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Abstract The concept of value is fundamental to most theories of motivation and
decision making. However, value has to be measured experimentally. Different
methods of measuring value produce incompatible valuation hierarchies. Taking the
agent’s perspective (rather than the experimenter’s), we interpret the different
valuation measurement methods as accessing different decision-making systems
and show how these different systems depend on different information processing
algorithms. This identifies the translation from these multiple decision-making
systems into a single action taken by a given agent as one of the most important
open questions in decision making today. We conclude by looking at how these
different valuation measures accessing different decision-making systems can be
used to understand and treat decision dysfunction such as in addiction.
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Value-based decision-making processes are integral to adaptive behavior, and
accordingly, the concept of value is ubiquitous across decision-making studies from
diverse perspectives, including studies of neuroeconomic choice (Glimcher et al.
2008; Kable and Glimcher 2009), optimal foraging theory (Stephens and Krebs
1987), reinforcement learning (Sutton and Barto 1998), and deliberative decision
making (Rangel et al. 2008; Rangel and Hare 2010). Operational definitions of
value within each of these fields often point to “value” as a common currency that
can be applied to objects, actions, and experiences (Kable and Glimcher 2009; Levy
and Glimcher 2012). Theoretically, using value as a common currency may ease an
agent’s difficulty making choices between very different options. However, value
and motivation are hypothetical constructs (MacCorquodale and Meehl 1954), and,
as such, cannot be directly measured. Instead, they must be inferred from inter-
pretations of observations. This review will start from the observation that mea-
suring value in different ways can lead to incompatible orderings of valuation—
how you measure value changes what things are valued more than others. Valuation
is not trans-situational; instead, it is context-dependent.

1 What is Value?

The concept of value can be defined as a quantification of a resource in terms of its
costs and benefits, as well as the subjective desire or preference for some quantity of
one resource over another. Typically, value is considered to be a derivative property
of the relationship between an agent and a given object of desire (Glimcher et al.
2008). Because both human and non-human animals make decisions using similar
systems dependent on similar neural structures (Redish 2013), we draw evidence
from both human and non-human decision-making studies to reach our conclusions.
Among all animals, the needs of the individual may modulate the value of candidate
actions in the world, as hunger predisposes an agent for consumable rewards, but
even though it may be context-dependent, the valuation step is typically taken as a
metric of external features of the world in the present condition of the agent
(Glimcher et al. 2008, but see Niv et al. 2006b).

Fundamentally, the value of an object to an agent is a multidimensional entity.
We rarely choose where to eat dinner based solely on the nutritional content of a
particular dish, but rather we integrate the convenience and expense of different
restaurants or our own kitchen, the taste or style of foods at local restaurants or the
ingredients in our cupboards, the speed of service at different restaurants or the
preparation time of foods, our mood, restaurant atmospheres, and other social
factors, as well as what we may have had for lunch today or dinner yesterday.
Potential costs, as in these examples, are determined by temporal, energetic, and
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resource constraints; while benefits range from social and hedonic experiences to
energetic and health-related issues. Despite the numerous factors that may con-
tribute to the valuations of different restaurants and our kitchen at home, we ulti-
mately choose where to have dinner based on some integration of these factors.
Current theories suggest that this process entails value as a means of reaching a
common currency to make the choice (Glimcher 2003; Levy and Glimcher 2012;
Wunderlich et al. 2012). Taking that idea to its logical conclusion suggests that the
choice itself should be understood as the measure of the valuation process
(Samuelson 1937; Redish 2013).

1.1 Measuring Value

This observation suggests that we need to take value as revealed through the actions
of an agent. Different computational processes may well underlie different decision
processes and different effective motivational measures of valuation (Daw et al. 2005;
Niv et al. 2006a, b; Rangel et al. 2008; Redish et al. 2008; Montague et al. 2012; van
der Meer et al. 2012). There are at least three simple ways of measuring value—
revealed preference, willingness to pay, and by approach/avoidance. Interestingly,
these three measures can produce different orderings of the same choices.

Revealed preferences. The simplest means of measuring whether something is
more valued than another is to provide the two (or more) options as a choice and see
which one is selected. Preferentially selecting option A over option B implies that
value(A) > value(B). Logically, this simple conceptualization implies that value
should be transitive [value(A) > value(B) and value(B) > value(C) implies that value
(A) > value(C)], at least within the bounds of noise. However, as we will see below,
the algorithm used when calculating value in a revealed preferences situation is
more complex and the transitive property does not necessarily apply.

Willingness to pay. One can directly measure the value of a single thing by
asking how much effort or sacrifice one is willing to make to get that thing.
Typically, this is measured by requiring a physical effort to obtain an object (such
as lever presses to obtain food or drug) or by demanding a sacrifice (such as asking
how much money one would be willing to pay for a given item, such as a car).
Measuring how much one is willing to pay for each of several options should lead
to an ordering of preferences—logically, if one is willing to pay more for option
A than one is willing to pay for option B, then one would expect A to be preferred to
B, but this is not always the case (Lichtenstein and Slovic 2006; Ahmed 2010; Perry
et al. 2013). Interestingly, as we will see below, the algorithm used when selecting
actions that lead to paying effort to achieve a goal does not apparently apply to
selling that goal back (Kahneman et al. 1991).

Humans, with their explicitly accessible linguistic abilities, can report their
willingness to pay directly. (You can ask them.) Linguistically reported willingness-
to-pay can diverge from a behaviorally observed willingness to pay (Kahneman and
Tversky 2000; Lichtenstein and Slovic 2006). For example, many drug users will
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deny their willingness to pay high costs for drugs, but will, when faced with the
drug, pay that high cost (Goldstein 2000).

Approach/avoidance. Even simpler than measuring the willingness to pay or the
revelation of preferences, one can measure whether an agent will approach or avoid
the option in question. This can be taken as a binary value applied to an option—
approach it (positive) or avoid it (negative), but one can also measure the speed and
vigor with which one approaches the option, which can provide a quantitative
measure of that positive or negative component. Interestingly, the behaviors that
agents do when in simple approach or avoidance tasks tend to reflect species-specific
behaviors (such as a rat gnawing on a handle that predicts food reward) (Breland and
Breland 1961; Dayan et al. 2006; Rangel et al. 2008; Redish 2013).

Interactions and modulations. It is, of course, possible to construct experi-
ments in which these measures interact with each other—for example, if one
measures simple approach to a reward and then places a shock before it, one is
measuring the willingness to pay that shocks for that reward. Higher shock levels
will (of course) lead to less likelihood of taking an option. One can also measure
motivation in the modulations of these measures of value, such as the fact that a
reminder of a potential reward in one context changes the revealed preferences
toward that outcome (a phenomenon known as “Pavlovian-to-instrumental transfer”
or PIT, Kruse et al. 1983; Corbit and Janak 2007; Talmi et al. 2008). As another
example, it is possible to change the dimensions on which options are compared in
a revealed preference task by guiding attention (Plous 1993; Gilovich et al. 2002;
Hill 2008), by changing one’s emotional state (Dutton and Aron 1974; Andrade and
Ariely 2009), or by making one of the options more concrete (Peters and Büchel
2010; Benoit et al. 2011).

2 Taking the Subject’s Point of View

The problem with the logic laid out in the start of this chapter is that it is derived
from the experimenter’s point of view—it assumes that each of the three experi-
mental paradigms measures something explicitly different. (This gets particularly
complicated when we start to look at interactions and modulations.) Rather than
working backwards from the behavioral experiments to hypothesized constructs, let
us take the subject’s point of view to first consider how each of these means of
measuring value reflects aspects of the agent’s decision-making process and then
work forward from current taxonomies of the decision-making systems.

2.1 Information Processing in Decision-Making Systems

Decisions arise from information processing applied to a combination of (1)
information about the current world (processed inferences from perception), (2) past
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experience (memory, history), and (3) goals and motivations (valuation). Although
it is hypothetically possible that all decisions arise from a single fundamental
algorithm applied to these three inputs (such as the maximization of subjective
value, Samuelson 1937; Glimcher et al. 2008; Kable and Glimcher 2009), this is not
necessarily true. Computational analyses of information processing that include
calculation time, memory storage and access requirements, and the willingness to
generalize suggest that different algorithms will be optimal in different situations
(O’Keefe and Nadel 1978; Nadel 1994; Daw et al. 2005; Niv et al. 2006b; Rangel
et al. 2008; Redish et al. 2008; van der Meer et al. 2012; Montague et al. 2012;
Redish 2013).

Current analyses of the information processing that occurs within decision
making suggest a taxonomy of three different processes1—deliberation between
imagined options, procedural action chains, and Pavlovian action-selection sys-
tems (Rangel et al. 2008; Redish et al. 2008; Montague et al. 2012; van der Meer
et al. 2012; Redish 2013). As a first-order description, the three ways of measuring
value tap into each of these three systems. However, the information processing that
goes into each of these three systems implies a complexity of valuation that will
need to be addressed. Additionally, the three systems can interact to lead to
interesting situational dependencies of valuation.

2.1.1 Algorithms of Revealed Preference (Deliberation)

Computationally, deliberation entails the imagination and evaluation (comparison)
of future outcomes, a process related to episodic future thinking. Episodic future
thinking is the ability to imagine oneself into a specific potential future (Atance and
O’Neill 2001; Buckner and Carroll 2007). Humans with hippocampal lesions do
not create fully integrated episodic futures (Hassabis et al. 2007), and creating an
integrated imagined episodic future activates prefrontal cortex and hippocampus as
revealed by fMRI signals (Hassabis and Maguire 2011; Schacter et al. 2008;
Schacter and Addis 2011). In rats, the primary evidence for episodic future thinking
lies in decoding sequences of firing in hippocampal place cells, which have been
revealed to fire in a sequence representing a serial path to the next goal (Pfeiffer and
Foster 2013; Wikenheiser and Redish 2015). At choice points, rats will sometimes
pause (Tolman 1932) and the hippocampus will represent the sequences to potential
goals serially (i.e., episodically) (Johnson and Redish 2007).

Once the representation of that future is created, it must be evaluated. In rats, this
evaluation process depends on the ventral striatum or nucleus accumbens (Smith
et al. 2009; van der Meer and Redish 2011; Jones et al. 2012). In humans, this

1Actually, we have argued elsewhere (Redish 2013) that decision making needs to be defined by
action selection and that one should thus include reflexes as well in our taxonomy of decision-
making systems. However, it is unlikely that the valuation and motivation mechanisms discussed
here influence the information processing that goes on in reflexes, and we will leave the Reflex
system out of our analyses here.
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evaluation process is thought to include the orbitofrontal and ventromedial pre-
frontal cortex (O’Doherty et al. 2001; O’Doherty 2004; Coricelli et al. 2005; Hare
et al. 2011; Winecoff et al. 2013); however, these interpretations have depended on
fMRI signals, which do not have the resolution to determine whether these signals
occur early enough to be actually involved in the decision process itself. In rats, fine
time-scale analyses have found that orbitofrontal representations do not represent
future goals until after a decision has been reached (Steiner and Redish 2012; Stott
and Redish 2014). It remains unknown whether the human cortical components are
also only active post-decision, or whether this difference is a species-specific dif-
ference. Species-specific differences can occur through how the computation is
performed (humans tend to be more cortically dependent than rats, Streidter 2005),
or they can occur because the tasks being used are different (spatial vs. non-spatial),
or they can occur due to anatomical differences in the source of the signal
(e.g., medial vs. lateral orbitofrontal cortex).

Nevertheless, the basic computation underlying deliberation is clear: To choose
between options A and B, specific potential futures incorporating each option are
imagined, evaluated, and compared. This computation requires sufficient under-
standing of the world to search forward to those imagined outcomes. (Thus, this
decision process is often termed “model-based,” as it uses the model of the world to
create a forward/imagined outcome.) Deliberation allows for fast learning because it
is inherently flexible (knowing that option A will lead to consequence α does not
require one to take option A), but it is also slow and computationally expensive
because one needs to infer consequence α from one’s knowledge of the world.

At this time, the selection process that underlies deliberation remains unknown
—Is it a test-and-evaluate system in which hypotheses are generated serially and the
first one that is good enough is chosen or is there direct comparison between
options?2 Importantly, the inconsistency between revealed-preference and will-
ingness-to-pay measures of value suggests that deliberation depends on a more
direct comparison between options. A serial test-and-evaluate system should pro-
duce similar measures whether one or two options are offered, which would lead to
similar valuations between the revealed-preference and willingness-to-pay mea-
sures, but, as noted at the top of this chapter, these valuation measures often reveal
incompatible valuation orderings.

Humans, other primates, and rats have all been observed to change their choices
dependent on the set of available choices—the set of choices available changes the
options chosen, sometimes incompatibly (such as in the classic case of extremeness
aversion, where humans tend to select the middle option, Simonson and Tversky
1992, see Gallistel 1990; Plous 1993; Tremblay and Schultz 1999; Padoa-Schioppa
2009; Rangel and Clithero 2012). Incompatible choices is a case of intransitivity, in
which choice A is chosen over C, C over B, and B over A. Neurophysiological

2Work under stressful situations (such as fire ground commanders) suggest a serial test-and-
evaluate system (Klein 1999), but it is unclear whether these experienced commanders are using
deliberative or procedural mechanisms.
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recordings have found that neural representations of value in monkeys are transitive
within a block, but not between blocks, a process known as “renormalization”
(Tremblay and Schultz 1999; Padoa-Schioppa 2009). One process that can create
this effect is for the value to be normalized within block (i.e., value is divided by a
function of the average or maximum value available within that block). Neural
representations are known to be dependent on excitatory−inhibitory networks that
show content-addressable properties where inhibitory networks enforce limitations
in the total activation of the excitatory cells (Hertz et al. 1991). Renormalization
would be an obvious consequence of these excitatory–inhibitory networks.

Algorithmically, the fact that attention to specific features changes the selected
option in a multivalued comparison (Plous 1993; Hill 2008; Hare et al. 2011)
further suggests that deliberation entails a direct comparison between options. This
would, of course, make the deliberative process non-transitive. In deliberation, a
specific future is imagined and options within that future are compared (Johnson
et al. 2007; Schacter et al. 2008). Imagination, like great art, consists of painting a
few specific strokes—thus, the imagined comparison of A and B might focus on one
dimension that the two options share, while the comparison of B and C may focus
on another dimension, and the comparison of A and C on yet a third.

Further support for the idea that the selection process in deliberation is an actual
comparison comes from the fact that concrete futures that are easier to imagine
(Trope and Liberman 2003; Schacter et al. 2008) are preferred (Peters and Büchel
2010; Benoit et al. 2011). Consistent with this comparison hypothesis, working
memory is related to deliberative abilities—agents with better working memory
abilities are more likely to deliberate when given the chance (Burks et al. 2009;
Bickel et al. 2011), consider more options (Franco-Watkins et al. 2006), and look
further into the future (Bickel et al. 2011). These effects are a direct prediction of
the search–evaluate–compare model of deliberative decision making (Kurth-Nelson
and Redish 2012).

2.1.2 Algorithms of Willingness to Pay (Procedural)

Deliberation is a slow and laborious process; if you have to act quickly, or if the
situation is not changing, then it would be more efficacious and more efficient to
cache the best action, so it can be directly recalled. Algorithmically, this process
entails a combination of recognition (categorization) processes and associated action
chains (Klein 1999; Redish et al. 2007; Dezfouli and Balleine 2012; Redish 2013).

The recognition process is a form of categorization and parameterization of the
world. Anatomically, this categorization can be seen in cortical signals that inte-
grate information to identify the most likely situation (Yang and Shadlen 2007;
Redish et al. 2007). Once the parameterized situation has been identified, an action
chain can be released through learned mechanisms (Jog et al. 1999; Dezfouli and
Balleine 2012; Smith and Graybiel 2013).

In much of the literature, the procedural system is identified as “model-free”
because it does not require a model of the transitions that can occur within the world

The Computational Complexity of Valuation … 319



(Daw et al. 2005; Gläscher et al. 2010; Lee et al. 2014), but this is a misnomer. The
recognition component of the procedural system requires development of a schema
that defines the parameters of the task (Charness 1991; Klein 1999; Redish et al.
2007; Redish 2013; Schmidhuber 2014). An incorrect parameterization will prevent
learning and severely reduce the efficacy of the actions selected. As noted by Klein
(1999), these learned schemas are a form of expertise, which requires an implicit
model of the structure of the world.

Economically, the question asked by the procedural system is fundamentally
different from that asked by the deliberative system—the deliberative system asks
Which choice is better?, while the procedural system asks How sure am I that this is
the right action at this time? How expensive is it?.

As with the deliberative system, attention can modulate procedural actions, by
identifying the specific cues and parameters that define a situation (Klein 1999;
Redish et al. 2007). And motivational components can guide attention to specific
aspects of a given situation.

2.1.3 Algorithms of Approach and Avoidance (Pavlovian)

Computationally, the third decision-making system entails stored situation-recog-
nition and associative processes that release species-specific behaviors (see Rangel
et al. 2008 and Redish 2013, for review).3 For example, Pavlov’s dogs learned to
salivate on hearing the bell using this system, but could not have learned to apply an
arbitrary action without using one of the other systems. Anatomically, this system
depends on associations made within the amygdala (LeDoux 2000; Janak and Tye
2015) driving species-specific behaviors in the periaqueductal gray (Bandler and
Shipley 1994; McNally et al. 2011), as well as simple approach/avoidance
behaviors involving the shell of the accumbens (Flagel et al. 2009; Laurent et al.
2012; Robinson et al. 2014). The specific survival circuits that underlie individual
species-specific behaviors are likely to access different neural substrates (LeDoux
2012), but the general Pavlovian learning system can be seen as a valuation system
in its own right, depending on different learning and valuation algorithms than
deliberative or procedural processes (Rangel et al. 2008; Redish 2013).

As with the deliberative and procedural processes, Pavlovian action-selection
systems reveal an underlying valuation process, because response strength is
modulated by the magnitude of the available reward and by the needs of the animal.
Classic species-specific behaviors include approach and avoidance, freezing or

3We have chosen to call this system the “Pavlovian” system because it is what Pavlov’s dogs were
doing (an association between the bell and the food led to the prewired species-specific salivation
behavior on hearing the bell, Pavlov 1927), but it should not be confused with classical definitions
of Pavlovian learning based on the experimenter-defined task parameters (that an animal does not
need to act in order to receive reward or punishment, Bouton 2007), nor should it be confused with
the recent definitions of state [situation] versus state-action reinforcement-learning algorithms
(Dayan et al. 2006; Cavanagh et al. 2013).
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grooming, fighting or fleeing, eating or not, etc. When these behaviors are put in
conflict, they can create a value hierarchy, approaching the palatable food, avoiding
the unpalatable, fleeing from a larger opponent, fighting a smaller one. Such
experimentally-imposed behavioral conflicts are representative of ubiquitous
approach-avoidance conflicts in nature as an animal navigates in pursuit of good
things and avoiding threats. Since an animal cannot simultaneously approach two
good things or avoid two bad things in opposite directions, valuation (relative
valuations) may be a necessary part of natural approach-avoidance decisions, and
the needs or learning of the animal may modulate these valuations.

Importantly, this value hierarchy is only revealed in situations that activate the
Pavlovian action-selection system, which is based on immediately available sensory
cues (such as the sound of Pavlov’s bell or the smell of baking bread). This
increased valuation of immediate cues can modulate other behaviors (providing, for
example, a preference for immediately available, concrete options4).

2.1.4 The Role of Motivation

An important (and open) question is whether there is a separate motivation system
that modulates all three of these decision-making systems (deliberative, procedural,
and Pavlovian) or whether each of the systems has their own specific modulation
system.

Most economic theories suggest that there is a separate valuation system that is
called upon by action-selection systems. This separate system is usually identified
with the orbitofrontal and ventromedial prefrontal cortices and the nucleus
accumbens, modulated by dopamine and other neuromodulator signals (Doya 2000;
O’Doherty 2004; Dayan and Niv 2008; van der Meer et al. 2012; Winecoff et al.
2013). Obviously, some (presumably hypothalamic) systems need to identify the
intrinsic needs of the animal (such as indicated by hunger or thirst), and there is
evidence that this motivational system is sensitive to cues (pictures of pizza make
us hungry) and learning (such as in conditioned taste-aversion, which is why
hospitals provide strangely flavored foods to chemotherapy patients, Bernstein
1978, 1999). The complexity of how and when motivational factors are learned or
can occur in response to visceral sensations of homeostatic changes is beyond the
scope of this chapter, but can be found in other chapters in this volume, including
Waltz and Gold, and Woods and Begg.

4Tempting as it is to try to use this concrete modulation as an explanation for discounting
phenomena (in which more temporally proximal options are preferred to equivalently valuable
temporally distant options), the data suggest that all three systems have discounting effects within
them that interact to produce the delay discounting phenomenon.
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2.1.5 The Macro-Agent

Although these decision-making systems entail different computational processes,
in the end, there is a single agent that needs to take the action. An open question in
the field of decision making is how conflicts between these different decision-
making systems are resolved. It is not clear yet whether there is a separate executive
that selects between systems or whether there is a mechanism by which the com-
ponents directly compete for behavioral expression, for example, by intrinsic
components within each system that make it more or less likely to be “listenable to”
by downstream motor areas.

Most theories have suggested that the decision of which subsystem is allowed to
drive behavior depends on an external valuation system that takes the most-valued
option from each of the components (Levy and Glimcher 2012; Wunderlich et al.
2012, but see van der Meer et al. 2012), but the inconsistency of value under the
different experimental paradigms laid out at the start of this chapter belies this
hypothesis. More likely, some other parameter is being used to decide between
systems. Suggestions have included expected calculation time (Simon 1955;
Gigerenzer and Goldstein 1996; Keramati et al. 2011), or an internal representation
of reliability or uncertainty in the valuation calculation (Daw et al. 2005).
Interestingly, reliability in valuation could be represented by the intrinsic self-
consistency of the value representation, which can vary due to the distributed nature
of representation in neural systems. Because neural representations are distributed,
the activity of individual neurons within a representation can agree with each other
about what is specifically represented or they can disagree with each other. It is
possible to quantitatively measure the self-consistency of those representations, and
it is possible for downstream structures to use that self-consistency to control the
influence of a representation on the activity of that downstream structure (Jackson
and Redish 2003; Johnson et al. 2008).

However the process is resolved, it is clear that these different algorithmic
processes are called upon (win-out) under different experimental conditions. We
can use this to explain the inconsistencies in the valuation function—a simple
willingness-to-pay experiment can be solved by any of the three systems, but
providing a choice forces the agent to deliberate, and making a choice concrete
tends to access Pavlovian action-selection systems. Similarly, the act of perception
and conscious reporting in a linguistic version of the willingness-to-pay task may
drive the decision process into more deliberative cognitive processes that can
change the valuation.

3 Testing the Theory

This multiple decision-making system explanation of valuation and the observed
effects of motivation can explain a number of different phenomena that have been
identified over the years.
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What is motivated behavior? The fact that these decision-making systems can
create action plans that are in conflict and that the action plans take time to execute
implies that there will be internal states of motivation in which an action is desired
but not necessarily released yet. We can refer to this state as the “urge” to act.

Particularly intriguing in this light is dysfunction of motivated behaviors such as
might occur in Tourette’s syndrome (Kurlan 1993; Leckman and Riddle 2000) or
Obsessive-Compulsive Disorder (Goodman et al. 2000). Contrary to popular belief,
Tourette’s and OCD do not manifest as dystonic actions that are released before the
subject is aware of them, but rather they manifest as “urges” which can be sup-
pressed (Kathmann et al. 2005; Maia and McClelland 2012). Eventually, the effort
expended (presumably by one of the other systems) to suppress the urge becomes
too much, the urge becomes overwhelming, and the macro-agent releases the
motivated action.

Intriguingly, most of the dysfunctional behaviors seen in Tourette’s syndrome
are Pavlovian in the sense used here (cursing5, facial expressions, etc.), while the
control and suppression of them is effortful, conscious, cognitive, and depends on
limited cognitive resources, which suggests a more deliberative process. However,
some have found treatment in their Tourette’s tics by channeling them into
rhythmic actions and action chains (a presumably procedural process) (Sacks 1985).
Whether the motor tics of Tourette’s and other motoric dysfunctions with identi-
fiable urges is a dysfunction in Pavlovian, procedural, or some motor component
remains unknown.

Sign-tracking and goal-tracking. Another classic example of conflict between
decision-making systems is that in a task in which a cue signals reward delivery, but
the animal does not need to do anything at the cue to receive the reward,6 some
animals approach the cue (sign trackers), while others go directly to the reward
(goal trackers) (Flagel et al. 2009). Sign-trackers are presumably using Pavlovian
action-selection systems to approach things that the system has identified as
valuable, while goal trackers are using the cue to identify the appropriate action
(using either deliberative or procedural systems). A direct prediction of this would
be that there should be specific neurophysiological differences between sign
trackers and goal trackers, particularly in neural structures associated with valuation
in the Pavlovian action-selection systems. Indeed, such differences exist—sign-
trackers show dopamine shifts to the cue (reward-prediction-errors), but goal-
trackers do not—in sign trackers but not goal trackers, transient dopamine bursts
that initially occur at the time of reward transition to occurring at the time of the cue

5While a specific curse word is presumably not pre-wired within the human motor plan, all human
languages have curse words that humans release at times of stress and pain and that are not
supposed to be used in social company. This abstract behavior may well be a part of the species-
specific human social construct.
6This makes such a task “Pavlovian” in the classic sense of the word—the reward is delivered
whether the animal acts or not. The fact that the task can be solved by any of the three systems
described above and that animals act differently under each decision-making system shows the
importance of looking at behavior from the animal’s perspective rather than the experimenters.
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(Flagel et al. 2011; Lesaint et al. 2014). Does the sign have value? How does the
sign motivate actions? It depends on which decision system is being used to take
those actions in response to the sign.

Pavlovian and Deliberative Morality. Even social behavior is fundamentally
about decision making, and even the most human behaviors (such as questions of
morality) are driven by interactions between these multiple decision-making sys-
tems. One of the most interesting recent discoveries of the past several decades has
been that human social interactions are fundamentally Pavlovian in the sense used
in this chapter—they are species-specific behaviors that we learn the appropriate
situations for (Singer et al. 2006, 2009; Hein et al. 2011; Greene 2013). Moral
decisions (such as whether to allow one person to die to save five others (Greene
et al. 2001), or whether to provide a shock to another person, Milgram 1974)
depend greatly on the immediacy of the social interaction (Milgram 1974; Greene
et al. 2004; Zak 2008; Haslam and Reicher 2012; Rand et al. 2012). Subjects are
more likely to refuse to kill one person to save five others and more likely to refuse
to shock another person if there is a social bond between them (Milgram 1974;
Greene et al. 2001; Haslam and Reicher 2012). Manipulations that push subjects
into more deliberative modes (such as forcing the subject to make the decision in a
foreign language) drive subjects into being more willing to apply utilitarian (and
nonsocial) calculations (Hoffman et al. 1994; Sanfey 2007; Smith 2009; Costa et al.
2014).

Concrete preferences. A classic motivation task is to put immediate and future
rewards in conflict with each other, for example, in the marshmallow task, in which
a subject (usually a young child) is offered the choice of one marshmallow
immediately or two marshmallows if the first marshmallow remains uneaten for
15 min (Mischel et al. 1989; Mischel 2014). It is likely that the marshmallow task is
an example of conflict between Pavlovian and deliberative decision-making sys-
tems. While it is tempting to suggest that the ability to wait for the future is
fundamentally deliberative, computational models suggest that both procedural and
deliberative systems need to have their own discounting functions within them—
preferring temporally proximate to temporally distant options (Sutton and Barto
1998; Kurth-Nelson and Redish 2012).

Looking at the algorithm underlying deliberation suggests that the fundamental
reason for the preference for temporally proximate options in deliberation may
reflect the ability to imagine and positively evaluate that future outcome (Kurth-
Nelson and Redish 2012). One direct prediction of that hypothesis is that making
the future option more concrete will make subjects more likely to choose it,
effectively reducing the discounting function (making subjects discount time more
slowly). Experiments have conclusively shown this to be true (Peters and Bu¨chel
2010, 2011; Benoit et al. 2011).

Attention to cues. Perception and valuation are fundamentally intertwined
throughout the decision-making processes. Valuation judgments accomplished by
deliberative, procedural, and Pavlovian processes of decision-making systems allow
flexible decision making under multiple different conditions. Each of these pro-
cesses, however, contains some form of situation-recognition step either prior to or
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as an early stage within the decision-making process. During this situation-recog-
nition step, information is derived from the environmental, interoceptive, and
proprioceptive cues that define the decision-making context, the identification of
available goals to be sought, the potential threats to be avoided, and the state or
needs of the agent, as well as numerous other features of the environment registered
through varying degrees of attention, including specific details about objects or
events or more abstract impressions such as social atmosphere.

The aspect of situation recognition where available goals and threats are iden-
tified parallels the approach-avoidance decision-making process and is likely to be
modulated by Pavlovian processes (Phelps et al. 2014). This can be seen by pro-
cesses in which Pavlovian associations drive deliberative actions, such as in
Pavlovian-to-instrumental transfer (Corbit and Balleine 2005; Talmi et al. 2008), or
in the influence of concrete options on decisions (Trope and Liberman 2003; Peters
and Büchel 2010; Kang et al. 2011).

An agent’s perception of a given situation, in addition to the concept of value
applied to items within the situation, is fundamentally multidimensional and
depends both on the state of the agent as well as the features of the environment. An
agent’s emotional or physiological state colors their percepts of both ongoing and
remembered experiences. Sexual arousal, for example, changes choice behavior
when choosing potential mates and influences what risky behaviors are considered
acceptable (Wilson and Daly 2004; Ariely and Loewenstein 2006). Likewise, the
emotional state of an individual influences an agent’s responses to a given situation
(Dutton and Aron 1974; Andrade and Ariely 2009). Both physiological and emo-
tional factors can be understood to reflect the needs of the agent and influence the
decision-making process by impacting the perceived set of available or acceptable
courses of action, the expected outcomes of those actions, and the costs that an
agent is willing to endure for those outcomes.

In addition to information about one’s own state, sensory cues about external
factors (the environment or situation) also fundamentally influence choice behavior
by impinging on valuation. The features of an environment that color an agent’s
experience of the situation (multidimensional situation recognition) must be inte-
grated from a diversity of perceived situational constraints and available courses of
action to be taken including pursuit or avoidance of goals and threats. The fact that
environmental cues that are not relevant to the decision can nonetheless influence
choice behavior suggests that situation recognition and the concomitant attention to
cues necessary for categorizing situations are integral parts of the decision-making
process itself.

The endowment effect. The price at which people are willing to sell an attained
item is higher than the price at which people are willing to buy that same item
(Kahneman et al. 1991). This effect may be another example of an interaction
between decision systems affecting valuation. Specifically, it may be that the
Pavlovian system provides a greater contribution to the valuation of an item when
that item has already been obtained, a situation in which, most likely, the cues
associated with it are more immediately apparent and concrete than they would be if
it were not yet owned.
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This logic might also explain the well-documented finding that patch-foraging
(human and non-human) animals will deviate from the rate-maximizing behavior
that is predicted by optimal foraging theory by “over-staying” in a patch of
resources rather than leaving to search for a new patch (Nonacs 2001). An
intriguing possibility is that the Pavlovian system induces longer patch residence by
contributing to the valuation of staying (but not leaving), much as it might when
considering selling (but not buying). Interestingly, human participants have been
found to display this overstaying bias during a computerized patch-foraging task for
which the leave option did not require additional costs (e.g., energy and time spent
traveling), suggesting that overstaying may occur due to an overvaluation of the
impending reward rather than an undervaluation of leaving (Carter et al. 2015). A
similar process may explain the observation that rats’ aversion to rejecting an offer
is positively correlated with the overall quality of the offers in the environment,
which is incompatible with optimal foraging theory and standard delay discounting
models (Wikenheiser et al. 2013). One possibility is that there is an increased
Pavlovian preference to staying at a patch of food (because impending food is
cued). This preference may be increased in rich environments, in which the rewards
are more easily available.

4 Summary and Implications

In this chapter, we have argued that because valuation is a hypothetical construct, it
cannot be directly measured, and it must be inferred from observed behaviors.
Following from current theories of motivated behavior based on multiple inter-
acting decision-making systems, we have argued that valuation is multidimen-
sional. This multidimensionality complicates decision making, but these
interactions can also be useful when targeting treatment and other interventions.

Craving. For example, craving is often used as a particular example of moti-
vation, but it is useful to ask what craving is within this computational conceptu-
alization. Craving is the computational recognition of a potential outcome with very
high value, which means that it must either come from the Pavlovian system (which
recognizes a situation and outcome to release a motivated action related to that
outcome—such as salivating to the expectation of food) or from the deliberative
system (which imagines a future situation).

Fundamentally, craving is transitive, one must crave something. Craving is
always goal-directed. Some researchers have suggested that craving is Pavlovian (in
the sense used in this chapter) (Skinner and Aubin 2010) and others have suggested
that it is deliberative (Tiffany 1999; Tiffany and Wray 2009; Redish and Johnson
2007; Redish et al. 2008). Craving may well be an interaction between the two
systems—a deliberative (model-based) computation recognizes a path to a high-
value goal, which leads to the motivation of Pavlovian approach.
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Because relapse in addiction can occur from any of the three systems, but
craving only from the Pavlovian or deliberative, craving should be dissociable from
relapse (Sayette et al. 2000; Tiffany and Wray 2009; Redish et al. 2008; Redish
2009). It should be possible to relapse without craving and to crave without relapse.
This follows directly from the observations that only drug-seeking arising from
Pavlovian (and possibly deliberative) processes will co-occur with craving; pro-
cedural drug-seeking will not. This means that a true “habit,” one that does not
devalue (Balleine and Dickinson 1998), and one that is often done “non-cogni-
tively” (Tiffany 1990; Redish 2013), will likely be resistant to treatments aimed at
reducing craving.

Contingency Management. In contrast, it might be possible to use the different
decision-making systems to provide treatment. Another implication of the multi-
decision-making system theory is that if we can shift the decision-making question
from one valuation measure to another, we might be able to change the decision.
One place in which this may be occurring is in the success of contingency man-
agement, a treatment used for drug addiction and other behavioral modification
processes. In contingency management, a drug user is rewarded for coming in clean
to the clinic7 (Petry 2011, and see Walter and Petry in this volume). Historically, the
efficacy of contingency management has been explained as an alternate reward
which increases the opportunity cost of drug use (Higgins et al. 2002; Stitzer and
Petry 2006); however, this depends on how quickly drug-taking falls off as drugs
increase in price, an economic concept known as elasticity. Drug-taking is generally
far too inelastic to explain the success of contingency management (Bruner and
Johnson 2013). We have recently suggested that contingency management provides
an opportunity for the user to engage more deliberative decision processes in their
decision making (Regier and Redish 2012).

This hypothesis suggests that alternate rewards that are easier to remember and
to episodically imagine would provide stronger effects in contingency management.
Making the reward more concrete should thus improve contingency management,
as should making it more temporally proximal, or larger. Similarly, training
working memory (and other methods that provide cognitive resources) that improve
episodic future thinking should improve contingency management. A simple first
step would be to provide explicit reminders.

To go back to the measures of value that we began the chapter with, we are
suggesting that contingency management shifts the valuation of drugs from a
willing-to-pay (or an approach/avoid) valuation process to a revealed-preference
valuation process. Animal drug self-administration experiments have found that
shifting from willing-to-pay or approach/avoid tasks to decision-between-options
(revealed-preference) tasks reduces drug-taking and drug-seeking, even at very low
costs (LeSage et al. 2004; Lenoir et al. 2007; Cantin et al. 2010; Ahmed 2010; Perry
et al. 2013).

7Usually this needs to be verified by a drug-negative urine sample.
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5 Is Value Still a Valuable Hypothetical Construct?

Because value is not directly measurable, it must be inferred from behavior. As
noted above, valuation is inconsistent. In order to understand the underlying
microeconomics of decision making, we need to take into account the information
processing that underlies decision making in humans and other animals (Padoa-
Schioppa 2008; Rangel et al. 2008; Redish 2013). We can explain the inconsistency
of valuation through these separate information processing algorithms, each of
which provide a different path to motivation and valuation. These theories suggest
that the process of valuation may continue to be a useful construct but that the
construct of value as a means of identifying a common currency may no longer be
useful.
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