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Chapter 6
Modeling Decision-Making Systems in Addiction

Zeb Kurth-Nelson and A. David Redish

Abstract This chapter describes addiction as a failure of decision-making systems.
Existing computational theories of addiction have been based on temporal difference
(TD) learning as a quantitative model for decision-making. In these theories, drugs
of abuse create a non-compensable TD reward prediction error signal that causes
pathological overvaluation of drug-seeking choices. However, the TD model is too
simple to account for all aspects of decision-making. For example, TD requires a
state-space over which to learn. The process of acquiring a state-space, which in-
volves both situation classification and learning causal relationships between states,
presents another set of vulnerabilities to addiction. For example, problem gambling
may be partly caused by a misclassification of the situations that lead to wins and
losses. Extending TD to include state-space learning also permits quantitative de-
scriptions of how changing representations impacts patterns of intertemporal choice
behavior, potentially reducing impulsive choices just by changing cause-effect be-
liefs. This approach suggests that addicts can learn healthy representations to re-
cover from addiction. All the computational models of addiction published so far are
based on learning models that do not attempt to look ahead into the future to cal-
culate optimal decisions. A deeper understanding of how decision-making breaks
down in addiction will certainly require addressing the interaction of drugs with
model-based look-ahead decision mechanisms, a topic that remains unexplored.

Decision-making is a general process that applies to all the choices made in life,
from which ice cream flavor you want to whether you should use your children’s
college savings to buy drugs. Neural systems evolved to make decisions about what
actions to take to keep an organism alive, healthy and reproducing. However, the
same decision-making processes can fail under particular environmental or phar-
macological conditions, leading the decision-maker to make pathological choices.
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Both substance addiction and behavioral addictions such as gambling can be viewed
in this framework, as failures of decision-making.

The simplest example of a failure in decision-making is in response to situations
that are engineered to be disproportionately rewarding. In the wild, sweetness is a
rare and useful signal of nutritive value, but refined sugar exploits this signal, and
given the opportunity, people will often select particularly sweet foods over more
nutritive choices. A more dangerous failure mode can be found in drugs of abuse.
These drugs appear to directly modulate elements of the decision-making machinery
in the brain, such that the system becomes biased to choose drug-seeking actions.

There are three central points in this chapter. First, a mathematical language of
decision-making is developed based on temporal difference (TD) algorithms ap-
plied to reinforcement learning (RL) (Sutton and Barto 1998). Within this math-
ematical language, we review existing quantitative theories of addiction, most of
which are based on identified failure modes within that framework (Redish 2004;
Gutkin et al. 2006; Dezfouli et al. 2009). However, we will also discuss evidence that
the framework is incomplete and that there are decision-making components that
are not easily incorporated into the TD-RL framework (Dayan and Balleine 2002;
Daw et al. 2005; Balleine et al. 2008; Dayan and Seymour 2008; Redish et al.
2008). Second, an organism’s understanding of the world is central to its decision-
making. Two organisms that perceive the contingencies of an experiment differ-
ently will behave differently. We extend quantitative decision-making theories to
account for ways that organisms identify and utilize structure in the world to make
decisions (Redish et al. 2007; Courville 2006; Gershman et al. 2010), which may
be altered in addiction. Third, decision-making models naturally accommodate a
description of how future rewards can be compared to immediate ones (Sutton
and Barto 1998; Redish and Kurth-Nelson 2010). Both drug and behavioral ad-
dicts often exhibit impulsive choice, where a small immediate reward is preferred
over a large delayed reward (Madden and Bickel 2010). There is evidence that im-
pulsivity is both cause and consequence of addiction (Madden and Bickel 2010;
Rachlin 2000). In particular, a key factor in recovery from addiction seems to be
the ability to take a longer view on one’s decisions and the ability to construct
representations that support healthy decision-making (Ainslie 2001; Heyman 2009;
Kurth-Nelson and Redish 2010).

6.1 Multiple Decision-Making Systems, Multiple Vulnerabilities
to Addiction

Organisms use a combination of decision-making strategies. When faced with a
choice, a human or animal may employ one or more of these strategies to pro-
duce a decision. The strategies used may also change with experience. For exam-
ple, a classic experiment in rodent navigation involves a plus-shaped maze with
four arms. On each trial, a food reward is placed in the east arm of the maze and
the animal is placed in the south arm. The animal quickly learns to turn right to
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the east arm to reach the food. On a probe trial, the animal can be placed in the
north arm instead of the south arm. If these probe trials are conducted early in
the course of learning, the animal turns left to the east arm, indicating that the
animal is following a location-based strategy that dynamically calculates appro-
priate actions based on new information. On the other hand, if probe trials are
conducted after the animal has been overtrained on the original task, the animal
turns right into the west arm of the maze, indicating that it is following a response
strategy where actions are precalculated and stored (Tolman 1948; Restle 1957;
Packard and McGaugh 1996).

These different decision-making systems have different neuroanatomical sub-
strates. In the rodent navigation example, the location-based strategy requires hip-
pocampal integrity (Barnes 1979; Packard and McGaugh 1996), while the response
strategy is dependent on the integrity of lateral aspects of striatum (Packard and Mc-
Gaugh 1996; Yin et al. 2004). The location-based system is more computationally
intensive but is more flexible to changing environments, while the response-based
system is quick to calculate but inflexible to changing environments (O’Keefe and
Nadel 1978; Redish 1999).

How the results of these different decision-making systems are integrated into a
final decision remains an important open question. Obviously, if the two predicted
actions are incompatible (as in the example above where one system decides to
turn right while the other decides to turn left) and the animal takes an action, then
the results must be integrated by the time the signals reach the muscles to perform
the action. For example, an oversight system could enable or disable the place and
response strategies, or could decide between the suggested actions provided by the
two systems. However, economic theory implies the results are integrated much
sooner (Glimcher et al. 2008). In neuroeconomic theory, every possible outcome is
assumed to have a utility. The utilities of any possible outcome can be represented in
a common currency, allowing direct comparison of the expected utilities to select a
preferred action. In between the two extremes of common currency and muscle-level
integration, there is a wide range of possibilities for how different decision-making
systems could interact to produce a single decision. For example, a location-based
strategy and a response strategy could each select an action (e.g., “turn left” or “turn
right”), and these actions could compete to be transformed into a motor pattern.

In the following sections, we will develop a theoretical description of the brain’s
decision-making systems and show how drugs of abuse can access specific failure
modes that lead to addictive choice. Addictive drugs have a variety of pharmaco-
logical effects on the brain, ranging from blockade of dopamine transporters to
agonism of μ-opioid receptors to antagonism of adenosine receptors. Fundamen-
tally, the common effect of addictive drugs is to cause pathological over-selection
of the drug-taking decision, but this may be achieved in a variety of ways by ac-
cessing vulnerabilities in the different decision-making systems. This theory sug-
gests that addicts may use and talk about drugs differently depending on which
vulnerability the drugs access, and that appropriate treatment will likely differ
depending on how the decision-making system has failed (Redish et al. 2008).
For example, craving and relapse are separable entities in addictive processes—
overvaluation in a stimulus-response based system could lead to relapse of the
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action of drug-taking even in the absence of explicit craving, while overvalua-
tion in the value system could lead to explicit identifiable desires for drug, but
may not necessarily lead to relapse (Redish and Johnson 2007; Redish et al. 2008;
Redish 2009).

6.1.1 Temporal Difference Reinforcement Learning and the
Dopamine Signal

To explain why reward learning seems to occur only when an organism is con-
fronted with an unexpected reward, Rescorla and Wagner (1972) introduced the
idea of a reward learning prediction error. In their model, an agent (i.e., an or-
ganism or a computational model performing decision-making) learns how much
reward is predicted by each cue, and generates a prediction error if the actual re-
ward received does not match the net prediction of the cues they experienced. The
prediction error is then used to update the reward prediction. To a first approxima-
tion, the fast phasic firing of midbrain dopamine neurons matches the Rescorla-
Wagner prediction error signal (Ljungberg et al. 1992; Montague et al. 1996;
Schultz 2002): when an animal is presented with an unexpected reward, dopamine
neurons fire in a phasic burst of activity. If the reward is preceded by a predictive
cue, the phasic firing of dopamine neurons gradually diminishes over several trials.
The loss of dopamine firing at reward matches the loss of Rescorla-Wager prediction
error, as the reward is no longer unpredicted.

However, there are several phenomena that the Rescorla-Wagner model does not
account for. First, in animal behavior, conditioned stimuli can also act as reinforcers
(Domjan 1998), and this shift is also reflected in the dopamine signals (Ljung-
berg et al. 1992). The Rescorla-Wagner model cannot accommodate this shift in
reinforcement (Niv and Montague 2008). Second, a greater latency between stim-
ulus and reward slows learning, reduces the amount of responding at the stimu-
lus, and reduces dopamine firing at the stimulus (Mackintosh 1974; Domjan 1998;
Bayer and Glimcher 2005; Fiorillo et al. 2008). The Rescorla-Wagner model does
not represent time and cannot account for any effects of timing. Third, the Rescorla-
Wagner model is a model of Pavlovian prediction and does not address instrumental
action-selection. A generalized version of the Rescorla-Wagner model that accounts
for stimulus chaining, temporal effects and action-selection is temporal difference
reinforcement learning (TDRL).

Reinforcement learning is the general problem of how to learn what actions to
take in order to maximize reward. Temporal difference learning is a common theo-
retical approach to solving the problem of reinforcement learning (Sutton and Barto
1998). Although the agent may be faced with a complex sequence of actions and ob-
servations before receiving a reward, temporal difference learning allows the agent
to assign a value to each action along the way.

In order to apply a mathematical treatment, TDRL formalizes the learning prob-
lem as a set of states and transitions that define the situation of the animal and how
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that situation can change (for example, see the very simple state-space in Fig. 6.1A).
This collection of states and transitions is called a state-space, and defines the cause-
effect relationships of the world that pertain to the agent. The agent maintains an
estimate, for each state, of the reward it expects to receive in the future of that state.
This estimate of future reward is called value, or V . We will use St to refer to the
state of the agent at time t ; V (St ) is the value of this state.

When the agent receives reward, it compares this reward with the amount of
reward it expected to receive at that moment. Any difference is an error signal,
called δ, which represents how incorrect the prior expectation was.

δ = (Rt + V (St )) · disc(d) − V (St−1) (6.1)

where Rt is the reward at time t , d is the time spent in state St−1, and disc is a
monotonically decreasing temporal discounting function with a range from 0 to 1.
(Note that in the semi-Markov formulation of temporal difference learning (Daw
2003; Si et al. 2004; Daw et al. 2006), which we use here, the world can dwell in
each state for an extended period of time.) A commonly used discounting function
is

disc(d) = γ d (6.2)

where γ ∈ [0,1] is the exponential discounting rate. δ (Eq. (6.1)) is zero if the agent
correctly estimated the value of state St−1; that is, it correctly identified the dis-
counted future reward expected to follow that state. The actual reward received im-
mediately following St−1 is Rt , and the future reward expected after St is V (St ).
Together, Rt + V (St ) is the future reward expected following St−1. This is dis-
counted by the delay between St−1 and St . The difference between this and the
prior expectation V (St−1) is the value prediction error δ.

The estimated value of state St−1 is updated proportional to δ, so that the expec-
tation is brought closer to reality.

V (St−1) ← V (St−1) + δ · α (6.3)

where α ∈ (0,1) is a learning rate. With appropriate exploration parameters and
unchanging state space and reward contingencies, this updating process is guaran-
teed to converge on the correct expectation of discounted future reward for each
state (Sutton and Barto 1998). Once reward expectations are learned, the agent can
choose the actions that lead to the states with highest expected reward.

6.1.2 Value Prediction Error as a Failure Mode

The psychostimulants, including cocaine and amphetamine, directly increase
dopamine action at the efferent targets of dopaminergic neurons (Ritz et al. 1987;
Phillips et al. 2003; Aragona et al. 2008). The transient, or phasic, component of
dopamine neuron firing appears to carry a reward prediction error signal like δ
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(Montague et al. 1996; Schultz et al. 1997; Tsai et al. 2009). Thus, the psychostim-
ulant drugs may act by pharmacologically increasing the δ signal (di Chiara 1999;
Bernheim and Rangel 2004; Redish 2004).

Redish (2004) implemented this hypothesis in a computational model. Drug de-
livery was simulated by adding a non-compensable component to δ,

δ = max(Dt , Dt + (Rt + V (St )) · disc(d) − V (St−1)) (6.4)

This is the same as Eq. (6.1) with the addition of a Dt term representing the drug
delivered at time t . The value of δ cannot be less than Dt , due to the max function.
The effect of Dt is that even after V (St−1) has reached the correct estimation of
future reward, V (St−1) will keep growing without bound. In other words, Dt can
never be compensated for by increasing V (St−1), so δ is never driven to zero. If
there is a choice between a state that leads to drugs and a state that does not, the
state leading to drugs will eventually (after a sufficient number of trials) have a
higher value and thus be preferred.

This model exhibits several features of real drug addiction. The degree of pref-
erence for drugs over natural rewards increases with drug experience. Further, drug
use is less sensitive to costs (i.e., drugs are less elastic) than natural rewards, and the
elasticity of drug use decreases with experience (Christensen et al. 2008). Like other
neuroeconomic models of addiction (e.g., Becker and Murphy (1988)), the Redish
(2004) model predicts that even highly addicted individuals will still be sensitive to
drug costs, albeit less sensitive than non-addicts, and less sensitive than to natural re-
ward costs. (Even though they are willing to pay remarkably high costs to feed their
addiction, addicts remain sensitive to price changes in drugs (Becker et al. 1994;
Grossman and Chaloupka 1998; Liu et al. 1999).) The Redish (2004) model
achieves inelasticity due to overvaluation of drugs of abuse.

The hypotheses that phasic dopamine serves as a value prediction error signal
in a Rescorla-Wagner or TDRL-type learning system and that cocaine increases
that phasic dopamine signal imply that Kamin blocking should not occur when co-
caine is used as a reinforcer. In Kamin blocking (Kamin 1969), a stimulus X is first
paired with reward until the X→reward association is learned. (The existence of
a learned association is measured by testing whether the organism will respond to
the stimulus.) Then stimuli X and Y are together paired with reward. In this case,
no association between Y and reward is learned. The Rescorla-Wagner model ex-
plains this result by saying that because X already fully predicts reward, there is no
prediction error and thus no learning when X and Y are paired with reward. Consis-
tent with the dopamine-as-δ hypothesis, phasic dopamine signals do not appear in
response to the blocked stimuli (Waelti et al. 2001). However, if the blocking exper-
iment is performed with cocaine instead of a natural reinforcer, the hypothesis that
cocaine produces a non-compensable δ signal predicts that the δ signal should still
occur when training XY→cocaine, so the organism should learn to respond for Y.
Contrary to this prediction, Panlilio et al. (2007) recently provided evidence that
blocking does occur with cocaine in rats, implying that either the phasic dopamine
signal is not equivalent to the δ signal, or cocaine does not boost phasic dopamine.
Recently, Jaffe et al. (2010) presented data that a subset of high-responding animals



6 Modeling Decision-Making Systems in Addiction 7

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

did not show Kamin blocking when faced with nicotine rewards, suggesting that the
lack of Kamin blocking may produce overselection of drug rewards in a subset of
subjects. An extension to the Redish model to produce overselection of drug rewards
while still accounting for blocking with cocaine is given by Dezfouli et al. (2009)
(see also Chap. 8 in this book). In this model, new rewards are compared against
a long-term average reward level. Drugs increase this average reward level, so the
effect of drugs is compensable and the δ signal goes to zero with long-term drug
exposure. If this model is used to simulate the blocking experiment with cocaine
as the reinforcer, then during the X→cocaine training, the average reward level is
elevated, so that when XY→cocaine occurs, there is no prediction error signal and
Y does not acquire predictive value.

Other evidence also suggests that the Redish (2004) model is not a complete pic-
ture. First, the hypotheses of the model imply that continued delivery of cocaine will
eventually overwhelm any reinforcer whose prediction error signal is compensable
(such as a food reward). Recent data (Lenoir et al. 2007) suggest that this is not the
case, implying that the Redish (2004) model is not a complete picture. Second, the
Redish (2004) model is based on the assumption that addiction arises from the ac-
tion of drugs on the dopamine system. Many addictive drugs do not act directly on
dopamine (e.g., heroin, which acts on μ-opioid receptors (Nestler 1996)), and some
drugs that boost dopamine are not addictive (e.g., bupropion (Stahl et al. 2004)).
Most psychostimulant drugs also have other pharmacological effects; for example,
cocaine also has an action on the norepinephrine and serotonin systems (Kuhar et al.
1988). Norepinephrine has been implicated in signaling uncertainty (Yu and Dayan
2005) and attention (Berridge et al. 1993), while serotonin has other effects on
decision-making structures in the brain (Tanaka et al. 2007). All of these actions
could also potentially contribute to the effects of cocaine on decision-making.

Action selection can be performed in a variety of ways. When multiple actions
are available, the agent may choose the action leading to the highest valued state.
Alternatively, the benefit of each action may be learned separately from state val-
ues. Separating policy learning (i.e., learning the benefit of each action) from value
learning has the theoretical advantage of being easier to compute when there are
many available actions (for example, if the action space is continuous Sutton and
Barto 1998). In this case, the policy learning system is called the actor and the
value learning system is called the critic. The actor and critic systems have been pro-
posed to correspond to different brain structures (Barto 1994; O’Doherty et al. 2004;
Daw and Doya 2006). The dopamine-as-δ hypothesis can provide another explana-
tion for drug addiction if learning in the critic system is saturable. During actor
learning, feedback from the critic is required to calculate how much unexpected re-
inforcement occurred, and thus how much the actor should learn. If drugs produce
a large increase in δ that cannot be compensated for by the saturated critic, then
the actor will over-learn the benefit of the action leading to this drug-delivery (see
Chap. 8 in this book).

The models we have discussed so far use the assumption that decision-making
is based on learning, for each state, an expectation of future value that can
be expressed in a common currency. There are many experiments that show
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that not all decisions are explicable in this way (Balleine and Dickinson 1998;
Dayan 2002; Daw et al. 2005; Dayan and Seymour 2008; Redish et al. 2008;
van der Meer and Redish 2010). The limitations of the temporal difference models
can be addressed by incorporating additional learning and decision-making algo-
rithms (Pavlovian systems, deliberative systems) and by addressing the representa-
tions of the world over which these systems work.

6.1.3 Pavlovian Systems

Unconditioned stimuli can provoke an approach or avoidance response that does
not depend on the instrumental contingencies of the experiment (Mackintosh 1974;
Dayan and Seymour 2008). These Pavlovian systems can produce non-optimal
decisions in some animals under certain conditions (Breland and Breland 1961;
Balleine 2001, 2004; Dayan et al. 2006; Uslaner et al. 2006; Flagel et al. 2008;
Ostlund and Balleine 2008). For example, in a classic experiment, birds were placed
on a linear track, near a cup of food that was mechanically designed to move in the
same direction as the bird, at twice the bird’s speed. The optimal strategy for the
bird was to move away from the food until the food reached the bird, but in the
experiment, birds never learned to move away; instead always chasing the food to
a greater distance (Hershberger 1986). Theories of Pavlovian influence on decision-
making suggest that the food-related cues provoked an approach response (Breland
and Breland 1961; Dayan et al. 2006). Similarly, if animals are trained that a cue
predicts a particular reward in a Pavlovian conditioning task, later presenting that
cue during an instrumental task in which one of the choices leads to that reward will
increase preference for that choice (Pavlovian-instrumental transfer (Estes 1943;
Kruse et al. 1983; Lovibond 1983; Talmi et al. 2008)). Although models of Pavlo-
vian systems exist (Balleine 2001, 2004; Dayan et al. 2006) as do suggestions that
Pavlovian failures underlie aspects of addiction (Robinson and Berridge 1993, 2001,
2004; Berridge 2007), computational models of addiction taking into account inter-
actions between Pavlovian effects and temporal difference learning are still lacking.

6.1.4 Deliberation, Forward Search and Executive Function

During a decision, the brain may explicitly consider alternatives in order to pre-
dict outcomes (Tolman 1939; van der Meer and Redish 2010). This process allows
evaluation of those outcomes in the light of current goals, expectations, and values
(Niv et al. 2006). Therefore part of the decision-making process plausibly involves
predicting the future situation that will arise from taking a choice and accessing the
reinforcement associations that are present in that future situation. This stands in
contrast to decision-making strategies that use only the value associations present in
the current situation.
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When rats running in a maze come to an important choice-point where they could
go right or left and possibly receive reward, they will sometimes pause and turn
their head from side to side as if to sample the options. This is known as vicarious
trial and error (VTE) (Muenzinger 1938; Tolman 1938, 1939, 1948). VTE behavior
is correlated to hippocampal activity and is reduced by hippocampal lesions (Hu
and Amsel 1995; Hu et al. 2006). During most behavior, cells in the hippocampus
encode the animal’s location in space (O’Keefe and Dostrovsky 1971; O’Keefe and
Nadel 1978; Redish 1999). But during VTE, this representation sometimes projects
forward in one direction and then the other (Johnson and Redish 2007). Johnson and
Redish (2007) proposed that this “look-ahead” that occurs during deliberation may
be part of the decision making process. By imagining the future, the animal may
be attempting to determine whether each choice is rewarded (Tolman 1939, 1948).
Downstream of the hippocampus, reward-related cells in the ventral striatum also
show additional activity during this deliberative process (van der Meer and Redish
2009), which may be evidence for prediction and calculation of expectancies (Daw
et al. 2005; Redish and Johnson 2007; van der Meer and Redish 2010).

Considering forward search as part of the decision making process permits a
computational explanation for the phenomena of craving and obsession in drug ad-
dicts (Redish and Johnson 2007). Craving is the recognition of a high-value out-
come, and obsession entails constraint of searches to a single high-value outcome.
Current theories suggest that endogenous opioids signal the hedonic value of re-
ceived rewards (Robinson and Berridge 1993). If these endogenous opioids also
signal imagined rewards, then opioids may be a key to craving (Redish and John-
son 2007). This fits data that opioid antagonists reduce craving (Arbisi et al. 1999;
Levine and Billington 2004). Under this theory, an opioidergic signal at the time of
reward or drug delivery may cause neural plasticity in such a way that the dynamics
of the forward search system become biased to search toward the outcome linked to
the opioid signal. Activation of opioid receptors is known to modulate synaptic plas-
ticity in structures such as the hippocampus (Liao et al. 2005), suggesting a possible
physiological basis for altering forward search in the hippocampus.

6.2 Temporal Difference Learning in a Non-stationary
Environment

Temporal difference learning models describe how to learn an expectation of fu-
ture reward over a known state-space. In the real world, the state-space itself is
not known a priori. It must be learned and may even change over time. This is
illustrated by the problem of extinction and reinstatement. After a cue-reinforcer
association is learned, it can be extinguished by presenting the cue alone (Domjan
1998). Over time, animals will learn to stop responding for the cue. If extinction is
done in a different environment from the original learning, placing the animal back
in the original environment causes responding to start again immediately (Bouton
and Swartzentruber 1989). Similarly, even if acquisition and extinction occur in
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the same environment, a single presentation of the reinforcer following extinction
can cause responding to start again (Pavlov 1927; McFarland and Kalivas 2001;
Bouton 2002). This implies that the original association was not unlearned dur-
ing extinction. A similar phenomenon occurs in abstaining human drug addicts,
where drug-related cues can trigger relapse to full resumption of drug-seeking be-
havior much faster than the original development of addiction (Jaffe et al. 1989;
Childress et al. 1992). In extinction paradigms, the world is non-stationary: a cue
that used to lead to a reward or drug-presentation now no longer does. Thus,
a decision-making system trying to accurately predict the world requires a mech-
anism to construct state-spaces flexibly from the observed dynamics of the world.
This mechanism does not exist in standard TDRL models.

To explain the phenomenon of renewal of responding after extinction, a recent
model extended temporal difference learning by adding state-classification (Redish
et al. 2007). In this model, the total information provided from the world to the agent
at each moment was represented as an n-dimensional sensory cue. The model clas-
sified cue vectors into the same state if they were similar, or into different states
if they were sufficiently dissimilar. During acquisition of a cue-reinforcer asso-
ciation, the model grouped these similar observations (many trials with the same
cue)into a state representing “cue predicts reward”. The model learned to associate
the value of the reward with instrumental responding in this “cue predicts reward”
state. This learning occurred at the learning rate of the model. During extinction,
as the model accumulated evidence that a cue did not predict reward in a new con-
text, these observations were classified into a new state representing “cue does not
predict reward”, from which actions had no value. When returned to the original
context, the model switched back to classifying cue observations into the “cue pre-
dicts reward” state. Because instrumental responding in the “cue predicts reward”
state had already been associated with reward during acquisition, no additional
learning was needed, and responding immediately resumed at the pre-extinction
rate.

This situation-classification component may be vulnerable to its own class of
failures in decision-making. Based on vulnerabilities in situation-classification,
Redish et al. (2007) were also able to simulate behavioral addiction to gam-
bling. These errors followed both from over-separation of states, in which two
states that were not actually different were identified as different due to unex-
pected consistencies in noise, and from over-generalization of states, in which
two states that were different were not identified as different due to the similar-
ities between them. The first process is similar to that of “the illusion of con-
trol” in which subjects misperceive that they have control of random situations,
producing superstition (Langer and Roth 1975; Custer 1984; Wagenaar 1988;
Elster 1999). The illusion of control can be created by having too many avail-
able cues, particularly when combined with the identification of near-misses (Cote
et al. 2003; Parke and Griffiths 2004). The phenomenon of “chasing”, in which
subjects continue to place deeper and deeper losing bets, may arise because gam-
blers over-generalize a situation in which they received a large win, to form a
belief that gambling generally leads to reward (Custer 1984; Wagenaar 1988;



6 Modeling Decision-Making Systems in Addiction 11

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

Elster 1999). We suggest this is a problem of state-classification: the gamblers clas-
sify the generic gambling situation as leading to reward.

In the Redish et al. (2007) model, states were classified from sensory and re-
inforcement experience, but the transition structure of the world was not learned.
Smith et al. (2006) took the converse approach. Here the algorithm started with
a known set of states, each with equal temporal extent, and learned the transition
probability matrix based on observed transitions. A “surprise” factor measured the
extent to which a reinforcer was unpredicted by previous cues, also allowing the
model to reproduce the Kamin blocking effect (Kamin 1969) and the reduction of
latent inhibition by amphetamine (Weiner et al. 1988).

Both the Redish et al. (2007) and Smith et al. (2006) models are special cases of
the more general latent cause theory, in which the agent attempts to identify hidden
causes underlying sets of observations (Courville 2006; Gershman et al. 2010). In
these models, agents apply an approximation of Bayesian statistical inference to
all observations to infer hidden causes that could underlie correlated observations.
Because latent cause models take into account any change in stimulus–stimulus or
stimulus–outcome contingencies, these models are able to accommodate any non-
stationary environment.

The ability of the brain to dynamically construct interpretations of the causal
structure of the world is likely seated in frontal cortex and hippocampus. Hippocam-
pus is involved in accommodating cue-reward contingency changes (Hirsh 1974;
Isaacson 1974; Hirsh et al. 1978; Nadel and Willner 1980; Corbit and Balleine 2000;
Fuhs and Touretzky 2007). Returning to a previously reinforced context no longer
triggers renewal of extinguished responding if hippocampus is lesioned (Bouton
et al. 2006). Medial prefrontal cortex appears to be required for learning the rele-
vance of new external cues that signal altered reinforcement contingencies (Lebron
et al. 2004; Milad et al. 2004; Quirk et al. 2006; Sotres-Bayon et al. 2006). Classi-
fication and causality representations in hippocampus and frontal cortex may form
a cognitive input to the basal ganglia structures that perform reinforcement learn-
ing. Drugs of abuse that negatively impact the function of hippocampal or cortical
structures could inhibit the formation of healthy state-spaces, contributing to addic-
tion. Alcohol, for example, has been hypothesized to preferentially impair both hip-
pocampal and prefrontal function (Hunt 1998; Oscar-Berman and Marinkovic 2003;
White 2003).

In general, if the brain constructs state-spaces that do not accurately reflect the
world but instead overemphasize the value of the addictive choice, this constitutes
an addiction vulnerability. Behavioral addiction to gambling may arise from a fail-
ure of state classification as described above. Addiction to drugs could result from
state-spaces that represent only the immediate choice and not the long-range conse-
quences. This would suggest that training new state-space constructions, and mech-
anisms designed to prevent falling back into old state-spaces, may improve relapse
outcomes in addicts.
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6.3 Discounting and Impulsivity

In this section we will discuss the phenomenon of intertemporal choice (how the
delay to a reward influences decisions), and show how changes in the agent’s state-
space can change the intertemporal decisions made by an organism.

If offered a choice between $10 right now and $11 tomorrow, many people will
feel it is not worth waiting one day for that extra dollar, and choose the $10 now.
When offered a choice between a small immediate reward and a large delayed re-
ward, impulsivity is the extent to which the agent prefers the small immediate re-
ward, being unwilling to wait for the future reward. This is sometimes viewed as
a special case of temporal discounting, which is the general problem of how the
value of rewards diminishes as they recede into the future.1 As discussed above,
a discounting function disc(d) maps a delay d to a number in [0,1] specifying how
much a reward’s value is attenuated due to being postponed by time d . The impul-
sive decision to take a smaller-sooner reward rather than a larger-later one can be
studied in the context of temporal difference learning.

Addicts tend to be more impulsive than non-addicts. It is easy to see why impul-
sivity could lead to addiction: the benefit of drug-taking tends to be more immediate
than the benefits of abstaining. It is also possible that drugs increase impulsivity.
Smokers discount faster than those who have never smoked, but ex-smokers dis-
count at a rate similar to those who have never smoked (Bickel et al. 1999). In the
Dezfouli et al. (2009) model, simulations show that choice for non-drug rewards
becomes more impulsive following repeated exposure to drugs. Although the causal
relationship between drug-taking and impulsivity is difficult to study in humans,
animal data show that chronic drug-taking increases impulsivity (Paine et al. 2003;
Simon et al. 2007).

If offered a choice between $10 right now and $11 tomorrow, many people will
choose $10; however, if offered a choice between $10 in a year and $11 in a year
and a day, the same people often prefer the $11 (Ainslie 2001). This is an example
of preference reversal. Economically, the two decisions are equivalent and, under
simple assumptions of stability, it should not matter if the outcomes are each post-
poned by a year. But in practice, many experiments have found that the preferred
option changes as the time of the present changes relative to the outcomes (Madden
and Bickel 2010).

In principle, any monotonically decreasing function with a range from 0 to
1 could make a reasonable discounting function. Exponential discounting (as in
Eq. (6.2)) is often used in theoretical models because it is easy to calculate and
matches economic assumptions of behavior. However, preference reversal does
not occur in exponential discounting, but does occur with any non-exponential

1There are multiple decision factors often referred to as “impulsivity”, including the inability to in-
hibit a pre-potent response, the inability to inhibit an over-learned response, and an over-emphasis
on immediate versus delayed rewards (which we are referring to here). These multiple factors
seem to be independent (Reynolds et al. 2006) and to depend on different brain structures (Isoda
and Hikosaka 2008) and we will not discuss the other factors here.
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discounting function (Frederick et al. 2002). Discounting data in humans and
animals generally does show preference reversal (Chung and Herrnstein 1967;
Baum and Rachlin 1969; Mazur 1987; Kirby and Herrnstein 1995), indicating that
organisms are not performing exponential discounting. Human and animal discount-
ing data are often best fit by a hyperbolic discount function (Ainslie 2001):

disc(d) = 1

1 + kd
(6.5)

where k ∈ [0,∞) is the discount rate. It is therefore important to consider how
hyperbolic discounting can fit into reinforcement learning models.

Hyperbolic discounting is empirically a good fit to human and animal discounting
data, but it also has a theoretical basis in uncertain hazard rates. Agents are assumed
to discount future rewards because there is some risk that the reward will never be
received, and this risk grows with temporal distance (but see Henly et al. 2008).
Events that would prevent reward receipt, such as death of the organism, are called
interruptions. If interruptions are believed to occur randomly at some rate (i.e., the
hazard rate), then the economically optimal policy is exponential discounting at that
rate. However, if the hazard rate is not known a priori, it could be taken to be a uni-
form distribution over the possible rates (ranging from 1 where interruptions never
occur to 0 where interruptions occur infinitely fast). Under this assumption, the eco-
nomically optimal policy is hyperbolic discounting (Sozou 1998). Using the data
from a large survey, it was found that factoring out an individual’s expectation and
tolerance of risk leaves individuals with a discounting factor well-fit by an exponen-
tial discounting function (Andersen et al. 2008). This function was correlated with
the current interest rate, suggesting that humans may be changing their discounting
rates to fit the expected hazard functions. Studies in which subjects could maximize
reward by discounting exponentially at particular rates have found that humans can
match their discounting to those exponential functions (Schweighofer et al. 2006).
However, neurological studies have found that risk and discounted rewards may be
utilizing different brain structures (Preuschoff et al. 2006).

Semi-Markov temporal difference models, such as those described above, can
represent varying time intervals within a single state, permitting any discount func-
tion to be calculated across a single state-transition. However, the value of a state is
still calculated recursively using the discounted value of the next state (rather than
looking ahead all the way to the reward). Thus, across multiple state-transitions,
the discounting of semi-Markov models depends on the way that the total tempo-
ral interval between now and reward is divided between states. With exponential
discounting, the same percent reduction in value occurs for a given delay, regard-
less of the absolute distance in the future. Because of this, exponential discounting
processes convolve appropriately; that is, the discounted value of a reward R is inde-
pendent of whether the transition is modeled as one state with delay d or two states
with delay d/2. In contrast, hyperbolic discounting functions do not convolve to pro-
duce hyperbolic discounting across a sequence of multiple states, and the discounted
value of a reward R depends on the number of state transitions encompassing the
delay.
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As a potential explanation for how hyperbolic discounting could be calculated in
a way that is not dependent on the division of time into states, Kurth-Nelson and
Redish (2009) noted that a hyperbolic discount function is mathematically equiv-
alent to the sum of exponential discounting functions with a range of exponential
discount factors. ∫ 1

0
γ xdγ = 1

1 + x
(6.6)

Kurth-Nelson and Redish extended TDRL using a population of “micro-agents”,
each of which independently performed temporal difference learning using expo-
nential discounting. Each micro-agent used a different discount rate. Actions were
selected in the model by a simple voting process among the micro-agents. The over-
all model exhibited hyperbolic discounting that did not depend on the division of
time into states (Fig 6.1).

There is evidence that a range of discounting factors are calculated in the stria-
tum, with a gradient from faster discount rates represented in ventral striatum to
slower rates in dorsal striatum (Tanaka et al. 2004). Doya (2000) proposed that
serotonin levels regulate which of these discounting rates are active. Tanaka et al.
(2007) and Schweighofer et al. (2007) showed that changing serotonin levels (by
loading/unloading the serotonin precursor tryptophan) produced changes in which
components of striatum were active in a given task. Drugs of abuse could pharmaco-
logically modulate different aspects of striatum (Porrino et al. 2004). Kurth-Nelson
and Redish (2009) predicted that drugs of abuse may change the distribution of
discount factors and thus speed discounting. The multiple-discount hypothesis pre-
dicts that if the distribution of discount rates is altered by drugs, the shape of the
discounting curve will be altered as well.

6.3.1 Seeing Across the Intertrial Interval

Discounting is often operationally measured by offering the animal a choice be-
tween a smaller reward available sooner or a larger reward available later (Mazur
1987). In the mathematical language used in this chapter, this experiment can be
modeled as a reinforcement learning state-space (Fig. 6.2). The discount rate de-
termines whether the smaller-sooner or larger-later reward will be preferred by a
temporal difference model.

Rather than running a single trial, the animal is usually required to perform mul-
tiple trials in sequence. In these experiments the total trial length is generally held
constant (i.e. the intertrial interval following the smaller-sooner choice is longer
than the intertrial interval following the larger-later choice) so that smaller-sooner
does not become the superior choice simply by hastening the start of the next trial.
This creates a theoretical paradox. On any individual trial, the animal may prefer
the smaller-sooner option because of its discount rate. But consistently choosing
smaller-sooner over larger-later only changes the phase of reward delivery and de-
creases the overall reward magnitude.
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Fig. 6.1 Distributed discounting permits hyperbolic discounting across multiple state transitions.
A, All delay between stimulus and reward is represented in a single state, permitting any discount
function to be calculated over this delay, including exponential (B) or hyperbolic (C). (D) The de-
lay between stimulus and reward is divided into multiple states. Exponential discounting (E) can
still be calculated recursively across the entire delay (because γ aγ b = γ a+b), but if hyperbolic
discounting is calculated at each state transition, the net discounting at the stimulus is not hyper-
bolic (G). However, if exponential discounting is performed in parallel at many different rates,
the average discounting across the entire time interval is hyperbolic (F). [From Kurth-Nelson and
Redish (2009).]

Fig. 6.2 A state-space representing intertemporal choice. From the initial state, a choice is avail-
able between a smaller reward (of magnitude RS ) available after a shorter delay (of duration DS ),
or a larger reward (RL) after a longer delay (DL)

This suggests that there are two different potential state-space representations
to describe this experiment. In one description, each trial is seen independently
(Fig. 6.3, top); this is the standard approach in TDRL. In the other description,
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Fig. 6.3 Allowing the agent to see across the inter-trial interval changes the state-space represen-
tation of the task. Top, A state-space in which each trial is independent from the next. Bottom,
A state-space in which the end of one trial has a transition to the beginning of the next trial, allow-
ing the value estimates to include expectation of reward from future trials. The delays following
the rewards are set to keep the total trial length constant. Note that the states are duplicated for
illustrative purposes; an equivalent diagram would have only three states, with arrows wrapping
back from RS and RL states to the initial choice state

the end of the last trial has a transition to the beginning of the next trial (Fig. 6.3,
bottom). By adding this transition (which we will call a wrap-around transition),
the algorithm can integrate expectation of future reward across all future trials. The
total expectation is still convergent because future trials are discounted increasingly
with temporal distance.

Adding a wrap-around transition to the state-space has the effect of slowing the
apparent rate of discounting. Without wrap-around, the value of the smaller-sooner
option is RS ·disc(DS), and the value of the larger-later option is RL ·disc(DL). With
wrap-around, the smaller-sooner option becomes RS · disc(DS)+X, and the larger-
later option becomes RL · disc(DL) + X, where X is the value of the initial state in
which the choices are available. In other words, wrap-around adds the same constant
to the reward expectation for each choice. Thus, if the smaller-sooner option was
preferred without wrap-around, with wrap-around it is still preferred but to a lesser
degree. Because additional delay devalues the future reward less (proportional to its
total value), the apparent rate of discounting is reduced. Note that adding a wrap-
around transition does not change the underlying discount function disc(d), but the
agent’s behavior changes as if it were discounting more slowly. Also, because X is
a constant added to both choices, X can change the degree to which the smaller-
sooner option is preferred to the larger-later, but it cannot reverse the preference
order. Thus, if the agent prefers the smaller-sooner option without a wrap-around
state transition, adding wrap-around cannot cause the agent to switch to prefer the
larger-later option.

If addicts could be influenced to change their state-space to see across the inter-
trial interval, they should exhibit slower discounting. Heyman (2009) observes that
recovered addicts have often made the time-course at which they view their lives
more global. An interesting question is whether this reflects a change in state-space
in the individuals.
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Fig. 6.4 A state-space in which the agent can make a precommitment to avoid having access to
a smaller-sooner reward option. The portion of the state-space inside the dashed box is the small-
er-sooner versus larger-later choice state-space shown in Fig. 6.2. Now a prechoice is available to
enter the smaller-sooner versus larger-later choice, or to enter a situation from which only larg-
er-later is available. Following the prechoice is a delay DC

6.3.2 Precommitment and Bundling

The phenomenon of preference reversal suggests that an agent who can predict their
own impulsivity may prefer to remove the future impulsive choice if given an op-
portunity (Strotz 1956; Ainslie 2001; Gul and Pesendorfer 2001; Heyman 2009;
Kurth-Nelson and Redish 2010). For example, an addict may decline to visit
somewhere drugs are available. When the drug-taking choice is viewed from
a temporal distance, he prefers not to take drugs. But he knows that if faced
with drug-taking as an immediate option, he will take it, so he does not wish
to have the choice. Precommitment to larger-later choices by eliminating future
smaller-sooner choices is a common behavioral strategy seen in successful recov-
ery from addiction (Rachlin 2000; Ainslie 2001; Dickerson and O’Connor 2006;
Heyman 2009).

Kurth-Nelson and Redish (2010) showed that precommitment behavior can be
modeled with reinforcement learning. The reinforcement learning state-space for
precommitment is represented in Fig. 6.4. The agent is given a choice to either en-
ter a smaller-sooner versus larger-later choice, or to enter a situation where only
the larger-later option is available. Because the agent discounts hyperbolically, the
agent can prefer the smaller-sooner option when making the choice at C, but also
prefer the larger-later option when making the earlier choice at P. Mathematically,
when the agent is in state C, it is faced with a choice between two options with val-
ues RS · disc(DS) and RL · disc(DL). But when the agent is in state P, the choice is
between two options with values RL · disc(DC + DL) and RS · disc(DC + DS). In
hyperbolic discounting, the rate of discounting slows as rewards recede into the fu-
ture, so disc(DS)

disc(DL)
>

disc(DC+DS)
disc(DC+DL)

, meaning that the extra delay DC makes the smaller-
sooner choice relatively less valuable. This experiment has been performed in pi-
geons, and some pigeons consistently elected to take away a future impulsive choice
from themselves, despite preferring that choice when it was available (Rachlin and
Green 1972; Ainslie 1974). However, to our knowledge this experiment has not yet
been run in humans or other species.
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In order for a reinforcement learning agent to exhibit precommitment in the state-
space in Fig. 6.4, it must behave in state P as if it were discounting RS across the en-
tire time interval DC +DS , and discounting RL across the entire interval DC +DL.
As noted earlier (cf. Fig. 6.1), hyperbolic discounting across multiple states cannot
be done with a standard hyperbolic discounting model (Kurth-Nelson and Redish
2010). It requires a model such as the distributed discounting model (Kurth-Nelson
and Redish 2009) described above. In this model, each μAgent has a different expo-
nential discounting rate and has a different value estimate for each state. This model
performs hyperbolic discounting across multi-step state-spaces (cf. Fig. 6.1) by not
collapsing future reward expectation to a single value for each state. Thus, if the
distributed discounting model is trained over the state-space of Fig. 6.4, it prefers
the smaller-sooner option from state C, but from state P prefers to go to state N
(Kurth-Nelson and Redish 2010).

Another way for an impulsive agent to regulate its future choices is with bundling
(Ainslie 2001). In bundling, an agent reduces a sequence of future decisions to a
single decision. For example, an alcoholic may recognize that having one drink is
not a choice that can be made in isolation, because it will lead to repeated impulsive
choice. Therefore the choice is between being an alcoholic or never drinking.

Consider the state-spaces in Fig. 6.5. If each choice is treated as independent,
the value of the smaller-sooner choice is RS · disc(DS) and the value of the larger-
later choice is RL · disc(DL). However, if making one choice is believed to also
determine the outcome of the subsequent trial, then the value of smaller-sooner
is RS · disc(DS) + RS · disc(DS + DL + DS) and the value of larger-later is
RL · disc(DL) + RL · disc(DL + DS + DL). In an agent performing hyperbolic
discounting, the attenuation of value produced by the extra DS + DL delay is less if
this delay comes later relative to the present. Thus bundling can change the agent’s
preferences so that the larger-later choice is preferred from the initial state. Like pre-
commitment, bundling can be modeled with reinforcement learning, but only if the
model correctly performs hyperbolic discounting across multiple state transitions
(Kurth-Nelson and Redish 2010).

It is interesting to note that the agent can represent a given choice in a number of
ways: existing in isolation (Fig. 6.3, top), leading to subsequent choices (Fig. 6.3,
bottom), viewed in advance (Fig. 6.4), or viewed as a categorical choice (Fig. 6.5,
bottom). These four different state-spaces are each reasonable representations of
the same underlying choice, but produce very different behavior in reinforcement
learning models. This highlights the importance of constructing a state-space for re-
inforcement learning. If state-space construction is a cognitive operation, it is pos-
sible that it can be influenced by semantic inputs. For example, perhaps by verbally
suggesting to someone that the decision to have one drink cannot be made in isola-
tion, they are led to create a state-space that reflects this idea.

Throughout these examples in which state-space construction has influenced the
apparent discount rate, the underlying discount rate (the function disc(d)) is unaf-
fected. The difference is in the agent’s choice behavior, from which discounting is
inferred. Since state-space construction in temporal difference models affects appar-
ent discount rates, it may be that discounting in the brain is modulated by the capac-
ity of the organism to construct state-spaces. This suggests that a potential treatment
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Fig. 6.5 Bundling two
choices. Top, Each choice is
made independently. Bottom,
One choice commits the
agent to make the same
choice on the next trial

for addiction may lie in the creation of better state-spaces. Gershman et al. (2010)
proposed that a limited ability to infer causal relations in the world explains the fact
that young animals exhibit less context-dependence in reinforcement learning. This
matches the data that people with higher cognitive skills exhibit slower discounting
(Burks et al. 2009). It is also consistent with the emphasis of addiction treatment
programs (such as 12-step programs) on cognitive strategies that alter the perceived
contingencies of the world.

However, it is not clear that the learning systems for habitual or automatic behav-
iors always produce impulsive choice, or that the executive systems always produce
non-impulsive choice. For example, smokers engage in complex planning to find
the cheapest cigarettes, in line with the economic view that addicts should be sen-
sitive to cost (Becker and Murphy 1988; Redish 2004). Addicts can perform very
complex planning in order to get their drugs (Goldman et al. 1987; Goldstein 2000;
Jones et al. 2001; Robinson and Berridge 2003). Thus it does not appear that the
problem of addiction is simply a case of the habitual system pharmacologically pro-
grammed to carry out drug-seeking behaviors (as arises from the Redish (2004),
Gutkin et al. (2006), or Dezfouli et al. (2009) models discussed above; see also
Chap. 8 in this book). Rather, addictive drugs seem to have the potential to access
vulnerabilities in multiple decision-making systems, including cognitive or execu-
tive systems. These different vulnerabilities are likely accessed by different drugs
and have differentiable phenotypes (Redish et al. 2008).

6.4 Decision-Making Theories and Addiction

We have seen examples of how decision-making models exhibit vulnerabilities to
addictive choice. Another important question is how people actually made decisions
in the real-world. There is a key aspect of addiction that does not fit easily into cur-
rent theories of addiction: the high rate of remission. Current theories of addiction
generally account for the development and escalation of addiction by supposing that
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drugs have a pharmacological action that cumulatively biases the decision-making
system of the brain toward drug-choice. These models do not account for cases of
spontaneous (untreated) remission, such as a long-term daily drug user who sud-
denly realizes that she would rather support her children than use drugs, and stops
her drug use (Heyman 2009).

Approaches like the 12-step programs (originally Alcoholics Anonymous) have
a high success rate in achieving lasting abstinence (Moos and Moos 2004, 2006a,
2006b). These programs use a variety of strategies to encourage people to give up
their addictive behavior. These strategies may be amenable to description in the
framework of decision-making modeling. For example, one effective strategy is to
offer addicts movie rental vouchers in exchange for one week of abstinence (McCaul
and Petry 2003; Higgins et al. 2004). If an addict is consistently making decisions
that prefer having a gram of cocaine over having $60, why would the addict prefer
a movie rental worth $3 over a week of drug taking? This is, as yet, an unanswered
question which may require models that include changes in state-space representa-
tion, more complex forward-modeling, and more complex evaluation mechanisms
than those currently included in computational models of addiction.
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