaum, 2007). While Tolman did not explicitly formulate his theories in equations,
he applauded early attempts to examine probabilistic learning that were the forerunners of
modern probability-based (Bayesian) approaches to learning (Tolman and Brunswik, 1935).
Hierarchical Bayesian approaches to learning and inference provide a systematic framework
that appears to match much of Tolman’s conceptualization of cognitive maps.
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Figure 1.2: A graphical comparison of instrumental and Pavlovian conditioning and spatial
learning. Balleine and colleagues have described goal directed behavior as sensitive to both
outcome devaluation and contingency degradation. A Basic instrumental conditioning can
be described as an action-outcome association. Animals display sensitivity to outcome de-
valuation only during early training (Adams and Dickinson, 1981; Balleine and Dickinson,
1998) and developing devaluation insensitivity is dependent on the dorsolateral striatum
(Yin et al., 2004, 2006). B Multiple action-outcome paradigms have been used to assess
the dependence of action-outcome contingencies for behavior. Action-outcome associations
are dependent on prelimbic mPFC (Corbit and Balleine, 2003a) and the entorhinal cortex
(Corbit et al., 2002). These tasks are dependent on context (shown as an open box). C
More recently Balleine has shown that multi-action-outcome associations are dependent on
medial agranular premotor cortex (unpublished observations). Note that Balleine’s goal
directed behavior is independent of stimulus information. D Pavlovian conditioning is de-
scribed as stimulus dependent behavior wherein the unconditioned response to an outcome
is associated with a conditioned stimulus s. E Pavlovian decision tasks are dependent on
the basolateral amygdala and orbitofrontal cortex (Schoenbaum et al., 1998; Pickens et al.,
2003; Ostlund and Balleine, 2007). F Spatial learning involves multi-step interaction of both
stimulus and action -based processing. This is similar to causal texture of the environment
proposed by Tolman and Brunswik (1935).
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Three parallels between Tolman’s cognitive maps and hierarchical Bayesian treatments
of learning and inference are particularly important to consider. These are (1) the global
computations required for both cognitive maps and Bayesian inference, (2) the explicit
development of hypotheses for interpreting sparse data, and (3) the changing forms of
information utilized to make decisions and how this organizes behavior. Note that the
frequent discussion of prior distributions can be viewed as a component of development
of hypotheses for interpreting sparse data. Let us provide a brief overview of Bayes’ rule
before turning to its use in learning and inference.

At its simplest, Bayes’ rule describes the relationship between probabilities p(a|b) and
p(b|a) where p(a|b) is read as the probability of a given b. Bayes’ rule can be written as

p(a|b) =
p(b|a)p(a)∑

a′∈A p(b|a′)p(a′)
=

p(b|a)p(a)
p(b)

(1.2)

where the terms p(a) and p(b) are prior distributions describing the probability of observing
a or b. In this form, Bayes’ rule forms the basis for statistically appropriate expectations
related to variable a based on the coincidence of another variable b. An important com-
putational aspect of Bayes’ rule is that the inference a|b requires consideration of every
alternative to a. In other words, given the observation of b, we must consider all possible a

(that is all a′ ∈ A). This global computation is a hallmark of any Bayesian treatment.
More generally, Bayes’ rule has been used to examine multiple hypotheses given sparse

data. The conditional form of Bayes’ rule (equation 1.3) has been used to describe the
probability of a particular hypothesis h given an observation o and a theoretical framework
T .

p(h|o, T ) =
p(o|h, T )p(h|T )∑

h′∈HT
p(o|h′, T )p(h′|T )

(1.3)

This conditional form of Bayes’ rule suggests a hierarchical framework for inference: com-
peting or overlapping hypotheses can be tested in light of observation data o and a greater,
overarching theoretical framework T (see Figure 1.3). Tenenbaum et al. (2006) have used
this framework to show how abstract rules and principles can be used and derived given
only sparse language data. While hierarchical Bayesian perspectives have been used primar-
ily within the arena of human inference (particularly within language), these perspectives
can be more broadly applied to behavioral inference of animals, particularly the sort of
behaviors and experiential regimes Tolman used to describe cognitive maps.

In terms of animal behavior, a hierarchical Bayesian treatment suggests that animals
form and test hypotheses. These hypotheses structure behavior so that inferences can
be made even with relatively little experience (sparse data). In order to develop several
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Figure 1.3: Hierarchical approaches to Bayes’ rule for cognitive research (after Tenenbaum
et al., 2006). The left column shows the basic structure for hierarchical Bayesian analysis.
Observations are interpreted based on an inferential hierarchy. At the lowest level of this hi-
erarchy are structured probabilistic models that are explicit hypotheses on the distribution
of observations. Higher levels allow comparison of multiple probabilistic models relative
to data and abstract domain principles. And these hierarchies can be further extended
to include higher order theoretical principles. The central column shows how hierarchical
Bayesian analysis has been used for taxonomic inference for pictures by Tenenbaum and Xu
(2000). Within this example, low hierarchical levels are used for analyzing picture contrast
and higher hierarchical levels are used for category and word selection (taxonomy). The
right column shows an interpretation of Tolman’s ideas on cognitive inference using a hi-
erarchical Bayesian approach. Tolman argued that animals learn the causal texture of the
environment and led to the formation of cognitive maps and higher order cognitive struc-
ture (Tolman and Brunswik, 1935; Tolman, 1948, 1949). Hierarchical Bayesian approaches
explicitly suggest how cognitive maps fundamentally alter an animal’s perception of its en-
vironment, its remembrance of prior experience and, consequently, its inference (Tolman,
1949).
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important conceptual points related to this treatment, let us examine two sets of behavioral
experiments on the partial reinforcement extinction effect (Capaldi, 1957) and the use of
spatial schema by rats (Tse et al., 2007).

1.5.1 Experimental evidence

Extinction and the partial reinforcement extinction effect. The partial reinforce-
ment extinction effect (PREE) highlights the importance of prior experience and expecta-
tions. The basic observation can be described as follows. While animals initially trained
with deterministic reinforcement schedules (e.g. FR1 lever press schedule) abruptly ex-
tinguish responding when the reward is made unavailable, animals that are trained with
probabilistic reinforcement schedules display an increased resistance to extinction (Capaldi,
1957). Hilgard and Bower (1975) cite Tolman and Brunswik (1935) and their development
of an organism’s probabilistic interactions with its environment as one of the first theoretical
predictions of PREE.

Statistical treatments of PREE (Courville et al., 2006; Redish et al., 2007) suggests how
the level of uncertainty within the initial reinforcement schedule influences extinction. The
initial probabilistic training schedule produces an expectation that a lever press might not
yield reward. Such an expectation means that when a lever press does not yield reward, it
could be caused by either (1) a continuation of the probabilistic training schedule or (2) a
new training schedule. As a result, the expectation or prior developed through the initial
training profoundly affects the interpretation of a lever press without reward and how an
animal responds. Animals initially trained with a deterministic reward schedule have no
basis for interpreting the failed lever press as continuation of the original schedule and can,
consequently, interpret the failed lever press as the signal for a new training schedule.

A number of interpretations identify extinction as new learning and not unlearning.
These treatments suggest that during extinction a new cognitive state or context is learned
wherein a given action fails to deliver on a previously learned expectation (Bouton, 2002;
Redish et al., 2007). The formation of separate and separable states in which previous
learning is valid or is invalid creates an inferential hierarchy based on the construction of
new cognitive or inferential structures. Tolman (1949) predicted the formation of such new
cognitive states and their influence in inference. He wrote, “in the course of the usual
learning experiment there may be acquired not only a specific [cognitive map] but also new
modes or ways of perceiving, remembering and inferring...which may be the utilized by the
given organism in still other later environmental set-ups.”
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Spatial schemas. Spatial schemas provide a useful starting point for considering how
new cognitive states contribute to and organize behavior. The recent study by Tse et al.
(2007) on spatial schemas in rats highlights several important aspects of cognitive maps and
hierarchical Bayesian inference. As previous described, rats were initially trained on odor-
place paired associates. The presentation of a specific odor indicated that a reward was
available at a specific position within the task arena. Rats were trained with six consistent
odor-place pairings in one room and with six odor-place pairings that varied throughout
training in a second room. Animals were then trained on two novel odor-place pairings (and
these novel pairs were identical between the experiment rooms – identical odors and places).
The rats trained in the consistent condition learned the two new odor-place pairings while
they did not in the inconsistent condition. Tse et al. (2007) suggest that the rats in the
consistent condition were able to form a spatial schema that contributed to later learning
while the rats in the inconsistent condition were unable to form this spatial schema.

But what is a spatial schema and how does it organize behavior? The critical distinction
between the two conditions in this experiment is the probability that a single odor would
signal a single location. This is what Tolman and Brunswik (1935) called the causal texture
of the environment. In the consistent condition, this probability was one (p = 1) while, in
the inconsistent condition, the probability was less than one (p < 1). The argument for
schema-use follows that when animals were able to form a spatial schema for the odor-place
pairings (consistent condition), they were able to learn the set of novel pairs because they
also knew where the locations were not (because they were already taken by other odors).
This corresponds to the global computation with Bayes’ rule that one must integrate all
possible alternatives (all a′ ∈ A and that includes not a) in order to correctly make an
inference and precisely matches cognitive map function.16

Furthermore, the experiment by Tse et al. (2007) shows that animals in the consistent
condition were able to learn novel odor-place pairs much more quickly with experience than
when they had little experience. That is, animals with increasing experience were able to
interpret and structure their behavior appropriately given many fewer training trials. The
authors’ argument that the development of a spatial schema allows animals to more easily
learn fits well within Bayesian treatments of learning from sparse data.

16Tolman argued that both the expectation of food availability at the end of one path and the expectation
of food unavailability at the end of other paths contribute to an animal’s choice (p.180). While this point
was derisively noted by MacCorquodale and Meehl (1954), it is well-suited to a Bayesian framework.
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1.5.2 Discussion.

The vast majority of Tolman’s experiments on animal cognition were focused on under-
standing inference or, in Tolman’s words, the animal’s sign-gestalt expectancy. In contrast
to the experiments of Hull and his contemporaries, Tolman’s experiments examined ani-
mal behavior during early learning regimes when animals had relatively little (or sparse)
experience. Krechevsky and Tolman’s observations that animals appeared to organize and
structure their behavior even when many theories of their contemporaries suggested other-
wise led them to wonder whether these animals were in fact testing hypotheses and what
cognitive factors formed the basis for these hypothesis behaviors (Tolman and Krechevsky,
1933). Tolman and Brunswik (1935) suggested that animals maintained some representa-
tion of the causal texture of the environment and that this served as the basis for inference.
Cognitive maps represented Tolman’s best efforts to define how animals learn this causal
structure of the environment and, consequently, how this structure organizes behavior.

The difficulties Tolman encountered in examining early learning regimes continue to
be a challenge for current cognition research. And while many researchers have sought to
avoid this challenge by concerning themselves primarily with asymptotic learning regimes,
inference in the face of sparse data remains a central question for cognitive scientists. That
Tolman’s conceptual development of cognitive maps so well aligns with Bayesian treatments
of learning is no doubt a result of continued interest in this question.

There exist three primary points of intersection between Tolman’s cognitive maps and
Bayesian treatments of learning. The simplest point of intersection is inference based on
sparse data. Tolman uses the cognitive map as an explicit attempt to explain the apparent
reasoning and structure found within animal behavior, particularly within novel environ-
ments and novel experimental perturbations that set one set of cues against another. Short-
cuts, hypothesis testing and latent learning highlight this type of inference. This parallels
Bayesian treatments of sparse data given a set of competing hypotheses, particularly within
studies on cue competition and integration (Cheng et al., 2007; Battaglia and Schrater,
2007).

The second point of intersection follows from Tolman’s expectancies and ‘commerce’
with environmental stimuli (Tolman, 1932). Tolman suggests that an animal will examine
its environment and reduce uncertainty through vicarious trial error and searching for the
stimulus. Each of these types of behavior depend on some representation of the causal
texture of the environment and lead to information-seeking behaviors when observations
and predictions diverge. These integrated representations well match the computations
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of Bayes’ rule: new information propagates throughout the entire network – not simply
within a single dimension or information level. And the prediction-observation comparisons
highlighted by searching for the stimulus strongly resemble Bayesian filter approaches used
in machine learning and robotics (Thrun et al., 2005).

The third point of intersection is the hierarchical approach to learning. Tolman (1949)
explicitly identifies multiple interactive types of learning and suggests a hierarchy of learning
processes. He argues that these different learning systems have different constraints and
their interaction results in “new modes or ways of perceiving, remembering and inferring”
over the usual course of learning. Hypothesis testing and vicarious trial and error highlight
the development of hierarchical inference – Tolman maintains these behaviors represent
an active search for higher environmental principles rather than simply a random search
for a successful stimulus-response pattern. This hierarchical aspect of learning directly
corresponds to Bayesian treatments of language that examine the hierarchical development
of rules, principles and theories (Tenenbaum et al., 2006).

1.6 Conclusions

The proposal that animals, even as simple as rats, might possess internal models of the
world was not novel within 1930’s behaviorist literature (Hull, 1930). However, Tolman’s
treatment of cognitive function in animals left some critics to wonder whether animals would
be left ‘buried in thought ’. Guthrie (1935) wrote:

In his concern with what goes on in the rat’s mind, Tolman has neglected to predict what
the rat will do. So far as the theory is concerned the rat is left buried in thought; if he gets
to the food-box at the end that is [the rat’s] concern, not the concern of the theory.

Tolman (1955) saw this type of getting lost in thought as a natural consequence of learn-
ing and cognitive function, particularly in humans and even more so those in academics
(Tolman, 1954) and he left the problem of how cognition, particularly cognition related to
deeper inferential processes, is manifested in behavior only loosely specified. This problem
increasingly drove many behaviorists away from cognitive map based formulations of learn-
ing and inference and toward reduced behavioral paradigms in which the organization of
action can be simplified.

The following chapter develops the theoretical basis of cognitive maps and how it influ-
ences action.
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Chapter 2

Reinforcement learning

The theoretical arguments and perspectives developed in this thesis are based on considera-
tions of reinforcement learning. Reinforcement learning has been approached from a number
of directions and this thesis emphasizes animal and machine learning perspectives. The the-
oretical considerations and complex applications of reinforcement learning have produced a
rich framework for understanding information dynamics and the processes that contribute
to learning (Sutton and Barto, 1998). The goal of this chapter is to develop a series of
qualitative and quantitative predictions about memory, its organization and its use based
on reinforcement learning.

The machine learning approach to reinforcement learning is grounded in optimization.
What behaviors should an agent1 perform in order to maximize reward receipt and minimize
cost? Within traditional machine learning approaches to reinforcement a robot learns a
series of actions (a policy) that will maximize the reward and minimize cost over a state-
space defined by sensor information. And though there are clearly situations in which
sensor-information is unwieldy, there remains a fundamental, and unanswered question of
how state is optimally defined. For simplicity and tractability, state is often defined a
priori according to a static set of rules and it is over this state-space that the agent learns.
While this simplification is generally acceptable for certain types of problems, it becomes
less tenable for problems of increasing complexity and interest. We will return to state
definition issues later in this chapter, particularly the implication of acquisition of state
information and some intriguing issues associated implementation of state-estimation in
uncertain environments. For the present, let us turn to a formal development of policy
evaluation with a known state-space.

1In models of animal behavior, the agent refers to the modeled animal.
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2.1 Basic formalisms

The value of a state given a policy π is defined as the total expected future reward that will
result from occupying state s at time t (Sutton and Barto, 1998). This is written as

V π(st) =
∑
τ≥t

E [rτ |st] (2.1)

where V π(st) is the value of state st, rτ is the reward at time τ and E [·] is the expectation.
By defining a reward function Rs,s′,r = p(rt = r|st = s, st+1 = s′) and a Markov transition
model Ts,s′ = p(st+1 = s′|st = s), the value function can be defined recursively.

V (st) = E [Rst ] + E
[
V (s′)

]
(2.2)

= E [Rst ] +
∑
s′∈S

Ts,s′V (s′) (2.3)

V = E [R] + TV (2.4)

For a Markov decision process, the value function V ∗(s) for an optimum policy π∗(s, a) can
be found according to

V ∗(s) = max
a

∑
s′

Ts,a,s′
(
rRs,a,r + V ∗(s′)

)
(2.5)

where Ts,a,s′ = p(st+1 = s′|st = s, at = a). However, the recursion can be extended for
multiple steps given T and provides a basic program for estimating V and optimizing agent
control (Bellman, 1957; Daw, 2003).

Within the previous derivation, action is absorbed into the state definition and the
transition model. This is not a requirement of the Bellman equation. Q-learning describes
a common method for computing the value function over paired state-action pairs (that is
〈s, a〉 instead of simply s) for a given policy (Watkins and Dayan, 1992). While the subtle
change to the definition of state does not greatly influence the validity (or convergence) of
the Bellman equation, the optimal policy Q∗(s, a) can be found according to

V ∗(s) = max
a

Q∗(s, a) (2.6)

Q∗(s, a) =
∑
r

rRs,a,r +
∑
s′

Ts,s′V
∗(s′). (2.7)

Note that the term Rs,s′,r has been modified to Rs,a,r. Many of the following examples will
use Q(s, a) implementations.

It should be noted that equation 2.4 requires knowledge of the transition function Ts,s′.
The transition function or world-model can be implicitly estimated through sampling (ex-
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perience) or explicitly modeled (and fitted to experience). Although the Bellman equation
proves that the agent will uncover the optimal policy (and value function) under standard
infinite time and sampling conditions, the implementation of transition models fundamen-
tally alters the trajectory for uncovering it. We will return to model-based reinforcement
learning after briefly covering model-free reinforcement learning.

2.2 Model-free reinforcement learning

The Bellman equation (equation 2.2) can be used to derive a model-free2 algorithm for
estimating the value of a given policy. This algorithm is called TD(0) (Sutton and Barto,
1998). By making the assumption that the quantity rt from equation 2.2 represents a sample
from E [Rst] and that V̂ (st+1) represents a sample from E [V (st+1)], it follows V̂ π(st) should
be equivalent to the quantity

[
rt + V̂ (st+1)

]
if the estimated value of the policy is correct.

The difference or prediction error δ between V̂ (st) and rt + V̂ (st+1) is defined as

δt = rt + V̂ (st+1)− V̂ (st). (2.8)

If the prediction error δt is non-zero, updating the current estimated value function V̂ (st)
by δ allows estimated value function to approach the optimal value function.3 This leads
to learning rules reminiscent of those proposed by Rescorla and Wagner (1972) for animal
conditioning and by Widrow and Hoff (1960) for adaptive linear systems.

V̂ (st)← V̂ (st) + αδt (2.11)
2It should be noted that the term model-free is somewhat disingenuous. As shown in the later sections

of this chapter, the definition of the state-space over which the value function is computed also represents
model information. The usage within this chapter reflects current usage for the use of transition model
information within reinforcement learning algorithms.

3Most implementations of this algorithm include a discounting term to avoid the insolubility of the value
calculations with an infinite horizon. The discounting term γ is used to modify future reward expectancy
according to

V π(st) =
∑
τ≥t

γτrτ (2.9)

The consequence of this formulation of the value function is that it weights rewards within near future more
greatly than those in the distant future. This redefinition of the value function requires a change in the
prediction error (equation 2.8). That is

δt = rt + γV̂ (st+1) − V̂ (st) (2.10)

where γ is the discounting term.
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Here α is a learning rate (0 < α ≤ 1) and is usually set to a number less than one in
order to produce greater long term stability. The difference between Rescorla and Wag-
ner’s theory and temporal difference learning is the temporal dynamics that transfers value
backward in time to the earliest state or stimulus that predicts reward (Sutton and Barto,
1981). As Daw (2003) notes, this simple rule provides a rough explanation for many be-
havioral observations including acquisition (Pavlov, 1927), cessation of responding (Pavlov,
1927), overshadowing (Pavlov, 1927), blocking (Kamin, 1969), and conditioned inhibition
(Rescorla, 1969). Although many other behaviors cannot be predicted by this algorithm,
the distinct correspondence between this basic algorithm and behavior suggests that the
brain performs a similar set of computations and that signatures of these computations
should be evident within neural signals.

The activity of dopaminergic neurons in the midbrain roughly corresponds to the predic-
tion error (δ) within reinforcement learning algorithms (Montague et al., 1995, 1996; Schultz
et al., 1997; Waelti et al., 2001; Bayer and Glimcher, 2005). Single unit activity recorded in
the macaque midbrain (substantia nigra pars compacta and the ventral tegmental area) on
simple appetitive learning tasks suggest that neurons within these areas compute a predic-
tion error signal (Schultz et al., 1997; Schultz, 1998; Roesch et al., 2007). Further support
for the hypothesis that these dopaminergic populations code for prediction-error learning
signals comes from the broad anatomical projections these neurons send to cortex and stria-
tum (Schultz, 1998; Wickens et al., 2003; Calabresi et al., 2007). While various algorithm
implementation and neural instantiation related complications remain (Pan et al., 2005;
Roesch et al., 2007), much of the activity of dopamine neurons within these simple tasks
can be explained by temporal difference reinforcement learning models (but see Gurney
et al., 2004).

How the brain implements other parts of a reinforcement learning algorithm that either
compute or use the prediction error signal remains an open question. Neural correlates of
the signals that presumably generate the prediction error – the value function and specific
reward receipt – have yet to be uncovered. The likelihood of identifying the neural correlates
of these signals is heavily dependent on how evaluation computations are performed and
whether other (specifically model-based reinforcement learning) systems also contribute to
or utilize prediction error signals (c.f. Houk et al., 1995; Dayan and Balleine, 2002; Daw et al.,
2005; Niv et al., 2006a). Given the broad projections of dopamine neurons, it seems likely
that the prediction error signals are utilized by multiple systems (Redish et al., 2007). How
prediction error information carried by the activity of dopamine neurons might contribute
more widely to reinforcement learning is considered in the sections below.
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In summary, the model-free approach to reinforcement learning provides a simple, ele-
gant and important introduction to reinforcement learning. Temporal difference reinforce-
ment learning provides a solution for the Bellman equation without explicit definition and
use of a transition model. Temporal difference learning computations require only the repre-
sentation of the current state (or state-action pair) and its value, the value of the predicted
state, and reward. These representations constrain decision-making to the present; the
agent or modeled animal cannot think ahead, remember previous experiences or represent
potential outcomes within a model-free framework. While such constraints are clearly at
odds with the phenomenology of memory and decision-making, they also impose severe lim-
itations on behavior within uncertain and non-stationary environments with non-constant
or probabilistic patterns of reward.

2.3 Model-based reinforcement learning

Reinforcement learning models that operate within uncertain and non-stationary envi-
ronments or in probabilistic or non-stationary reward tasks appear to require additional
knowledge of environmental dynamics. Tolman and Brunswik (1935) called acquisition of
this knowledge learning the causal texture of the environment. Within machine learning
approaches to reinforcement learning, this knowledge is included within a model of task
dependent state transitions called a transition model. The inclusion of transition models
within machine learning approaches to reward-based behavior have directly contributed to
dynamics- and uncertainty-related issues in navigation and reward acquisition within prob-
abilistic environments (Thrun et al., 2001, 2005). The inclusion of transition models within
reinforcement learning models of animal behavior produce behavioral dynamics that are
much more consistent with observed animal behaviors than those predicted by standard
model-free approaches to reinforcement learning (Daw et al., 2005; Johnson and Redish,
2005a; Courville et al., 2006; Niv et al., 2006b; Zilli and Hasselmo, 2008).

2.3.1 Multiple memory systems

The inclusion of transition models within reinforcement learning algorithms suggests several
important questions. The first, and perhaps, most obvious question is what to do with the
model-free learning rules. Though efficient, model-free reinforcement learning rules are
generally inflexible algorithms and require many sample experiences for substantial changes
in behavior. In contrast, model-based reinforcement learning algorithms are quite flexible
but typically require significant computational expense. The expense of these algorithms
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is apparent within stable environments for well practiced tasks where these algorithms
are most inefficient. While many machine learning approaches have sought to identify a
single optimal algorithm, neurobiological approaches to learning has emphasized the use of
multiple learning and memory systems (O’Keefe and Nadel, 1978; Squire, 1987; Cohen and
Eichenbaum, 1993; Nadel, 1994; Redish, 1999). Consonant with neurobiological approaches
to learning and memory, recent theoretical considerations of the algorithmic basis for animal
behavior have included both model-free and model-based reinforcement learning (Daw et al.,
2005).

The central question in developing a reinforcement learning theory on the simultane-
ous function of multiple memory systems is to identify what learning and memory system
underlies behavior and how systemic control of behavior is accomplished. As described
in the previous chapter, animals display flexible behavior that becomes more rigid across
repeated experience within both navigation and instrumental tasks. These observations
suggest that behavior is mediated by a flexible transition-model-based learning system dur-
ing early learning phases and, with increasing experience, behavioral control is transferred
to an inflexible model-free learning system.

2.3.2 Arbitration of behavioral control – Daw et al. (2005)

The critical contribution of the model by Daw et al. (2005) is treatment of multiple memory
systems within a reinforcement learning framework and specifically analysis of the mecha-
nisms for arbitrating behavioral control between these systems. Daw et al. (2005) propose
two memory systems based on a Bayesian Q-learning algorithm initially proposed by Dear-
den et al. (1998). The first memory system is a simple model-free or cache-based system
in which the value function is updated according to the immediate experience of the agent.
The second memory system is a model-based tree system in which the value function is
updated through both immediate experience and inferred potential experience based on
a transition model. Because Bayesian Q-learning maintains a distribution of values over
each state rather than a single scalar value, it provides access to the expected value of a
given state and the uncertainty of the value for that state. In contrast to standard decision
systems that use only expected value information (Sutton and Barto, 1998), systems that
maintain value distributions allow decisions to be made according to both the expected
value of a future state and the uncertainty of its value (Dearden et al., 1998). Daw et al.
(2005) show that within models of simple instrumental tasks, the expected value and value
uncertainty estimates differ between the cache and tree learning algorithms. By selecting
the system that minimizes the value uncertainty information, they reproduce two basic
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behavioral results within instrumental learning.

Model

As in the previous sections, the transition model Ts,a,s′ = p(st+1 = s′|st = s, at = a)
specified the probability that state s′ ∈ S would result from action a ∈ A in state s ∈ S.
The reward function Rs,s′,r = p(r = 1|st = s, st+1 = s′) defined the probability of reward
receipt. The rewarded state was also a terminal state in all modeled tasks. The state-action
value function Q(s, a) is the expected probability of reward receipt given action a in state
s.

Q(s, a) =

{
R(s) s is terminal (a = ∅)∑

s′ T (s, a, s′) ·maxa′ [Q(s′, a′)] otherwise
(2.12)

While typical reinforcement learning approaches only track a single scalar value for Q(s, a),
Daw et al. (2005) used a Bayesian variation that estimated a posterior distribution Qs,a(q) =
p (Q(s, a) = q|data) that indicated the optimal probability of future reward q given the
experiential evidence ‘data’ about transitions and outcomes.

Value distributions for the cache system Qcache
s,a were found by bootstrapping. In con-

trast, value distributions for the tree system Qtree
s,a were found by policy iteration. It should

be noted that policy iteration was accomplished through Bayesian methods based on a cur-
rent estimate of the transition model. While the transition model was estimated based on
previous experience (although it was unclear how Ts,a,s′ was estimated), it should be noted
that the list of states were previously defined. The system with the least variance in the
Qs,a distribution was then used to set the expected value Qs,a = 〈Qs,a〉 and actions were
selected according to the Boltzmann distribution.

Dynamics and behavior

The model by Daw et al. (2005) was explicitly developed to model devaluation within in-
strumental paradigms (Killcross and Coutureau, 2003; Holland, 2004). More specifically,
the model was used to explore two related theoretical issues: general behavioral patterns
associated with instrumental responding and reward approach behaviors. Basic observa-
tions of animal behavior suggest that sensitivity to devaluation for actions that are distant
from reward receipt like lever-pressing are dependent on the extent of previous experience
(Killcross and Coutureau, 2003). In contrast, actions that are in close proximity to reward
receipt like magazine entry behavior remain sensitive to devaluation even after extensive
training (Killcross and Coutureau, 2003). Interestingly, animals given multiple actions and
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outcomes remain sensitive to devaluation even after extensive training (Holland, 2004). The
multiple memory system model proposed by Daw et al. (2005) reproduces each of these be-
havioral observations.

Conclusion and commentary

The model forwarded by Daw et al. (2005) represents a simple and elegant proposal for the
interaction and control of multiple memory systems within a general reinforcement learn-
ing framework. Its formulation of a model-free cache system is consistent with previous
hypotheses on the correspondence of dopamine activity and the prediction error (Montague
et al., 1996; Schultz et al., 1997). Although the model-based tree system is only loosely
specified, both in computational terms and associated neural substrates, this reflects a gen-
eral lack of specificity present within current psychological and neurobiological approaches
to higher cognitive function.

Based on experimental findings that show inactivations or lesions of the infralimbic pre-
frontal cortex following overtraining reinstates sensitivity to devaluation protocols (Cou-
tureau and Killcross, 2003) while lesions of the prelimbic medial prefrontal cortex impairs
sensitivity to devaluation protocols (Killcross and Coutureau, 2003), Daw et al. (2005) hy-
pothesized that behavioral control between the cache (model-free) and tree (model-based)
systems is arbitrated by the medial prefrontal cortex. Daw et al. (2005) further proposed
that the cache system is situated within the dorsolateral striatum while the tree system
is situated within the prefrontal cortex. Although the cache-system/dorsolateral stria-
tum proposal is consistent with the relative simplicity of cache system computations and
other treatments of model-free reinforcement learning (Houk et al., 1995), the tree sys-
tem/prefrontal cortex proposal appears less tenable. It is more likely that the greater
computational complexity of the the tree system requires interaction of multiple brain ar-
eas beyond the prefrontal cortex and that the prefrontal cortex forms an integral part of
this larger network. This larger network perspective suggests that considerations of the
dynamic interaction of the prefrontal cortices and other brain areas may provide critical
insights into the organization and computations of the tree system.

A particularly interesting question opened by the use of tree systems within reinforce-
ment learning is how the transition model contributes to construction of a given policy
(value function). The tree system proposed by Daw et al. (2005) depends on policy evalua-
tion using policy iteration.4 Although policy evaluation can be theoretically accomplished

4Solving for the optimal value function using policy iteration requires integration of value information
over the full state space (and over all potential values if some variant of Bayesian Q-learning is used). These
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simultaneously for all states at each time step (Sutton and Barto, 1998), more practi-
cal approaches to policy evaluation have used value updating based on hypothetical state
trajectories derived from the transition model in addition to experience-based state trajec-
tories (e.g. Dyna-Q algorithms Sutton, 1990; Sutton and Barto, 1998). The construction of
hypothetical state trajectories from previous experience closely parallels recent conceptu-
alizations of fictive experience based on episodic memory (Suddendorf and Corballis, 1997;
Buckner and Carroll, 2007, see discussion of episodic memory as construction from chap-
ter 1). Furthermore, several recent studies suggest that imagery and fictive experience are
supported by an interaction between the prefrontal and temporal lobes (Addis et al., 2007;
Schacter and Addis, 2007a; Schacter et al., 2007; Buckner and Carroll, 2007) and suggest
that tree system dynamics may be mediated by similar network interactions.

In summary, the model by Daw et al. (2005) suggests that dynamical state represen-
tations form a critical component of model-based reinforcement learning. In contrast to
value function construction in the cache system, dynamical state representations in the
tree system allow fast propagation of value information over a state-space. The transfer of
control from the tree system to a cache system provides a simple mechanism for modeling
animals’ changing sensitivity to devaluation protocols. Although little is known about these
dynamic state representations, they can be described as memory dynamics and appear to
correspond to recent treatments of episodic memory. These considerations suggest that
further understanding of tree-like systems within reinforcement learning may come from
including memory dynamics within reinforcement learning models.

2.3.3 Memory dynamics in reinforcement learning

A variety of memory processes have been explored within human and animal psychology lit-
eratures. Working memory, procedural memory, semantic and episodic memory, recognition,
and recall each represent distinct memory processes with partially overlapping mechanisms
(O’Keefe and Nadel, 1978; Squire, 1987; Cohen and Eichenbaum, 1993; Baddeley, 1997;
Redish, 1999, present several well known taxonomies). While model-free reinforcement
learning has been hypothesized to correspond to procedural memory, there is, as yet, no hy-
pothesized correspondence between model-based reinforcement learning and other forms of

computations quickly become intractable as the number of states and potential transitions become large.
Standard approaches to tree-based reinforcement learning over large state-spaces typically use pruning to
minimize the portion of the tree to be searched/updated or redefine state information in order to reduce the
the size of the state-space (Sutton and Barto, 1998). Given a reduced state-space (menu), near instantaneous
policy evaluation becomes much more feasible. Neural coding consistent with this policy evaluation in a
reduced state-space has been found in orbitofrontal cortex (Padoa-Schioppa and Assad, 2006).
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(declarative?) memory. A basic question resulting from this dichotomy is whether current
perspectives on memory, its constraints and its dynamics can contribute to understanding
model-based reinforcement learning.

Recent approaches to reinforcement learning have begun to examine the contribution
of memory-related processes and dynamics to models of animal behavior (Johnson and Re-
dish, 2005a; Zilli and Hasselmo, 2008). These proposed models have been developed to
better understand different memory processes, how they potentially interact, and how they
contribute to observed behavior. Within the reinforcement learning framework, memory
processes must be operationally and algorithmically defined. And though current defini-
tions are underdeveloped, they provide a starting point for further understanding the com-
putational substrates of different forms of memory. Finally, it should be noted that these
reinforcement learning models markedly contrast to normative decision making models that
utilize infinite capacity memory (Daw et al., 2005). Instead, the intent of these models is to
understand the behavioral constraints that result from use of a particular theory of memory
or memory system.

2.3.4 Analysis of working and episodic memory – Zilli and Hasselmo

(2008)

State information is usually defined in terms of the modeled animal’s current sensory ex-
perience. A cue within an instrumental task or a position within a maze is often used
to signify state information. A recent model by Zilli and Hasselmo (2008) suggested that
standard state information can be supplemented by state information derived from working
and episodic memory. The result of modifying the definition of state in this way is that
decision processes are not entirely dependent on current environmentally-based state infor-
mation. Instead, current environmentally-based state information can be combined with
memory-based state information to inform decision processes. Zilli and Hasselmo (2008)
provide operational definitions of working memory and episodic memory such that these
mnemonic processes can be defined as state information and show how this redefinition of
state contributes to behavior.

Model

The model proposed by Zilli and Hasselmo (2008) used a standard actor-critic reinforcement
learning algorithm with eligibility traces (Sutton and Barto, 1998). The critical difference
between their model and previous models is its definition of state. Typical approaches to
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modeling animal behavior in navigation tasks have defined state information based on en-
vironmental position or location information (e.g. Foster et al., 2000; Johnson and Redish,
2005a). Zilli and Hasselmo (2008) defined state as a composite of location information SL,
working memory information SWM and episodic memory information SEP . The composite
state-space S = SL×SWM×SEP situates animal behavior in terms of both external, exper-
imentally observable motor actions and internal, experimentally covert mnemonic actions.

Motor actions produced a change in task state while mnemonic actions produced only
changes in modeled working or episodic memory state. Motor actions were defined to pro-
duce a change in location state SL. Working memory was defined a simple supplementation
of state location information SL and working memory actions were defined as either writing
the current location state into working memory (SWM ← SL) or clearing working memory
state information (SWM ← ∅). Because the model maintained a temporally ordered list
of the n previously visited location states [SL(t− 1), . . . , SL(t− n)], episodic memory state
SEP was defined to contain either a single state from this list or be left empty.5 Episodic
memory actions allowed the modeled animal to retrieve an element from the episodic mem-
ory list that matched the current state location information SL, advance retrieved episodic
memory state information according to the temporally ordered list, or clear episodic memory
state information.

Dynamics and behavior

Within the context of this basic actor-critic architecture Zilli and Hasselmo (2008) com-
pared the performance of standard algorithms using only state location information and
algorithms that included working memory or both working memory and episodic memory
across a variety of behavioral tasks. These tasks include continuous and delayed spatial
sequence disambiguation, continuous and delayed spatial alternation (Wood et al., 2000;
Lee et al., 2006; Ainge et al., 2007b), continuous and delayed non-match to position (Griffin
et al., 2007), continuous and delayed non-match to sample (Hampson and Deadwyler, 1996),
continuous and delayed odor sequence disambiguation (Agster et al., 2002), and continuous
and delayed tone-cued spatial alternation (Jog et al., 1999; Johnson and Redish, 2007).

The standard algorithm performs at chance levels for all of modeled tasks. The addition
of working memory information to basic location state information allowed reinforcement
learning algorithms to achieve high levels of performance on all non-delayed tasks. And

5Zilli and Hasselmo (2008) define episodic memory as the only content addressable memory within their
set of memory systems. Although episodic memory almost certainly requires content addressable memory,
this is likely a wider characteristic of state.
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only the combined working and episodic memory algorithm6 was able to solve delayed tasks
(with the exception of delayed odor sequence disambiguation).

Conclusion and commentary

The model proposed by Zilli and Hasselmo (2008) underscores the importance of an ap-
propriate description of state. Zilli and Hasselmo (2008) definitively show that a basic
sensory-based (location) state-space is insufficient for modeling animal behavior on a va-
riety of navigation and sequence tasks and that a composite (location×memory) state-
space can be used to reproduce a basic set of behavioral results from these tasks. Given
multiple memory systems (and associated state-spaces), this observation implies that the
brain somehow selects or constructs a task appropriate state-space or memory system over
which reinforcement learning computations operate. An intriguing consequence of Zilli and
Hasselmo’s treatment is that the (location) and (location×working memory) state-spaces
are subspaces of the composite (location×working memory×episodic memory) state-space.
Coupled with the cost/reward contingency structure for each task,7 the state-space struc-
ture suggests that the set of state trajectories defined by an optimal policy are increasingly
biased against working memory and episodic memory use (see figure 2.1). Implicit within
this formulation is a mechanism for arbitration of control between multiple memory systems
and selection of an effective state-space.

The composite state-space SL ×SWM × SEP suggests that state is not encapsulated by
a single brain area and instead results from a combination of signals across multiple brain
areas. Working memory is dependent on the prefrontal cortex (Braver et al., 2001; Wang
et al., 2004); spatial working memory is dependent on the hippocampus (Floresco et al.,
1997; Wilkerson and Levin, 1999; Lee and Kesner, 2002); and episodic memory is dependent
on the hippocampus (Tulving, 2002; Squire et al., 2004). Furthermore, several behavioral
and theoretical accounts of prefrontal cortical function have implicated it in construction
of an appropriate state-space (Bouton, 2002; Milad and Quirk, 2002; Lebron et al., 2004;

6No episodic memory only algorithm was used in this paper.
7A subtle and important aspect of the implementation used for the model by Zilli and Hasselmo (2008)

is the structure of reward contingencies used within each modeled task. For most of the tasks modeled in
their paper, the agent received a reward of +9.5 for a correct response, −6.0 for an incorrect response, −1.0
for impossible actions (such as selecting an action that moved the agent outside the task boundaries), −1.0
for re-entering a location the agent had just visited, and −0.05 for all other actions. The importance of this
final penalty should not be underestimated. The authors suggest that this penalty encourages the agent to
find the shortest path that leads to task solution (which is a combination of motor and mnemonic actions)
rather than selecting only mnemonic actions. The bias toward motor action rather than cognitive or memory
actions is a signature of motivation and stress (see Niv et al., 2006b for a cogent treatment of motivation in
reinforcement learning).
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SL x SWM x SEP

SL x SWM

SL

Figure 2.1: A sketch of the state-space defined by Zilli and Hasselmo (2008) for location,
working memory and episodic memory. Zilli and Hasselmo’s definition identifies SL ∈
[SL × SWM ] ∈ [SL × SWM × SEP ]. Because only actions within the SL space are rewarded,
the set of state trajectories defined by an optimal policy are increasingly biased against
working memory and episodic memory use.

Milad et al., 2004; Santini et al., 2004; Bouton et al., 2006; Quirk et al., 2006; Redish et al.,
2007) and state-space or memory system selection (Coutureau and Killcross, 2003; Killcross
and Coutureau, 2003; Rhodes and Killcross, 2004; Daw et al., 2005; Haddon and Killcross,
2005).

Although working and episodic memory processes are controlled by a simple reinforce-
ment learning algorithm within Zilli and Hasslemo’s model, the timing and extent of their
use is task dependent. For example, working memory actions occur only at the initial
ambiguous state within the spatial sequence disambiguation tasks. Such non-uniform or
differential use of memory may provide an explanation for directional place fields found
within the hippocampus (Frank et al., 2000; Wood et al., 2000).8 The contribution of the
episodic memory algorithm to decision-making within Zilli and Hasselmo’s model is consis-
tent with episodic memory as mental time travel for past events (Tulving, 2002) but is not
consistent with episodic memory as episodic future thinking (Atance and O’Neill, 2001) or

8One particularly interesting point is that the episodic memory system within Zilli and Hasselmo’s model
is that it must be primed according to the modeled animal’s current location. This requirement leads to
microscopic exploration of the state-space for use of episodic memory. Such microscopic choice behavior and
the associated memory dynamics closely parallel vicarious trial and error (Muenzinger, 1938; Tolman, 1939;
Brown, 1992).
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foresight (Suddendorf and Corballis, 2007) because these require construction of potential
future events.

In summary, Zilli and Hasselmo’s proposed interaction between multiple memory sys-
tems provides a deep insight into the organization and use of memory within reinforcement
learning tasks. Memory function is not a ubiquitous phenomenon, but is selectively distrib-
uted according to task demands. This contrasts with the model proposed by Daw et al.
(2005) that tree-based memory function occurs non-selectively within a task and across task
performance; instead, Zilli and Hasselmo (2008) suggest that learning within a task entails
identification of specific points within a task that represent important sites of mnemonic
processing. While these aspects of Zilli and Hasselmo’s theory remain unexplored, they
provide an intriguing area of future experimental and theoretical work.

2.4 Discussion

The basic reinforcement learning formalisms outlined in this chapter form a substantial part
of current reinforcement learning theory as it applies to modeling animal behavior its neural
substrates. The previous discussion examined reinforcement learning in terms of model-free
and model-based algorithms. This distinction is a natural theoretical result following the
derivation of the Bellman equation (2.4). Although the distinction between model-free
and model-based reinforcement learning provides a useful system for classification of rein-
forcement learning models (Sutton and Barto, 1998; Daw et al., 2005), some reinforcement
learning models are poorly fit by these categories (Foster et al., 2000; Johnson and Redish,
2005a; Zilli and Hasselmo, 2008, note that these models are not normative). For example,
Zilli and Hasselmo’s model used a basic actor-critic model-free TD(λ) system but also in-
cluded a variant of a transition model for episodic memory system. The correspondence
between transition model use and different forms of (declarative?) memory represents an
intriguing open question that is partially treated in subsequent chapters.

The discussion of learning presented in this chapter emphasizes model-based reinforce-
ment learning. In contrast to model-free reinforcement learning theories that describe learn-
ing in terms of specific cellular mechanisms (Houk et al., 1995), little is known about the
cellular substrates of model-based reinforcement learning or even the neuronal dynamics
that would support transition model use. As a consequence, model-based reinforcement
learning has been primarily discussed in terms of high level memory processes supported by
entire brain areas rather that specific neural circuits. This suggests that characterization
of the specific neural substrates that support transition model use represents an important
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avenue for understanding model-based reinforcement learning. The next chapter outlines
a simple model that defines the transition model and its dynamics in terms of cellular
processes within the hippocampus (Johnson and Redish, 2005a).
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Chapter 3

State dynamics and learning

3.1 Introduction

Standard temporal difference learning algorithms learn very slowly over many episodes
(requiring thousands or tens of thousands of episodes, Sutton and Barto, 1998). Various
methods have been developed to accelerate learning. Some of these methods use practice
signals which allow the agent to use previously recorded experience or a model to simulate
experience following the episode and update value estimates and policy. In the Dyna-Q
family of algorithms (Sutton, 1990; Sutton and Barto, 1998), a state and action are selected
from stored previous experience and used to update the value function between episodes.
Dyna-Q thus requires a replay of the agent’s recent experience during periods of rest between
episodes.

These technical considerations within reinforcement learning are well matched to se-
quential activity found within the rodent hippocampus. Replay of previous experience in
the hippocampus during periods of rest and sleep (Pavlides and Winson, 1989; Wilson and
McNaughton, 1994; Skaggs and McNaughton, 1996; Nádasdy et al., 1999; Louie and Wilson,
2001; Lee and Wilson, 2002) may provide a mechanism implementing a practice component
of reinforcement learning algorithms. Early experimental observations of hippocampal pyra-
midal cell activity showed that cells activated during a task remained active during sleep
following the task performance (Pavlides and Winson, 1989) and that the activity of place
cells with overlapping place fields was highly correlated during sleep in comparison to cells
without overlapping place fields (Wilson and McNaughton, 1994). Later studies indicated
that place cell activity is temporally ordered; during sleep episodes place cells fire in the or-
der they were encountered by the rat during task performance (Skaggs et al., 1996; Nádasdy
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et al., 1999; Louie and Wilson, 2001; Lee and Wilson, 2002). This is called route replay (See
Redish, 1999, for review). Single unit activity in sleep or rest periods shows increased spike
probability associated with sharp wave ripple events (O’Keefe and Nadel, 1978; Buzsáki,
1989; Kudrimoti et al., 1999). Further evidence showed that during slow wave sleep, replay
occurs during these sharp wave ripple events (Kudrimoti et al., 1999; Lee and Wilson, 2002).
Because place cell activity shows increased temporal structure following task performance,
hippocampal activity during replay has been suggested to be associated with memory con-
solidation processes (Marr, 1971; McNaughton, 1983; Buzsáki, 1989; Pavlides and Winson,
1989; Wilson and McNaughton, 1994; Skaggs et al., 1996; Redish and Touretzky, 1998a;
Redish, 1999; Louie and Wilson, 2001; Lee and Wilson, 2002).

Hippocampal replay has been examined on simple runway tasks (Wilson and McNaughton,
1994; Skaggs et al., 1996; Nádasdy et al., 1999; Louie and Wilson, 2001; Lee and Wilson,
2002; Foster and Wilson, 2006) but not choice-based tasks. To gauge the potential effect of
replay on behavior in an explicit choice-task, we examined a model of reinforcement learning
a multiple-T task (described by Schmitzer-Torbert and Redish, 2002, 2004; Johnson and
Redish, 2007; Figure 3.1A). In order to receive the reward, the animal had to successfully
navigate a sequence of T choices. Although the task used by Schmitzer-Torbert and Re-
dish (2002, 2004) formed a loop and animals were not removed from the Multiple-T maze
between laps, they tended to run the maze episodically, pausing for a long time (mean 27
seconds) at the second feeder before running another lap quickly (mean 16 seconds) (Masi-
more et al., 2005; Schmitzer-Torbert, 2005). Rats running the multiple-T task showed two
differentiable learning rates: a fast decrease in the number of errors (the number of incor-
rect choices per lap) and a slow increase in the regularity of the path on each lap (path
stereotypy) (Schmitzer-Torbert and Redish, 2002).

3.2 Model

3.2.1 Reinforcement learning.

The reinforcement learning component of the model was based on a standard SARSA Q-
learning algorithm with a continuous state-space and discrete actions (Sutton and Barto,
1998). Spatial state information was approximated by a set of ns randomly distributed
radial basis functions. A state-action value Q(s, a) function was found by associating a set
of place neurons (2-D radial basis functions) distributed over the spatial state-space and na

actions to with a scalar value, Q(si, aj). Action directions were distributed evenly over the
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interval [0, 2π). State-action value indicated the “quality” of taking action aj in state si.
The value of any state-action in the continuous state-space was thus given by the sum of
values weighted by their similarity to the current state s:

Q(s, aj) =
ns∑
i=1

Q(si, aj)G(s − si) (3.1)

where si is the static position of the i th neuron in state-space and G(s− si) is a Gaussian
kernel with standard deviation σ. Note that G is effectively a place code with place field
centers located at si.

Following standard discrete time temporal difference approaches, the prediction error
signal δ was found by

δ = r + γQ(s(t + 1), a(t + 1))−Q(s(t), a(t)). (3.2)

and was used to update Q(si, aj) by

Q(si, aj)← Q(si, aj) + ηδG(s(t) − si)�〈a(t).aj〉+ (3.3)

where η is a learning rate parameter and �〈a.aj〉+ is the positive component of the dot
product of the last action a and each possible action aj. Consequently, G(s− si) indicates
the activity of any place cell centered at si and its contribution to the representation of
actual position. The quantity �〈a.aj〉+ provides an indication of the contribution of action
aj to Q(si, aj) based on the difference between aj and the actual action.

Actions were selected according to the softmax rule,

P (a(t) = aj) =
eβQ(s(t),aj )∑
j eβQ(s(t),aj )

(3.4)

where β is a temperature parameter and Q(s, aj) is the value of each action aj at the current
position s.

3.2.2 The practice signal.

Replay was implemented probabilistically. Random cellular activity was propagated via
a transition matrix Wtransition that developed with experience. The transition matrix was
initialized to 0 to begin simulation of each new session (i.e. each day) and maintained across
laps (i.e. within each session). Within the maze, the transition matrix was updated at each
timestep according to

Wtransition ←Wtransition + ζ arctan
(
P̄ T(t)

[
P̄ (t)− P̄ (t− 1)

])
(3.5)
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Parameter
na 8 number of actions
ns 430 number of place cells
σ 2.5 place field width
β 1.0 softmax temperature
stepsize 0.8 movement length
γ 0.99 discounting factor
η 0.6 value function learning rate
nr 8 number of replays attempted per lap
rthreshold ns/50 replay activity threshold
ζ 1.0 transition matrix learning rate
tracksize (38, 38)
trackwidth 2

Table 3.1: Parameters used in the model by (Johnson and Redish, 2005a).

where P̄ (t) is the vector of current place cell activity (P̄ (t) = G(s(t) − si)∀ cells i, 1 ≤ i ≤
ns), and ζ is a learning rate. This is similar to a discretized time version of the weight
matrix used by Blum and Abbott (1996) or an approximation of the learning that occurs
through the combination of spike-time-dependent-plasticity and phase-precession (Redish
and Touretzky, 1998a).

nr replays were attempted at the completion of each lap. Each replay attempt began
by activating one randomly selected place cell. The activity of that selected cell was set to
1. This initial random activity propagated to other cells following learned transition matrix
weights. Subsequent place cell activity was found found by application of winner-take-all
rule where the cell with the largest activity produced by the outputs of the previous active
cells was selected as the subsequently active cell. If the activity of the next active cell was
greater than threshold, rthreshold, it was counted as part of the replay, its activity was set
to 1, and its activity was allowed to propagate throughout the network. This process was
repeated until either the activity did not reach threshold or the replay reached the end of
the maze. At each step of each replay, the state-action value function Q(s, a) was updated
according to the equations given above except that the action was estimated as the one
most similar to the change in state.

The values for the parameters used in the model are given in Table 3.1.
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3.2.3 Analysis

Twenty-four sessions were simulated with replay and without replay. Each session consisted
of eighty laps. If the agent did not complete the maze (i.e. “failure” or “reward” in
Figure 3.1A) within 2000 steps, the agent was removed from the lap and no reward was given,
that is, the lap ended in “failure”. The minimum number of steps an agent would require
to get to reward depended on the specific configuration of the maze, but was approximately
200 steps.

Errors were defined as entry into an incorrect arm at each T choice point. Because
repeated (or extended) entries into an incorrect arm were only counted once, a maximum
of four errors could occur on a maze with four T choices.

Path stereotypy was defined as the correlation of spatial path through the maze for each
lap following the methods outlined by Schmitzer-Torbert and Redish (2002). Briefly, this
included calculation of a path correlation matrix that summarized the correlation between
the pixelated path for each lap with each other lap. The linearized path correlation at lap
i, identified as path stereotypy hereafter, was defined as the mean correlation of lap i with
all other laps.

Replay was quantified by counting the length of each cascade as number of place cells
activated following each lap. This number was summed over each of the nr replays for each
lap.

3.3 Results

The basic results of the model are summarized in Figures 3.2 and 3.3. The simulation
provided four primary results: the temporal difference model learned the correct path,
errors decreased with experience, path stereotypy increased with experience and route replay
developed with experience.

Simulated rats successfully learned to navigate the multiple-T maze. Simulations with
and without replay learned the multiple-T and showed a decrease the number of steps
required to complete each lap and an increase the average reward per lap over a training
session (figure 3.2). While the model with replay shows a slightly faster initial decrease in
the number of steps required for each lap, the model without replay reaches a slightly lower
steady state (beyond 50 laps). The model with replay acquired more reward on average
than the model without replay.

Similar to animal behavior, the number of errors decreased early in the simulated train-
ing session. However, it should be noted that the decrease in errors in the simulation was
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slower than what is observed in animal behavior (compare Schmitzer-Torbert and Redish,
2002). The path stereotypy increased over the simulated training session. In combination
with the decrease in errors, this indicates a trend toward a more efficient path through the
maze. However, the increase in path stereotypy was still slower than what was observed in
animal behavior (compare Schmitzer-Torbert and Redish, 2002, 2004).

Simulations showed slow development of route replay (Figure 3.4). Because replay
develops probabilistically in this model, increasing the number of replays at the completion
of each lap, nr, will magnify differences between the models.

3.4 Discussion

3.4.1 Assumptions

Route replay occurs during awake behavior.

The model requires replay during task performance. While replay was situated in the pauses
taken between laps in this model, replay can occur during any rest interval. Extensive
evidence has shown that route replay occurs during sleep states in between experimental
sessions (Skaggs and McNaughton, 1996; Nádasdy et al., 1999; Louie and Wilson, 2001;
Lee and Wilson, 2002). Following early observations of sharp wave ripple activity during
non-sleep periods of rest and immobility (O’Keefe and Nadel, 1978; Buzsáki et al., 1983),
several recent experiments show evidence for replay during awake behavior (O’Neill et al.,
2006; Jackson et al., 2006; Diba and Buzsàki, 2007; O’Neill et al., 2008).

Route replay is dependent on asymmetric long term potentiation

The development of route replay (practice signals) was predicated on asymmetric long term
potentiation. Without this assumption, standard symmetric long term potentiation-based
replay leads to directionally non-specific activation. Extensive evidence for asymmetric
plasticity has been found within the hippocampus (Levy and Steward, 1983; Bi and Poo,
2001). Furthermore, the spiking characteristics of phase precession (O’Keefe and Recce,
1993; Skaggs et al., 1996) match the temporal specificity required for spike-time dependent
(asymmetric) long term potentiation and have been used to model place field expansion
(Blum and Abbott, 1996; Redish and Touretzky, 1998a).
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3.4.2 Predictions

Route replay develops within a session.

A basic prediction of the model is experience-dependent development of route replay (see
Figure 3.4). Moreover, the model predicts that route replay-containing elements of partic-
ularly well sampled trajectories will develop faster than poorly sampled trajectories. Early
observations of route replay showed increased replay activity following task performance rel-
ative to pre-task levels of replay and suggested experience-dependent development of route
replay (Wilson and McNaughton, 1994; Skaggs and McNaughton, 1996; Kudrimoti et al.,
1999; Lee and Wilson, 2002). More recent experimental observations suggest that replay
activity develops within a task (Jackson et al., 2006; O’Neill et al., 2006).

Current theories suggest that sharp waves are indicative of activity cascades derived
originally from recurrent connections in CA3 (Shen and McNaughton, 1996; Csicsvari et al.,
2000; Ylinen et al., 1995) and that the replay component follows asymmetries that arise
through learning (Buzsáki, 1989; Skaggs and McNaughton, 1996; Redish and Touretzky,
1998a; Nádasdy et al., 1999; Redish, 1999). Consistent with the predictions of the model and
current theories of sharp wave generation, Jackson et al. (2006) showed that the frequency
of sharp ripple emission increased as a function of experience in the multipleT task and that
increased sharp-wave emission in CA3 leads CA1 increases (see Figure 3.5).

Another prediction of this model is a consequences of the synaptic plasticity mechanisms
hypothesized to support development of route replay. The model suggests that route replay
develops through the interaction of asymmetric plasticity (Levy and Steward, 1983; Bi and
Poo, 2001) and phase precession (O’Keefe and Recce, 1993; Skaggs et al., 1996). Several
theories (Blum and Abbott, 1996; Redish and Touretzky, 1998a) have proposed these synap-
tic plasticity mechanisms as the basis of a backward expansion of place fields (Mehta et al.,
1997, 2000; Lee et al., 2004a). These hypotheses predict that sharp wave ripple activity
should develop with a time-course similar to that of place-field expansion. Furthermore,
place field expansion is dependent on NMDA integrity (Shen et al., 1997; Ekstrom et al.,
2001). If experience dependent development of route replay and place field expansion share
the same plasticity mechanisms, blocking NMDA receptor function in CA3 should reduce
development of route replay during sharp waves.
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Hippocampal inactivation should increase errors but should facilitate the de-

velopment of path stereotypy.

Hippocampal replay provides an indirect practice signal which enables faster learning. As
such, it accelerates learning and reduces errors (see Figure 3.3A). However, because the re-
play overlearns actual experience, it slows the development of optimized fine-motor perfor-
mance paths (see Figure 3.3B). These predictions can be tested by removing the hippocam-
pal contribution through direct inactivation studies. Hippocampal inactivation should in-
crease errors during learning (i.e. slow the correction of errors), but should speed up the
development of path stereotypy.

3.4.3 Open questions

What behavior is replayed?

The model presented here neglects the potential influences of cognitive or top-down processes
to structure replay and instead uses experimentally observable cellular mechanisms to struc-
ture replay. This leaves open a critical question: if relatively simple cellular mechanisms
mediate replay, at what rate does synaptic modification occur? The rate of synaptic change
dictates the content of route replay and the practice signal; very fast synaptic modifications
will result in the replay of recent episodes, while slow synaptic modifications will result in
a more general averaged replay. Theories of hippocampal function suggest that synaptic
modifications within the hippocampus, particularly within the CA3 recurrent collaterals,
are very fast (Marr, 1971; Levy, 1996). Alternatively, slow modifications may result in a
split in replay at T choice points, unless the network acts to maintain a consistent rep-
resentation (as in an attractor network, Samsonovich and McNaughton, 1997; Redish and
Touretzky, 1997; Tsodyks, 1999; Doboli et al., 2000). Experimental examination of route
replay have typically employed highly practiced behaviors (Wilson and McNaughton, 1994;
Skaggs and McNaughton, 1996; Kudrimoti et al., 1999; Louie and Wilson, 2001; Lee and
Wilson, 2002). Evidence from Jackson et al. (2006) suggests that coherent reactivation
develops with experience but did not distinguish whether replay reflect recent experience
or averaged experience.

Clearly, the content of the replayed practice signal directly influences the development
of the value function and behavioral plasticity. The synaptic modification rates used in the
current model were quite slow, providing a generalized average replay and relatively small
changes in the value function. Faster synaptic modification rates lead to greater temporal
specificity in replay and larger changes in the value function. In sum, the degree of plasticity
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within the value function directly affects the level of behavioral flexibility of the modeled
animal.

Is replay prioritized?

Current models of replay (including this one) have generally hypothesized the initiation of
replay as random (e.g. Redish and Touretzky, 1998a), or related to the ratio of experience
of the agent (e.g. Shen and McNaughton, 1996). However, various reinforcement learn-
ing models have shown that a prioritized-sweep provides for a significant improvement in
learning speed (Sutton and Barto, 1998; Zilli and Hasselmo, 2008). Experimental studies of
hippocampal replay have only focused on simple, hippocampal-independent, runway tasks
(i.e. not requiring choices). It is not yet known whether the replayed patterns are selected
at random or whether they are prioritized in some way.

The reinforcement learning literature suggests that, given a large state-space, replay
should be prioritized with a preference for state-transitions in which there was a large
change in the value function, that is experiences in which the value-prediction error signal
δ was large (Sutton and Barto, 1998). If replay were prioritized in this way, replay should
begin nearest to the source of reward and follow the greatest change in the δ signal –
this might provide some explanation for backward route replay (Foster and Wilson, 2006;
Diba and Buzsàki, 2007). Given the hypothesis that phasic dopamine carries the δ signal
(Montague et al., 1996; Schultz et al., 1997; Schultz, 1998), this would also predict that
dopamine should have an effect on prioritizing states for replay. Past research has shown
that dopamine enhances early long term potentiation in CA1 (Otmakhova and Lisman,
1996, 1999) and that dopamine agonists enhance the stability of hippocampal pyramidal
cell place fields while dopamine antagonists destabilize them (Kentros et al., 2004). While
it remains unclear whether phasic dopamine, corresponding to a δ signal, is the basis for
these observed changes place cell stability, one interesting possibility is that this dopamine
signal is responsible for place field modulation by behaviorally relevant learning signals such
as those seen by Moita et al. (2003).

3.5 Conclusion

Model-based reinforcement learning algorithms display much faster learning than model-
free learning algorithms. Practice, or off-line replay of recently experienced states, has
been used to accelerate temporal-difference learning algorithms (Sutton and Barto, 1998).
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The purpose of the model presented in this chapter was to link a simple model-based
reinforcement algorithm with known neuronal dynamics and synaptic plasticity.

Flexible spatial learning is dependent on the hippocampus. The observation of route
replay parallels proposed mechanisms for accelerating reinforcement learning algorithms.
Although passive development of replay facilitated performance in a model of behavior on a
multiple-T maze, behavioral performance within simulations continued lag behind observed
animal behavior. Development of prioritized replay (Sutton and Barto, 1998) or active
search (Daw et al., 2005) could be used to further facilitate model performance. While
there is currently little evidence for prioritized replay or search during sharp wave ripple
activity, a number of representation dynamics observed within hippocampal theta regimes
might support this function (O’Keefe and Recce, 1993; Jensen and Lisman, 2005; Johnson
and Redish, 2007). These observations suggest that active memory mechanisms mediated
by the hippocampus may play an important role in reinforcement learning.
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Q(s,a )j

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

G(s-s )i

B Place fields represent   
     state

D Combine to 
     produce the 
     value function
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C One of eight possible 
     actions

A The Multiple-T track
rewardfailure

Figure 3.1: Summary of the multiple-T task and model. The task consisted of a sequence of
four T choices with reward available on one arm of the final T. The model used radial basis
functions to compute the state-action value Q(s, a) over a continuous state, discrete action
space. Each action was selected using softmax. A: One example track as used in the model.
B: Place fields represent state through a distributed encoding. x indicates the position of
the animal, active units are shown. D: State (B) and one of the eight possible actions (C)
were each associated with a value function Q(s, aj). Figure used with permission (Johnson
and Redish, 2005a).
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Figure 3.2: Comparison of learning in TDRL models with and without developing replay-
based practice. A: Both models show a decrease in the number of steps to complete each lap.
The number of steps required to achieve the optimal path depended on the configuration of
the maze, but was approximately 200 steps. B: The model with replay typically acquires
more reward than the standard model. For agents that completed a lap, chance would be
50%, however, because agents were removed after 2000 steps, chance is actually much lower
than 50%. Figure used with permission (Johnson and Redish, 2005a).
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Figure 3.3: Comparison of TDRL models with and without developing replay-based practice
over twenty-four sessions. A: The model with replay shows a faster decrease in the number
of errors per lap than the standard model. B: The model with replay shows a slower onset
of path stereotypy than the standard model. Figure used with permission (Johnson and
Redish, 2005a).
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Figure 3.4: Replay developed over the course of the session. Replay strength was measured
as the length of the replayed sequence. Plotted are the proportion of replay strength occur-
ring at each lap (length of replay on each lap divided by total length of replay over entire
session). On early laps, the replay tended to fail early, thus producing short replays, while
on later laps, replay tended to proceed robustly, thus producing longer replays. Figure used
with permission (Johnson and Redish, 2005a).

Figure 3.5: Sharp wave emission develops across experience in a multipleT task. Sharp
waves were detected using standard methods (see Jackson et al., 2006 for details). Note
that increased sharp wave emission in CA3 leads increased sharp wave emission in CA1.
Figure used with permission (Jackson et al., 2006).
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Chapter 4

Statistical methods

4.1 Neural representations

As an animal interacts with the world, it encounters various problems for which it must
find a solution. The description of the world and the problems encountered within it play
a fundamental role in how an animal behaves and finds a solution. Sensory and memory
processes within the brain provide a description of the world and within that description
the brain’s decision making processes must select some course of action or behavior.

How is information about the world represented and organized in the brain? The use
of information from the world in behavior involves two critical processes. The first process
is appropriate transformation of information about the world into a representation that is
relevant and useful for behavior. The second process is the projection of that representation
onto a behavior that allows the animal to select appropriate actions for interacting with
its world. The following discussion uses the term neural representation to describe any
representation of the world within the brain or any transformation of that representation
toward behavior (even if the behavior is not executed). This definition is intentionally
broad such that the operations underlying directly observable behavior and covert mental
activities can be considered.

Neural representations are distributed across populations of neurons. Although tradi-
tional approaches to investigating neural representations have typically focused on single
unit activity, more recent approaches have examined the simultaneous activity of multiple
units. Current recording technology allows simultaneous recording of large neural ensembles
of more than 100 cells from awake behaving animals. Neural ensemble recordings provide
a distinct advantage over single unit recordings because they make coordinated dynamics
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across multiple cells accessible. More specifically, patterns of neural activity that devi-
ate from hypothesized encoding models (experimentally observable or directly inferrable
variables) might be the result of neural noise or indicate internal cognitive processes. Dif-
ferentiating between noise and internal cognitive processes has been difficult within single
unit recording studies and largely constrained these studies to investigation of the corre-
spondence between neural activity and a directly observable stimulus or pattern of motor
behavior. In contrast, differentiating between neural noise and internal cognitive processes
is much more feasible within neural ensemble recording studies. This technological advance
coupled with theoretical developments in the analysis of neural ensembles has allowed new
insights into the organization and dynamics of neural representations.

The following discussion develops a strategy for decoding dynamical representations in
multiple information processing modes. This chapter is divided into two sections. The first
section outlines a basic approach to neural decoding strategies based on neural correlates of
observed behavior and extends previous methods for use neural representations reflecting
covert information processing with no a priori behavioral correlate at fast timescales (ms,
tens of ms). The second section outlines a method for examining the comparative validity of
decoded representations and how these can be used to identify multiple different information
processing modes.

4.2 Analysis of neural representations

4.2.1 Encoding and tuning curves

What makes a neuron fire? The question can be asked with respect to the neuron’s im-
mediate environment — its afferents and ion channels — and with respect to the world
beyond. Answering the latter question requires knowing what information is encoded by
the neuron. An encoding model describes an experimental hypothesis relating the informa-
tion represented by a single neuron (sensory, perceptual, motivational, motor, etc.) to its
observed activity. The hypothesized relationship between the encoded information x and
the neural activity, typically considered in terms of spikes, s can be written as the function

p(st) = T (xt) (4.1)

where p(st) probability of a spike at time st.1 This definition is easily extended to include
both preceding experience and planned future behaviors in the encoded information x. For

1Of course, the actual activity is also a function of the history of spiking of the neuron (e.g. neurons show
refractory periods, bursting, and other history-dependent processes).
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simplicity, the present discussion neglects identification of the precise temporal offset in
describing the relationship between st and xt.

These encoding models have classically been found by standard tuning curves. More
recently, these encoding models have been stated in terms of Shannon information theory,
identifying the mutual information between behavioral variables and spike timing (Rieke
et al., 1997; Dayan and Abbott, 2001). Other encoding definitions have been based on linear
filter kernels, which reflect the recent history of variable x in the temporal organization
of spiking (Bialek et al., 1991) or bursting (Kepecs and Lisman, 2003) activity.2 These
encoding models can be measured relative to any available behavioral variable, whether it
be immediate sensory input, such as the frequency of an auditory tone, an immediate motor
output, such as the target of a saccade or the direction of a reach, or a cognitive variable,
such as the location of an animal in the environment.

4.2.2 Population decoding

Because the variability of a single cell is usually insufficient to fully describe the entire
space of encoded information, information is generally encoded across a population of neu-
rons that differ in the parameterization of their tuning curves (often described by a family
of tuning curves such as retinotopic Gaussians or place fields). If information is consis-
tently represented across a population of neurons, then it should be possible to infer the
expectation of the variable x by examining the neural activity across the population s. This
inference can be made using Bayes’ rule

p(x, s) = p(x|s)p(s) = p(s|x)p(x) (4.2)

where p(s|x) is the probability of observing some set of neural activities given the variable
of interest and p(x|s) is the probability of the variable of interest given some set of neural
activity. This means that the variable x can be decoded from the neural activity across the
population s by

p(x|s) =
p(s|x) p(x)

p(s)
(4.3)

The probability p(x|s) describes how information can be read out or decoded from the
network. What should be clear from this simple account is that decoding critically depends
on the encoding model, p(s|x).

2Kernel based methods explain the observed neural activity in terms of both the represented information
and the neuronal dynamics of the cell itself. The generative method below effectively extends this perspective
to include unobserved variables that can only be determined by examining ensembles with decoding.
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The term s in equation 4.3 reflects the pattern of neural activity across the entire
population of cells and typically refers to population activity at a given time t. This analysis
thus requires sufficient data to infer the probability density function across an n-dimensional
space (where n is the number of cells in the ensemble). Because of combinatorial expansion,
appropriate sampling of s often requires an inordinate amount of data for even moderately-
sized ensembles. In many situations, it is convenient to assume that the activity of each
cell is conditionally independent, relative to the represented variable x (Zhang et al., 1998;
Brown et al., 1998), so that

p(x|s) =
∏

i∈cells

p(si|x) p(x)
p(si)

(4.4)

This makes appropriate sampling much more viable. However, the validity of this assump-
tion is still controversial (Nirenberg and Latham, 2003; Schneidman et al., 2003; Averbeck
et al., 2006).

Although Bayes’ rule (Eq. 4.3) provides an optimal solution for decoding, even the
simplified version (Eq. 4.4) is often not computationally tractable. As a result, several other
non-probability based methods have been developed for decoding (e.g. template matching,
Wilson and McNaughton, 1993; Averbeck et al., 2003a; Zhang et al., 1998, linearly weighted
averaging, Georgopoulos et al., 1983; Salinas and Abbott, 1994; Zhang et al., 1998). These
decoding algorithms are often much more computationally efficient than fully Bayesian
computations and can be considered as reduced forms of Bayes’ rule (Dayan and Abbott,
2001).

4.2.3 Decoding at fast timescales

A critical open question on the application of neural decoding methods to spiking data is
the temporal interval over which spiking data should be grouped. This question is closely
related to the spiking versus firing rate code debate and has produced very different an-
swers for similar data sets (e.g. hippocampal place cell data). For instance, Zhang et al.
(1998) showed that the error distance between observed spatial trajectories and trajecto-
ries decoded from hippocampal place cells was minimized using long temporal intervals (on
the order of one second) while Brown et al. (1998) showed similarly high accuracy neural
decoding at much faster timescales (on the order of milliseconds) using predictive filter
based methods. In contrast to standard Bayesian decoding methods that typically treat
decoded neural representations at each time step as independent, predictive filter methods
treat decoded neural representations as temporally dependent and constrain the temporal
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evolution of the posterior distribution.3

The term predictive filter refers to an explicit predictive model that is used to constrain
the temporal evolution of neural representations. Predictive filter algorithms are character-
ized by the recursive application of a prediction step which predicts the temporal evolution of
the neural representation given the previous prediction and the proposed dynamical model
and a correction step which corrects the prediction based on the spikes observed at time t.
The prediction can be written as

p(xt|st−1) =
∫

p(xt|xt−1)p(xt−1|st−1) dxt−1 (4.5)

where p(xt|xt−1) describes the hypothesized representation dynamics, or what Brown et al.
(1998) called the path model, and the term p(xt−1|st−1) represents the predicted neural
representation at the previous timestep. The correction step can be written as

p(xt|st) =
p(st|xt)p(xt|st−1)

p(st|st−1)
(4.6)

where p(st|st−1) is the probability of the neural activity set st given the previous set of
neural activity st−1, p(st|xt) supplies current evidence, and the term p(xt|st−1) represents
the output of the predictive step (equation 4.5).

Predictive filter decoding strategies have been successfully used for decoding neural
activity within a variety of brain areas at very fast timescales (e.g. Brown et al., 1998;
Brockwell et al., 2004; Wu et al., 2006). In contrast to decoding methods applied at long
timescales, predictive filter methods allow (require) specification of temporal processes that
reflect single unit spiking dynamics such as the recent spiking history (Bialek et al., 1991)
or bursting (Kepecs and Lisman, 2003) within the p(st|st−1) term and representation dy-
namics such as phase precession (O’Keefe and Recce, 1993) and route replay (Skaggs and
McNaughton, 1996) within the p(xt|xt−1) term. Coupled with the fine timescale resolu-
tion of predictive filter decoding, the degree of explicit specification of temporal dynamics
that underlie neural representations allowed by predictive filter methods suggests a distinct
utility in investigation of memory and other dynamical cognitive processes.

4.2.4 Memory and cognition as non-local representations

Neural activity is typically analyzed with respect to an observable external variable xt:
p(st) = T (xt). However, a more accurate statement is that neural activity reflects an

3It should be noted that at sufficiently large temporal intervals, the contribution of a model of the
temporal evolution neural representations becomes negligible.
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internal representation of this variable. An important consequence of this subtle shift in
perspective is that it suggests internal representations have the potential to coherently devi-
ate from the external world. This point is particularly salient when investigating processes
in which cognition potentially plays a role; one of the hallmarks of cognitive processing is
the connection of the observable world with the animal’s externally invisible goals or moti-
vations (Tulving, 1983, 2001, 2002; Suddendorf and Busby, 2003; Gray, 2004; Ferbinteanu
et al., 2006; Johnson and Redish, 2007). This perspective suggests that in memory tasks
neural representations should align to observable stimulus or behavioral variables during
encoding regimes and can potentially deviate from these variables during retrieval.

Multiple lines of evidence suggest that the hippocampus displays dynamics indicative of
this distinction between encoding and retrieval (O’Keefe and Nadel, 1978; Buzsáki, 1989;
Hasselmo and Bower, 1993; Hasselmo, 1993). As rats perform active behavioral tasks on
an environment during normal navigation, the first order information within hippocampal
pyramidal cells is the location of the animal (O’Keefe and Nadel, 1978; Redish, 1999).
However, many recent experimental results related to phase precession and route replay
have shown higher order fine temporal structure within hippocampal place cell activity
that is not predicted by the animal’s spatial position. Exactly how hippocampal place cell
dynamics map onto the above distinction between encoding and retrieval remains unclear.

The phase-precession of place cell spiking activity during each theta cycle suggests a dy-
namic in which the spatial representation sweeps through positions recently occupied by the
animal to positions that will likely be occupied by the animal (O’Keefe and Recce, 1993; Sk-
aggs et al., 1996, see Fig. 4.1). Although place cell spiking is strongly modulated by the theta
rhythm, this phase relationship is not constant and can be described more specifically than
preferred phase (O’Keefe and Recce, 1993; Skaggs et al., 1996). O’Keefe and Recce (1993)
showed that place cells tend to spike at later theta phases as an animal enters a cell’s place
field and precess toward earlier theta phases as the animal progresses through the field. The
neural representation dynamics suggested by phase precession are time-compressed relative
to animal behavior during task performance and have been calculated to move at speeds
approximately 10-15 times faster than observed animal behavior (Skaggs et al., 1996). Be-
cause there is no clear observable behavioral variable onto which phase precession can be
mapped, multiple groups have included preferred phase within hippocampal neural decod-
ing in order to minimize the difference between predicted and observed spatial positions
(Brown et al., 1998; Jensen and Lisman, 2000). However, several proposals by Hasselmo
and colleagues (Hasselmo and Bower, 1993; Hasselmo, 1993; Koene et al., 2003; Koene and
Hasselmo, 2008; Zilli and Hasselmo, 2008) suggest that differences between predicted and

82



Statistical methods 4.2

observed positions are not errors, but indicative of mnemonic processing.

0 ms 20 ms 40 ms 60 ms

80 ms 100 ms 120 ms 140 ms

160 ms 180 ms 200 ms 220 ms

Figure 4.1: Phase precession during spatial navigation. As the rat runs from left to right the
reconstructed location sweeps from behind the animal to in front of it. The reconstruction
probability is indicated by color (red high probability, blue low probability). Panels arranged
from left to right, top to bottom in 20 msec intervals.

The term route replay has been used to describe a dynamic that occurs during sharp
wave ripple events. Sequences of neuronal activity observed during task performance are
replayed within slow wave sleep following task performance (Kudrimoti et al., 1999; Nádasdy
et al., 1999; Lee and Wilson, 2002). Sequential spiking activity in sharp-wave replay during
slow wave sleep is time-compressed 40 times relative to animal behavior during the task
(Nádasdy et al., 1999; Lee and Wilson, 2002). Similar sequential reactivation has been
observed during awake states; however, unlike sleep, the ordering of spiking activity during
periods of awake immobility can be forward, backward or mixed (Jensen and Lisman, 2000;
Foster and Wilson, 2006; Jackson et al., 2006; O’Neill et al., 2006; Diba and Buzsàki, 2007,
see Fig. 4.2). The interpretation of spiking activity during sharp wave ripple events as route
replay, particularly during slow wave sleep, has received wide acceptance as memory process
because there is little other explanation for these sequential activations and it is consistent
with previous conceptualizations of online and offline information processing modes within
the hippocampus as indicated by hippocampal local field potential activity (Vanderwolf,
1971; O’Keefe and Nadel, 1978; Buzsáki, 1989).

Application of neural decoding algorithms to both online and offline hippocampal spik-
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Rat is sitting at the second feeder.

0 ms 20 ms 40 ms 60 ms

80 ms 100 ms 120 ms 140 ms

160 ms 180 ms 200 ms 220 ms

0.5 m

Figure 4.2: Replay of experience on the maze during an awake-sharp wave. The rat is
sitting at the second feeder throughout the event. The distribution starts at the base of the
first T and moves through the full maze in 220 msec (typical behavioral run times through
this maze = 10–12 seconds). The reconstruction probability is indicated by color (red high
probability, blue low probability). Panels arranged from left to right, top to bottom in
20 msec intervals. Note the coherent, but non-local reconstruction of the representation
during the sharp wave.

ing data predict positions that deviate from the animal’s observed positions. A variety of
perspectives suggest that such differences should be considered non-local representations
rather than simple decoding errors and that these spatial representation dynamics are, at
least in part, indicative of multiple hippocampal information processing modes. Beyond
differences in spatial representation dynamics, information processing modes within the
hippocampus have been characterized by distinct local field potential activity, single unit
activity patterns (in both pyramidal projection neurons and interneurons), and specific
neuromodulation (Vanderwolf, 1971; O’Keefe and Nadel, 1978; Hasselmo and Bower, 1993;
Somogyi and Klausberger, 2005). These modes are thought to be differentially involved
in learning, storage, and recall (Buzsáki, 1989; Hasselmo and Bower, 1993; Redish, 1999).
In sum, these observations provide strong support for the hypothesis that spatial repre-
sentations in the hippocampus shift between primarily local representation dynamics and
primarily non-local representation dynamics and suggest that identification of information
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processing models is critical for neural decoding.

4.3 Consistency analysis

The neural decoding methods have provided important insight into neural information
processing. However, the methods outlined above run the risk of making an assumption that
an animal’s brain rigidly adheres to representing the present behavioral status of the animal
and mistaking differences between predicted and observed behavioral variables as errors.
A perspective that requires a match between observed and predicted status (e.g. spatial
position) tacitly ignores the cognitive questions of memory and recall that are fundamental
to brain function. However, departure from this traditional prediction-matches-observation
perspective also removes the primary method used for testing the validity of the decoded
representation.

How can we proceed without the prediction-matches-observation form of validity test?
One potential answer comes from considering the differences between (1) precise, accurate
recall, (2) precise, but inaccurate recall and (3) confusion. The decoded representations
in the first two cases likely display a high degree of internal consistency; that is, for any
given set of cells the similarity (or difference) in tuning functions predicts the similarity (or
difference) in cellular activity at any moment in time. In contrast to cases (1) and (2) in
which decoded neural representations display a high degree of internal consistency but differ
in match between observed and predicted behavioral status, decoded neural representations
in case (3) display low internal consistency. These considerations form the basis for the
argument that consistency, rather than prediction-matches-observation, can be used as a
powerful test of validity for examining neural representations as they relate to cognitive
function.

4.3.1 Basic consistency analysis

A coherent or consistent representation is one in which the firing of a majority of neurons
in a network conforms to an expected pattern. Ascertaining the consistency of a decoded
neural representation can be accomplished in both probabilistic and non-probabilistic cases.
In the probabilistic case, the maximum posterior probability (MAP) indicates the extent
to which the reconstructed estimate is consistent across the population of neural activities.
In the non-probabilistic case, the length of the population vector (Georgopoulos et al.,
1983) can be used (Smyrnis et al., 1992, which is a measure of the variance of the circular
distribution, Mardia, 1972, Batschelet, 1981). Georgopoulos et al. (1988) used this to
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measure development of a motor plan during mental rotation tasks. As the animal developed
a motor plan, the length of the population vector increased.

A basic problem with each of these methods is how to appropriately define consistent
representation. The upper bound for population vector length is unclear. And though the
maximum posterior distribution is bounded, it is dependent on the specific characteristics of
spiking activity and the shape of tuning curves within the population. A variety of compar-
ative methods have been developed to circumvent this problem. For instance Averbeck and
colleagues (Averbeck, 2001; Averbeck et al., 2002, 2003b) recorded from frontal and parietal
neural ensembles in a shape-copying task and compared the neural activity patterns during
the time monkeys were actually drawing the shapes with the neural activity patterns during
the preparatory period. By describing population firing rates during each segment of the
copying process as an n-dimensional tuple (e.g. Faction 1 = (f1, f2, . . . , fn)), Averbeck et al.
(2002) showed that the distance between ensembles firing rate patterns in the period lead-
ing up to the copy period and the ensemble firing rate patterns for each action component
predicted component ordering for the to-be-copied shape. These basic observations suggest
that the methods for assessing the consistency of neural representations form a integral part
of understanding information processing in the brain.

4.3.2 Consistency and coherency

Place fields remap in response to environmental and task changes (Knierim et al., 1995;
Markus et al., 1995). Given that place fields are sensitive to spatial reference frames, Redish
et al. (2000) designed a task that set two spatial reference frames against each other. In
this task the rat exited a box and ran down a linear track to an unmarked location where,
if it paused, it would receive medial forebrain bundle stimulation. The unmarked location
remained stationary in the room coordinate system while the linear track and the box were
shifted relative to the room. In order to solve the task, rats were required to shift from use
of a spatial reference frame aligned to the box to use of a spatial reference frame aligned to
the room.

Redish et al. (2000) suggested that a mathematical comparison between observed and
expected activity patterns could provide useful information about map switching dynamics.
Redish et al. (2000) defined an activity packet as a weighted sum of the tuning curves

A(x, t) =
∑

k Tk(x) · Fi(t)∑
i Ti(x)

(4.7)

where Ti(x) is the tuning curve of cell i for a given variable x, and Fi(t) is the firing rate of
cell i at time t. Redish et al. (2000) also defined expected activity packets (Â) within box
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and room reference frames based on the expected firing activity given a relative position
within each frame. This was accomplished by setting Fi(t) = Ti(xroom) or Fi(t) = Ti(xbox).
Coherency was defined as the dot product of the actual and expected activity packets. A
comparison of the box versus room coherency showed that the hippocampus transitioned
from a spatial reference frame aligned to the rat’s starting point to another reference frame
aligned to the room.

In later treatments Jackson and Redish (2003, 2007) noted that a behaviorally observed
variable (position relative to box or room coordinates) was not required for coherency
calculations and that any hypothesized behavioral variable x̂ could be used to define the
expected activity packet Â. Based on this, Jackson and Redish (2003) defined the expected
activity packet as the sum of the tuning curves weighted by the expected firing rate of the
cells given a decoded position x̂(t)

Â(x, t) =
∑

i Ti(x) · E(Fi(t))∑
i Ti(x)

(4.8)

=
∑

i Ti(x) · Ti(x̂(t))∑
i Ti(x)

(4.9)

where x̂(t) is the hypothesized value of variable x at time t. Following construction of
actual and expected activity packets, the consistency of the neural population relative to
the hypothesized behavioral or decoded variable can be measured. Various consistency
measures have been developed (Redish et al., 2000; Jackson and Redish, 2003; Johnson
et al., 2005; Jackson and Redish, 2007 and see Jackson, 2006 for a comprehensive review).

Johnson et al. (2005) recorded neural ensembles of head direction cells from the post-
subiculum of rats in a cylinder-foraging task and calculated the coherency of the head
direction representation relative to the reconstructed head direction φ̂. Highly consistent
patterns of activity were more likely to provide an accurate representation of the animal’s
current head direction than low consistency patterns of activity. Following the proposal of
Jackson and Redish (2003), Johnson et al. (2005) suggested that if downstream structures
used only self-consistent representations for making decisions, then the animal would be
more likely to use accurate representations of the outside world.

The previous examples by Redish et al. (2000) and Johnson et al. (2005) suggest that
consistency of an ensemble relative to hypothesized behavioral variable x̂ remains consistent
over long temporal intervals with some small switching probability. Statistically, this is
equivalent to the probability of accepting the null hypothesis that the actual and expected
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activity packets are the same for some interval t ∈ T :

H0 : ∀x∀tA(x, t) = Â(x, t) (4.10)

However, the validity of this hypothesis appears to vary over time and suggests that treating
this hypothesis as as a function of time

H0(t) : ∀xA(x, t) = Â(x, t) (4.11)

might provide greater insight into the dynamics of neural representations. Consonant with
this hypothesis, Jackson and Redish (2007) showed that multiple hippocampal maps exist
within the a single task environment and that these maps dynamically switch within task
performance. Furthermore, Jackson and Redish (2007) showed that dynamic switching be-
tween multiple hippocampal maps better predicted place cell activity than a single averaged
map.

4.3.3 A Bayesian approach to consistency

The previous non-probabilistic discussion developed consistency in terms of a comparison
between actual and expected activity packets. The construction of both actual and expected
activity packets rests on a number of assumptions. Some of these assumptions are merely
incidental and can be proved negligible, but others remain and are difficult to treat in a
statistically appropriate manner. For instance, coherency calculations using tuning curves
project a distribution of firing rates for any given position onto a single number. This
projection is usually accomplished in the form

F (x) =
∫

F · p(F, x) dF (4.12)

where p(F, x) is the joint probability of firing rate and position. Similarly, coherency calcu-
lations use a single valued estimate for the decoded variable rather than a distribution. The
marginalization of each of these distributions represents a massive loss of information. While
such assumptions and associated information losses are required by many non-probabilistic
decoding methods, they are not necessary within Bayesian formulations. Recent neural
decoding strategies based on Bayesian and information measures (Rieke et al., 1997; Zhang
et al., 1998; Brown et al., 1998; Zemel et al., 1998; Dayan and Abbott, 2001) suggest that
question of consistency can be recast within a Bayesian framework.

In the non-probabilistic methods above, the activity packet (Eq. 4.7) measures the ex-
pected distribution of variable x given the firing rate at time t, F (t). In Bayesian terms, the
posterior distribution p(xt|st) provides an analogous term to the expected activity packet
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above (Eq. 4.9). Like the activity packet, the posterior distribution is a function over
the variable x for each temporal interval. However, in contrast with coherency calcula-
tions which compare observed and expected neural activity within an activity packet space,
Bayesian methods compare neural activity within a neural activity space. Examination of
Bayes’ rule in its simple (equations 4.3 and 4.4) or more complex predictive filter (equa-
tions 4.5 and 4.6) forms suggests how application of the hypothesized prior distributions for
p(x), p(s), p(s|x), p(xt|xt−1), and p(st|st−1) contribute to the posterior distribution. To-
gether these terms specify a hypothesized model Hi within a generative model framework.

The generative model framework allows direct comparison of multiple models. In short,
application of Bayes’ rule to multiple models can be used to determine which generative
model Hi is most probable given a hypothesized neural representation x and observed
spiking data S.

p(Hi|x, S) =
p(Hi|S)p(x|Hi, S)∑
j p(Hj|S)p(x|Hj , S)

(4.13)

Comparing the generative power of each hypothesized model can be found using standard
methods (such as odds ratios and measured in decibans, Jaynes, 2003). Furthermore, gen-
erative models can be examined in either bulk trajectory form analogous to coherency (see
equation 4.10) or in an instantaneous form as a function of time (see equation 4.11).

One particularly notable aspect of equation 4.13 is the term p(x|Hi, S) which can be
written as

p(x|Hi, S) =
p(S|Hi, x)p(x|Hi)∑

x∈X p(S|Hi, x)p(x|Hi)
. (4.14)

Written in this form, a hypothesized model Hi that includes temporal dynamical constraints
allows expansion of equation 4.14 as a predictive filter. Other hypothesized models allow
probabilistic treatments of multiple hippocampal maps (Fuhs et al., 2005) that parallel non-
Bayesian methods (Jackson and Redish, 2007). Comparison of multiple dynamical models
applied to hippocampal data is explored below.

4.3.4 Multiple models in hippocampus

Spatial representations in the hippocampus have been explored using a variety of decoding
methods (Wilson and McNaughton, 1994; Zhang et al., 1998; Brown et al., 1998; Jensen
and Lisman, 2000). As described above, the neural activity of place cells and the decoded
spatial representation generally predicts the animal’s position within the environment; how-
ever, place cell activity can remain well-organized even when the decoded representation
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does not match the animal’s position as in the case of phase precession (O’Keefe and Recce,
1993; Skaggs et al., 1996; Harris et al., 2002; Johnson and Redish, 2005b, see figure 4.1,
above) and route replay (Skaggs et al., 1996; Lee and Wilson, 2002; Johnson and Redish,
2005b, 2007; Foster and Wilson, 2006, see figure 4.2, above). Phase precession and route
replay differ in their spatiotemporal dynamics; phase precession is approximately 10− 15×
compressed relative to animal behavior (Skaggs et al., 1996) whereas route replay is approx-
imately 40× compressed relative to animal behavior (Nádasdy et al., 1999; Lee and Wilson,
2002). Additionally, these dynamics correspond with distinct information processing states
as indicated by characteristic local field potential activity within the hippocampus (Van-
derwolf, 1971; O’Keefe and Nadel, 1978). Phase precession occurs during high theta power
epochs (O’Keefe and Recce, 1993; Skaggs et al., 1996) while route replay occurs during
high delta/high ripple power epochs (Kudrimoti et al., 1999; Nádasdy et al., 1999; Lee and
Wilson, 2002; Jackson et al., 2006; Foster and Wilson, 2006; O’Neill et al., 2006; Diba and
Buzsàki, 2007; O’Neill et al., 2008).

The predictive filter version of the generative model framework outlined above provides
a method for examining spatial representations in the hippocampus with respect to multiple
spatiotemporal dynamics. Explicit comparison of multiple models of hypothesized repre-
sentation dynamics allows identification of the underlying dynamical state of the neural
representation. A model of the dynamics of a neural representation can be most simply
described as a Markov process p(xt|xt−1), that gives the transition probability for a repre-
sentation at xt−1 to move to a new position xt. The transition models used within predictive
filters can be as simple as a Brownian walk or as complex as a rigidly specified directional
flow.

Four generative models were used for neural decoding from a neural ensemble recorded
from the CA1 and CA3 hippocampal subfields of an animal running on a 4T Multiple-
T maze (Schmitzer-Torbert and Redish, 2002, 2004). These models were constructed by
exploiting the Markov property which states

p(xt+n|xt) = p(xt+1|xt)n (4.15)

where n is a time compression factor. Each model specified the drift velocity of the prob-
ability distribution within the prediction step : 1× ≡ p(xt|xt−1)1, 15× ≡ p(xt|xt−1)15,
40× ≡ p(xt|xt−1)40, and 99× ≡ p(xt|xt−1)99, where p(xt|xt−1) was a Gaussian function
with σ proportional to the average velocity of the rat. The 99× model provided a nearly
uniform distribution over the scale of the Multiple-T maze.

After decoding the neural representation for each of the proposed models, the generative
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Figure 4.3: Multiple generative models in the hippocampus. Four generative models were
examined 1×, 15×, 40×, and 99×. During the first portion (Turns 1–4), the animal was
running through the maze. During the second portion, the animal paused at the first feeder
to rest, groom, and eat. Colored columns display model selection distributions for 50ms
blocks.

power for each of the hypothesized models can be determined by estimating how consistent
the decoded representation is with the observed neural activity. Generative model selection
was performed by taking the maximum posterior distribution. As shown in Figure 4.3,
different spatiotemporal models were more consistent at different times, reflecting changes
in the neural dynamics.

Each of the generative models was hypothesized to reflect different hippocampal infor-
mation processing modes. The correspondence between these known information processing
modes and their associated local field potential activity (O’Keefe and Nadel, 1978; Buzsáki,
1989, 2006; Hasselmo and Bower, 1993; Redish, 1999) suggests that the characteristic local
field potential power spectrum for each hypothesized spatiotemporal model should show
similar trends. Specifically, the 1× and 15× filters should show increased power within
theta frequencies (7-10Hz) while the 40× filter should show increased power within slow
wave delta (2-6Hz) and sharp wave ripple (170-200Hz) frequencies. The 99× model was
used as a null (noise) hypothesis. Clear differences within the power spectra for the 1×,
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Figure 4.4: Average hippocampal local field potential power spectra for generative models
in the hippocampus. Three generative models (1×, 15×, 40×) were compared to the noise
model (99×).

15× and 40× models were found within slow wave delta and theta frequencies but no differ-
ences were found within sharp wave ripple frequencies (see Figure 4.4). Differences between
the characteristic power spectra for each filter were similar between CA1 and CA3. Consis-
tent with previous results (Lee et al., 2004b; Leutgeb et al., 2004), subfield analysis found
that more distributed models (e.g. 99×) were more often selected in CA1 data sets, relative
to the CA3 data sets (see Figure 4.5).

While generative models have been broadly used to explain and decode neural activity
(e.g. Brown et al., 1998; Rao and Ballard, 1999; Lee and Mumford, 2003; Brockwell et al.,
2004; Serruya et al., 2004; Wu et al., 2006), one notable distinction should be made be-
tween the typical generative model formulation and the present formulation. Because we are
concerned with the dynamical regulation of neural representations by cognitive processes,
particularly explicit memory retrieval, we suggest that multiple generative models are nec-
essary to explain observed neural activity. A single model is generally not enough because
cognition requires the interactive use of dynamical information based on sensory or motor
processes and planning, motivation or, for lack of another word, cognitive processes. Within
each of these types of representation, cognition modulates an ongoing process. This is pre-
cisely the type of modulation that is sought when examining learning and memory or any
cognitive processes; mathematically it can be identified as a changes in the model prior p(x).
In terms of the generative model, this simply states that there exists a prior non-uniform
distribution p1(x) which better describes the neural activity than a uniform distribution
p2(x). The critical aspect of this formulation is that the goal is to completely generate the
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Figure 4.5: Percentage of samples in which each model was found to be the most consistent
with the set of observed spiking data (equation. 4.13). The 99× model was often selected
during jumps or intervals in which very few spikes were fired.

observed neural activity. Because of the probabilistic treatment, it becomes straightforward
to integrate the contributions of both representation driven aspects of neural activity (e.g.
above) and intrinsically driven neural dynamics such as refractory period (Frank et al.,
2002).

4.3.5 Conclusions

A variety of experimental and theoretical results suggest the existence of cognitive processes
that require active memory use in decision making. These processes are non-trivial to assess
in human populations using such measures as self-report and are even more difficult to assess
in non-human populations. Identifying such cognitive processes in non-human animals will
require the development of measures to examine computations underlying these processes.
Central to this approach is the development of statistical algorithms for decoding neural
representations at multiple time scales and validation or error-assessment methods that
allow characterization of cognitive processes related to, but not necessarily mirrored by,
directly observable behavior. This chapter summarizes recent developments in methods for
examining highly dynamic cognitive processes through observation of neural representations
with multiple dynamics.

Neural decoding alone cannot be used to infer internal states of an animal’s sensory
and cognitive networks such as the difference between random firing and well-represented
variables. This is particularly important when considering issues of memory and recall. One
function of memory is to appropriately link a current experience to a past experience; in
the case of the hippocampus, this may mean using the same spatial map as was previously
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used in an environment. However, a primary usefulness of a memory is in its ability to
influence disconnected experiences through recall of past events or episodes. In this case of
recall, one would expect that neuronal firing would, by definition, be disconnected from the
current behavioral state of the animal. Recall may be detected by reconstruction methods
identifying values very different from the current behavioral value. Usually, these values
are considered noise to be removed from a reconstruction algorithm. Using consistency
methods like those presented above allow discrimination between aberrant neural decoding
and valid, non-local representational events.
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Chapter 5

Experiments

A variety of observations support the existence of dynamic spatial representations in the ro-
dent hippocampus (O’Keefe and Recce, 1993; Skaggs and McNaughton, 1996; Skaggs et al.,
1996; Kudrimoti et al., 1999; Nádasdy et al., 1999; Louie and Wilson, 2001; Lee and Wil-
son, 2002; Foster and Wilson, 2006; O’Neill et al., 2006; Jackson et al., 2006). Although
these dynamic representations have been used in theoretical explanations of spatial memory
and navigation (Redish, 1999; Lisman, 1999; Jensen and Lisman, 2005), few experiments
have examined dynamic spatial representations in the hippocampus during wayfinding be-
haviors. Based on recent methodological developments for decoding neural representations
at fast timescales (Brown et al., 1998; Johnson et al., 2007, see chapter 4), the following
experiments were performed to better describe the dynamic representational processes that
support navigation.

5.1 Methods

5.1.1 Subjects

Male Fisher-Brown-Norway hybrid rats (Harlan, Indianapolis IN, age 7-14 mos at time of
implantation) were maintained on a synchronous Day/Night cycle. Animals were handled
for at least one week prior to beginning behavioral training. Rats were food-deprived to no
less than 80% of their body weight during behavioral training; water was freely available
in the home cage at all times. All procedures were in accordance with NIH guidelines for
animal care and were approved by the IACUC at the University of Minnesota.
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Figure 5.1: The Multiple-T maze. The task consists of four T choice points with food
reward available at two sites on each return rail. Only feeders on one side of the track were
rewarded in each session. Figure used with permission (Johnson and Redish, 2007).

5.1.2 Behavioral training

Tasks

The multiple-T task The task was identical to that used by Schmitzer-Torbert and
Redish (2002, 2004, see Fig. 5.1). The task consisted of a sequence of 4 T turns with return
rails after the final turn, making it a lap based task. Food was provided at two sites on
each return rail. On any specific day, only one pair of sites (i.e. the right or left) provided
food reward. However, both sites on that rewarded side provided food reward on each lap.
Each feeder provided two 45 mg food pellets (Standard Formula P, Research Diets) on each
lap. The sequence remained constant within a day, but changed between days. Errors were
defined as entry into an incorrect maze arm. Rats ran one 40 minute session each day.
Maze size is 165 cm × 165 cm. The trackwidth is 10 cm. There are 24 = 16 available track
configurations. On a 4T maze, chance of making a lap with no error is (0.5)4 = 0.0625.

The cued-choice task The task consisted of a single T turn with return rails after the
final turn, making it a lap based task. Food was provided at two sites on each return rail.
On any specific lap, only one pair of sites (i.e. the right or left) provided food reward. A low
frequency (3 kHz, for left) or high frequency (6 kHz, for right) cue tone played on the center
stem and indicated which food sites would provide reward. A second tone that matched
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the cue tone sounded on the T arms if the rat made the correct decision (see Fig. 5.2). As
a result, a rat often reversed its course if no tone was encountered on the T arms. Errors
were defined as entrance into the incorrect tone area. Rats ran one 30-40 minute session
each day. Maze size is 165 cm × 165 cm and the trackwidth is 10 cm.

Rats were trained following a pretraining protocol that first required the rats to run for
laps to a single side of the track while the other side was blocked. The tone corresponding to
the appropriate side was played at the primary and secondary cue sites on all laps and all laps
were rewarded. Following single side pretraining, each rat was given two or three sessions
of directed pretraining where they were blocked from making incorrect decisions. During
this phase the rewarded side was determined according to pseudo-random order — reward
was available pseudorandomly at the left or right feeders on each trial, but the number of
left rewards and the number of right rewards was constrained to be equal within each ten-
or twenty-trial block. Following directed pre-training the rats were provided undirected
sessions with pseudo-random ordered blocks of ten or twenty laps. This ensured that the
proportion of left and right choices remained approximately constant independent of the
total number of laps run on a particular day, but also ensured that any decision-process
that did not take the cue-tone into account would lead the rat to chance (50% correct). All
neurophysiological analyses were taken from sessions in this final phase, which precluded
the availability of any strategy that did not take the cue-tone into account.

Behavioral analysis

Pausing and variability of orientation of motion. Linear velocity was calculated
using the adaptive windowing procedure proposed by Janabi-Sharifi et al. (2000). This
algorithm provides for both accurate speed estimates and an accurate estimate of the time
of speed change. Locations with a speed of less than 1 cm/sec were identified as pausing
locations. Orientation of motion was calculated from the arctangent of the dx and dy terms
of the linear velocity. Variability of orientation of motion was determined by applying the
Janabi-Sharifi et al. (2000) algorithm to the orientation term. Locations with variability of
motion > deg 120/sec were defined as high orientation variability locations.

Defining the “choice point”. A small rectangle was identified around the final choice of
the Multiple-T maze and the top of the central arm of the Cued-choice maze (see Figures 5.1
and 5.2). Anytime the animal entered this rectangle from the navigation sequence (Multiple-
T) or the central arm (Cued-choice) was defined as a “choice”. The time spent at the
choice-point began when the animal entered the choice-point from the south and ended
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Figure 5.2: The Cued-choice maze. The task consists of a single T turn with food reward
available at two sites on each return rail. On each lap a cue tone on the center stem (red
dashed box) signalled whether the left or right arm would be rewarded. If and only if the
rat made the correct turn, a matching tone would play at the T arm (blue dashed boxes).
Figure used with permission (Johnson and Redish, 2007).

when the animal left the rectangle, turning either left or right. Times in which the animal
returned across the choice-point rectangle after correcting an error (i.e. entering from the
east or west) were not included in choice analyses.

5.1.3 Surgery and electrode implantation

After pre-training to proficiency, rats were implanted with a 14 tetrode microdrive (Kopf
Neuro-Hyperdrive) directed toward the CA3 hippocampal subfield (Bregma -3.8mm A/P,
4.0mm M/L). Briefly, rats were anesthetized with Nembutal (sodium pentobarbital, 40-50
mg/kg, Abbott Laboratories, North Chicago, IL) and maintained using isoflurane (0.5–2%
isoflurane vaporized in medical grade oxygen). The hyperdrive was secured in place with
dental acrylic (Perm Reline and Repair Resin, The Hygenic Corp., Akron, OH) surrounding
8 anchor screws and a ground screw. Immediately following surgery, animals received Ke-
toprophen (5 mg/kg, subcutaneously). Following surgery, three doses of 5 mL sterile saline
(0.9%) mixed with Baytril (in a dose of 25 mg/kg) were administered subcutaneously (one
dose every 12 hours). Animals were allowed to recover in an incubator until they were ambu-
latory. Once animals were ambulatory, 0.8 mL Children’s Tylenol was administered orally.
For two days following surgery, rats had access to water containing Children’s Ibuprophen
(15 mg/kg, available in a dilution of 15 mg/kg/20-25 mL water). Rats were allowed two
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days to recover from surgery before resuming behavioral experiments. In the first few hours
post-surgery, all tetrodes were advanced approximately 1mm. Twelve tetrodes were slowly
advanced toward the pyramidal cell layer over the ten days following surgery, one tetrode
was lowered to the hippocampal fissure, and one tetrode was left in corpus callosum or a
quiet region of cortex to be used as a superficial reference.

Following task performance, rats were overdosed on nembutal and perfused with Forma-
lin. After 24 hours in formalin, brains were transferred to a 30% sucrose-Formalin solution,
sliced, and stained with cresyl violet using standard procedures. All recording locations
were verified to lie in the CA3 region of the dorsal hippocampus.

5.1.4 Recordings

Neurophysiology

Spike activity was recorded using a 64 channel Neuralynx Cheetah system (Neuralynx,
Tucson AZ), which sampled voltage at 32kHz for each channel, filtered between 600Hz and
6kHz. When the voltage on any of the four channels of a single tetrode reached thresh-
old, a 1ms window of the spike waveform on each of the four channels on the tetrode
was recorded and timestamped with microsecond resolution (Neuralynx). Following the
experiment, spikes were manually clustered into putative cells on the basis of their wave-
form properties (MClust 3.4, Redish et al. http://www.umn.edu/ redish/mclust), based on
automatically-derived clusters found via k-means and expectation-maximization algorithms
(KlustaKwik 1.5, K.D. Harris http://klustakwik.sourceforge.net/). Local field potentials
(LFP) were sampled at 2 kHz and bandpass filtered from 1–425 Hz. Cross-frequency cor-
relation analysis was conducted as in Masimore et al. (2004). Data for theta-frequency
analysis were taken from the fissure tetrode. Data for high-frequency ripple analysis were
taken from pyramidal cell layer tetrodes. CA3 was initially distinguished by the presence of
low frequency sharp wave ripples at the pyramidal cell layer (Ylinen et al., 1995; Csicsvari
et al., 1999).

Behavior: tracking and control

5.1.5 LFP analysis

The frequency composition of local field potentials at the choice point was examined using
frequency-detection methods capable of detecting transient oscillatory events in long data-
series (Masimore et al., 2004). The method calculates the cross-frequency self-coherence
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within a signal. Because local field potential oscillations signals do not occur at a single,
sharp frequency (i.e. sharp wave ripple complexes include components from the 100–220 Hz
range O’Keefe and Nadel, 1978), they appear as identifiable pockets of high correlation in
the cross-frequency correlation plot (Masimore et al., 2004).

Subsequent analysis examined specific frequency ranges or frequencies of interest. Sharp
wave ripples were identified as epochs in which the local field potential power increased to
greater than 7σSW within the 100-250Hz frequency range (Csicsvari et al., 1999). The
standard deviation of the ripple power σSW was found from all data collected within the
session. Similarly, gamma power was examined in the 30-80Hz frequency range and was
also normalized by the standard deviation (σg) for comparison. The standard deviation of
gamma power σg was found from all data collected within the session.

LFP Phase.

LFP data were bandpass-filtered at theta frequencies between 6-10Hz (128th order). Theta
phase was estimated using basic Hilbert transform methods (Matlab). To determine whether
sweeps times were aligned with theta, phase analysis compared the distribution of phases
at sweep start and end times versus a random distribution using Watson’s test for circular
data (Zar, 1999).

5.2 Results

5.2.1 Behavior.

Rats learned to run both the Multiple-T and Cued-choice tasks successfully (rats made
significantly more correct turns than chance; Multiple-T: binomial test, p < 10−5; Cued-
choice: binomial test, p < 0.05). On the Multiple-T task, rats began not different from
chance and quickly reduced errors within a single session (Figure 5.3). On the Cued-choice
task, rats chose correctly better than 70% of the time (see Figure 5.4). Because of the
pretraining protocol in which each cue-tone was associated with a direction while the other
side was blocked, it was possible for rats to start the open (decision-making) phase of the
Cued-choice task above chance.

5.2.2 Electrophysiology.

Two hundred thirty-seven spike-trains were recorded from the dorsal CA3 region of three
rats (four sessions with ensembles of 33 to 72 cells, see Table 5.1). Electrodes were confirmed
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Figure 5.3: Learning on the Multiple-T task. Within each session, the probability of com-
pleting a lap without an error started not significantly different from chance and increased
quickly over the initial laps. Mean and standard error shown for 21 novel sessions over six
animals. Figure used with permission (Johnson and Redish, 2007).
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Figure 5.4: Learning on the Cued-choice task. Over 15 sessions, the probability of making
the correct choice increased significantly. Mean and standard error shown for both left and
right choices over two animals. Figure used with permission (Johnson and Redish, 2007).
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Recording zone

Sample electrode tracks

Figure 5.5: Recording sites came from the CA3 region of hippocampus. Figure used with
permission (Johnson and Redish, 2007).

to lie in the CA3 region of the hippocampus (Fig. 5.5).

Rat Session Task Number of cells Laps Performance
R051 2004-09-06 Multiple-T 62 36 92% (p < 0.05)
R076 2006-03-09 Multiple-T 70 85 78% (p < 0.05)
R076 2006-03-17 Cued-choice 72 49 63% (p < 0.05)
R085 2006-07-27 Cued-choice 33 61 93% (p < 0.05)

Table 5.1: Data summaries for each session. Probabilities calculated using a binomial test.

Individual cells showed well-defined place fields and sometimes multiple place fields
similar to other track based tasks. The distribution of place fields covered the environment
(place field coverage ranged from 2–25 cells at each pixel). However, these well-isolated cells
also displayed scattered spiking activity outside their place fields during specific behaviors.
Extra-field spiking occurred simultaneously across a subset of the neural ensemble at feeder
sites during grooming, eating, and other pausing behaviors during sharp waves punctuating
hippocampal non-theta, LIA states (consistent with previous observations of reactivation
and replay at feeder sites Kudrimoti et al., 1999; Jensen and Lisman, 2000; Foster and
Wilson, 2006; O’Neill et al., 2006; Jackson et al., 2006). However, extra-field firing also
occurred during the theta local-field potential state, coincident with pausing behavior at
the final choice point of the Multiple-T task, at the main choice point of the Cued-choice
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Session sweeps/lap sweeps/second length of sweeps
proportion of time in
choice point spent in
sweeps

R051-2004-09-06 1.10 1.2 120±9 ms 15%
R076-2006-03-09 0.36 0.30 90±5 ms 3%
R076-2006-03-17 1.10 0.46 190±26 ms 9%
R085-2006-07-27 0.21 0.50 190±16 ms 9%

Table 5.2: Sweep statistics.

task, and as the rat revised his choice after making a decision (error correction).

5.2.3 Extra-field firing at the high-cost decision-point.

When the rat reaches the end of the navigation sequence on the Multiple-T maze, he faces
a high-cost choice — making the incorrect choice means a long (>3 meter) journey around
the track before being given another chance. Rats often paused at that final choice. During
those pauses, cells with primary place fields on the top arm and return rails fired spikes even
though the rat was outside the cell’s place field (See Figure 5.6.) Although the reconstructed
distribution p(x|S) tracked the animal well through the main path of the maze, when the
rat paused at the final choice, the reconstructed distribution became non-local, sweeping
ahead of the rat, first down one choice, then the other (Figure 5.7). This non-local neural
activity occurred reliably when the animal paused at the final choice of the sequence. These
events were rare, but reliably observable, occurring at a rate of 0.63±0.21 sweeps/sec (mean
± SE, calculated over sessions) while animals were at the choice point. Sweeps lasted for
0.15 ± 0.025 seconds (mean ± SE, calculated over sessions). Animals spent an average of
9%±2% (mean ± SE, calculated over sessions) of their time at the choice point in these
non-local representations; during the remainder of the time, representations were primarily
local. This meant that animals showed 0.7 ± 0.2 sweeps/lap (mean ± SE, calculated over
sessions). See Table 5.2.

Non-local representations at the choice-point preferentially sweep forward of

the animal.

To test whether the non-local reconstruction at choice points occurred preferentially ahead
of the animal or behind the animal, we compared the proportion of the reconstructed prob-
ability distribution p(x|S) reconstructing ahead of the animal to the proportion behind the
animal. As can be seen in Fig. 5.8, the non-local reconstruction probability was concen-
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Figure 5.6: Extra field firing in hippocampal place cells at the choice-point on the Cued-
choice task. A: Average waveforms (gray=SD) for three simultaneously recorded, well-
isolated place cells. B: Spatial activity of each cell across the full session. The light gray
lines indicate the rat’s positions. Colored dots indicate the rat’s position at the time of a
spike. Blue triangles indicate feeder locations; black triangles indicate extra-field spiking.
Dotted lines delineate place field boundaries. Place fields were defined as a contiguous region
with average firing rate exceeding 20% peak field rate (Huxter et al., 2003; Leutgeb et al.,
2004). Note the sparseness preceding the place field in the red cell (TT05-02) in panel B. It
is possible that some of this sparse early activity is also extra-field firing. Classically-defined
place fields are included for illustration only; all spikes were included in all analyses. C:
Place cell activity on specific trajectories. Light gray lines again indicate animal positions
across the full session. Colored dots show animal positions at the time of cell spiking.
Black trajectory arrows indicate direction of motion along the trajectory. Note that extra
field firing primarily occurs at the choice point. Figure used with permission (Johnson and
Redish, 2007).
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Figure 5.7: Forward-shifted neural representations at the choice point. The representation
closely tracked the rat’s position through the stem of the final T choice point for both the
Multiple-T (A) and Cued-choice tasks (B). When the rat paused at the final choice point,
the representation moved ahead of the animal and sampled each arm. The representa-
tion intensity is shown in pseudo-color (red high probability, blue low probability) and the
animal’s position shown as a white o. C: Distribution of distances between reconstructed lo-
cation and actual location for the choice point (red,top) and for the immediately-preceding
duration-matched approach to the choice point (cyan,bottom). The approach contains more
local representations while the choice point contains more non-local representations. The
medians of the two distributions are different (Wilcoxon rank-sum test, p < 10−10). Figure
used with permission (Johnson and Redish, 2007).
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trated predominantly ahead of the animal. Forward locations were averaged together and
the difference between forward locations and backward locations was calculated for each
125 ms time window that the animal was at the central choice point. The median difference
(shown by the arrow) was significantly greater than 0 in all measured data sets. (SignRank
test, p < 10−10 for all sessions).

Non-local representations at the choice-point sweep down the two choices sep-

arately.

Given that the non-local reconstruction is concentrated forward of the animal rather than
behind it, an important question is whether it is simply spreading forward of the animal in
all available directions (as would be predicted by current models of phase precession, Skaggs
et al., 1996; Yamaguchi, 2003; Jensen and Lisman, 2005), or whether it is concentrated on
each choice separately. Examining the single time-window slices in Figure 5.7 suggests that
the representation swept forward along only one choice at a time. In order to directly
test this hypothesis, we measured the joint probability of the distribution of reconstruction
contributing to the left and right boxes shown in Fig. 5.8. As can be seen in Fig. 5.9, the
high probabilities were found primarily along the axes of the two-dimensional histogram
and not near the diagonal, suggesting that decoded representations did not spread in both
directions simultaneously.

5.2.4 Extra-field firing during error-correction.

The hypothesis that these extra-field firing and non-local representations occurring at key
decision points (such as the high-cost choice point on the two tasks) predicts that extra-field
firing and non-local representations should also occur at other decisions made within the
tasks. On these two tasks, animals were allowed to turn around on the top arm (before the
final turn onto the return rails). This means that rats were faced with a decision on error
laps in which they made the wrong choice on the high-cost choice. On the Multiple-T task,
this occurred when the rat did not hear the expected feeder click sound when it reached the
feeder trigger zone (see Figure 5.1). On the Cued-choice task, this occurred when the rat did
not hear the expected confirmation tone (secondary tone site, Figure 5.2). As predicted,
place cells showed extra-field firing on error laps (Figure 5.10). Reconstruction analyses
found that the p(x|S) distribution swept down the two potential choices (forward to the
feeder or back towards the choice point and the other choice, Figure 5.11).
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Figure 5.8: The non-local reconstruction events occurring at the choice point are forward
of the animal. A,B: Specific examples from two data sets. Three regions of interest were
defined (to the left of the animal, to the right of the animal, and behind the animal).
Proportions of reconstructed probability p(x|S) for each region were measured. Red line
indicates 0, black arrow indices median. Median significantly greater than 0 in all measured
data sets. A: Multiple-T. B: Cued-choice. C: Joint probability between forward probability
intensity and backward probability intensity (log units). Note the strong preference for
forward over backward. Figure used with permission (Johnson and Redish, 2007).
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Figure 5.9: The non-local reconstruction events occurring at the choice point are concen-
trated in each arm separately. Joint probability of probability intensity concentrated on
each arm (log units). Note the strong preference for one arm over the other with no joint
probability in both directions simultaneously. Figure used with permission (Johnson and
Redish, 2007).

Non-local representations are correlated but not defined by the orientation of

motion.

As can be seen in Figure 5.9, the reconstruction probability forward of the animal predomi-
nantly concentrated at either the left or right directions. It is thus an important question to
measure the extent to which these directions of forward representation relate to the orienta-
tion of the animal. Orientation of motion of the animal was measured as defined above (see
Methods). While there was a significant correlation (p(slope=0) < 10−10), there were also
cases in which the probability was predominantly leftward while the rat moved rightward
and vice versa (see Figure 5.12).

Non-local representations occur at locations of highly variable orientation of

motion.

The observation that the choice point of the Cued-choice task, the final choice of the
Multiple-T task, and at reversals on both tasks suggests that non-local representations
may occur generally where rats pause and re-orient. In order to test this hypothesis, we
calculated locations where animals paused (total linear velocity < 1 cm/sec), locations
where animals varied their orientation of motion (total angular velocity > deg 120/ sec),
and compared the reconstruction error distance during these conditions. As can be seen in
Figure 5.13, the animals tended to show variable orientation of motion at the feeders, at
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Figure 5.10: Extra field firing in hippocampal place cells during error-correction on the
Cued-choice task. A: Average waveforms (gray=SD) for three simultaneously recorded,
well-isolated place cells. B: Spatial activity of each cell across the full session. The light
gray lines indicate the rat’s positions. Colored dots indicate the rat’s position at the time of
a spike. Blue triangles indicate feeder locations; black triangles indicate extra-field spiking.
Dotted lines delineate place field boundaries. Place fields were defined as a contiguous
region with average firing rate exceeding 15% peak field rate (Huxter et al., 2003; Leutgeb
et al., 2004). C: Place cell activity on specific trajectories. Light gray lines again indicate
animal positions across the full session. Colored dots show animal positions at the time
of cell spiking. Black trajectory arrows indicate direction of motion along the trajectory.
Note that extra field firing sometimes occurs before the animal turns back toward the choice
point on reversals. Figure used with permission (Johnson and Redish, 2007).
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Figure 5.11: Error correction in the hippocampal neural ensemble. Again, the representa-
tion closely tracked the rat’s position from the choicepoint to the feeder trigger zone. The
rat turned back toward the choice point and the representation moved into the opposite
maze arm. The representation intensity is indicated by color (red high probability, blue low
probability), and the actual position of the animal is indicated by the o. Panels arranged
from left to right, top to bottom in 60msec intervals. Figure used with permission (Johnson
and Redish, 2007).
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Figure 5.12: Direction of non-local reconstructed representation as a function of the orien-
tation of motion of the animal. For all samples at the choice-point, direction of non-local
reconstruction was measured as the proportion to the left of the animal minus the proportion
to the right of the animal. While there was a significant correlation (p(slope=0) < 10−10),
there were also samples reaching leftward while the animal moved rightward and vice versa.
Figure used with permission (Johnson and Redish, 2007).
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the final choice-point, and at recovery from errors. When the distribution of reconstruction
errors was compared between these variable orientation of motion positions and the rest of
the task, variable orientation of motion positions included more non-local reconstructions
(Wilcoxon rank-sum test, p < 10−10).

Local field potentials.

Extra-field firing has been known to occur during sharp-wave ripple complexes within LIA
episodes (O’Keefe and Nadel, 1978; Kudrimoti et al., 1999; Jensen and Lisman, 2000; Foster
and Wilson, 2006; O’Neill et al., 2006; Jackson et al., 2006). Local field potential traces
at the choice point displayed strong theta oscillations and no apparent sharp wave ripple
activity (Fig. 5.14). To determine the hippocampal brain-state and identify whether sharp
wave ripple complexes within theta might be occurring at the choice point, we examined
the local field potential frequency composition using frequency-detection methods capable
of detecting even very rare and transient oscillatory events in long data-series (Masimore
et al., 2004). As shown in Fig. 5.15, the method clearly identifies both theta and sharp-wave
frequency components across complete sessions (left panel). However, when only data in
which the animal was at the choice point were considered, no sharp-wave components were
seen. Instead, the analysis identified the presence of theta (7 Hz) and gamma (30-80 Hz)
frequencies. This analysis method is sensitive enough to identify even transient sharp-wave
ripple complexes occurring within theta episodes (eSWR, O’Neill et al., 2006). As can
be seen in panels B and C, there was no power at sharp-wave ripple frequencies during
pausing behavior at the stem or choice point. Comparisons between choice point local field
potentials at the choice point, the maze stem and the feeders revealed slight differences
between choice point and the stem local field potentials, but large differences from those
at the feeders. Local field potentials at the feeders displayed diminished gamma power and
increased sharp wave ripple activity. In summary, non-local representations were observed
at both the feeders (reactivation, route replay, (Jackson et al., 2006; Johnson et al., 2007))
and at choice points (sweeps), but occurred in much different local field potential ‘brain
states.’

As suggested by Figure 5.14, these sweep events are occurring during hippocampal states
including strong theta components. As shown in Table 5.2, the mean length of the sweep
corresponded closely to that of a single theta cycle (mean sweep length = 153 ± 13 ms,
not significantly different from 7 Hz [140 ms], z-test, p = 0.86). However, some sweeps
did last much longer than a single theta cycle (length of longest sweep = 1.4 seconds). In
order to analyze the phase-relationships between the sweeps and theta, sweep start and stop
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Figure 5.13: Reconstruction error is more non-local at locations where animals show highly
variable orientation of motion (figure on previous page). (A,D) Locations where the animal
paused. Gray dots indicate all locations sampled during the full session, red dots indicate
locations where the animal paused. (Lighter color dots in panel A indicate pauses occurring
in the last two laps, during which the animal no longer actively searched for food.) (B,E)
Locations where the animal showed a high variability of orientation of motion. (Lighter color
dots in panel B indicate variable orientations occurring in the last two laps, during which
the animal no longer actively searched for food.) (C, F) Difference between histograms
of reconstruction error distance during samples with variable orientation of motion [blue
dots in panels B,E] and during the rest of the session. Reconstruction distance was greater
during samples with variable orientation of motion (Wilcoxon rank-sum test, (C) p < 10−10,
(F) p < 0.00005). (A-C) Multiple-T. (D-F) Cued-choice. Blue triangles indicate feeder
locations. Black triangles indicate choice point studied in Figure 5.7. Gray triangles indicate
other pause locations during which animals spent time varying their orientation of motion,
including the reversal locations studied in Figure 5.11. (G) Group data, showing that the
tendency to show an increased non-locality of reconstruction during variable orientation
motion is a general property of the entire data set. Figure used with permission (Johnson
and Redish, 2007).

times were identified as described in the Methods. While sweep start times showed a non-
significant trend to primarily occur at phases close to the peak of theta at the hippocampal
fissure (Watson’s circular U2 = 0.12, p = 0.1), sweep stop times showed a statistically
significant tendency to stop on the rising phase of theta (Watson’s circular U2 = 0.52, p <

0.0001). See Figure 5.16.
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Figure 5.14: CA3 LFP during choice-point behavior. A-E: Sample local field potential
during a pause at the choice point (see Figure 5.7). A: Absolute velocity. B: Raw local field
potential trace. C Gamma power (filtered at 30–80 Hz) z-scores based on the distribution
drawn from full session. D: Sharp wave ripple power (filtered at 100-250 Hz) z-scores based
on the distribution drawn from full session. E: Gray dots indicate all positions sampled by
the animal over the entire session. Colored dots indicate path of animal sampled during time
corresponding to LFP data on the left. Colors indicate passage of time and are consistent
between left and right panels. Figure used with permission (Johnson and Redish, 2007).
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Figure 5.15: CA3 LFP during choice-point behavior and other maze areas (figure on previous
page). A: Average cross-frequency correlations from all available 40 minute sessions. In these
plots, important frequencies show up as high correlated blocks (Masimore et al., 2004). Data
includes additional sessions from which spikes were not available. (Data averaged over 16
sessions from three animals). Note the clear indications of theta (at 7–10 Hz) and the low-
frequency (100-150 Hz) and high-frequency (200 Hz) sharp waves in the overall plot (left).
B: Average cross-frequency correlations at choice point times. C: Average cross-frequency
correlations at stem times. D: Average cross-frequency correlations at feeder arrival. Note
that local field potentials at the choice point and stem include gamma (30-80 Hz) but no low-
or high-frequency sharp waves. This contrasts with feeder times which display decreased
theta and gamma correlations, but strong correlations at low- and high-frequency sharp
wave ripple frequencies. Figure used with permission (Johnson and Redish, 2007).

Development of non-local representations with experience.

If non-local representations within the hippocampus provide information to decision-making
brain modules, then these representations may change as a function of task demands. To
examine this possibility we compared within-session changes in the non-local spatial rep-
resentations at the choice point on the Multiple-T and Cued-choice tasks. The primary
difference between the two tasks is within-session learning, in that the spatial position of
reward on the Multiple-T task is consistent within each session and changes from day to
day (Schmitzer-Torbert and Redish, 2002). In contrast, the spatial position of reward on
the Cued-choice task varies from lap to lap but the relationship between cues and reward
is maintained from day to day.

Behaviorally, rats on the Cued-choice task paused for longer at the choice point than
rats on the Multiple-T task (t(234)=2.49, p<0.05). Over the course of each session on the
Multiple-T task, rats paused for less time on later laps than on earlier laps (significant
negative slope, choice point time × lap linear regression; F (1, 91) = 21.59, p < 0.05). In
contrast, no such reduction was seen on the Cued-choice task (choice point time × lap linear
regression; F (1, 81) = 0.03, NS).

As can be seen in Fig. 5.17, during the first part of the Multiple-T task, the reconstructed
distribution p(x|S) first swept down both possibilities, but then, as the behavior automated,
sweeps down the unrewarded choice (left on the session shown) decreased. In late laps, the
total amount of non-local reconstructed probability decreased. In contrast, on the Cued-
choice task the forward component of the sweep maintained non-locality sweeping down
both directions throughout the task. There was a significant effect of both task, lap, and
their interaction on the proportion of the probability sweeping to the left or the right at
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Figure 5.16: Phase-relationships between sweeps and theta (figure on previous page). A:
Example local field potential showing the raw (blue) and theta-filtered (red) local field
potential surrounding a 200 ms sweep. Note how the sweep spans several theta cycles. B:
Distribution of LFP aligned to start times from all sweeps occurring within one session
R076-2006-03-09. Start time corresponds to the green line. All samples are shown in blue,
average is shown in red. C: Distribution of filtered LFP signals aligned to start times from
all sweeps occurring within that same session. D,E: equivalent plots showing LFP alignment
of sweep stop times. F: Group data for all sessions showing histogram of distribution of
theta phase of sweep start times. G: Group data for all sessions showing histogram of
distribution of theta phase of sweep stop times. Figure used with permission (Johnson and
Redish, 2007).

any time (ANOVA, effect of Lap: df= 38, F = 9.4, p < 10−10, effect of Task: df= 1, F =
113.3, p < 10−10, interaction: df= 38, F = 9.5, p < 10−10). In particular, the LR-balance of
the forward sweeps (measured as the difference between left and right probabilities), was
significantly larger than the mean difference only during the first five laps of the Multiple-T
task. The proportion of the reconstruction probability at the location of the rat remained
relatively constant, increasing slightly over laps on the Multiple-T task, decreasing slightly
over laps on the Cued-choice task (ANOVA, effect of Lap: df= 38, F = 7.1, p < 10−10, effect
of Task: df= 1, F = 91.6, p < 10−10, interaction: df= 38, F = 8.9, p < 10−10).

5.3 Discussion

Neural ensembles recorded from the CA3 region of rats running on T-based decision tasks
displayed transient activity at decision points indicative of positions different than the rat’s
current position (leading to non-local reconstruction). Projection of these activities onto
spatial location showed that during these decision-making events the location reconstructed
from the neural ensemble swept forward of the animal, first down one path and then the
other. Reconstructed representations were coherent and preferentially swept ahead of the
animal rather than behind the animal. Similar non-local representations were observed as
rats recovered from an error. Local field potentials from these sites displayed strong power
in theta and gamma frequencies and no sharp waves. Non-local spatial representations were
influenced by task demands and experience.
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Figure 5.17: Choice point behavior and neural activity changes as a function of task and
experience (figure on previous page). Both time in the center stem and non-local activity
decreased with experience on the Multiple-T task; no such changes were observed on the
Cued-choice task. Plots show spatial neural activity at the choice point (colors) localized
to the choice point (green), the left arm (red), or the right arm (blue). Laps increase from
top to bottom. Data are presented as time-series until exit from the choice point in 40msec
samples. A,B: Multiple-T. C,D Cued-choice task. E: group data. LR-balance was defined
as the mean absolute difference between the probabilities in the left and right arm areas
for each lap. The LR-balance was significantly increased only on the first five laps of the
Multiple-T task. The locality was the mean probability within the central choicepoint area
for each lap. See text for details. Figure used with permission (Johnson and Redish, 2007).

5.3.1 Non-local representations.

That extra-field spiking maintained spatial organization across multiple simultaneously
recorded cells during extra-field activity implies that the extra-field spiking may coincide
with transient, non-local representations of events or locations. In these tasks, all essential
information can be projected onto space (i.e. location of the animal). As a result, memory
(sequences and episodes) and any decision-related processes present within hippocampal
ensemble dynamics can be made observable by examining dynamic changes in the spatial
representation. It is critical to note the reconstruction analysis makes no fundamental as-
sumption regarding spatial representation within the hippocampus, only that memory and
decision-making signals may be coherently projected onto space in these tasks.

Non-local decoding at the choice point displayed sequential activity associated with
either of the T maze arms or the reward locations. Non-local representations and recon-
structed locations were found predominantly forward of the animal’s position at the choice
point and were not temporally coincident with non-local representations behind the animal’s
position at the choice point or a general non-directional spreading of the representation (see
Fig. 5.8). Reconstruction in front of but not behind the animal suggests that the infor-
mation is related to representation of future paths rather than a replay of recent history.
In order to determine whether this effect resulted from a non-specific forward shift or a
directionally specific forward shift, we found the joint distribution of probabilities in the
left and right arms (see Fig. 5.9). The non-local reconstructions observed here did not occur
in both forward directions simultaneously: the representation encoded first one arm of the
T and then the other.
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5.3.2 Planning paths with cognitive maps.

The cognitive map was originally proposed to explain the flexible spatial navigation abilities
observed in animals (O’Keefe and Nadel, 1978). Several researchers (O’Keefe and Speak-
man, 1987; Lenck-Santini et al., 2002; Rosenzweig et al., 2003) have shown that behavior
aligns to the goal locations expected given an active place field distribution, while other re-
searchers (Wood et al., 2000; Frank et al., 2000; Ferbinteanu and Shapiro, 2003; Ainge et al.,
2007a; Hok et al., 2007) have shown goal-sensitivity during navigation processes. These pre-
vious results suggest that how the animal’s current position is represented contributes to
navigation, but the mechanism by which the hippocampal representation contributes to
navigation remains an open question. The results presented here show that when animals
pause during behavior, the hippocampal representation becomes transiently non-local. At
high-cost choice points and at the correction of errors, the hippocampal representation
sweeps forward along the potential paths available to the animal. These transient non-local
signals could provide a potential substrate for the prediction of the consequences of decisions
and the planning of paths to goals.

5.3.3 Does the representation have to reach the goal to be useful for

planning?

Many of the sweeps proceed only partially down the potential forward paths and evaporate
before they reach the goal (see chapter 2).1 As has been established in the animal learning
literature, it is possible for secondary reinforcers to train additional associations (Pavlov,
1927; Domjan, 1998). Both tasks include explicit secondary reinforcers (the click of the
feeder [Multiple-T, Figure 5.1] and the secondary tones [Cued-choice, Figure 5.2]) and many
of the sweeps do reach those secondary tones. However, it is also possible that the locations
on the paths to the goal have themselves become secondary reinforcers. All that would be
needed for evaluation of the potential choices would be that the non-local representation
reach a point at which the expected value can be evaluated. Thus, a sweep that reaches to a
point on the path leading to a goal could be used to appraise the expected reward on taking
that path as long as there was value associated with that location (Sutton and Barto, 1998,
see chapter 2). The critical test of this hypothesis will be to examine downstream structures
during these non-local representations to determine how the non-local information is used.

1It is important, however, to note that the experiments reported here are based on ensembles of several
dozen cells. It is possible that some of the observed sweeps proceed farther down the potential path toward
the goal than can be observed with these recordings. It is possible that future recordings with larger
ensembles may provide for more definitive statements about the dynamics of the forward sweeping process.
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5.3.4 Vicarious trial and error.

Rats faced with difficult decisions vicariously sample the different choices before committing
to a decision (Meunzinger, 1938; Hu and Amsel, 1995; Hu et al., 2006, see chapter 1).
These “vicarious trial and error” (VTE) behaviors (Meunzinger, 1938; Tolman, 1939; Hu
and Amsel, 1995; Hu et al., 2006) or “microchoices” (Brown, 1992; Hudon et al., 2002)
appear as small head movements alternating between the potential choices. We observed
VTE movements in both the Multiple-T and Cued-choice tasks. We identified VTE-like
times quantitatively as times with highly variable orientation of motion. These VTE-
like times tended to include more non-local representations than other navigation times
(Figure 5.13). While VTE behaviors often appear as fast changes in movement orientation
at timescales longer than 500 msec, it is possible that the multiple stages of information
processing associated with VTE (representation of non-local information, evaluation and
comparison to a criterion, re-orientation or choice) may occur at shorter timescales. VTE
movements are diminished with hippocampal lesions (Hu and Amsel, 1995), and are related
to hippocampal activity levels on hippocampus-dependent tasks (Hu et al., 2006). VTE
has been proposed to provide a choice-consideration mechanism and to underlie complex
decision planning (Tolman, 1939).

5.3.5 Phase precession

Both hippocampal interneurons and pyramidal cells fire in specific relationships to local
field potentials (Klausberger et al., 2003; Somogyi and Klausberger, 2005). During the theta
state, pyramidal cells fire at specific phases of the LFP theta rhythm which then precess
through behavior (O’Keefe and Recce, 1993; Skaggs et al., 1996; Dragoi and Buzsaki, 2006).
This phase-precession encodes a sweep of spatial representation from behind the animal to
in front of the animal in each theta cycle. The sweep events reported here generally lasted
approximately a single theta cycle, although some sweeps lasted much longer. Moreover,
the distance encoded by our sweeps was often much larger than is typically seen during
phase-precession. During sweeps that lasted long than the expected 140 ms (one cycle
at 7 Hz), theta oscillations sometimes appeared to degrade transiently (see for example
panel A of Figure 5.16), restarting only on the conclusion of the sweep (see panels D,E,G of
Figure 5.16). This may suggest that the theta rhythm within the local field potential and
the sweep process are both generated from similar processes.

However, the phase relationships predicted from single-cell recordings (Skaggs et al.,
1996) suggest that phase-precession sweeps should start at the location of the rat at the
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peak of theta and end ahead of the rat at the subsequent rising phase of theta. This
closely matches our observations (see Figure 5.16). Phase precession has been suggested
as a means of planning future trajectories (Jensen and Lisman, 1998, 2005; Yamaguchi,
2003), but has never been studied in situations in which rats must select from multiple
available paths. The exact relationship between the forward sweep phenomena reported
here and phase precession remains to be fully elucidated, but studying phase precession
using reconstructive techniques like those used here is likely to be fruitful.

5.3.6 Conclusion

Multiple learning and memory processes mediate decision-making behavior (Packard and
McGaugh, 1996; Poldrack et al., 2001; Daw et al., 2005). The primary distinction between
these learning and memory systems can be characterized by a trade-off between a flexi-
ble, fast-learning, computationally-costly planning system and an inflexible, slow-learning,
computationally-efficient cache system (O’Keefe and Nadel, 1978; Redish, 1999; Daw et al.,
2005; Redish and Johnson, 2007). A planning system allows an animal to flexibly compute
outcomes resulting from variable task contingencies, a process which requires prospective
memory (Daw et al., 2005; Redish and Johnson, 2007). Computational models of prospective
memory have suggested that cortical-hippocampal interactions, particularly due to theta-
gamma interactions, may allow hippocampal neurons to reactivate previously experienced
temporal sequences (Jensen and Lisman, 1998, 2005; Koene et al., 2003; Eichenbaum, 2004).
The similarities between these models and the observations of forward shifted neural repre-
sentations and their coincidence with theta and gamma rhythms at the choice point suggest
that the hippocampus may provide prospective memory signals to downstream evaluation
and decision making modules.
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Chapter 6

Discussion

The simple question presented at the beginning of this thesis was how cognitive maps
contribute to the organization of behavior. Cognitive maps were originally proposed to
explain five simple behavioral observations as representation based inference rather than
simple stimulus-response associations (Tolman, 1948). The original proposal provided only
a rough sketch of a theory and raised concerns related to its viability as an explanation
for animal behavior (MacCorquodale and Meehl, 1948; Guthrie, 1952; MacCorquodale and
Meehl, 1954). Many subsequent experimental findings support the utility of cognitive maps
as hypothetical constructs (O’Keefe and Nadel, 1978; Gallistel, 1990; Redish, 1999; Cheng
et al., 2007) and suggest that cognitive maps provide complex representation of an animal’s
(spatial and non-spatial) position within a task (O’Keefe and Nadel, 1978; Gallistel, 1990;
Redish, 1999). Although these perspectives on cognitive maps avoid the problem of leaving
an animal buried in thought (Guthrie, 1935), they provide little insight into the mechanisms
that support flexible goal directed behavior and the contribution of cognitive maps to action
selection.

Reinforcement learning (Sutton and Barto, 1998) provides a simple theoretical frame-
work for analysis of cognitive maps as a mapping of states to actions. Flexible, goal-directed
behavior is supported by the use of a transition model in reinforcement learning algorithms
(Sutton and Barto, 1998; Daw et al., 2005; Niv et al., 2006b, see Figure 6.1). The transition
model provides a computational definition of the causal texture of an environment (Tolman
and Brunswik, 1935) that allows reinforcement learning algorithms to evaluate potential
future outcomes and quickly generate patterns of action (Daw et al., 2005; Johnson and Re-
dish, 2005a, see chapters 2 and 3) that reflect the modeled organism’s current motivational
state (Daw et al., 2005; Niv et al., 2006b). The covert state dynamics suggested by model-
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based reinforcement learning algorithms parallel recent considerations on the contribution
of episodic memory to decision-making (Atance and O’Neill, 2001; Suddendorf and Busby,
2003; Suddendorf and Corballis, 2007; Buckner and Carroll, 2007; Schacter et al., 2007; Zilli
and Hasselmo, 2008; Schacter et al., 2008; Buckner et al., 2008) and suggest that cognitive
map use is likely supported by representation and evaluation of potential trajectories within
a map. The specific content represented by these covert evaluative processes remains an
open question (Niv et al., 2006b).

Together these theoretical considerations motivated the development of statistical meth-
ods that will allow observation and quantification of representational dynamics within neural
activity (see chapter 4). And within this context, it becomes apparent that ‘noise’ within
the activity of neural representations of gross observable experimental variables may sup-
port covert information processing related to cognition. This suggests that the basic cor-
respondence between spiking activity and neural representations of an observable variable
might continue to hold within ‘noise’ activity but demands new validation methods (John-
son et al., 2007, see chapter 4). In contrast to previous validations methods based on the
correspondence between an observable sensorimotor variable and a prediction derived from
neural activity, these new validation methods are based on the correspondence between
observed spiking activity and predicted spiking activity derived (generated) from decoded
neural representations. Harris et al. (2003), Harris (2005), Jackson and Redish (2007) and
Johnson et al. (2007, see chapter 4) have shown that these generative approaches to analy-
sis of spiking data provide greater explanatory power than simple sensorimotor decoding
approaches.

Based on these theoretical and statistical considerations and much evidence implicat-
ing the hippocampus in cognitive map function, Johnson and Redish (2007, see chapter
5) examined spiking activity within the hippocampus and found evidence of covert infor-
mation processing in the form of forward-shifted spatial representations at a highly salient
choice point within multiple behavioral tasks. These observations provide continued support
for the hippocampus as a cognitive map. However, these observations support a perspec-
tive on cognitive maps much more closely aligned with Tolman’s original theory (Tolman,
1948) than with the minimal spatial form espoused by O’Keefe (O’Keefe and Nadel, 1978;
O’Keefe, 1999). Furthermore, this broader perspective easily accommodates the role of the
hippocampus in non-spatial memory, including episodic memory (Wallenstein et al., 1998;
Eichenbaum et al., 1999; Redish, 1999; Squire et al., 2004), and several recent studies that
suggest the hippocampus is required for learning cognitive map content while pure spatial
learning occurs independently of the hippocampus (Gaskin et al., 2005; White and Gaskin,
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(a1)
s1

(a2)
s2

(a3)
os3

Model-based RL

Model-free RL

Figure 6.1: A graphical description of the differences in policy development for model-free
and model-based reinforcement learning using a sequential learning task. States within
the sequence task are denoted by si, actions by ai and the outcome by o. Top Outcome
information is slowly and progressively mapped backward across states and actions based
on experience within model-free reinforcement learning. Bottom Outcome information can
be covertly accessed and mapped onto future potential states and actions before action
selection occurs without true behavioral experience via the transition model within model-
based reinforcement learning.

2006; Gaskin and White, 2007; Stouffer and White, 2007).

6.1 Theory

The theoretical considerations of cognitive maps presented in this thesis were developed
within the context of reinforcement learning. The reinforcement learning framework was
specifically adopted to address the criticism that theoretical treatment of cognitive maps
are concerned with what goes on in an animal’s mind and neglects to predict what an
animal will do (Guthrie, 1935, 1952). The simple premise of reinforcement learning is that
animals will structure their (observable and covert cognitive) behavior in order to maximize
reward receipt. The five original experiments used to outline cognitive maps can be used to
describe a simple computational theory of cognitive map function within the reinforcement
learning framework.

- Short-cut behavior – Short cut behavior naturally develops within transition model-
based reinforcement learning algorithms operating in sufficiently complex (usually
spatial) tasks (Sutton and Barto, 1998).

- Latent learning – Models of goal directed behavior that are sensitive to motivation-
based changes in outcome utility (e.g. latent learning) require use of a transition model
within reinforcement learning algorithms (Daw et al., 2005; Niv et al., 2006b).
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- Vicarious trial and error – Vicarious trial and error suggests that policy evaluation is
a sequential update process rather than a massive parallel update process that char-
acterizes standard model-based reinforcement learning algorithms (Sutton and Barto,
1998; Doya, 2000; Daw et al., 2005; Niv et al., 2006b). Furthermore, vicarious trial
and error behaviors suggest that this sequential evaluation process can be prompted
(or initialized) by specific environmental stimuli (Zilli and Hasselmo, 2008) and should
be distinguished from evaluation processes that operate offline (Sutton, 1990; Sutton
and Barto, 1998; Johnson and Redish, 2005a).

- Searching for the stimulus – The search for a stimulus suggests that policy evaluation
entails more than a simple representation of the expected value (reward) for a given
state. These search patterns suggest that policies are generated relative to state-based
representation of stimulus expectations. The extent and complexity of these expected
stimulus representations remains an open theoretical and experimental question.

- Hypothesis behavior – The previous experiments explain behavior within a single (al-
beit motivation-dependent) cognitive map. Hypothesis behavior adds a hierarchical
component to theoretical accounts of cognitive maps based on reinforcement learning.
Cognitive maps are defined in terms of their content and transitions and fundamen-
tally structure patterns of behavior (Redish et al., 2007). Switching between multiple
maps produces important shifts in behavior (Redish, 1999).

In sum, this thesis outlines a reinforcement learning algorithm based approach to cogni-
tive maps and provides specific definitions for much of the opaque terminology used by
Tolman (1948) in describing cognitive maps. Although full construction of an algorithm
that sufficiently models observed animal behavior on each of these tasks will require many
implementation decisions, this approach provides a concrete conceptual framework for un-
derstanding cognitive map function.

6.2 Methodological considerations

Neural codes are generally defined as a proposed correspondence between neural activity
and an observable variable (Rieke et al., 1997; Dayan and Abbott, 2001). Tuning curves are
typically used to describe neural codes and quantify a cell’s spiking activity as a function
of given variable of interest. If a cell’s spiking activity corresponds to the level of variable
of interest, the cell is tuned to the variable of interest and its activity supports a neural
representation of the variable. Tuning curves are usually constructed by averaging neural
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activity as an animal is presented with the same stimulus or as the animal performs the
same behavior over many trials because averaging neural activity across many trials reduces
the contribution of nuisance (noise) signals that are independent of the variable of interest.
As a result, tuning curves can be used both as a description of observed neural activity and
as a prediction of future neural activity given a description of the variable of interest. This
suggests that multiple potential neural coding proposals can be distinguished by compar-
isons of explanatory power in predicting cellular activity (Fenton and Muller, 1998; Jackson
and Redish, 2003; Johnson et al., 2007, see chapter 4).

Neural activity in hippocampal pyramidal cells is modulated by the spatial location of
an animal within its environment (O’Keefe and Dostrovsky, 1971; O’Keefe, 1976). Place
cells primarily spike when an animal is in the cell’s place field which suggests that place cell
activity can be explained as a spatial code. The spatial hypothesis explicitly predicts that
place cell tuning curves (place fields) are stable in geometrically constant environments.
However, although place fields can be stable for months in some environments (Thompson
and Best, 1990), they can be unstable from day to day (Kentros et al., 2004), between
multiple exposures to a single environment on a single day (Barnes et al., 1997), during long
exposures to a single environment within a day (Ludvig, 1999), or even across subparts of
a task (McNaughton et al., 1983; Eichenbaum et al., 1989; Cohen and Eichenbaum, 1993;
Redish, 1999). Moreover, although an animal’s position can be used to predict the activity
of place cells, place cells fire in a more variable manner than would be predicted from the
simple spatial position of the animal, both inside and outside of the place field (Fenton
and Muller, 1998; McNaughton et al., 1983; Eichenbaum et al., 1987; Redish, 1999; Kentros
et al., 2004; Jackson and Redish, 2007; Johnson and Redish, 2007). These observations
suggest that while place cell activity can be described in terms of a spatial map (O’Keefe
and Nadel, 1978, ‘spatial hypothesis’), other (non-spatial) variables also contribute to place
cell activity.

6.2.1 Place cell instability and multiple maps

Place cells can re-map in response to spatial and non-spatial task changes (Bostock et al.,
1991; Cohen and Eichenbaum, 1993; Sharp et al., 1995; Redish, 1999). Remapping most
often occurs as a result of spatial cue manipulations (Bostock et al., 1991; Tanila et al.,
1997; Knierim et al., 1998; Hayman et al., 2003; Leutgeb et al., 2005b; Wills et al., 2005)
and corresponds to information theoretic processing of cue likelihood given multiple contexts
(Fuhs and Touretzky, 2007). Further experiments have shown that remapping can also occur
across sessions without any task or environmental changes in senescent animals (Barnes

129



Discussion 6.2

et al., 1997), in animals made deficient in synaptic plasticity by genetic (Rotenberg et al.,
2000; Cho et al., 1998) or pharmacological (Kentros et al., 1998) manipulations. Lesions
of perirhinal cortex (Muir and Bilkey, 2001), post-subiculum, or anterodorsal thalamus
(Calton et al., 2003) also produce remapping between sessions in a constant environment
(but not within a single session).

Remapping can also happen in response to a change in behavioral strategy (Markus
et al., 1995), coordinate systems (Gothard et al., 1996a,b; Redish et al., 2000; Rosenzweig
et al., 2003) or context learning (Moita et al., 2004). Even in positions common to differ-
ent trajectories, place cell activity can be strongly influenced by previous or future paths
(McNaughton et al., 1983; O’Keefe and Recce, 1993; Gothard et al., 1996a; Wood et al.,
2000; Frank et al., 2000; Ferbinteanu and Shapiro, 2003; Ainge et al., 2007a,b; Bower et al.,
2005). Place cells also respond to the absence of expected stimuli (O’Keefe, 1976) and to the
presence of unexpected but relevant stimuli (Fyhn et al., 2002; Moita et al., 2003). Spatial
maps quickly form within novel environments but display significant levels of instability
(Wilson and McNaughton, 1993; Frank et al., 2004). Kentros et al. (2004) showed that
place fields in wild-type mice display higher levels of instability than place fields in rats
tested under identical task conditions. Place cell stability increased in these mice during
tasks that require increased attention.

These tuning curve-based observations suggest that hippocampal place fields are formed
by experience, stored, and then retrieved (McNaughton and Nadel, 1990; Redish and Touret-
zky, 1998b; Redish, 1999). The reliable retrieval of a place cell map is dependent on its
behavioral utility (Kentros et al., 2004) and is correlated with task performance (O’Keefe
and Speakman, 1987; Barnes et al., 1997; Lenck-Santini et al., 2001, 2002; Rosenzweig et al.,
2003). These data suggest that explanations of place cell activity that include covert vari-
ables related to attention, behavioral relevance, and goals better predict observed spiking
activity than purely spatial explanations.

6.2.2 Place cell instability and fast representational dynamics

An interesting variant of the spatial hypothesis of hippocampal function suggests that ev-
idence of map instability might result from coherent spatial representations that deviate
from the animal’s observed position. This modified hypothesis is consistent with transi-
tion model use within model-based reinforcement learning algorithms (see Figure 6.1) and
essential for the theoretical treatment of cognitive maps outlined above. This hypothe-
sis predicts that epochs of place cell instability or ‘noise’ might indicate covert cognitive
processing modes that support cognitive map use. Several recent observations support this
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modified spatial hypothesis and suggest that variability within place cell activity can be
explained in terms of fast spatial representation dynamics predicted from the activity of
simultaneously recorded neural ensembles (Harris et al., 2003; Jackson and Redish, 2007;
Johnson et al., 2007, see chapter 4).

Place cell activity within the place field

Even within simple foraging tasks in which stable place field and spatial maps are observed,
place cells display unexpectedly high levels of spiking variability inside their respective place
fields (Fenton and Muller, 1998; Olypher et al., 2002). In simple foraging tasks, a robust
place cell may emit 20 or more action potentials on a single pass through a place field, but
fail to emit even a single action potential seconds later on a pass that is behaviorally indis-
tinguishable. The statistics of these deviations are incompatible with the hypothesis that
place cell activity simply varies randomly about a mean described by a single spatial tuning
curve (Fenton and Muller, 1998; Olypher et al., 2002) and instead support a hypothesis
that place cell activity reflects a small number of spatial tuning curves that differ mainly
in rate and are alternatively switched on and off with a period of about a second (Olypher
et al., 2002). This proposal is analogous to the suggestion that the hippocampus maintains
multiple spatial maps of the environment and somehow switches between those maps very
quickly.

Support for this proposal comes from studies by Harris et al. (2003) and Jackson and
Redish (2007). Harris et al. (2003) initially showed that predicting the spiking activity of
hippocampal place cells using both position and the spiking activities of a set of simulta-
neously recorded place cells was significantly better than predicting hippocampal place cell
activity using position information alone. Harris (2005) argued that the covariation of place
cell spiking activity was evidence for use of multiple cell assemblies (Hebb, 1949) within the
hippocampus. Jackson and Redish (2007) showed that coherent fast switching between
multiple hippocampal cell assemblies could explain the excess variability observed within
place cell spiking activity observed by Fenton and Muller (1998). Furthermore, Jackson
and Redish (2007) showed that fast switching between cell assemblies was clearly aligned to
specific behavioral phases in certain tasks and produced multiple and distinct spatial maps.
The cell assemblies observed on the linear track, for instance, were generally aligned with
the animal’s running direction and their projection into spatial position was apparent as
directional place fields. While directional place fields have been previously explained as in-
dicative of multiple reference frames (maps) in linear track tasks (McNaughton et al., 1983;
O’Keefe and Recce, 1993; Gothard et al., 1996a; Touretzky and Redish, 1996; Redish and
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Touretzky, 1997), Jackson and Redish (2007) show these reference frames are not specific
to linear track tasks and are generally present within hippocampal spiking activity (even
though they may be less obvious).

The high levels of variability observed within single unit spiking activity of hippocampal
place cells inside their place fields can be explained as coordinated activity across the
hippocampus (Harris et al., 2003; Jackson and Redish, 2007). These observations further
suggest that an unobservable-internal or covert variables mediate selection of a cell’s active
tuning curve and, consequently, determines the discharge of the cell. Although these data
can be partially explained as non-cognitive cell assembly dynamics (Harris et al., 2003;
Harris, 2005), observations that these cell assembly dynamics are modulated by cognitive
demands (Olypher et al., 2002; Kentros et al., 2004) and aligned to specific task components
(Jackson and Redish, 2007) suggest that cell assembly dynamics reflect covert cognitive
processes.

Place cell activity outside the place field

Despite well-defined spatial tuning, place cells occasionally discharge outside of their firing
fields. While this extra-field activity was easily explained as place cell noise during waking
behavior, its presence was not so easily explained during sleep. Pavlides and Winson (1989)
found that cells with place fields on the arms of an 8-arm maze and were reactivated during
subsequent sleep states in the center of the maze. Subsequent studies showed this reacti-
vation during sleep states to be both reliable and coherent. Cell pairs and ensembles that
were active during awake behavior are reactivated during subsequent sleep states (Pavlides
and Winson, 1989; Wilson and McNaughton, 1994; Kudrimoti et al., 1999; O’Neill et al.,
2008) and have been found to maintain their temporal ordering as if experienced sequences
of spatial locations were being replayed offline (Skaggs and McNaughton, 1996; Louie and
Wilson, 2001; Nádasdy et al., 1999; Lee and Wilson, 2002). These replayed sequences are
more likely to occur during sleep following task performance than during sleep preceding
task performance (Kudrimoti et al., 1999; O’Neill et al., 2008; Tatsuno et al., 2006).

Further investigations suggest that replay is not limited to sleep states. O’Neill et al.
(2006) showed that during pauses in exploratory activity in novel environments previously
active place cells could reactivate and cause place cells to fire outside their firing fields.
Jackson et al. (2006) showed that ensemble activity at feeder sites reflects the spatiotemporal
structure observed within previous behavior and develops with experience. A number of
further observations support the existence of forward and backward replay of place cell
ensemble firing during periods of awake immobility (Foster and Wilson, 2006; Diba and
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Buzsàki, 2007; Csicsvari et al., 2007; Johnson et al., 2007, see chapter 4). The spatiotemporal
structure of these spiking sequences, coupled with their experience dependent development,
suggests that spikes that occur outside of a place cell’s place field might reflect replay of
previous experiential episodes, rather than random noise.

Johnson and Redish (2007, chapter 6) studied place cell firing while animals showed
vicarious trial-and-error (VTE) behaviors and, presumably, considered the available options
at a decision point (Tolman, 1939). Place cells with place fields positioned forward of the
animal sequentially fired outside their place fields such that decoding the activity revealed a
sequential sweep of positions from the animal’s current position to potential future positions
on each arm (see chapter 5). The non-local forward representations contained sequential
structure, were predominantly ahead of the animal, were related to the orientation of the
animal during the VTE behavior and, much like replay activity, suggest that place cell
activity that occurs outside of a cell’s place field is not simply noise. Instead, this activation
appears to signal a covert variable related to the potential choices of the animal, potentially
related to the cognitive consideration of possibilities.

6.2.3 Statistical treatment

The idea of a neural code suggests a basic correspondence between neural activity and a
specific behavioral, environmental or cognitive variable. In theory, a full understanding of
a neural code implies that a variable of interest can be predicted from a given set of neural
activity or that neural activity can be predicted from a given variable of interest. The
prediction of a behavioral, environmental or cognitive variable from a given set of neural
activity defines the decoding approach to neural codes (Georgopoulos et al., 1983, 1988,
1989; Wilson and McNaughton, 1993; Salinas and Abbott, 1994; Rieke et al., 1997; Zhang
et al., 1998; Brown et al., 1998; Jensen and Lisman, 2000; Johnson and Redish, 2007).
The prediction of neural activity from a given set of behavioral, environmental or cognitive
variables defines the generative approach to neural codes (Rieke et al., 1997; Harris et al.,
2002, 2003; Jackson and Redish, 2007; Johnson et al., 2007, see chapter 4). Using these
approaches, different proposed neural codes can be compared in terms of their explanatory
power or predictive validity (Johnson et al., 2007). In practice, several salient distinctions
must be made between decoding and generative approaches to neural codes and produce
fundamentally different strategies for testing the validity of a proposed neural code (Jackson
and Redish, 2003; Johnson et al., 2007). These distinctions have important implications for
the analysis of covert, cognitive processes.
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Validity in decoding approaches to neural codes

Support for the validity of a proposed neural code within the decoding approach is related
to how well it predicts an observed behavioral, environmental or cognitive variable from
neural activity. The result of the decoding approach is that predictions that deviate from
the observed state of the animal (e.g. the observed behavioral, environmental or cognitive
variable) are interpreted as errors (Zhang et al., 1998; Brown et al., 1998; Jensen and
Lisman, 2000). While average errors can be used to distinguish between multiple decoding
algorithms (Salinas and Abbott, 1994; Zhang et al., 1998; Brown et al., 1998), individual
error trajectories are thought to be indicative of noise.

Analysis of covert, cognitive processes present a distinct problem for the decoding ap-
proach to neural codes because the cognitive variables implied by these processes are not
generally experimentally observable. These cognitive processes will likely appear as ‘er-
ror’ trajectories in decoding approaches. To avoid the problem of calling these trajectories
‘errors’, decoding approaches to covert, cognitive processes have either highlighted unex-
pected structure within ‘error’ trajectories or compared hypothesized time-series trajecto-
ries indicative of proposed cognitive processing with time-series trajectories of predicted
(decoded) variables. The application of the decoding approach to cognitive processing has
been successful in a number of studies on population vector rotation (Georgopoulos et al.,
1989; Crowe et al., 2005) and route replay (Jensen and Lisman, 2000; Lee and Wilson, 2002;
Foster and Wilson, 2006; Diba and Buzsàki, 2007; Csicsvari et al., 2007). However, the de-
coding approach to cognitive processing provides only a weak form of statistical validity
because it depends on how hypothesized cognitive time-series trajectories are defined. As
a result, decoding approaches to covert cognitive processes are usually reducible to an ex-
tended cross correlation analysis that is informed by each cell’s tuning curve (Georgopoulos
et al., 1989; Skaggs and McNaughton, 1996; Nádasdy et al., 1999; Lee and Wilson, 2002;
Crowe et al., 2005; Jackson et al., 2006; Euston and McNaughton, 2007).

Validity in generative approaches to neural codes

Support for the validity of a proposed neural code within the generative approach is related
to how well it predicts an observed set of neural activity from behavioral, environmental
or cognitive variables (Rieke et al., 1997; Harris et al., 2002, 2003; Jackson and Redish,
2007; Johnson et al., 2007, see chapter 4). At a superficial level, the application of the
generative approach to covert, cognitive processes presents the same problem encountered
within decoding approaches (e.g. that a hypothetical time-series trajectory of cognitive
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variable must be proposed). However, several applications of the generative approach have
circumvented this problem by inferring covert variable trajectories on the basis of ensemble
activity (Harris et al., 2003; Jackson and Redish, 2007; Johnson et al., 2007, see chapter 4).
These variants of the generative approach either implicitly (Harris et al., 2003) or explicitly
(Jackson and Redish, 2007; Johnson et al., 2007) use decoding algorithms for inference of
covert variable trajectories. Harris et al. (2003) predicted the spiking activity of a single
place cell using the animal’s position and the place cell activity of a small simultaneously
recorded neural ensemble. Jackson and Redish (2007) predicted the spiking activity of a
single place cell using the animal’s position and a reference frame identified by the activity
of simultaneously recorded place cells. Johnson et al. (2007, see chapter 4) showed that
decoded spatial representations that sometimes deviated from an animal’s observed spatial
location better predicted the observed activity of a simultaneously recorded set of place cells
than the animal’s observed position and used these observations as the basis of subsequent
analysis of non-local spatial representations (Johnson and Redish, 2007, see chapter 5).

6.2.4 Summary

The spatial information in hippocampal place fields provides an example of measurable
tuning to a cognitive, yet directly observable variable. The observability of the place fields
spatial tuning provides an opportunity to assess the active components of hippocampal
processing. Place cell activity is much more variable than would be expected given a simple
spatial hypothesis. Several observations suggest that higher than expected levels of spiking
variability are organized with respect to covert, potentially cognitive, processes rather than
noise (Pavlides and Winson, 1989; O’Keefe and Recce, 1993; Wilson and McNaughton, 1994;
Olypher et al., 2002; Harris et al., 2003; Jackson and Redish, 2007; Johnson and Redish,
2007). Although decoding approaches to neural codes can be used in explanations of ob-
served place cell activity, their use for analysis of covert, cognitive processes presents several
statistical problems. In contrast, generative approaches to neural codes provide a powerful
and statistically well founded explanation of hippocampal place cell activity (Johnson et al.,
2007, see chapter 4). This generative approach has provided the basis for the experimental
findings presented in this thesis. These and other findings reviewed above strongly suggest
that hippocampal activity does not merely reflect the physical space an animal inhabits.
Instead hippocampal activity is more parsimoniously described as an active construction
of an internal, dynamic interpretation of subjective information extracted from the ani-
mals environment, dependent on cognitive variables such as attention and the behavioral
relevance of the spatial cues.
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6.3 Conclusions and open questions

The hippocampus forms a critical part of a neural system that supports spatial behavior,
cognitive map function and episodic memory (O’Keefe and Nadel, 1978; Squire et al., 2004).
Although hippocampal pyramidal cell activity can be simply explained in terms of the
animal’s environmental position (O’Keefe and Dostrovsky, 1971; O’Keefe, 1976; O’Keefe
and Nadel, 1978), what elements of spatial experience are represented by this activity
remains an open question. Purely spatial map-based behavior appears to be independent of
the hippocampus and, instead, depends on a circuit that involves the entorhinal cortex and
the fornix (Gaskin et al., 2005; Gaskin and White, 2007). In contrast, the hippocampus
appears to be critical for encoding stimulus information within a spatial map supported
by the entorhinal cortex and subsequent retrieval of this stimulus information (White and
Gaskin, 2006; Stouffer and White, 2007). These findings suggest that place cell activity likely
represents integrated stimulus information associated with place field position (though this
stimulus information itself may be stored outside the hippocampus; Teyler and DiScenna,
1986).

Findings from several recent studies show that hippocampal neural activity is dynam-
ically modulated by covert cognitive processes (Olypher et al., 2002; Jackson and Redish,
2007; Johnson and Redish, 2007, see chapters 4 and 5). Hippocampal spatial represen-
tations shift ahead of the animal’s current position at choice points and suggest that an
animal might be imagining potential future positions on the track (Johnson and Redish,
2007). This interpretation of hippocampal place cell activity is consistent with recent con-
siderations of the contribution episodic memory makes toward decision-making processes
(Suddendorf and Corballis, 1997; Atance and O’Neill, 2001; Suddendorf and Busby, 2003;
Hassabis et al., 2007; Buckner and Carroll, 2007; Schacter et al., 2007; Suddendorf and
Corballis, 2007; Buckner et al., 2008; Schacter et al., 2008). In humans, the hippocampus
is critical for imagining coherent, integrated spatial scenes (Hassabis et al., 2007). Episodic
memory based imagination activates a frontotemporal network that includes the hippocam-
pus (Buckner and Carroll, 2007; Schacter et al., 2007; Suddendorf and Corballis, 2007;
Buckner et al., 2008; Schacter et al., 2008). Although cell assemblies in the hippocampus
are coordinated with activity beyond the hippocampus (McNaughton et al., 1996; Qin et al.,
1997; Hoffman and McNaughton, 2002; Pennartz et al., 2004; Battaglia et al., 2004; Tat-
suno et al., 2006; Euston and McNaughton, 2007; Fyhn et al., 2007; Ji and Wilson, 2007),
understanding the contribution forward shifted spatial representations in the hippocampus
make to behavior and their link to episodic memory and spatial imagination will require
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much future research.
A theoretical account of cognitive maps, spatial imagination and episodic memory will

require development of new models and theory. While clear parallels between the state
dynamics of model-based reinforcement learning algorithms and spatial imagination and
episodic memory have been observed (Daw et al., 2005; Johnson and Redish, 2005a; Niv
et al., 2006b; Zilli and Hasselmo, 2008), these parallels are only a loose approximation and
provide a important trajectory for future work. One particularly interesting open question
is whether transition model use in the model by Niv et al. (2006b) implies representation of
a complete set of stimulus information at each state – something that would closely resemble
episodic memory.

Finally, the complexity of episodic memory and spatial imagination suggests a para-
meter space too large to be explored through experiments alone. Future understanding of
episodic memory and spatial imagination will come from coordinated interactions between
theory and experiment. Theory supports identification of information rich portions of this
cognition and memory parameter space and can be used for the development of deeply infor-
mative experiments. In turn, experimental results provide important theoretical constraints
and provide increasing clarity in the boundaries of these complex hypothetical constructs
(MacCorquodale and Meehl, 1948). This cycle of theory and experiment provides a clear
path for understanding spatial imagination, episodic memory and cognitive maps.
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Etienne AS, Maurer R, Séguinot V (1996) Path integration in mammals and its interaction
with visual landmarks. Journal of Experimental Biology 199:201–209.

Euston DR, McNaughton BL (2007) Apparent encoding of sequential context in rat medial
prefrontal cortex is accounted for by behavioral variability. Journal of Neuroscience
26:13143–13155.

Fenton AA, Muller RU (1998) Place cell discharge is extremely variable during individual
passes of the rat through the firing field. Proceedings of the National Academy of Sciences,
USA 95:3182–3187.

Ferbinteanu J, Kennedy PJ, Shapiro ML (2006) Episodic memory — from brain to mind.
Hippocampus 16(9):704–715.

Ferbinteanu J, Shapiro ML (2003) Prospective and retrospective memory coding in the
hippocampus. Neuron 40(6):1227–1239.

Floresco SB, Seamans JK, Phillips AG (1997) Selective roles for hippocampal, prefrontal
cortical, and ventral striatal circuits in radial-arm maze tasks with or without a delay.
Journal of Neuroscience 17(5):1880–1890.

Foster DJ, Morris RGM, Dayan P (2000) A model of hippocampally dependent navigation
using the temporal difference learning rule. Hippocampus 10:1–6.

Foster DJ, Wilson MA (2006) Reverse replay of behavioural sequences in hippocampal place
cells during the awake state. Nature 440(7084):680–683.

Frank LM, Brown EN, Wilson M (2000) Trajectory encoding in the hippocampus and
entorhinal cortex. Neuron 27(1):169–178.

Frank LM, Eden UT, Solo V, Wilson MA, Brown EN (2002) Contrasting patterns of recep-
tive field plasticity in the hippocampus and the entorhinal cortex: An adaptive filtering
approach. Journal of Neuroscience 22(9):3817–3830.

Frank LM, Stanley GB, Brown EN (2004) Hippocampal plasticity across multiple days of
exposure to novel environments. J Neurosci 24(35):7681–7689.

145



Bibliography

Fuhs MC, Touretzky DS (2007) Context learning in the rodent hippocampus. Neural Com-
put 19(12):3173–3215.

Fuhs MC, VanRhoads SR, Casale AE, McNaughton B, Touretzky DS (2005) Influence of
Path Integration Versus Environmental Orientation on Place Cell Remapping Between
Visually Identical Environments. J Neurophysiol 94(4):2603–2616.

Fyhn M, Hafting T, Treves A, Moser MB, Moser EI (2007) Hippocampal remapping and
grid realignment in entorhinal cortex. Nature 446(7132):190–194.

Fyhn M, Molden S, Hollup S, Moser MB, Moser E (2002) Hippocampal neurons responding
to first-time dislocation of a target object. Neuron 35(3):555–566.

Gallistel CR (1990) The Organization of Learning. Cambridge, MA: MIT Press.

Gallistel CR, Fairhurst S, Balsam P (2004) Inaugural article: The learning curve: Implica-
tions of a quantitative analysis. PNAS 101(36):13124–13131.

Gaskin S, Chai SC, White NM (2005) Inactivation of the dorsal hippocampus does not affect
learning during exploration of a novel environment. Hippocampus 15(8):1085–1093.

Gaskin S, White NM (2007) Unreinforced spatial (latent) learning is mediated by a circuit
that includes dorsal entorhinal cortex and fimbria fornix. Hippocampus 17(7):586–594.

Georgopoulos AP, Caminiti R, Kalaska JF, Massey JT (1983) Spatial coding of movement:
A hypothesis concerning the coding of movement direction by motor cortical populations.
Experimental Brain Research Suppl.(7):327–336.

Georgopoulos AP, Kettner RE, Schwartz AB (1988) Primate motor cortex and free arm
movements to visual targets in three-dimensional space. II. Coding of the direction of
movement by a neuronal population. Journal of Neuroscience 8(8):2928–2937.

Georgopoulos AP, Lurito JT, Petrides M, Schwartz AB, Massey JT (1989) Mental rotation
of the neuronal population vector. Science 243:234–236.

Gothard KM, Skaggs WE, McNaughton BL (1996a) Dynamics of mismatch correction in
the hippocampal ensemble code for space: Interaction between path integration and
environmental cues. Journal of Neuroscience 16(24):8027–8040.

Gothard KM, Skaggs WE, Moore KM, McNaughton BL (1996b) Binding of hippocampal
ca1 neural activity to multiple reference frames in a landmark-based navigation task.
Journal of Neuroscience 16(2):823–835.

146



Bibliography

Grace AA, Rosenkranz JA (2002) Regulation of conditioned responses of basolateral amyg-
dala neurons. Physiol Behav 77(4-5):489–493.

Gray J (2004) Consciousness: Creeping up on the Hard Problem. Oxford.

Griffin A, Eichenbaum H, Hasselmo M (2007) Spatial representations of hippocampal CA1
neurons are modulated by behavioral context in a hippocampus-dependent memory task.
Journal of Neuroscience 27(9):2416–2423.

Griffiths TL, Tenenbaum JB (2007) From mere coincidences to meaningful discoveries.
Cognition 103(2):180–226.

Gurney K, Prescott TJ, Wickens JR, Redgrave P (2004) Computational models of the basal
ganglia: from robots to membranes. Trends in Neurosciences 27(8):453–459.

Guthrie ER (1935) The Psychology of Learning. New York: Harpers.

Guthrie ER (1952) The Psychology of Learning. New York: Harper.

Guzowski JF, McNaughton BL, Barnes CA, Worley PF (1999) Environment-specific ex-
pression of the immediate-early gene ARC in hippocampal neuronal ensembles. Nature
Neuroscience 2(12):1120–1124.

Haddon JE, Killcross AS (2005) Medial prefrontal cortex lesions abolish contextual control
of competing responses. J Exp Anal Behav 84(3):485–504.

Hampson RE, Deadwyler SA (1996) Ensemble codes involving hippocampal neurons are at
risk during delayed performance tests. Proceedings of the National Academy of Sciences,
USA 93:13487–13493.

Harris KD (2005) Neural signatures of cell assembly organization. Nature Reviews Neuro-
science 6:399–407.

Harris KD, Csicsvari J, Hirase H, Dragoi G, Buzsaki G (2003) Organization of cell assemblies
in the hippocampus. Nature 424(6948):552–556.

Harris KD, Henzi DA, Hirase H, Leinekugel X, Dragoi G, Czurko A, Buzsaki G (2002) Spike
train dynamics predicts theta-related phase precession in hippocampal pyramdidal cells.
Nature 417(6890):738–741.

Hassabis D, Kumaran D, Vann SD, Maguire EA (2007) Patients with hippocampal amnesia
cannot imagine new experiences. Proc Natl Acad Sci U S A 104(5):1726–1731.

147



Bibliography

Hasselmo ME (1993) Acetylcholine and learning in a cortical associative memory. Neural
Computation 5:32–44.

Hasselmo ME, Bower JM (1993) Acetylcholine and memory. Trends in Neurosciences
16(6):218–222.

Hayman RMA, Chakraborty S, Anderson MI, Jeffery KJ (2003) Context-specific acquisi-
tion of location discrimination by hippocampal place cells. Eur Journal of Neuroscience
18(10):2825–2834.

Hebb DO (1949) The Organization of Behavior. New York: Wiley. Reissued 2002 LEA.

Hertz J, Krogh A, Palmer RG (1991) Introduction to the Theory of Neural Computation.
Reading MA: Addison-Wesley.

Hilgard ER, Bower GH (1975) Theories of Learning. Appleton-Century-Crofts.

Hoffman KL, McNaughton BL (2002) Coordinated reactivation of distributed memory
traces in primate neocortex. Science 297(5589):2070–2073.

Hok V, Lenck-Santini PP, Roux S, Save E, Muller RU, Poucet B (2007) Goal-related activity
in hippocampal place cells. Journal of Neuroscience 27(3):472–482.

Holland P (2004) Relations between pavlovian-instrumental transfer and reinfocer devalu-
ation. Journal of Experimental Psychology: Animal Behavior Processes 30:104–117.

Holland P, Straub J (1979) Differential effects of two ways of devaluing the unconditioned
stimulus after pavlovian appetitive conditioning. J Exp Psychol Anim Behav Process
5:65–78.

Hollup SA, Molden S, Donnett JG, Moser MB, Moser EI (2001a) Accumulation of hip-
pocampal place fields at the goal location in an annular watermaze task. Journal of
Neuroscience 21(5):1635–1644.

Hollup SA, Molden S, Donnett JG, Moser MB, Moser EI (2001b) Place fields of rat hip-
pocampal pyramidal cells and spatial learning in the watermaze. European Journal of
Neuroscience 13(6):1197–1197.

Hopfield JJ (1982) Neural networks and physical systems with emergent collective compu-
tational abilities. Proceedings of the National Academy of Sciences, USA 79:2554–2558.

148



Bibliography

Houk JC, Davis JL, Beiser DG, eds. (1995) Models of Information Processing in the Basal
Ganglia. Cambridge MA: MIT Press.

Hu D, Amsel A (1995) A simple test of the vicarious trial-and-error hypothesis of hippocam-
pal function. Proc Nat Acad Sci, USA 92(12):5506–5509.

Hu D, Xu X, Gonzalez-Lima F (2006) Vicarious trial-and-error behavior and hippocampal
cytochrome oxidase activity during Y-maze discrimination learning in the rat. Interna-
tional Journal of Neuroscience 116(3):265–280.

Hudon C, Dor’e FY, Goulet S (2002) Spatial memory and choice behavior in the radial arm
maze after fornix transection. Progress in Neuro-Psychopharmacology and Biological
Psychiatry 26(6):1113–1123.

Hull CL (1930) Knowledge and purpose as habit mechanisms. Psychological Review
37(6):511–525.

Hull CL (1943) Principles of Behavior. New York: Appleton-Century-Crofts.

Huxter J, Burgess N, O’Keefe J (2003) Independent rate and temporal coding in hippocam-
pal pyramidal cells. Nature 425(6960):828–832.

Jackson J (2006) Network Consistency and Hippocampal Dynamics: Using the properties of
cell assemblies to probe the hippocampal representation of space. Ph.D. thesis, University
of Minnesota.

Jackson J, Redish AD (2007) Network dynamics of hippocampal cell-assemblies resemble
multiple spatial maps within single tasks. Hippocampus .

Jackson JC, Johnson A, Redish AD (2006) Hippocampal sharp waves and reactivation
during awake states depend on repeated sequential experience. Journal of Neuroscience
26(48):12415–12426.

Jackson JC, Redish AD (2003) Detecting dynamical changes within a simulated neural
ensemble using a measure of representational quality. Network: Computation in Neural
Systems 14:629–645.

Janabi-Sharifi F, Hayward V, Chen CSJ (2000) Discrete-time adaptive windowing for ve-
locity estimation. IEEE Transactions on Control Systems Technology 8(6):1003–1009.

149



Bibliography

Jarrard LE (1993) On the role of the hippocampus in learning and memory in the rat.
Behavioral Neural Biology 60(1):9–26.

Jaynes ET (2003) Probability Theory. Cambridge.

Jensen O, Lisman JE (1998) An oscillatory short-term memory buffer model can account
for data on the Sternberg task. Journal of Neuroscience 18(24):10688–10699.

Jensen O, Lisman JE (2000) Position reconstruction from an ensemble of hippocampal place
cells: contribution of theta phase encoding. Journal of Neurophysiology 83(5):2602–2609.

Jensen O, Lisman JE (2005) Hippocampal sequence-encoding driven by a cortical multi-item
working memory buffer. Trends in Neurosciences 28(2):67–72.

Ji D, Wilson MA (2007) Coordinated memory replay in the visual cortex and hippocampus
during sleep. Nature Neuroscience 10(1):100–107.

Jog MS, Kubota Y, Connolly CI, Hillegaart V, Graybiel AM (1999) Building neural repre-
sentations of habits. Science 286:1746–1749.

Johnson A, Jackson J, Redish A (2007) Measuring distributed properties of neural represen-
tation beyond the decoding of local variables - implications for cognition. In: Mechanisms
of information processing in the Brain: Encoding of information in neural populations
and networks (Holscher C, Munk, eds.), p. in press. Cambridge University Press.

Johnson A, Redish AD (2005a) Hippocampal replay contributes to within session learning
in a temporal difference reinforcement learning model. Neural Networks 18(9):1163–1171.

Johnson A, Redish AD (2005b) Observation of transient neural dynamics in the rodent
hippocampus during behavior of a sequential decision task using predictive filter methods.
Acta Neurobiologiae Experimentalis 65(Supplement).

Johnson A, Redish AD (2007) Neural ensembles in ca3 transiently encode paths forward of
the animal at a decision point. Journal of Neuroscience 27(45):12176–12189.

Johnson A, Seeland K, Redish AD (2005) Reconstruction of the postsubiculum head direc-
tion signal from neural ensembles. Hippocampus 15(1):86–96.

Johnston D, Amaral DG (1998) Hippocampus. In: The Synaptic Organization of the Brain
(Shepherd GM, ed.), pp. 417–458. Oxford University Press, 4th edn.

150



Bibliography

Jung MW, Wiener SI, McNaughton BL (1994) Comparison of spatial firing characteristics of
the dorsal and ventral hippocampus of the rat. Journal of Neuroscience 14(12):7347–7356.

Kamin L (1969) Predictability, surprise, attention and conditioning. In: Punishment and
Aversive Behavior (Campbell B, Church R, eds.). New York: Appleton-Century-Crofts.

Kemp C, Perfors A, Tenenbaum JB (2007) Learning overhypotheses with hierarchical
bayesian models. Dev Sci 10(3):307–321.

Kentros C, Hargreaves E, Hawkins RD, Kandel ER, Shapiro M, Muller RV (1998) Abolition
of long-term stability of new hippocampal place cell maps by NMDA receptor blockade.
Science 280(5372):2121–2126.

Kentros CG, Agnihotri NT, Streater S, Hawkins RD, Kandel ER (2004) Increased atten-
tion to spatial context increases both place field stability and spatial memory. Neuron
42(2):283–295.

Kepecs A, Lisman J (2003) Information encoding and computation with spikes and bursts.
Network: Computation in Neural Systems 14(1):103–118.

Killcross S, Coutureau E (2003) Coordination of actions and habits in the medial prefrontral
cortex of rats. Cerebral Cortex 13(8):400–408.

Klausberger T, Magill PJ, Márton LF, Roberts JDB, Cobden PM, Buzsáki G, Somogyi
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