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Reproducibility failures are essential to
scientific inquiry
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Current fears of a “reproducibility crisis” have led re-
searchers, sources of scientific funding, and the public
to question both the efficacy and trustworthiness of
science (1, 2). Suggested policy changes have been
focused on statistical problems, such as p-hacking,
and issues of experimental design and execution (3,
4). However, “reproducibility” is a broad concept that
includes a number of issues (5) (see also www.pnas.
org/improving_reproducibility). Furthermore, repro-
ducibility failures occur even in fields such as mathe-
matics or computer science that do not have statistical
problems or issues with experimental design. Most
importantly, these proposed policy changes ignore a
core feature of the process of scientific inquiry that

occurs after reproducibility failures: the integration of
conflicting observations and ideas into a coherent theory.

Here we argue, using examples from mathematics
and computer science, that current discussions of the
reproducibility crisis overlook the essential role that
failures of reproducibility play in scientific inquiry. This
viewpoint that reproducibility is a key part of inquiry
suggests several new perspectives and policies to
promote good science. First, science needs to be
given the time necessary to reconcile conflicting
results. It typically takes decades to probe the param-
eter space of a discovery to identify and characterize
the fundamental variables. Second, reproducibility
failures are a critical part of this journey, and attention

Fig. 1. Discussions about a “reproducibility crisis” often ignore what takes place when reproducibility fails: the
integration of conflicting observations and ideas into a coherent theory. Image courtesy of Dave Cutler (artist).
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must be paid to the process of reconciling conflicting
results. Third, success or failure should not be based
on the conclusions of one or a few studies; strategies
such as those of theoretical and synthesis articles that
integrate diverse perspectives should be encouraged.
We argue that the decades-long process of metabo-
lizing reproducibility failures through theoretical in-
tegration is what leads to the reliable results across the
sciences that have provided us with remarkable life-
changing medical and engineering consequences.

Failure to Generalize
A typical scientific discovery is an observation—in this
time and place, under these conditions, an outcome
was observed. When another researcher observes a
different outcome in a replication study or is unable to
reproduce a particular analysis, inquiry should seek to
discover the hidden variables that underlie these dif-
ferences. This was a key advantage of the newly cre-
ated scientific journal in the 1600s. A formal, public
report of an experiment could be better compared
and contrasted with other experiments, even if the
observations were incomplete. Over time, the scientific
journal article made it possible to present observations
(even differences in outcomes, i.e., reproducibility
failures) that could then be integrated into broader
accounts that were more generalizable.

Scientific progress depends on integrating the
lessons learned from repeated experiments that pro-
duce discordant outcomes. Several researchers have
argued that science moves forward by identifying
where reproducibility fails (6, 7) and that the key to
science is that every answer opens up new questions
(8). The identification and interrogation of reproduc-
tion failures generates more reliable and enduring
scientific knowledge by isolating and characterizing
the crucial factors that underlie phenomena.

In many of these cases, what have been called
“failures to replicate” are actually failures to generalize
across what researchers hoped were inconsequential
changes in background assumptions or experimental
conditions (9). Moreover, many of these attempts are
based on incomplete explanations of the relevant
mechanisms and overly fast transitions to clinical
practice. Science depends on adequate mechanistic
explanations—not just that something works, but how
and why it works (10). The amazing past success and
ongoing advance of science derive from a cycle of
observation, theory, replication, failure, and reinte-
gration, which leads, once again, to new questions,
new observations, and new failures (6–8, 10).

This has significant consequences for the practical
outcomes of scientific research: The translation of
fundamental discoveries into technological innova-
tions or clinical applications takes time. Many com-
mentators assume this translation can occur almost
immediately, but the process of inquiry demands
sufficient time to measure the space of a discovery (11,
12). The unjustified (but growing) pessimistic attitude
from diverse stakeholders (1, 2) toward science comes
from a widespreadmisunderstanding about the role of
reproducibility in science.

Importantly, the process of exploring the space of
a discovery to find and characterize primary variables
in response to reproducibility failures is a component
of all genuine inquiry and occurs even in mathematics
and computer science, which by definition do not
have problems with p-hacking, experimental design,
or material practices. Both mathematics and computer
science are rife with examples of reproducibility failures
that have led to important breakthroughs.

To illustrate this idea in more detail, we examine
three examples: the Four-Color Theorem, Fourier
analysis, and the development of neural networks. All
of these examples proceeded through a multidecade
process of examination and inquiry, with boom-and-
bust cycles of excitement over the potential of initial
results, followed by indications that the results did not
live up to expectations, but then followed by the
identification of new variables that facilitated a deeper
understanding of the original topic.

The Four-Color Theorem
Even after a proof is published, mathematicians con-
tinue to check that it is correct, i.e., they attempt to

“reproduce the proof.” Sometimes they fail: A proof
that was previously accepted turns out to be in-
complete or contain an error. This happened with an
early proof of the Four-Color Theorem. The Four-
Color Theorem states that for any map drawn in a
2D plane and divided into contiguous regions, four
colors suffice to color these regions so that no two
adjacent ones are given the same color. It was first
conjectured by Guthrie in 1852. Twenty-seven years
later, Kempe (13) announced that he had proven it.
However, 11 years after that, Heawood (14) uncovered
a fatal flaw in Kempe’s argument. Heawood’s at-
tempts to reproduce Kempe’s proof had failed. Yet
Heawood did more than point out the error in Kempe’s
work: He demonstrated that Kempe’s methods could be
used to establish a weaker Five-Color Theorem. Over the
next century, othermathematicians refined and extended
the innovative ideas that Kempe’s work contained, which
eventually contributed to Appel and Haken’s 1976 com-
puter proof of the Four-Color Theorem (15).

However, the story doesn’t end there. Some
mathematicians were skeptical of Appel and Haken’s
computer proof, both because it was complicated and
in light of the invalidation of Kempe’s original proof.
So mathematicians reproduced the theorem by proving
it in a different way. Robertson and colleagues (16)
obtained a simpler and more efficient computer proof
of the theorem in 1996, and Gonthier (17) formalized it
and verified its correctness in 2005. When faced with
reproducibility failures in the form of an invalid proof

In many of these cases, what have been called “failures to
replicate” are actually failures to generalize across what
researchers hoped were inconsequential changes in
background assumptions or experimental conditions.
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and questions about the validity of particular methods,
mathematicians sought to better understand these
methods, results, and inferences over time, which led
to new mathematical techniques and different ways to
prove the Four-Color Theorem.

Fourier Series
Mathematics also experiences “failures to replicate” in
the form of overgeneralizations. For example, in 1807,
Fourier made a grand claim: every function can be
represented as a series of sines and cosines (i.e., as a
Fourier series). However, Fourier’s initial work was
rejected by the French National Academy and dis-
missed by eminent mathematicians of his time, which
delayed the publication of his ideas until 1822 (18).

Despite its negative reception, Fourier’s work
contained important insights that sparked the interest
of mathematicians such as Dirichlet, who in 1829
published a proof showing that Fourier’s theorem was
correct under limited conditions, but who also pre-
sented a counterexample disproving Fourier’s general
theorem (19). This counterexample was the first so-called
“pathological” function, and over the next 100 years
mathematicians found more examples of strange “func-
tions” with bizarre and surprising properties (20).

The discovery of these functions violated the
mathematical intuitions of the time, leading mathe-
maticians to develop more rigorous and powerful
analyses to reintegrate these functions into mathe-
matical theory. This culminated in the development of
a theory of “generalized functions” or “distributions”
by Schwartz and others in the 1950s (21, 22). These
functions are extremely useful in a variety of contexts,
such as quantum physics (e.g., the delta function) and
electrical engineering (e.g., the impulse function) (23).
Today, the work initiated by Fourier and Dirichlet is
the cornerstone underlying spectral analysis, which is
used in dozens of fields, ranging from electrical en-
gineering to physics and neuroscience.

From Neural Networks to Deep Learning
In both the mathematical and computational sciences,
progress depends on a long cycle of breakthroughs,
recognitions of the limitations of those breakthroughs
(i.e., failures to replicate and generalize), and reinte-
gration leading to new discoveries. In 1958, Rosenblatt
proved the Perceptron Convergence Theorem, which
opened up the possibility of using “subsymbolic”
neural network representations in which information
was distributed over many small units as computational
learning engines (24). The perceptron is a computational
device that sums a set of inputs and applies a nonlinear
threshold. Rosenblatt’s proof demonstrated with math-
ematical rigor that these computational devices could
learn pattern recognition directly from examples.

At the time, this result was taken to imply that
perceptrons could enable computers to think and thus
serve as a model of animal learning processes. How-
ever, 11 years later, Minsky and Papert (25) published
a proof that perceptrons could not solve the simple
parity operation. Parity is a logical operation that
counts the number of 1s and 0s in a list of 1s and 0s

and returns 1 if the count is odd and 0 if even. The
simplest example of parity is the XOR problem (a XOR
b = true if the true/false statements a and b are dif-
ferent). That perceptrons could not solve parity was a
devastating blow to the field and treated as a failure
inherent to the nature of the subsymbolic, pattern-
completion architecture exemplified by perceptrons.

However, in 1986, it was found that a multilayer
network of perceptrons could solve XOR (26). Rum-
melhart and colleagues (26) demonstrated a method
for backpropagating errors across neural networks
with hidden layers, which enabled multilayer networks
to do the sort of pattern-learning exhibited by per-
ceptrons. This led to the development of a variety of
neural network algorithms over the next decade,
but these results were again found to be of limited
use for complex problems: The computational tools
available at the time could not implement these
more complicated networks and required too much
data to train them.

Over the next 20 years, additional insights into
learning algorithms, the increase in computational
power due to parallel computing, and the explosion
of Big Data provided the necessary components to
make these networks useful. Today, these multilayer
perceptron-based networks (now called “deep learn-
ing”) are a highly successful computational paradigm
that underlies practical solutions to diverse pattern-
recognition problems, including the ubiquitous hand-
writing, facial, and spoken-language recognition that
we use on a routine basis (27).

Success Requires Failures
These examples demonstrate that all inquiry is a dynamic
exploration of the space of a discovery in response
to failures of reproducibility. Iterated comparisons and
contrasts of methods, results, and inferences facilitate
integration into robust, generalized accounts. In a very
real sense, science is a journey, and no article should be
seen as the final answer to a question; every article
opens up new questions (8), and many of these new
discoveries come directly from failures to replicate (6).
Although good experimental design and data man-
agement are obviously important parts of conducting
good science (4), these examples show that failures of
reproducibility occur even in fields in which these specific
problems do not arise. This implies that reproducibility
failures should not undermine the efficacy or trust-
worthiness of science. In contrast, they tell us some-
thing very important about how scientific inquiry works
and how science makes progress (6–8, 10).

Recognizing the centrality of failures of reproduc-
ibility to inquiry not only shifts our entire perspective
on the reproducibility crisis but also has important
policy implications, which differ from those typically
discussed (1–5).

First, and most importantly, scientific conclusions
should never be based on single studies. The re-
cursive interrogation of methods, results, and infer-
ences with respect to properties such as robustness
and generalizability involves multiple studies. It is
this process that underlies successful translation into
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practical outcomes. Strategies that nurture this in-
terrogation, such as theoretical studies and synthesis
articles, which integrate results from different per-
spectives, should be encouraged.

Second, attention needs to be paid to the activity
of reconciling conflicting results. Researchers need to
recognize that reproducibility failures are a normal
part of science and do not necessarily indicate in-
competence or fraud. Initiatives and policies that at-
tempt to curb failures of reproducibility miss the need
for strategies that metabolize them, such as utilizing
multiple methods to confirm a result and to find the
fundamental variables underlying a phenomenon.

Third, science needs to be given sufficient time to
reconcile conflicting results. Progress from scientific
breakthrough to medical or engineering conse-
quences that change lives does not occur overnight.
Probing the parameter space of a discovery, identify-
ing how to control those parameters, and actually
making something work takes time. The journey from
the discovery of the backpropagation of error-learning
rules to deep-learning networks embedded in every
smartphone took 30 years. This timeline is typical of
many fields of research (11, 12).

A longer timeline is critical because failures when
exploring a scientific question lead to new discoveries,
but failures in application (such as in clinical trials) can
lead to dangerously negative consequences. It is one
thing to find that a behavioral manipulation differs
across strains of rats (28). It is another to find that an
anti-nausea drug given to pregnant women produces
limb deformities in their children (29). Rushing the
process of translation without a solid understanding of
the critical variables is inherently dangerous. Often,
decades are necessary because science requires time
to chart the “warranty space” of results: What are the
parameters across which the discovery is valid? What
are the mechanisms underlying those factors? It takes
time for replications to fail and time to reintegrate
those failures into coherent theories.

The widespread dissemination of this perspective
to researchers, research funders, and the general
public could positively influence the trajectory of
modern scientific practice by preventing overzealous
negative responses to the perceived reproducibility
crisis and instead redirect efforts and resources to
generate more reliable and enduring knowledge. For

example, funding agencies need to revise policies to
address these recommendations. Studies that pursue
the interrogation of methods or results after discov-
eries are made should be prioritized. The identifica-
tion and reconciliation of conflicting results should be
a valued component of grant proposals. Expectations
for the time required to pursue these activities need to
be calibrated explicitly in the funding process. Addi-
tionally, communicating this image of science as a
journey in educational contexts and media outlets is
a critical step for the public to achieve a better under-
standing of how scientific research actually operates.

Over the course of decades, science leads to re-
markably reliable results. This reliability has given us

an understanding of evolution and climate change,
instantaneous international communication, efficient
heating and cooling in our houses, and medical and
engineering solutions that have extended our life-
spans. We have robots onMars and have flown probes
past Pluto, while our phones can recognize our faces
and translate our texts. Just as the discoveries that
Kempe’s proof was incorrect, Fourier’s claim was an
overgeneralization, and perceptrons could not solve
parity problems eventually led to new insights and
stimulated further developments, failures of repro-
ducibility are the raw material of genuine inquiry.

The discovery that an experiment does not repli-
cate is not a lack of success but an opportunity. Many
of the current concerns about reproducibility overlook
the dynamic, iterative nature of the process of dis-
covery where discordant results are essential to pro-
ducing more integrated accounts and (eventually)
translation. A failure to reproduce is only the first step
in scientific inquiry. In many ways, how science re-
sponds to these failures is what determines whether
it succeeds.
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