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Current theories suggest that decision-making arises from multiple, competing

action-selection systems. Rodent studies dissociate deliberation and procedural

behavior, and find a transition from procedural to deliberative behavior with experience.

However, it remains unknown how this transition from deliberative to procedural control

evolves within single trials, or within blocks of repeated choices. We adapted for rats

a two-step task which has been used to dissociate model-based from model-free

decisions in humans. We found that a mixture of model-based andmodel-free algorithms

was more likely to explain rat choice strategies on the task than either model-based or

model-free algorithms alone. This task contained two choices per trial, which provides

a more complex and non-discrete per-trial choice structure. This task structure enabled

us to evaluate how deliberative and procedural behavior evolved within-trial and within

blocks of repeated choice sequences. We found that vicarious trial and error (VTE), a

behavioral correlate of deliberation in rodents, was correlated between the two choice

points on a given lap. We also found that behavioral stereotypy, a correlate of procedural

automation, increased with the number of repeated choices. While VTE at the first choice

point increased with the number of repeated choices, VTE at the second choice point

did not, and only increased after unexpected transitions within the task. This suggests

that deliberation at the beginning of trials may correspond to changes in choice patterns,

while mid-trial deliberation may correspond to an interruption of a procedural process.

Keywords: decision-making, reinforcement learning, model-based, model-free, vicarious trial and error, path

stereotypy

INTRODUCTION

It has long been known that multiple systems within the brain contribute to making decisions
(O’Keefe and Nadel, 1978; Adams and Dickinson, 1981; Sloman, 1996; Dayan and Balleine, 2002;
Lieberman, 2003; Loewenstein and O’Donoghue, 2004; Balleine et al., 2008; van der Meer et al.,
2012; Dolan and Dayan, 2013; Redish, 2013). Studies of rat navigation through spatial mazes have
revealed a dichotomy between deliberative behavior or “place strategies,” and procedural behavior
or “response strategies” (Muenzinger and Gentry, 1931; Tolman, 1939; O’Keefe and Nadel, 1978;
Packard and McGaugh, 1996; Jog et al., 1999; Redish, 1999; Gardner et al., 2013; Schmidt et al.,
2013; Redish, 2016). This body of work finds that while rodents display deliberative behavior with
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limited training on a task, experience with a task leads to a
transition toward procedurally-driven behavior. However, such
tasks usually involve only a single simple choice (though see
Gardner et al., 2013), making it difficult to evaluate how any
transition from deliberative to procedural control may evolve
over the course of single laps. Furthermore, the transition from
deliberative to procedural behavior is primarily investigated
either in terms of the number of training sessions, or the number
of laps within a session. If procedural automation increases as
a function of experience, then this procedural control should
increase specifically with the number of repeated choices on
a task.

Procedural automation in rats during navigation tasks has
traditionally been identified by stereotyped behavior, while
deliberation has been identified by variable behavior at decision
points, such as vicarious trial and error (VTE). Vicarious trial
and error is a behavior where rats pause at choice points of a
maze, and look back and forth down each path as if deliberating
over which path to take (Muenzinger and Gentry, 1931; Tolman,
1939; Redish, 2016). VTE is thought to correspond to an internal
deliberative process (Redish, 2016), and has been found to co-
occur with nonlocal representation by hippocampal place cells
(Johnson and Redish, 2007; van der Meer et al., 2010). During
procedural behavior, rats do not display VTE, and their paths
through the choice points are highly stereotyped (Packard and
McGaugh, 1996; Jog et al., 1999; Schmitzer-Torbert and Redish,
2002; van der Meer et al., 2012; Smith and Graybiel, 2013;
Schmidt et al., 2013). The procedural system generating this
stereotyped behavior is hypothesized to employ a model-free
learning algorithm (O’Keefe and Nadel, 1978; Jog et al., 1999; Yin
and Knowlton, 2004; Frank, 2011; Redish, 2016). Animals usually
display deliberative behavior early in training, which transitions
to more stereotyped behavior with experience on a given task
(Packard and McGaugh, 1996; Redish, 1999; Gardner et al., 2013;
Schmidt et al., 2013).

However, deliberative and procedural behavior are usually
evaluated on a per-trial basis, precluding any analysis of how
these behaviors might change over the course of single trials.
Therefore, it is unknown whether animals deliberate over single
choices independently, whether they enter deliberative or non-
deliberative modes over the course of entire multi-choice trials,
or whether deliberation at the initiation of a trial instigates
procedural control for the remainder of the trial. Furthermore,
the transition from deliberative to procedural control is measured
as a function of trial within a session, or session within a
training schedule. If procedural automation increases with an
animal’s experience with a specific action chain, then behavioral
stereotypy should increase not only as a function of trial or
session, but with the number of specific actions or choices that
the animal has performed.

There are specific hypotheses as to the algorithms within the
brain which drive procedural automation and deliberation. The
procedural system is hypothesized to be driven by a “model-
free” neural mechanism, in that it does not actually use a model
of the world to make decisions, but stores only the expected
value of taking certain actions in given states (Schultz et al.,
1997; Sutton and Barto, 1998; Jog et al., 1999; Swanson, 2000;

Yin and Knowlton, 2004; Niv et al., 2006; Calabresi et al.,
2007; Frank, 2011). The procedural system makes decisions
quickly, but these decisions are inflexible once learned (Niv
et al., 2006; Johnson et al., 2007; Keramati et al., 2011; van der
Meer et al., 2012). On the other hand, the deliberative system
has been hypothesized to use an internal model of the world
to evaluate the outcomes of potential actions, a “model-based”
neural mechanism (Tolman, 1939; Doll et al., 2012; van der Meer
et al., 2012; Daw and Dayan, 2014; Redish, 2016). In addition to
learning the relationships between state-action pairs and reward,
the internal model learns the relations between states, and that
knowledge can be integrated on-line to make more optimal
decisions even in novel situations (Adams and Dickinson, 1981;
van der Meer et al., 2012). However, deliberation requires more
time for action selection than the procedural system because it
requires the simulation of an internal model (Keramati et al.,
2011), which is thought to correspond to imagination of future
goals (Johnson and Redish, 2007; Simon and Daw, 2011; Doll
et al., 2015; Brown et al., 2016).

While procedural and deliberative behavior has been
extensively studied in rodents, the model-based/model-free
dichotomy has been evaluated mostly in humans (though see
Miller et al., 2017). Instead of distinguishing behavior types, this
literature employs tasks which differentiate specific decisions
based on the apparent presence of knowledge about relations
between states, information which only the model-based system
stores (Daw et al., 2011; Doll et al., 2012). Consistent with
a transition from deliberative to procedural control, when a
mixture of model-based and model-free algorithms are used to
model human choice strategies, much of this work finds that
such a hybrid algorithm explains decisions better than either
model-based or model-free algorithms alone (Gläscher et al.,
2010; Daw et al., 2011; Gillan et al., 2011; Wunderlich et al., 2012;
Eppinger et al., 2013; Otto et al., 2013a,b; Skatova et al., 2013;
Gillan et al., 2014; Schad et al., 2014; Sebold et al., 2014; Deserno
et al., 2015; Gillan et al., 2015; Otto et al., 2015; Radenbach et al.,
2015; Sharp et al., 2015; Voon et al., 2015; Decker et al., 2016;
Doll et al., 2016).

A task often used to dissociate model-based from model-free
choice in the human literature is a choice task which has two
stages, that is, two choices per trial (Daw et al., 2011). Studies
using this task have uncovered choice behavior consistent with
independent influences of model-based and model-free learning
algorithms (Gläscher et al., 2010; Daw et al., 2011; Gillan et al.,
2011; Wunderlich et al., 2012; Eppinger et al., 2013; Otto et al.,
2013a,b; Skatova et al., 2013; Gillan et al., 2014; Schad et al.,
2014; Sebold et al., 2014; Deserno et al., 2015; Gillan et al., 2015;
Otto et al., 2015; Radenbach et al., 2015; Sharp et al., 2015; Voon
et al., 2015; Doll et al., 2016; Decker et al., 2016). To investigate
the extent to which rodent choices are influenced by model-
free and model-based processes, and to evaluate procedural and
deliberative behavior on a task with multiple choices per trial,
we adapted this two-step task for rats. The two-step task has
recently been adapted for rats in a different way by Miller
et al. (2017). However, we use a spatial maze-based task, which
enables us to measure behavioral markers of deliberation and
procedural automation, such as VTE and behavioral stereotypy.

Frontiers in Integrative Neuroscience | www.frontiersin.org 2 August 2018 | Volume 12 | Article 30

https://www.frontiersin.org/journals/integrative-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/integrative-neuroscience#articles


Hasz and Redish Two-Step Decisions in Rats

By analyzing both the behavior and choices of rats on this task,
we were able to determine the extent to which rats used choice
strategies which were model-based, model-free, or a mix thereof,
and determine how procedural and deliberative behavior evolved
within laps and over the course of blocks of repeated choice
sequences.

The human two-step task (Daw et al., 2011, see Figure 1A)
consists of a sequence of two choices: C1 (choosing between A
vs. B) and then C2 (choosing between C vs. D) or C3 (choosing
between E vs. F). Choosing option A in C1 usually but not always
leads to choice C2, while choosing option B in C1 usually leads
to choice C3. Choosing C vs. D (in C2) or E vs. F (in C3) leads to
probabilistically-delivered reward, with different probabilities at
C, D, E, and F. The probabilities change slowly over time, so the
subject is constantly trying to find the best option and should not
simply settle on one option, but can use observations of reward
as a signal that the option is a good one to return to (at least for a
while).

This two-step task is able to dissociate model-based from
model-free decisions because it creates conditions where the two
decision-making algorithms make different choices, mostly on
laps following a rare transition (e.g., choosing A at C1 leads to
C3, a choice between E and F). This is because the model-based
algorithm stores information about the relation between states
(specifically, the transition probabilities), while the model-free
algorithm does not store information about relations between
states (and so does not use the transition probabilities for
valuation).

To illustrate this difference, suppose a subject chooses A at
C1, experiences a rare transition and is presented with C3 (a
choice between E and F), chooses E at the second choice, and
receives a large reward (Figure 1C). A model-free agent would
be more likely to repeat the choice at C1 (choice A), because
model-free learning algorithms reinforce actions which have led

to reward in the past, without taking into account relations
between states. However, the world model of the model-based
algorithm stores relations between states, and so has access
to the fact that choosing B at C1 is more likely to lead to
the C3 choice, where E can then be chosen. Therefore, the
model-based algorithm would be more likely to choose B at
C1 in this scenario, while the model-free algorithm would be
more likely to choose A. In general on this task, model-based
and model-free agents value the two choices at C1 slightly
differently.

Our version of the two-step task for rats was a spatial maze
with two left/right choices, which corresponded to the two choice
stages in the human task (Figure 1B). The second choice (C2/C3)
was the same physical location for both the C/D and E/F choices,
but an audiovisual cue at the second choice point informed
animals whether they were in the C2 or C3 context. Choosing
left (A) at the first choice led to C2 80% of the time, and to C3
20% of the time. Like the human task, those probabilities were
reversed after choosing right (B) at the first choice point. After
choosing left (C or E) or right (D or F) at the second choice
point, rats were rewarded with food pellets. While the cost of
reward in the human task was the probability of receiving a
reward at all, we used delay to food delivery as the cost: high
delay to food delivery corresponded to high cost rewards, while
low delays corresponded to low cost rewards. The sessions were
limited to 1 h, and the rats earned their daily food intake by
running the task, so they were motivated to seek food rewards
with low delays. Like the human task, these delays varied between
C, D, E, and F. The delays were initialized randomly between
1 and 30 s, and changed slowly over the course of a session
according to a Gaussian random walk with a standard deviation
of 1s/lap. There were return corridors from the reward offer sites
to the start of the maze, and rats ran laps freely for 45 min per
session.

FIGURE 1 | The two-step task. (A) State structure of the task. A first choice between two options leads probabilistically to one of two second-stage choices. Each of

the four second-stage choices have some cost of reward associated with them, and those costs change over the course of the session. (B) The spatial version of the

two-step task for rats. An initial Left/Right choice point (labeled “1,” corresponding to the first choice in A), leads to a second-stage choice (labeled “2”). Which of the

two second stage choices is currently presented is indicated by an audio cue, and by a visual cue on monitors (green boxes on outside of maze). Rats then wait some

amount of time before receiving food reward at feeder sites (red semicircles). (C) This task dissociates model-based from model-free choices. When an agent receives

reward after a rare transition, the model-free system is more likely to repeat the first-stage choice which lead to that reward, while the model-based system is more

likely to take the opposite first-stage action on the next lap.
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RESULTS

Rats Displayed a Mix of Model-Based and
Model-Free Decision Making
Rat behavior on the spatial two-step task was collected from 7
rats for at least 48 sessions each (357 sessions in total, Table 1A).
Rats ran an average of 74.2 ± 19.6 laps per session (Table 1B).
Not surprisingly, rats preferred reward offers with a low delay
to food delivery (Figure 2). We ran simulations of agents which
made random choices on the two-step task to determine the
delays which would be expected by visiting feeders randomly.
Mean delays experienced by the rats were significantly less than
the mean delay experienced by the random-choice simulations
(two-sided Wilcoxon signed rank test, Nrats = 7, p = 0.0156, rat
delays were 3.31 s lower on average than simulation delays). This
indicates that rats were able to learn the task, by making decisions
which led to lower-delay outcomes.

On the two-step task, model-free agents are more likely
to repeat first-stage choices which led to low-delay (low-
cost) rewards than those which led to high-delay (high-cost)
rewards, even if this reward occurred after a rare transition
(Figure 3A). However, model-based agents show the opposite
pattern after rare transitions—that is, they are less likely to
repeat first-stage choices which led to low-cost rewards than
those which led to high-cost rewards after rare transitions
(Figure 3B). The rats appeared neither purely model-based
nor purely model-free, suggesting a mix of model-based and

TABLE 1 | (A) The number of sessions for each rat, and (B) the total number of

laps each rat ran.

(A) Sessions per Rat

Rat Number of sessions

1 48

2 50

3 50

4 50

5 53

6 53

7 53

Total 357

(B) Laps per Rat

Rat Number of laps

1 3,313

2 3,602

3 4,079

4 3,610

5 3,594

6 3,805

7 4,478

Total 26,481

model-free behavior (Figure 3C), consistent with behavior
seen in human subjects (Gläscher et al., 2010; Daw et al.,
2011).

To more rigorously evaluate model-based or model-free
influences on rat choices, we fit model-based and model-free
algorithms to rat choices on the two-step task using Stan, in order
to perform Bayesian inference and compare models (Kruschke,
2014; Carpenter et al., 2017). We also considered a constant-
weight hybrid algorithm where choices were made according to
some fixed weight (a free parameter) between model-based and
model-free influence. We used Deviance Information Criterion
(DIC) scores to select the most likely of these three algorithms
(Spiegelhalter et al., 2002). Differences in DIC scores >7 suggest
the algorithm with the higher DIC score has “considerably less
support” (Spiegelhalter et al., 2002) than the algorithm with the
lower DIC score.

The purely model-based algorithm was more likely than the
purely model-free algorithm to explain rat choices on the two-
step task (DIC score difference of 94, Tables 2A,B,D). However,
the constant-weight hybrid algorithm was more likely than the
purely model-based algorithm to explain rat choices on the two-
step task (DIC score difference of 69, Tables 2C,D). The fact that
the constant-weight hybrid algorithm had a far lower DIC score
suggests that rat choices on the two-step task were driven by some
combination of model-based and model-free decision making,
and were not driven by either the model-based or model-free
system alone. This is consistent with many human studies which
find that human choices on the two-step task display bothmodel-
based and model-free influences (Gläscher et al., 2010; Daw et al.,
2011; Wunderlich et al., 2012; Otto et al., 2013a,b; Doll et al.,
2016).

Rats Showed Behavioral Correlates of
Deliberation and Procedural Learning on
the Two-Step Task
Vicarious trial and error is a behavioral correlate of deliberation
in rats (Redish, 2016). We used LogIdPhi, a measure of pausing
and head-turning, to measure VTE (see section Methods). We
found that on our spatial two-step task, rats displayed varying
levels of LogIdPhi at the first choice point (Figure 4). There was
a clear bimodal distribution of LogIdPhi at the first choice point,
where one peak with lesser LogIdPhi values corresponded to
laps where no VTE occurred (Figures 4A,C) and the other peak
with greater LogIdPhi values corresponded to laps where VTE
occurred (Figures 4B,C). The amount of VTE was greater at the
beginning of a session. When comparing each lap to laps > 50,
there was significantly more VTE at the first choice point for 8 of
the first 10 laps. However, there was not significantly more VTE
on laps 10–50 than on laps > 50 (Figure 4D, Wilcoxon rank
sum test, Bonferroni corrected for multiple comparisons, with
pre-correction threshold of p < 0.05).

Similarly, path stereotypy is a behavioral correlate of
procedural decision-making (Packard and McGaugh, 1996; Jog
et al., 1999; Schmitzer-Torbert and Redish, 2002; van der Meer
et al., 2012; Schmidt et al., 2013; Smith and Graybiel, 2013).
We used the inverse of the deviation from the average path
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FIGURE 2 | Rats display a preference for low-delay feeders on the spatial two-step task. (A) The proportion of delays experienced by the rats (colored solid lines,

each line is one rat), as compared to the proportions of delays which would be expected by visiting feeders randomly. (B) The mean delay experienced by the rats

(±SEM) as compared to the mean delay which would be expected by visiting feeders randomly (generated by a model-free simulation run with learning rates at 0).

Delays have been aggregated over all sessions from a given rat.

to measure path stereotypy (such that larger values correspond
to greater behavioral stereotypy, see section Methods). The
stereotypy of rats’ paths also varied on our task (Figure 5). Unlike
VTE, there was a unimodal distribution of path stereotypy, where
some laps were less stereotyped (Figures 5A,C) and other laps
were more stereotyped (Figures 5B,C). Also unlike VTE, path
stereotypy increased steadily over the course of a session, with
48 of the first 50 laps being significantly less stereotyped than laps
>50 (Figure 5D, Wilcoxon rank sum test, Bonferroni corrected
for multiple comparisons, with pre-correction threshold of
p < 0.05).

VTE at the First and Second Choice Points
Was Correlated
The two-step task contains two choice points within a single
trial, which enabled us to evaluate how deliberative behavior
changed within trial. We found that the amount of VTE at the
first and second choice points on a given lap were correlated
(Figure 6, the median Spearman’s correlation coefficient between
LogIdPhi at the first and second choice points within a session
was >0, two-sided Wilcoxon signed rank test, Nsessions = 357,
p = 0.0337, median ρ = 0.0215). Considered individually,
two individual rats showed significant positive correlations,
while no rats showed significant negative correlations (Figure 6A
and Table 3). We also fit a mixed model to VTE at the
two choice points, which accounted for rat- and session-
specific differences in VTE, and still found a significant positive
correlation between the levels of VTE at the two choice points
on single laps (Table 4). This suggests that instead of deliberating
at each single choice independently, rats may have entered a
deliberative mode for entire trials, where then each individual
decision within that trial was made using the deliberative
system.

VTE and Path Stereotypy Changed With the
Number of Choice Repeats
Previous rodent research has found that animals transition from

displaying deliberative behavior to stereotyped behavior over the

course of a session, or with experience on a task. If this shift

toward stereotyped behavior is due to procedural learning, then

a decrease in deliberative behavior and a corresponding increase

in stereotyped behavior should also be apparent as a function of

the number of repeated choices an animal makes. For the two-

step task, we defined a “repeated choice” to be when a rat made

the same choice at both the first and second choice points as on

the previous lap. We found that VTE at the first choice point was

negatively correlated with the number of repeated choices rats

made on the two-step task (Figures 7A,E,H; the per-rat median

Spearman’s correlation coefficient between LogIdPhi at the first

choice point and the number of choice repeats was <0, two-
sided Wilcoxon signed rank test, Nrats = 7, p = 0.0156, median
ρ = −0.205). On the other hand, path stereotypy was positively
correlated with the number of repeated choices (Figures 7D,G,J;
the per-rat median Spearman’s correlation coefficient between
path stereotypy and the number of choice repeats was >0, two-
sided Wilcoxon signed rank test, Nrats = 7 , p = 0.0156, median
ρ = 0.274). We found no significant correlation between VTE
at the second choice point and the number of choice repeats
(Figures 7B,C,F,I; the per-rat median Spearman’s correlation
coefficient between LogIdPhi at the second choice point and the
number of choice repeats was not significantly different from 0,
two-sided Wilcoxon signed rank test, Nrats = 7 , p = 0.156,
median ρ = −0.0730).

However, the amount of VTE at the second choice point
did change depending on whether the transition on that lap
was common or rare. We fit linear mixed models for VTE at
the first choice point, for VTE at the second choice point, and
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FIGURE 3 | First-stage choice repetition by delay for (A) model-free and (B) model-based reinforcement learning simulations. Data has been aggregated over

simulated sessions. Error bars were omitted from (A,B) because SEM of the simulations was negligible. (C) Rats show features of both model-based and model-free

behavior. Data has been aggregated over rats and sessions. Error bars show SEM with N = the total number of laps with a given delay. Delays were binned into 2 s

bins.

for path stereotypy, with transition type (common or rare) on
the current and previous laps as fixed variables, and rat and
session as random variables. There was a significant increase
in the amount of VTE at the second choice point following a

rare transition (Table 5B). VTE at the first choice point on the
lap following a transition did not significantly differ between
common and rare transitions (Table 5A). Path stereotypy on a
given lap, however, was significantly decreased when there was
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TABLE 2 | Reinforcement learning algorithm fit parameters and DIC scores.

Parameter MAP Mean Std

(A) MODEL-FREE

α1 0.0710 0.0739 0.0120

α2 0.00165 0.00170 0.000551

β1 3.44 3.73 1.20

β2 3.64 3.93 1.28

p 0.380 0.387 0.120

λ 0.00200 0.00171 0.00140

DIC score: 51,515 Log Post.: −25,832

(B) MODEL-BASED

α2 0.000933 0.000920 0.000240

β1 7.29 7.87 1.98

β2 6.39 6.90 1.74

p 0.177 0.174 0.0451

DIC score: 51,421 Log Post.: −25,741

(C) CONSTANT WEIGHT

α1 0.0371 0.0360 0.0196

α2 0.00121 0.00129 0.000360

β1 6.16 6.55 1.84

β2 4.96 5.01 1.38

p 0.207 0.211 0.0593

λ 0.00144 0.00190 0.00207

w 0.675 0.647 0.0795

DIC score: 51,352 Log Post.: −25,735

(D) Relative dic scores

Model Constant weight < Model based < Model free

DIC difference (most likely) 69 94 (least likely)

The constant-weight algorithm explains rat choices better than the purely model-free or
purely model-based algorithms. α1 is the learning rate parameter for the first choice point,
and α2 is the learning rate for the second choice point. β1 is the inverse temperature
parameter (controls how random or exploratory choices are—lower values yield more
random choices) for the first choice point, and β2 is the inverse temperature parameter
for the second choice point. The p parameter is a perseveration parameter which captures
how likely rats were to repeat choices from the previous lap regardless of learning (larger
values indicate a higher propensity for choice repetition). The λ parameter is the eligibility
trace parameter, which controls how quickly value information from the second stage is
propagated back to the first stage valuation in the model-free learner. The w parameter in
the constant-weight model controls the weighting between model-based and model-free
influence (with w = 0 the algorithm is purely model-free, and with w = 1 the algorithm
is purely model-based). MAP, maximum a posteriori parameter estimate; Mean, mean of
the MCMC samples; Std, standard deviation of the MCMC samples; DIC score, Deviance
information criterion; models with lower DIC are more likely; DIC differences > 7 suggest
the algorithm with the higher DIC has “considerably less support” (Spiegelhalter et al.,
2002).

a rare transition either on that lap or on the preceding lap
(Table 5C).

To determine what may have been driving VTE at the first
choice point, we fit amixedmodel of VTE at the first choice point,
with random effects of rat and session, and with fixed effects of
the transition on the previous lap, whether the rat repeated its
previous choice, and the delay on the previous lap. We found
that VTE at the first choice point was driven by a complex
interaction between these three factors (Table 6). Confirming our
previous results, there was not a detectable main effect of the
transition on the previous lap, and there was a significant negative

correlation between VTE at the first choice point and repeated
choices. There was also a significant positive correlation between
delay on the previous lap and VTE at the first choice point.
Several of the interaction terms and the three-way interaction
were also significant. Taken together, this suggests that VTE at
the first choice point reflects a deliberative process, where the
interaction between many task variables are being taken into
account, instead of simply being driven by a single task variable
such as transition.

These results indicate that VTE at the first and second choice
points may have been partially driven by different factors. VTE
at the first choice point occurred more often when rats had
just switched to a new choice pattern and interactions between
task variables, but was not detectably affected by the transition
on the previous lap alone. On the other hand, VTE at the
second choice point occurred more often after an unexpected
transition, but was not detectably affected by choice repetitions.
We hypothesize that VTE at the first choice point arises more
as a result of some deliberative process, which in theory also
decreases with the number of repeated choices. Conversely,
we hypothesize that VTE at the second choice point, when
not being driven by a deliberative mode, arises more as a
result of the interruption of a procedural process, which may
lead to deliberation, because it is influenced more strongly by
unexpected transitions in the middle of a lap than by a change
in choice patterns.

DISCUSSION

We found that rat choices on the two-step task were better
explained by a mixture of the model-based and model-free
systems than by either system alone. Furthermore, we were able
to use the fact that each lap on the two-step task contained
multiple decisions to evaluate how VTE changed over the course
of a trial, and found that VTE at the two choice points were
correlated within lap, suggesting rats likely entered deliberative
modes for entire laps. We also observed that VTE at the first
choice point was more strongly driven by changes in choice
patterns and interactions between task variables, suggesting a
deliberative process, while VTE at the second choice point was
more strongly driven by unexpected mid-lap changes in state
action outcomes, suggesting an interruption in a procedural
process.

The correlation between VTE at the two choice points may
seem inconsistent with our interpretation that VTE at the second
choice point is driven by an interruption of a procedural process.
However, we do not believe that VTE at the second choice
point is being driven entirely by such interruptions. Rather, we
would hypothesize that VTE at the second choice point likely
co-occurs with VTE at the first choice point when rats are in
a deliberative mode, and that VTE at the second choice point
is only primarily driven by rare transitions when rats are in a
procedural mode and the unexpected transition interrupts their
stereotyped behavior.

Our findings are consistent with previous work in humans
which finds that hybrid algorithms are more likely to explain
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FIGURE 4 | Vicarious trial and error (VTE) at the first choice point. (A) An example of a pass through the first choice point without VTE, and (B) an example of VTE at

the first choice point. Gray line is rat body position over the whole session, black line is rat body position on example lap, and red or blue lines are rat head position at

the first choice point on the example lap. (C) Distribution of LogIdPhi values at the first choice point over all laps, sessions, and rats. Blue line corresponds to LogIdPhi

value at the first choice point in the example lap shown in A, and the red line to the example lap shown in B. Dashed line is the VTE/non-VTE threshold (see section

Methods). (D) LogIdPhi over the course of a session. Error bars indicate SEM. Stars indicate laps for which LogIdPhi was significantly greater than that of laps 51 and

greater. Data has been aggregated over rats (N = 357, the total number of sessions). Error bars show SEM.

behavior than model-based algorithms alone, and that the
weights in these hybrid algorithms favor model-free decision-
making (Daw et al., 2011; Voon et al., 2015), though see
Simon and Daw (2011) and Gillan et al. (2015). However,
some work in rodents on the two-step task finds that rodent
choices are primarily, but not necessarily exclusively, model-
based, or “planning-driven” (Akam et al., 2013; Miller et al.,
2013, 2014, 2017). This discrepancy could have been caused
by any of several factors, but we suspect differences in how

we implemented the two-step task for rodents was the main
contributor.

There were some specific differences between our version of
the two-step task and that used by others. Unlike the human
version of the two-step task (Daw et al., 2011) and other rodent
adaptations (Miller et al., 2017), we used delay to reward delivery
as the cost, instead of the probability of reward delivery. We
also implemented the full version of the two-step task, with costs
which changed according to a random walk, and no second stage
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FIGURE 5 | Path stereotypy on the spatial two-step task. (A) An irregular, non-stereotyped path, and (B) an example of a highly stereotyped path. The gray line is rat

body position over the whole session, and colored lines are the rat body position on the example lap. (C) Distribution of path stereotypy over all laps, sessions, and

rats. Red line corresponds to the log deviation value of the example lap shown in (A), blue line to the example lap shown in (B). (D) Path stereotypy over the course of

a session. Stars indicate laps for which path stereotypy was significantly less than that of laps 51 and greater. Data has been aggregated over rats (N = 357, the total

number of sessions). Error bars show SEM.

choice cue. The more simplified version used in rodents byMiller
et al. (2017) had costs which switched between blocks of trials but
stayed constant throughout a block, and had a cued second stage
choice.

We found that reinforcement learning models were difficult to
fit to rat choices on our task. The number of MCMC iterations
required to obtain fits whose chains converged was extremely
high (see section Methods), and attempting to fit multilevel
models (models with rat as a mixed effect) only aggravated this
problem. Furthermore, the fit learning rates of our reinforcement
learning models were suspiciously low. We suspect that the

complexity of our version of the two-step task for rodents, along
with the use of delay to reward delivery as the cost, prevented
the rats from learning the task well enough to employ solely the
model-based system, and so relied also on the model-free system
in order to make choices on the task. This may explain why we
found that a mix of model-based and model-free strategies best
explained rat choices on our task.

We noticed that some rats preferred certain feeders over
multiple days, regardless of delay (data not shown). It could be
that Pavlovian decision-making or place preferences also played a
role in some rats’ choices. This might explain in part the relatively
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FIGURE 6 | Correlation between VTE at the first and second choice points. (A) Correlation coefficients per session for each rat individually. (B) Correlation coefficients

per session pooled across rats.

TABLE 3 | Spearman’s correlations between VTE at choice point 1 and choice

point 2 for each rat.

Rat Median ρ p

1 −0.0243 0.406

2 0.0430 0.0267

3 0.0834 0.00109

4 −0.0185 0.178

5 0.0216 0.661

6 0.0359 0.198

7 0.0270 0.982

Shown are the median correlation coefficients (over sessions from that rat) and the p-value
of a Two-sided Wilcoxon signed rank test.

low values of the fit second-stage learning rates (see Table 2). In
the current analysis, we chose not to model side biases in order to
limit our models to the simplest set of model features which were
able to capture model-based vs. model-free choices. However, it
would be informative in future work to investigate and model the
influences of other decision-making systems in addition to only
the model-based and model-free systems.

Hierarchical learning, or “chunking” of action sequences, is
thought to occur when multiple actions are chained together and
are able to be released as a single action. While action chains are
usually thought to be driven by a model-free system, some work
suggests that model-based systems are capable of initiating action
chains whichmay appear driven by procedural learning (Dezfouli
and Balleine, 2012, 2013; Dezfouli et al., 2014). In future work,
it would be interesting to investigate if and how the effects of
hierarchical learning on the two-step task affect (or are affected
by) arbitration between systems.

Our task used the same two physical locations for the four
second-stage end states. Although the task included auditory and
visual cues, some rats may have confused the two second-stage
end states which shared the same location (for example they may
have confused E and C, or D and F, see Figure 1B). This may have

TABLE 4 | Mixed Model of the correlation between VTE at the two choice points.

Mixed model of the correlation between VTE at the two choice points

Parameter 2.5% Estimate 97.5% t-statistic DF p

β 0.0570 0.0685 0.0801 11.7 26,457 2.65× 10−31

σr 0.129 0.225 0.392

σs 0.341 0.369 0.401

σǫ 0.896 0.904 0.912

Parameter descriptions

Parameter Description

β Standardized coefficient

σr Standard deviation of the per-rat random effect

σs Standard deviation of the per-session random effect

σǫ Standard deviation of the residual error

caused some “bleeding” between the expected values of state-
action pairs which led to those states. Any confusion of states
in this way would have been an error in situation recognition,
and would not necessarily have been occurring in the model-
based or model-free systems themselves. Situation recognition is
thought to be carried out by a separate system, one not intrinsic
to the model-based or model-free systems themselves (Fuhs and
Touretzky, 2007; Redish et al., 2007; Gershman et al., 2015).
Therefore, any confusion between states would presumably affect
both the model-based and model-free systems equally. For this
reason we decided not to model any bleeding of state-action
values because we were interested only in differences between the
model-based and model-free systems.

We adapted the two-step decision task from Daw et al. (2011)
for rats in order to study behavioral correlates of model-free and
model-based decision-making, but this version of the task can
also be used to study neural correlates of model-free and model-
based decision-making using electrophysiological techniques in
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FIGURE 7 | VTE and Path Stereotypy as a function of the number of repeated choices. Raw levels of VTE at the first (A) and second (B) choice points, the ratio of laps

on which rats showed VTE (C), and path stereotypy (D) as a function of choice repeats. For (A–D), error bars show mean ± SEM with N = 7, the number of rats. (E,F)

Per-rat correlation coefficients between the number of repeated choices and VTE at the first choice point (E), second choice point (F), and path stereotypy (G). (H–J)

Per-session correlation coefficients between the number of repeated choices and VTE at the first choice point (H), second choice point (I), and path stereotypy (J).

the rodent brain. Representation of state-action pairs and “task-
bracketing” in dorsolateral striatum have been hypothesized to
initiate action sequences which have been learned procedurally
(Jog et al., 1999; Frank, 2011; Regier et al., 2015). On the
other hand, model-based neural activity has been observed in a
variety of brain areas including hippocampus, ventral striatum,
orbitofrontal cortex, prefrontal cortex, and dorsomedial striatum
(Johnson and Redish, 2007; van der Meer et al., 2012; Daw and
Dayan, 2014; Wikenheiser and Redish, 2015; Brown et al., 2016),
and inactivating the dorsal hippocampus in rats impairs model-
based decisions (Miller et al., 2017). The current behavioral
analysis assumes that either the model-based or model-free
system is used to make a decision, but it would be informative
to record from the neural structures implicated in procedural
learning and those involved in deliberation in rats as they run the
two-step task to determine if and how the two systems operate
concurrently. Importantly, Akam et al. (2015) suggest that certain
model-free strategies can appear to generate model-based choices
on the two-step task. Therefore, if these systems may not be able
to be conclusively dissociated based purely on choice patterns, it
will be important for further work to investigate neural activity in
brain areas thought to drive model-based or model-free decision
making in order to truly disentangle the contribution of each
system.

By adapting for rats a decision task which is made up
of multi-choice trials, we were able to investigate how rats
used model-free and model-based choice strategies on the task,
along with how the transition from deliberation to procedural
automation occurs over the course of single trials, and over
the course of sequences of repeated choices. We found that a
mixture of model-based and model-free choice strategies was
more likely to explain rats’ choices on this task than either
strategy alone. Furthermore, we found that VTE at the two
choices within a trial were correlated, which suggests that rats
entered deliberative or procedural modes for whole laps. Also,
vicarious trial and error at the first choice in a trial corresponded
to a complex interaction between task variables and the number
of repeated choices, suggesting a deliberative process. Conversely,
we found that vicarious trial and error at the second choice in a
trial corresponded to unexpected transitions, suggesting it was
driven by interruptions in a procedural process which triggered
deliberation.

METHODS

Task
We adapted for rats the human two-stage choice task from
Daw et al. (2011). The task consisted of two choice points
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TABLE 5 | Mixed models of (A) VTE at the first choice point, (B) VTE at the second choice point, and (C) and path stereotypy, with transition type on the current lap and

previous lap as fixed effects, and rat and session as random effects.

Parameter 2.5% Estimate 97.5% t-statistic DF p

(A) MIXED MODEL FOR LogIdPhi AT CHOICE POINT 1

β0 3.979 4.168 4.357 43.28 26106 <10−100

T −0.01987 0.009811 0.03949 0.6479 26106 0.517

TP −0.004464 0.02525 0.05496 1.666 26106 0.0958

σr 0.1424 0.2476 0.4307

σs 0.3734 0.4049 0.4390

σǫ 0.9622 0.9706 0.9790

(B) MIXED MODEL FOR LogIdPhi AT CHOICE POINT 2

β0 3.696 3.726 3.756 243.8 26106 <10−100

T 0.01528 0.02556 0.03584 4.874 26106 1.100× 10−06

TP −0.009982 0.0003090 0.01060 0.05892 26106 0.9530

σr 0.01959 0.03678 0.06906

σs 0.1006 0.1095 0.1191

σǫ 0.3334 0.3363 0.3392

(C) MIXED MODEL FOR PATH STEREOTYPY

β0 0.04815 0.05263 0.05712 23.00 25965 <10−100

T −0.001344 −0.0008540 −0.0003650 −3.420 25965 6.276× 10−4

TP −0.001006 −0.0005160 −0.00002600 -2.064 25965 0.03900

σr 0.0033665 0.0058732 0.010247

σs 0.0095065 0.010264 0.011082

σǫ 0.015813 0.015951 0.01609

Parameter descriptions

Parameter Description

β0 Fixed intercept

T Fixed effect of rare transition on current lap

TP Fixed effect of rare transition on previous lap

σr Standard deviation of the per-rat random effect

σs Standard deviation of the per-session random effect

σǫ Standard deviation of the residual error

The 2.5% column indicates the lower bound of the 95% confidence interval, and the 97.5% column indicates the upper bound of the 95% confidence interval. DF, degrees of freedom.

(“stages”) where subjects were presented with a choice between
two options, and then were presented with a second choice
between two additional options. The options available at the
second stage depended probabilistically on the choicemade at the
first stage: there were two possible second-stage contexts, each
of which was presented 80% of the time after its corresponding
1st-stage decision (a common transition), while the opposite
second-stage choice was presented 20% of the time (a rare
transition). Upon making a choice at the second stage, subjects
were given a reward which corresponded to that second-stage
choice. Reward values differed between the four possible second-
stage outcomes, and so the objective of the task was to make first-
and second-stage decisions which led to the greatest amount of
reward.

For rats, we used T-shaped left/right choice points in a spatial
maze as the choices. The task consisted of two such choice points
encountered serially, where both choices at the first T led to the
same physical second choice. Each choice at the second T led

to one of two 45-mg food pellet dispensers (MedAssociates, St.
Albans, VT) on either side of the maze, at which point rats were
required to wait a certain amount of time before they received
two food pellets per lap. We used delay to food as a proxy for
reward, instead of reward probability as was used in Daw et al.
(2011) and Miller et al. (2017). Higher delays corresponded to
lower value, and lower delays to higher value. Delays ranged
between 1 and 30 s, and changed over the course of the session
according to a Gaussian random walk with a standard deviation
of 1 s/lap. The decision at the first choice point probabilistically
controlled which of the two possible second-stage contexts were
encountered. To indicate to the animal which second-stage
context they were in, we presented auditory and visual cues after
the first choice was made. The auditory cue was a beep pattern
unique to each second stage, and the visual cue was white-on-
black lines or circles (depending on the second stage) displayed
on three Dell S2340M monitors around the second choice point.
From the pellet dispensers on either side of the maze, there were
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TABLE 6 | Mixed model of VTE at the first choice point.

Mixed model for LogIdPhi at choice point 1

Parameter 2.5% Estimate 97.5% t-statistic DF p

β0 4.142 4.328 4.514 45.59 26110 <10−100

TP −0.2222 −0.1086 0.005064 −1.873 26110 0.0611

C −0.5217 −0.4608 −0.3999 −14.83 26110 1.60× 10−49

DP 0.002559 0.00567 0.00878 3.573 26110 0.000354

TP*C 0.08108 0.2126 0.3441 3.168 26110 0.00153

TP*DP −0.0007716 0.005783 0.01234 1.729 26110 0.0838

C*DP 0.008183 0.0119 0.01562 6.272 26110 3.62× 10−10

TP*C*DP −0.02229 −0.01439 −0.006489 −3.57 26110 0.000358

σr 0.1358 0.2353 0.4077

σs 0.3282 0.3566 0.3874

σǫ 0.9514 0.9597 0.9678

Parameter descriptions

Parameter Description

β0 Fixed intercept

TP Fixed effect of rare transition on previous lap

C Fixed effect of choice repeat on current lap

DP Fixed effect of delay on the previous lap

σr Standard deviation of the per-rat random effect

σs Standard deviation of the per-session random effect

σǫ Standard deviation of the residual error

Transition type on the previous lap, delay on the previous lap, and whether the rat repeated its choice or not are fixed effects, and rat and session are random effects. A*B indicates an
interaction term between A and B. The 2.5% column indicates the lower bound of the 95% confidence interval, and the 97.5% column indicates the upper bound of the 95% confidence
interval. DF, degrees of freedom.

return hallways to the start of the maze. There was another pellet
dispenser at the start of the maze, where rats received one pellet
per lap. Four one-way doors were used to prevent the rats from
moving backwards through the maze: one on either side of the
first choice-point, and one just before entry into the reward offer
zone. Rats were allowed to freely run the task for the duration of
sessions which lasted 45 min, and earned their food for the day
while running the task (∼10–15 g).

Subjects
Seven male Brown Norway rats aged 6–15 months obtained from
Harlan (Bloomington, Indiana) were subjects for the experiment.
Before behavioral training, rats were handled for 7 d, then
acclimated for 7 d to eat the food pellets delivered during the
task (45-mg sucrose pellets, Test Diet), and finally trained to run
through the one-way doors on a separate maze for 7 d. Rats were
housed on a 12-h light-dark cycle, and behavioral sessions were
run at the same time daily. Rats were food restricted to encourage
them to run the task, and maintained weight at >80% of their
free-feeding weight. Water was always available in their home
cage. All experimental and animal care procedures complied
with US National Institutes of Health guidelines for animal care
and were approved by the Institutional Animal Care and Use
Committee at the University of Minnesota.

Behavioral Recording
Animal behavior on the task was captured with a video
camera (Cohu, Inc.) placed above the maze. Custom Matlab
(MathWorks) software determined animal position from the
video on-line; controlled delays, pellet dispensers, and monitors;
and recorded animal trajectory through the maze along with task
events. CustomMatlab software was written to track animal head
positions from video off-line.

Training
There were three phases of task training, each lasting 8 d. For
the first, there was no delay to food delivery, no second-stage
auditory or visual cues, and one optionwas blocked at each choice
point, leaving only one possible path through the maze. Choices
were blocked such that all four paths through the maze (LL, LR,
RL, RR) were sampled equally. Eight pellets were dispensed at
the two feeder sites per reward on the first day of training, and
the number of pellets decreased by 1 pellet every 2 days for
the duration of the training phase. A single pellet per lap was
dispensed at the rear feeder site.

For the second training phase, there were still no second-stage
auditory or visual cues, and one of the first-stage options was
blocked, but both second-stage choices were left open. Delay to
food was set randomly between 1 and 10 s on the first day of
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second phase training, and the maximum delay increased by 2
s/day for the duration of the training phase. The delay values
were allowed to change over the course of the session according
to the same Gaussian random walk used in the full task (but not
allowed to increase above the maximum delay for the day). Four
pellets were dispensed at each feeder site for the first 4 days of this
training phase, and three pellets for the last 4 days.

The third training phase was 8 d of the full task, with no
choices blocked, a maximum delay of 30 s, and two pellets per
feeder site.

Analysis
All analyses except the Bayesian modeling were performed
in Matlab (MathWorks). The Bayesian reinforcement learning
model fits were performed in Stan (Carpenter et al., 2017) using
the Python interface PyStan (Stan Development Team, 2017).

Vicarious Trial and Error (VTE)
To measure VTE for each pass of a rat through the choice point
zone, we used LogIdPhi, which captures both how long the rat
hesitates at the choice point, and how quickly the rat’s head is
changing direction. When x and y are the position of the rat’s
head,

LogIdPhi = log
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On a very small proportion of choice point passes, we were unable
to compute VTE due to a momentary lag in the rat position
tracking system. At the first choice point, this occurred on 13 laps
(0.049% of laps). At the second choice point, this occurred on 10
laps (0.038% of laps). We excluded these laps from our analysis.

Path Stereotypy
To measure path stereotypy, we used the inverse of the mean
distance between the path on a given lap and all other paths
during the same session of the same type (LL, LR, RL, or RR), re-
sampled in time. This resulted in a value which was larger when
paths were more stereotyped (similar to the average path), and
smaller for irregular paths through the maze. When a lap was
the only lap of its type in a session, we could not calculate path
stereotypy (with no similar paths for which to compute the mean
distance), and so we excluded such laps from our analysis. These
laps made up a very small proportion of the total data (0.66%).

Algorithm Fits
Each algorithm computed the expected value (or Q-value) of
taking an action a, in any given state, s. Our model of the two-
step task included only two possible actions in any state (“go left”
or “go right”), and only three states: the first choice point (C1,
a choice between A and B), and the two possible second choice
points (C2, a choice between C and D; and C3, a choice between
E and F) see diagram in Figure 1.

The next three subsections explain how each algorithm
computes the expected value (or Q-value) of taking an action
a, in any given state, s. The section after that (“Computing the
Likelihood of Each Algorithm”) describes how the likelihood is

computed for each algorithm from that algorithm’s Q-values.
This “likelihood” is the probability that the algorithm, with a
given set of values for its parameters, would make the same
choices we observed the rats make on the two-step task. The
section after that (“Bayesian Algorithm Fitting Using Stan”)
describes how the models are fit using these likelihoods. Finally,
the section after that (“Algorithm Comparison”) describes how
algorithms were compared to determine which one was most
likely to explain our data.

Model-Free Algorithm
For the model-free algorithm, we used the SARSA(λ) temporal
difference learning algorithm (Rummery and Niranjan, 1994), as
was used in Daw et al. (2011). This algorithm learns the expected
value (QMF) of taking a given action a, in any given state s, by
updating the Q-values according to the delta rule:

QMF(si,t , ai,t) = QMF(si,t , ai,t)+ αiδi,t

where si,t is the state on trial t at stage i, and ai,t is the action taken
in that state on that trial. αi is the learning rate for stage i. There
were only two stages on the two-step task: decisions at the first
stage (C1) used α1, and decisions at the second stage (C2 or C3,
see Figure 1) used α2. The reward prediction error, δi,t , was the
difference between expected and experienced reward on trial t at
stage i:

δi,t = ri,t + QMF(si+1,t , ai+1,t)− QMF(si,t , ai,t)

where ri,t is the reward experienced at stage i of trial t. For the
first stage reward, we defined r1,t = 0, because rats did not receive
reward between the first and second choice points. For the second
stage rewards, we defined the reward as the opposite of the cost:

r2,t = maxDelay− d2,t

where maxDelay is the maximum possible delay to food on our
task (30 s), and d2,t is the delay experienced on trial t (and explicit
delays only occurred after a choice at stage 2). This assumes
that rats are aware of the maximum delay, which we believe
is a valid assumption, because rats were trained extensively on
the task before the experiment began. We also defined a third
“virtual” state, where QMF(s3,t , a3,t) = 0, because there is no
further reward in a trial following food delivery. The algorithm
updates the first-stage state-action value based on the eligibility
trace parameter and second-stage reward prediction error at the
end of each trial:

QMF(s1,t , a1,t) = QMF(s1,t , a1,t)+ α1λδ2,t

Note that the update forQMF(s1,t , a1,t) occurs twice per trial: once
after the first-stage choice (where the α1 learning rate is used),
and again after the end of the trial according to the eligibility
trace parameter, λ (where a learning rate of (α1λ) is used, as in
the equation above).
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Model-Based Algorithm
The model-based algorithm updates the second-stage state-
action values [Q(a2,t , s2,t)] in exactly the same way as the model-
free system. However, for the first-stage state action values,
instead of updating them according to the delta rule, the model-
based algorithm takes into account the transition probabilities
and the best option at either second stage, and computes the
first-stage action values at decision time by:

QMB(sA, at) = p(sB|sA, at) max
a′∈{aA ,aB}

QMF(sB, a
′)

+ p(sC|sA, at) max
a′∈{aA ,aB}

QMF(sC, a
′)

where, sA is the first-stage state, sB is one of the two second-stage
states, sC is the other second-stage state, and at is an action taken
at the first stage of trial t. p(sX|sY , at) is the transition probability
from state sY to sX after taking action at at sY . Because the rats
were trained on the two-step task for over 3 weeks before we
started collecting the data to which these models were fit, we
assumed the rats had learned the transition probabilities by the
end of training, and so our model did not include the learning
of the transition probabilities. Therefore, p(sX|sY , at) was set to
either 0.8 for a common transition or 0.2 for a rare transition.

Constant-Weight Hybrid Algorithm
This algorithm values actions according to some constant weight
between the model-based and model-free algorithm values.
Essentially, the constant-weight hybrid algorithm “runs” both
the model-free and model-based algorithms simultaneously, and
then computes the value (QCW) of taking some action a in some
state s as the weighted average between the state-action values of
the model-free and model-based systems:

QCW(s, a) = wQMB(s, a)+ (1− w)QMF(s, a)

where w is a free parameter which determines the weighting
between the model-based and model-free systems. If w = 1
then the algorithm is purely model-based, and if w = 0 then
the algorithm is purely model-free. The model-based and model-
free algorithms within the constant-weight hybrid algorithm are
assumed to share parameters, as in Daw et al. (2011).

Computing the Likelihood of Each Algorithm
To transform each algorithm’s valuations of different state-
action pairs (each algorithm’sQ-values) into probabilities that the
algorithm would make the same choice as the rats did at stage i
of trial t [we denote this probability by p(ai,t = a|si,t)], we used
a softmax for each algorithm, in the same way as in Daw et al.
(2011):

p(ai,t = a|si,t) =
exp(βi[Q(si,t , a)+ p× rep(a)])

∑

a′ exp(βi[Q(si,t , a′)+ p× rep(a′)])

where βi is an inverse temperature parameter that controls how
stochastic the models’ choices are at each choice point, and the
sum in the denominator sums over all available actions, a′. As
βi → 0, the choices become purely random, and as βi → ∞,

the probability of choosing the action with the largest Q value
approaches 1. We used independent βi parameters for each stage
of the task, and the i index of βi corresponds to the stage. There
were only two stages on the two-step task. Decisions at the first
stage (C1) used β1, and decisions at the second stage (C2 or C3,
see Figure 1) used β2.

The p parameter accounts for an inclination to repeat the same
action taken on the last lap (p > 0), or to switch to the opposite
action (p < 0), regardless of expected action values. rep(a) was a
function which evaluated to 1 if the rat repeated its action, that
is, performed action a at that stage on the previous lap (stage
i, trial t − 1), and 0 if it chose a different action. Therefore, if
the p parameter was positive, the algorithm was more likely to
repeat the previous choice, and if it was negative, the algorithm
was more likely to switch (choose the opposite choice from the
previous trial).

We initialized all Q-values to the mean reward value at the
beginning of each session. The log probability of observing rat
choices across all Ns sessions given an algorithm is then:

log(p(data|θ)) =

Nd
∑

d=1

Nt
∑

t=1

Ni
∑

i=1

log
(

p(ai,t = a|si,t)
)

where θ is the set of all parameters for a given algorithm,Ni is the
number of choice stages in each trial t (for our task this is always
2: the first choice point, C1, and the second choice point, C2 or
C3, see Figure 1), Nt is the number of trials in a given session (or
“day”) d, and Nd is the total number of sessions across all rats.

Bayesian Algorithm Fitting Using Stan
WeusedMarkov chainMonte Carlo (MCMC) in Stan (Carpenter
et al., 2017), and the Python programming language interface to
Stan, PyStan (Stan Development Team, 2017), to generate model
parameter posterior distributions so that we could perform
model comparison and inference of the parameter values. Stan
is a platform for Bayesian statistical modeling (http://mc-stan.
org), in which models can be written using a simple modeling
language, and Stan performsMCMC sampling resulting inmodel
and parameter posterior probabilities. This allowed us to perform
Bayesian inference as to the values of model parameters, and
model comparison using DIC scores.

In Table 2, for each algorithm we report the DIC score, the
median of the MCMC samples for all parameters, and 95%
confidence intervals. Each algorithm was fit in PyStan with 5
chains per algorithm, and 10,000 iterations per chain (5,000
warm-up and 5,000 sampling). Chains which took longer than
96 h to run were aborted and re-started. We used pooled (non-
hierarchical) models, such that the same parameter was used for
each rat.

We used vaguely informative priors for the Bayesian fits in
Stan. Across all models, the priors used were:
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Parameter Prior

α1 Beta distribution with α = 1.2,β = 1.2
α2 Beta distribution with α = 1.2,β = 1.2
λ Beta distribution with α = 1.2,β = 1.2
β1 Exponential distribution with λ = 0.5
β2 Exponential distribution with λ = 0.5
p Normal distribution with µ = 0, σ = 10
w Beta distribution with α = 1.2,β = 1.2

Algorithm Comparison Using DIC
The three algorithms which were fit to rat behavior did not all
have the same number of parameters:

Algorithm Number of

parameters

List of parameters

Model-free 6 α1,α2, λ,β1,β2, and p
Model-based 4 α2,β1,β2, and p
Constant-weight 7 α1,α2, λ,β1,β2, p, and w

Using naive model comparison methods, like comparing model
likelihoods, could cause models with more parameters to be
deemed more likely due to overfitting. In order to compare
the probability of models which have different numbers of
parameters, we used Deviance Information Criterion (DIC)
(Spiegelhalter et al., 2002). DIC allows a more fair comparison
of models with different numbers of parameters by penalizing
models which have a higher effective number of parameters. It is
also well-suited for use withmodels whose posterior distributions
have been computed via MCMC, which is the method we used.
We compute the DIC score by:

DIC = D(θ̄)+ 2pD

where the effective number of parameters (pD) is computed by:

pD = D̄− D(θ̄)

D̄ is the average of the deviance, D(θ), over all the MCMC
samples of θ :

D̄ =
1

Nsamples

Nsamples
∑

i=1

D(θi)

D(θ̄) is the deviance evaluated at the average of the MCMC
samples of θ :

D(θ̄) = D





1

Nsamples

Nsamples
∑

i=1

θi





The deviance is computed by:

D(θ) = −2 log(p(data|θ))

where log(p(data|θi)) is the algorithm likelihood, as computed
above (in section Computing the Likelihood of Each Algorithm),
given parameters θ for a MCMC sample. The deviance is
technically D(θ) = −2 log(p(data|θ)) + C, but C is a constant
which cancels out when comparing different models. Algorithms
are compared based on their DIC scores, where models with
lower DIC scores are more likely to explain the data.

Model-Based and Model-Free Simulations
We simulated model-based and model-free agents on the two-
step task for Figures 2, 3. We used the same models which were
fit to rat behavior (above) to simulate agent choice on the task,
and used the same task parameters which were used for the
rats. Simulated sessions lasted 74 laps (the average length of rat
sessions).

The data used for the “chance” line in Figure 2 was generated
by 10,000 simulated sessions of a model-free agent with learning
rates set to 0 (α1,α2 = 0, β1,β2 = 3, p, λ = 0).We used an agent
with learning rates set to 0 because this yielded an agent whose
choice probabilities were 50% for any choice on the model of our
task, since the Q-values were all initialized to the same value.

Themodel-free andmodel-based simulations in Figures 3A,B
were generated by 10,000 simulated sessions of model-free
or model-based agents. Parameters used were α1,α2 =

0.5, β1,β2 = 3, p = 0.3, λ = 0.

Mixed Model of VTE at the Two Choice
Points
To determine if levels of VTE were correlated between the two
choice points, we fit a mixed model to LogIdPhi at the first
and second choice points. Specifically, the model tried to predict
LogIdPhi at the second choice point from LogIdPhi at the first
choice point on that same lap. These models included subject and
session as random effects; that is, they allowed levels of VTE to
vary across subjects and sessions, but not in a totally independent
way. Our model included a fixed intercept, a fixed effect of
transition type on the current lap, a fixed effect of transition type
on the previous lap, a per-subject random effect, and a per-session
random effect.

zLogIdPhi2,i = β0 + βVTE × zLogIdPhi1,i + Rr + Ss + ǫ

R ∼ N (0, σr)
S ∼ N (0, σs)
ǫ ∼ N (0, σe)

where

• zLogIdPhi2,i is the z-scored LogIdPhi value at the second
choice point on lap i,

• zLogIdPhi1,i is the z-scored LogIdPhi value at the first choice
point on lap i,

• β0 is the fixed intercept of the model (baseline LogIdPhi),
• βVTE is the standardized coefficient (a parameter which

captures the relationship between the amount of VTE at the
two choice points),

• Rr is rat r’s random effect (or adjustment coefficient), which
accounts for the possibility that some rats have different
baseline levels of LogIdPhi,
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• SS is session s’s random effect, which accounts for the
possibility that rats have different baseline levels of LogIdPhi
on different sessions,

• σr and σs are the standard deviations of per-rat (R) and
per-session (S) random effects, respectively,

• σe is the standard deviation of the error, and
• N (µ, σ ) represents a normal distribution centered at µ with

standard deviation σ .

β0 was not reported in Table 4, because the inputs to the
model were z-scored, and so the intercept was, of course, not
significantly different from 0.

Mixed Models of VTE and Path Stereotypy
With Transition Type
In order to determine if VTE and path stereotypy changed
depending on whether there was a rare transition on the current
or previous lap, we fit mixed models to VTE and path stereotypy.
Thesemodels included subject and session as random effects; that
is, they allowed levels of VTE or path stereotypy to vary across
subjects and sessions, but not in a totally independent way. Our
model included a fixed intercept, a fixed effect of transition type
on the current lap, a fixed effect of transition type on the previous
lap, a per-subject random effect, and a per-session random effect.

Yi = β0 + Tti + TPti−1 + Rr + Ss + ǫ

R ∼ N (0, σr)
S ∼ N (0, σs)
ǫ ∼ N (0, σe)

where

• Yi is the LogIdPhi value at the first choice point on lap i (or
the LogIdPhi value at the second choice point on lap i for the
second choice point model, or the path stereotypy value on lap
i for the path stereotypy model),

• β0 is the intercept of the model (baseline LogIdPhi or path
stereotypy value),

• T is the parameter capturing the fixed effect of rare transitions
on the current lap,

• ti is an indicator variable which is 0 when there was a common
transition on lap i, and 1 when there was a rare transition on
lap i,

• TP is the parameter capturing the fixed effect of a rare
transition on the previous lap,

• ti−1 is an indicator variable which is 0 when there was a
common transition on lap i − 1, and 1 when there was a rare
transition on lap i− 1,

• Rr is rat r’s random effect (or adjustment coefficient), which
accounts for the possibility that some rats have different
baseline levels of LogIdPhi or path stereotypy,

• SS is session s’s random effect, which accounts for the
possibility that rats have different baseline LogIdPhi or path
stereotypy values on different sessions,

• σr and σs are the standard deviations of per-rat (R) and
per-session (S) random effects, respectively,

• σe is the standard deviation of the error, and

• N (µ, σ ) represents a normal distribution centered at µ with
standard deviation σ .

Laps which were the first in a session were not used in this
analysis, as the transition type of the previous (non-existent) lap
was undefined. The degrees of freedom in the mixed model for
path stereotypy were different from the degrees of freedom in
the mixed models for VTE because on some laps path stereotypy
could not be calculated (when a lap was the only lap of that type in
a session, see the Path Stereotypy section above). Also the degrees
of freedom in the mixed models for VTE are different here than
for the mixed model used between VTE at the two choice points,
because this model does not include laps which were the first in a
session (see above).

Mixed Model of VTE at the First Choice
Point
In order to determine what was contributing to VTE at the first
choice point, we fit a mixed model to VTE at the first choice
point. This model included subject and session as random effects,
a fixed intercept, a fixed effect of transition type on the previous
lap, a fixed effect of delay experienced on the previous lap, and a
fixed effect of choice repetition (whether the previous choice was
repeated or not).

Yi = β0 + TPti−1 + DPdi−1 + Cci + Rr + Ss + ǫ

R ∼ N (0, σr)
S ∼ N (0, σs)
ǫ ∼ N (0, σe)

where

• Yi is the LogIdPhi value at the first choice point on
lap i

• β0 is the intercept of the model (baseline LogIdPhi
value),

• TP is the parameter capturing the fixed effect of a rare
transition on the previous lap,

• ti−1 is an indicator variable which is 0 when there was a
common transition on lap i − 1, and 1 when there was a rare
transition on lap i− 1,

• DP is the parameter capturing the fixed effect of the delay on
the previous lap,

• di−1 is the delay in seconds on lap i− 1,
• C is the parameter capturing the fixed effect of choice

repetition,
• ci in an indicator variable which is 0 when the rat did not repeat

its choice on lap i, and 1 when it did,
• Rr is rat r’s random effect (or adjustment coefficient), which

accounts for the possibility that some rats have different
baseline levels of LogIdPhi or path stereotypy,

• SS is session s’s random effect, which accounts for the
possibility that rats have different baseline LogIdPhi or path
stereotypy values on different sessions,

• σr and σs are the standard deviations of per-rat (R) and
per-session (S) random effects, respectively,

• σe is the standard deviation of the error, and
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• N (µ, σ ) represents a normal distribution centered at µ with
standard deviation σ .
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