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Abstract

Decisions result from an interaction between multiple functional systems acting in

parallel to process information in very different ways, each with strengths and weak-

nesses. In this review, we address three action-selection components of this decision-

making system: The Pavlovian system releases an action from a limited repertoire of po-

tential actions such as approaching learned stimuli. Like the Pavlovian system, the habit

system is computationally fast, but permits arbitrary stimulus-action pairings. These

associations are a ”forward” mechanism; when a situation is recognized, the action is

released. In contrast, the deliberative system is flexible, but takes time to process. The

deliberative system uses knowledge of the causal structure of the world to search for-

ward into the future, planning actions to maximize expected rewards. This depends on

the ability to imagine future possibilities, including novel situations, and allows deci-

sions to be taken without having to have previously experienced the options. Various

anatomical structures have been identified that carry out the information processing of

each of these systems: hippocampus constitutes a map of the world that can be used

for searching/imagining the future, dorsal striatal neurons represent situation-action

∗mvdm@uwaterloo.ca, University of Waterloo
†zebkurthnelson@gmail.com, Wellcome Trust Centre for Neuroimaging, University College London
‡redish@umn.edu, University of Minnesota

1

Page 1 of 49

http://mc.manuscriptcentral.com/nro

The Neuroscientist

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

MvdM/ZKN/ADR 09/Dec/2011

associations, and ventral striatum maintains value representations for all three systems.

Each of these systems presents vulnerabilities to pathologies that can manifest as psychi-

atric disorders. Understanding these systems and their relation to neuroanatomy opens

up a deeper way to treat the structural problems underlying various disorders.
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1 Introduction

The brain is an information-processing machine evolved to make decisions: it takes infor-

mation in, stores it in memory, and uses that knowledge to improve the actions the or-

ganism takes. At least three distinct action-selection systems have been identified in the

mammalian brain: a Pavlovian action-selection system, a Deliberative action-selection sys-

tem, and a Habit action-selection system.1 In this review, we analyze these decision systems

from an information processing standpoint. We consider their similarities, differences, and

interactions in contributing to a final decision. The Pavlovian action-selection system learns

about stimuli that predict motivationally relevant outcomes, such that Pavlovian stimuli

come to release actions learned over an evolutionary timescale (Dayan and others, 2006).

Although diverse stimuli can participate in Pavlovian learning, the available actions remain

limited (e.g. salivate, approach, freeze; Bouton, 2007). Deliberative action-selection is a com-

plex process that includes a search through the expected consequences of possible actions

based on a world model. These consequences can then be evaluated online, taking current

goals and/or motivational state into account, before selecting an action (Niv and others,

2006). Although Deliberation is very flexible, it is also computationally expensive and slow.

The Habit system entails an arbitrary association between a complexly-recognized situation

and a complex chain of actions (Sutton and Barto, 1998). Once learned, such cached actions

are fast, but can be hard to change.

This review will consist of three parts. In part 1, we will discuss each of the three

decision-making systems, with an emphasis on the underlying information-processing steps

1Technically, a reflex is also a decision, as it entails the taking of an action in response to stimuli. The fact
that a reflex is a decision can be seen in that a reflex only takes the action under certain conditions and it
interacts with the other decision-making systems (e.g. it can be overridden by top-down processes,). In the
language of decision-making systems developed here, a reflex is a specific action taken in response to a trig-
gering condition. Both the triggering condition and the action taken are learned over evolutionary time-scales.
The anatomy, mechanism, and specific stimulus/response pairs associated with reflexes are well understood
and available in most primary textbooks and will not be repeated here.

3

Page 3 of 49

http://mc.manuscriptcentral.com/nro

The Neuroscientist

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

MvdM/ZKN/ADR 09/Dec/2011

that differentiate them. In part 2, we will discuss specific brain structures and what is

known about their individual roles in each of the systems. In part 3, we will discuss some

of the implications of the multiple decision-making system theory. Evidence suggests that

all three decision-making systems are competing and interacting to produce actions in any

given task. We will address the question of how they interact in the discussion in part 3.

Throughout this review, we will concentrate on data from the rat because (1) concen-

trating on a consistent organism allows better comparisons between systems, and (2) it is

the best studied in terms of detailed neural mechanisms for each of the systems. However,

these same systems exist in humans and other primates, and we will connect the rat data to

primate (human and monkey) homologies when the data is available.

[Box 1 about here.]

2 Action-selection-systems in the mammalian brain

2.1 Pavlovian action-selection

Pavlovian action selection arises because hard-wired, species-specific actions can be gov-

erned by associative learning processes (Bouton, 2007). “Unconditioned responses” (URs)

classically are physiological responses such as salivation when smelling a lemon or a gal-

vanic skin response following a shock, but also include responses more recognizable as

actions, such as approach to a sound, freezing in anticipation of shock, or fleeing from a

predator. As organisms learn associative relationships between different events (stimuli

including contexts) in the world, originally neutral stimuli (i.e. not capable of evoking an

UR) can come to release “conditioned responses”: a bell that predicts food delivery trig-

gers salivation. The bell becomes a conditioned stimulus (CS), to which the organism emits

a conditioned response (CR). The action-releasing component of this association depends

4

Page 4 of 49

http://mc.manuscriptcentral.com/nro

The Neuroscientist

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

MvdM/ZKN/ADR 09/Dec/2011

on a circuit involving the ventral striatum, the amygdala, and their connections to motor

circuits (Ledoux, 2002; Cardinal and others, 2002).

[Figure 1 about here.]

A distinguishing feature of Pavlovian responses is that they occur in the absence of any

relationship between the response and subsequent reinforcement. For instance, pigeons

typically peck at a cue light predictive of food delivery (CS), even though there is no re-

ward for doing so. Moreover, this so-called “autoshaping” behavior can persist even if the

experiment is arranged such that pecking the CS actually reduces reward obtained (Breland

and Breland, 1961; Dayan and others, 2006). Thus, Pavlovian actions are selected on the ba-

sis of an associative relationship with a particular outcome, rather than on the basis of the

action being reinforced.

In rats, Pavlovian action selection is illustrated by comparing sign-tracking and goal-

tracking behavior: when a light signals the availability of food at a separate port, some

rats learn to approach the light and chew on it (sign-tracking), as if the light itself has gained

some food-related concept in the rat’s mind. Obviously, the better decision would be to ap-

proach the food port when the light turns on (goal-tracking). Which rats show sign-tracking

and which rats show goal-tracking correlates with and depends on dopamine signals in the

ventral striatum (Flagel and others, 2011).

A convenient way of thinking about the mechanism underlying Pavlovian action se-

lection is that the relationship between CS and US gives rise to a neural representation of

(aspects of) the US, known as an “expectancy”, when the CS is presented; for instance,

when the bell is rung, an expectancy of food is produced. To the extent that this expectancy

resembles a representation of the US itself, the CR can resemble the UR, but Pavlovian CRs

are not restricted to simply replicating the UR. For instance, if the US is devalued (e.g. pair-

ing food with illness) then the CR is strongly attenuated, and different CRs can be produced
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depending on the properties of different CSs associated with the same US (Bouton, 2007).

Expectancies can have outcome-identity-specific properties (e.g. food vs. water) as well as

more general properties (appetitive vs. aversive). These properties interact with current

motivational state and the identity of the CS to produce particular CRs.

Furthermore, Pavlovian expectancies can modulate instrumental action selection, an ef-

fect termed Pavlovian-instrumental transfer (PIT); PIT entails an interaction between motiva-

tional components driven by Pavlovian valuation and other action-selection systems (Talmi

and others, 2008).

In summary, purely Pavlovian action-selection is characterized by a limited, hard-wired

“repertoire” of possible actions, arising from the interplay of an expectancy generated by

the CS-US association, motivational state, and actions afforded by the environment (Huys,

2007). Critically, Pavlovian actions can be acquired in the absence of instrumental contin-

gencies, and can therefore be irrelevant or even detrimental to instrumental performance

(Breland and Breland, 1961; Dayan and others, 2006). However, expectancies generated

through Pavlovian relationships can powerfully modulate instrumental action selection

(Talmi and others, 2008).

2.2 Cached-action systems (Habit).

Purely Pavlovian decisions can only release of a limited set of actions. In contrast, the

Habit or “cached-action” system forms arbitrary associations between situations and ac-

tions, which are learned from experience (Figure 2). Computationally, cached-action system

performance entails two deceptively simple steps: recognize the situation and release the

associated action. The complexity in cached-action systems arises in the learning process,

which must both learn a categorization to recognize situations and also learn which action

to take in that situation so as to maximize one’s reward.
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[Figure 2 about here.]

There are models of both of these components that have been well-integrated with neu-

rophysiology. First, the situation-recognition likely happens through content-addressable

mechanisms in cortical systems (Redish and others, 2007). These systems are dependent

on the presence of dopamine, particularly for stability of representations. (In the presence

of dopamine, situation representations are stable. In the absence of dopamine, situation

representations become less stable.)

Second, the association between situation and action is well described by temporal-

difference reinforcement learning (TDRL) algorithms (Sutton and Barto, 1998) driven by

dopaminergic influences on dorsal (especially dosolateral) striatal systems (Box 2) — the

association is trained up by the dopaminergic value-prediction error signal (Schultz and

others, 1997). When the value-prediction error is greater than zero, the system should in-

crease its likelihood of taking an action, and when the value-prediction error is less than

zero, the system should decrease its likelihood of taking an action. Thus, unlike Pavlovian

systems, cached-value system decisions are dependent on a history of reinforcement, that

is, they are instrumentally learned. Anatomically, these striatal systems include both go

(increase likelihood of taking an action) and no-go (decrease likelihood of taking an action)

systems, each of which are influenced by the presence or absence of a dopaminergic signal

(Frank, 2011).

The cached-action system can be seen as a means of shifting the complexity of decision-

making from action-selection to situation-recognition. Particularly vivid examples arise in

sports. A batter has to decide whether to swing a bat; a quarterback has to decide which

receiver to throw to. The action itself is habitual and fast. The hard part is knowing whether

this is the right moment to take the action. This arrangement offloads the hard computa-

tional work to situation-categorization, which the human brain is extraordinarily good at.
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An important prediction of this cached-action learned association is that the dorsolat-

eral association neurons should represent situation-action pairs, but only those pairs that

are useful to the animal. From these descriptions, we can make several predictions about

these neural representations. (1) They should develop slowly. (2) They should only reflect

the current situation. (3) They should only represent information about the world if that

information is informative about reward delivery. In the discussion of dorsal striatum, we

will see that all three of these predictions are correct descriptions of dorsolateral neural

ensembles in the rat. (See Section 3.2.)

The limitations of cached-action systems reside in their inflexibility (Niv and others,

2006). Although a cached-action system can react quickly to a recognized situation, modify-

ing the association takes time and requires extensive experience.2 Furthermore, the cached-

action system is not aware of outcomes (for example, it is insensitive to devaluation); in-

stead, a stimulus or situation leads directly forward into an action without consideration of

the consequences. The Deliberative system addresses this limitation.

2.3 Deliberative action-selection

Sometimes, one has to make decisions without having the opportunity to try them out

multiple times. Take, for example, a postdoc with two faculty offers, at very different uni-

versities in very different locations. That postdoc does not get the opportunity to try each

of those two jobs and use any errors in value-prediction to learn the value of each offer.

Instead, our intrepid postdoc must imagine himself in each of those two jobs, evaluate the

likely rewards and costs associated with those offers, and then make a decision. This is the

2There is some evidence that this experience can be achieved without repeating the actual experience
through a consolidation process in which the experience is replayed internally (Morris and others, 1982; Re-
dish and Touretzky, 1998; Sutherland and McNaughton, 2000). Computationally, learning through imagined
repetition of a specific experience is similar to increasing the learning rate; however, if there is noise in the
replayed memories, this can aid in generalization processes in the situation-recognition and association com-
ponents (Samsonovich and Ascoli, 2005).
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process of deliberation (Figure 3).

Deliberation requires knowledge of the consequences of one’s potential actions: a world

model. Computational models have thus termed deliberative processes “model-based” to

differentiate them from cached-action processes (“model-free”; Niv and others 2006). His-

torically, the idea that rats and other animals could deliberate was first proposed by Tol-

man in the 1930s (Tolman, 1932), but without the available mathematical understanding of

information processing, algorithm, or computational complexity, it was impossible to un-

derstand how a deliberation system might work. Tolman’s hypothesis that rats deliberated

over options came from observations originally made by Meunzinger and Gentry in 1931

that under certain conditions, rats would pause at a choice point and turn back and forth,

alternately towards the multiple options, before making a decision (Muenzinger and Gen-

try, 1931). This process was termed “vicarious trial and error” (VTE). VTE events occur

after an animal has become familiar with an environment, but when animals are still learn-

ing, when they must be flexible about their choices, and when they have to change from a

learned habit (Tolman, 1932). Tolman explicitly hypothesized that animals were imagining

themselves in the future during “vicarious trial and error”.

Imagining oneself in a future is a process called episodic future thinking (Atance and

O’Neill, 2001; Buckner and Carroll, 2007) and requires an interaction between the hip-

pocampus and the prefrontal cortex (Schacter and Addis, 2011; Hassabis and Maguire,

2011). It entails pulling together concepts from multiple past experiences to create an imag-

ined future (Schacter and Addis, 2011). Because this imagined future is constructed as a co-

herent whole, only one future tends to be constructed at a time (Atance and O’Neill, 2001).

That is, deliberation entails a serial search between options. Also, because this imagined fu-

ture is constructed, it depends greatly on what aspects of that future event are attended to

(Hill, 2008). Attention appears again in the evaluation step because deliberative decisions

tend to occur between options with very different advantages and disadvantages. How-
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ever, this makes the deliberation process flexible — by changing his attention to compare

teaching and research opportunities or to compare lifestyles in the two cities, our postdoc

could change the valuation of the two options, before having to make the decision to take

one of the two jobs.

As will be discussed below, we now know that during vicarious trial and error (VTE)

events, hippocampal representations sweep forward serially through the possibilities (John-

son and Redish, 2007), and both ventral striatal and orbitofrontal reward-related represen-

tations covertly signal reward expectations (van der Meer and Redish, 2009, Steiner and

Redish, Society for Neuroscience Abstracts, 2010). Interestingly, dorsolateral striatal neurons

(thought to be involved in cached-action systems) do not show any of these effects (van der

Meer and others, 2010).

[Figure 3 about here.]

[Box 2 about here.]

3 Structures involved in decision-making

In a sense, the agent itself is a decision-making machine, and thus the entire brain (and the

entire body) is involved in decision-making. However, some of the specific aspects of the

action-selection systems detailed above map onto distinct computational roles, mediated

by dissociable decision-making circuits in the brain.

3.1 Hippocampus

Tolman suggested that the brain uses a “cognitive map” to support decision-making. In

his original conception, this “map” was a representation of both spatial relationships (if I

turn left from here, I will be over there. . . ), and causal relationships (if I push this lever, good food

10

Page 10 of 49

http://mc.manuscriptcentral.com/nro

The Neuroscientist

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

MvdM/ZKN/ADR 09/Dec/2011

will appear. . . ) (Tolman, 1932; Johnson and Crowe, 2009). The key to deliberative decision-

making is the ability to create a representation of other places and other times (in the case of

a coherent, rich representation, this is sometimes called mental time travel; Buckner and Car-

roll 2007; Schacter and Addis 2011). In humans, this ability depends on the hippocampus,

whether those other places and other times are in the past (episodic memory, Cohen and

Eichenbaum, 1993) or the future (episodic future thinking, Hassabis and Maguire, 2011).

[Figure 4 about here.]

In rats, the primary information encoded by the primary output cells of the hippocam-

pus (excitatory pyramidal cells in CA3 and CA1) is the spatial location of the animal —

these are the famous “place” cells (O’Keefe and Nadel, 1978; Redish, 1999, see Figure 4).

Hippocampal cells are also sensitive to non-spatial information, but this non-spatial infor-

mation (such as the presence of a certain object, the color of the walls) modulates the place

representation (Redish, 1999).

We will see below that dorsolateral striatal cells encode the information needed to get re-

ward (Section 3.2). Dorsolateral cells do respond to spatial information on spatial tasks, but

not on tasks in which the spatial location of the rat is not predictive of reward (Schmitzer-

Torbert and Redish, 2008; Berke and Eichenbaum, 2009). In contrast, hippocampal cells

show even better spatial representations when the task gets complicated, even when the

aspect that makes it complicated is non-spatial (Fenton and others, 2010; Wikenheiser and

Redish, 2011).

What are the properties that we expect the hippocampal map to have, in order to be

useful for deliberative decision-making? First, a map must be available as soon as possible.

Deliberative decision-making is more flexible than habit, and is generally used first when

learning new tasks (Killcross and Coutureau, 2003; Redish and others, 2008). Thus, we

would expect the hippocampal map to appear quickly, even if it must settle down to stabil-
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ity over time. Second, one will need multiple maps for planning in different environments

and with different reward distributions. Third, the map should go beyond a simple record

of previous experiences; it needs to enable prediction of routes or outcomes that have rarely

or not yet been experienced.

In fact, the hippocampal place fields have the appropriate representational firing pat-

terns and the correct dynamics to be the map that is searched during deliberation. The

place fields appear from the first entry into an environment (Hill, 1978; Redish, 1999), al-

though they may take time to stabilize, and the stability depends on the need to attend to

the task at hand and the presence of dopamine (Kentros and others, 2004). In each envi-

ronment, there is a random mapping from place cell to place field, such that each cell has

a random chance of having a field in an environment and a random location (or locations)

of preferred firing in each environment. If the distribution of goal locations within an envi-

ronment is changed drastically, one sees a dramatic remapping of the place fields. Finally,

the distribution of place fields within an environment is approximately uniform: although

there is some evidence that place fields are smaller around goals, producing a concentra-

tion of place fields around goals (Hollup and others, 2001), place fields do not accumulate

around locations that require more complex action selection information (van der Meer and

others, 2010).

So, what would deliberation and imagination look like on such a map? During delib-

eration, animals should pause at choice points and one should see sequential, serial repre-

sentations of positions sweeping ahead of the animal. These representations should pref-

erentially occur at choice points and preferentially during deliberative rather than habitual

events. This is exactly what is seen. As noted above, when rats come to difficult choice

points, they pause and look back and forth, showing a behavioral phenomenon called VTE

(Muenzinger and Gentry, 1931; Tolman, 1932). During these VTE events, the hippocampal

place cells with place fields ahead of the animal fire in sequence, first down one path, then
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down the other (Johnson and Redish, 2007). These sequences start at the location of the rat

and proceed to the next available goal. (See Figure 4.) These sequences are significantly

ahead of the animal, rather than behind it. They are serial, not parallel, and preferentially

occur during VTE events at choice points (Johnson and Redish, 2007). These are the neural

correlates one would expect from a deliberative search process.

In line with these neural dynamics, hippocampal lesions impair the ability of humans

to remember the past (episodic memory, Cohen and Eichenbaum, 1993), to imagine the

future (episodic future thinking, Schacter and Addis, 2011), and to plan beyond the present

(Hassabis and Maguire, 2011). Hippocampal lesions impair the ability of rats to navigate

complex spatial environments (O’Keefe and Nadel, 1978; Redish, 1999) and to place new

objects within the environmental context (the schema of the world, Tse and others, 2007),

and they attenuate VTE events (Hu and Amsel, 1995). Thus, the hippocampus implements a

searchable map comprised of relationships between spatial locations, objects, and contexts.

The dynamics of hippocampal representations match the expectations one would see if the

hippocampus was involved in planning.

3.2 Dorsal Striatum

The functional roles of the striatal subregions reflect the topographical organization of its

inputs and outputs (Swanson, 2000). A distinction is generally made between the dorso-

lateral striatum, interconnected with sensory and motor cortex, the dorsomedial striatum,

interconnected with associative cortical areas, and the ventral striatum, interconnected with

hippocampal and frontal cortical areas; this subdivision should be understood as gradual,

rather than as clear-cut and abrupt. In addition, this connectivity-based subdivision should

also be understood as having additional effects along the anterior-posterior axis (Swanson,

2000; Yin and Knowlton, 2004).

Lesion studies indicate a striking dissociation between dorsolateral and dorsomedial
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striatum, with dorsolateral striatum being important for the performance of habitual ac-

tions, and dorsomedial striatum being important for the performance of deliberative (goal-

directed, going to a place rather than making a response) actions (Yin and Knowlton, 2004).

Strikingly, Atallah and others (2007) found that dorsolateral striatum was required for the

performance, but not acquisition, of an instrumental S-A (habit) task.

Recording studies have tended to concentrate on the anterior dorsolateral striatum be-

cause lesion studies have found that the anterior dorsolateral striatum produced contrast-

ing effects to hippocampal lesions on tasks that put place-directed (deliberative) strategies

in conflict with response-directed (habit) strategies. See Figure 7. Studies in the ante-

rior dorsolateral striatum find that cells learn to encode situation-action pairs, such that

the situation-correlations depend on the information necessary to find reward (Berke and

Eichenbaum, 2009; Schmitzer-Torbert and Redish, 2008). Cells in the anterior dorsolateral

striatum develop task-related firing with experience (Barnes and others, 2005; van der Meer

and others, 2010). This task-related firing tends to occur at task-components where habitual

decisions needed to be initiated (Barnes and others, 2005). There has not been much equiv-

alent recording done in posterior dorsomedial striatum, although one recent study did find

that in anterior dorsomedial striatum, cells developed task-related firing more quickly than

anterior dorsolateral striatum and that these cells showed firing related to decisions (Thorn

and others, 2010).

[Figure 5 about here.]

An influential model of the learning and performance of habitual actions in the dorsolat-

eral striatum is that it provides situation-action associations in a model-free temporal differ-

ence reinforcement learning algorithm (TDRL, see Box 2). This conceptualization suggests

that the dorsal striatum associates situation information coming from cortical structures

with actions as trained by the dopaminergic training signals.
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Recording studies in anterior dorsolateral striatum have identified striatal activity re-

lated to the internal variables needed for the action-selection component of TDRL in both rat

(Schmitzer-Torbert and Redish, 2008; Barnes and others, 2005; Berke and Eichenbaum, 2009;

van der Meer and others, 2010) and monkey (Hikosaka and others, 1989; Samejima and oth-

ers, 2005; Lau and Glimcher, 2007). A particularly striking effect, observed in different tasks,

is the emergence of elevated dorsolateral striatal activity at the beginning and end of action

sequences (Barnes and others, 2005; Thorn and others, 2010) and the separation of action-

related and reward-related activity in anterior dorsolateral striatum (Schmitzer-Torbert and

Redish, 2004, 2008). These results suggest network reorganization with repeated experi-

ence consistent with the development of habitual behavior. Comparisons of dorsolateral

and dorsomedial striatal activity have yielded mixed results (Kimchi and Laubach, 2009;

Thorn and others, 2010; Stalnaker and others, 2010), but generally, these studies have com-

pared anterior dorsolateral striatum with anterior dorsomedial striatum. It is not clear that

these studies have directly tested the differences in information processing in different dor-

sal striatal components under deliberative and habit-based decision-making.

3.3 Ventral Striatum

The ventral aspect of the striatum (encompassing the core and shell of the nucleus accum-

bens, the ventral caudate/putamen, and the olfactory tubercule) is a heterogenous area

anatomically defined through its interconnections with a number of “limbic” areas (Swan-

son, 2000). Historically, ventral striatum has long been seen as the gateway from limbic

structures to action components (Mogenson and others, 1980). Critically, ventral striatum is

a major input to dopaminergic neurons in the ventral tegmental area (VTA) which in turn

furnishes ventral striatum itself, dorsal striatal areas, prefrontal cortex, and the hippocam-

pus with dopamine signals. The close association with dopamine and convergence of limbic

inputs renders vStr a central node in brain networks processing reward- and motivation-
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related information.

[Figure 6 about here.]

The close anatomical and functional association with dopamine (both in terms of provid-

ing input to the VTA, but also because of its dense return projection; Haber 2009) means that

major views of ventral striatum function are intertwined with dopamine function. One such

idea is that the ventral striatum computes the value of situations (which includes rewards

actually received as well as discounted future rewards expected; see Box 2) to supply one

term of the prediction error equation to the VTA. The VTA prediction error, in turn, serves

to update ventral striatal representations of values of given situations as well as dorsal stri-

atal representations of the values of taking actions. This casts the role of ventral striatum

as supporting gradual learning from feedback, as is thought to occur in the “habit” system;

experimental support for this notion comes, for instance, from inactivation studies that find

large effects on acquisition, but small effects (if any) on performance (Atallah and others,

2007). However, recent demonstrations that the dopamine input to the ventral striatum is

not homogenous (Aragona and others, 2009) pose a challenge for a straightforward map-

ping onto TDRL’s conception of the error signal as a single value.

Ventral striatum is also importantly involved in the more immediate modulation of be-

havior — it mediates aspects of Pavlovian conditioned responding, including autoshaping

(Cardinal and others, 2002) and sensitivity to devaluation of the US (Singh and others, 2010).

It is also required for conditioned reinforcement (willingness to work to receive a CS, Car-

dinal and others, 2002). Value representations in ventral striatum are also important for the

deliberative and habit systems. Two neuronal firing correlates have been reliably found in

ventral striatum: reward-related firing that occurs shortly after an animal receives reward

(Lavoie and Mizumori, 1994; Taha and Fields, 2005; van der Meer and Redish, 2009) and

“ramp” neurons that increase firing as an animal approaches a reward (Lavoie and Mizu-
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mori, 1994; van der Meer and Redish, 2011).

For representations of potential future states – as required by deliberation and found in

the hippocampus – to be useful in deliberative decision-making, some kind of evaluation of

the value of these imagined states is required. One possibility for such evaluation is that fu-

ture states (represented in the hippocampus) function as a cue or state input for the on-line

computation of ventral striatal values. Consistent with this possibility, recording studies in

ventral striatum show close association with hippocampal inputs, including re-activation of

reward neurons in sync with replay of hippocampal activity during sleep and rest (Lansink

and others, 2009), and re-activation of reward-related firing on movement initiation and

during deliberative decision-making (van der Meer and Redish, 2009). Intriguingly, there is

evidence that dopamine inputs to ventral striatum are particularly important for the perfor-

mance of “flexible” approach behavior likely to require such an on-line evaluation process,

but not for the performance of a similar, but stereotyped, version of the task (Nicola, 2010).

In order to train the habit-based situation-action association, one would also need a

value signal, such as that provided by the TDRL value-learning system. Ventral striatal

ramp cells show the right firing patterns to provide this signal. (See Figure 6.) Although

ventral striatum is often necessary for learning, it is not necessary for performance of habit-

based instrumental decision tasks (Atallah and others, 2007).

In sum, value plays a central role in Pavlovian, habit, and deliberative systems alike, and

as a central node in reward processing, it appears that ventral striatum plays a role in all

three systems. To what extent this role reflects unitary processing (the same computational

role) or different processing for each system, and how this relates to known heterogeneities

such as core/shell, are important, unanswered, current research topics.

[Figure 7 about here.]
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4 Discussion

4.1 Decision-making and neuroeconomics

Neuroeconomics attempts to study decision-making starting from the point of view of mi-

croeconomics, relating neuroscientific results to economic variables. The neuroeconomic

view of decisions is that each available outcome is evaluated to a scalar “value” or “utility”,

and these scalars are compared, with a preference for choosing higher-value outcomes.

The multiple systems theory postulates that each system has its own decision-making

algorithms, which compete and interact to produce the actual decision. This seems to be

at odds with the neuroeconomic view that there is a unitary evaluation of each outcome.

One can imagine at least two different ways of reconciling these views. Perhaps neuroeco-

nomic valuation is a descriptive approximation for the overall behavior that emerges from

multiple systems interacting. Or, perhaps neuroeconomic valuation is used within some of

the multiple decision-making systems, but can be violated when other systems take over

(Figure 8). We suggest that the latter is the case.

[Figure 8 about here.]

Many of the experiments identifying neural correlates of value use habitual tasks and

carefully eliminate Pavlovian influences. However, Pavlovian influences can undermine

neuroeconomic valuation. For example, real options (such as a physical candy bar) are

harder to reject than linguistically labeled options (Boysen and Berntson, 1995; Bushong

and others, 2010) — that is, it is easier to say “I will keep my diet and not eat that candy

bar” when the candy bar is not in front of you. Similarly, pigeons cannot learn not to peck in

order to get reward (Breland and Breland, 1961), and chickens cannot learn to run away to

get food (Hershberger, 1986). The unified neuroeconomic account would indicate that, once

the animals have learned the task contingencies, they should make the action that leads to
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the larger reward. Thus, it would follow from a neuroeconomic standpoint that the animals

are simply unable to learn the task contingency, a possibility made less likely by the fact

that, in the Boysen and Berntson (1995) experiment, the same chimpanzees could learn to

point to an Arabic numeral to receive the larger pile of candy. The multiple systems theory

provides the more satisfying account: that animals do learn the task, but when a food re-

ward is within pointing distance, a Pavlovian unconditioned response (reaching/pointing)

is released, which wins out over a more rational choice in the competition between systems.

Of course, the organism remains a unitary being — eventually there must be a deci-

sion made at the level of the muscles. An interesting (and as yet unanswered) question is

whether the integration of the multiple decision-making systems happens at the level of the

brain, before action-commands are sent down to the spinal cord, or whether the final inte-

gration only happens at the level of the motor commands themselves. (Most likely, some

integration happens at each stage.)

4.2 Computational psychiatry

The ability to identify specific mechanisms of decision-making provides a potential mecha-

nistic language to address how decisions can go wrong (Redish and others, 2008; Maia and

Frank, 2011; Huys and others, 2011). Psychiatry has historically been based on categoriza-

tions of observable symptoms, which may or may not have direct relevance to underlying

mechanistic causes (McHugh and Slavney, 1998). The multiple decision-making systems

theory provides a level of structure to connect information processing mechanisms in the

brain with observable behavior. Now that we can talk about specific mechanisms, it be-

comes possible in this mechanistic language to describe various things that can go wrong.

Of course, this only works as long as the description still maps on to the way things are

functioning. For example, the pathology could be massive brain trauma or neurodegenera-

tion to such an extent that “Pavlovian decision-making” is no longer a meaningful descrip-
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tion of the biological system. But we suggest that many psychiatric disorders, including

autism, borderline personality disorder (BPD), depression, and addiction are meaningfully

described as parameter variations within multiple decision-making systems (Huys, 2007;

Redish and others, 2008; Kishida and others, 2010).

In classic psychiatry, disease states are clustered by their distance in a symptom space

which arose historically by phenomenological description (McHugh and Slavney, 1998).

Additionally, the same binary diagnosis can be given for very different symptom combina-

tions, because diagnoses are made when any n of m symptoms are present. For example,

there are nine criteria in the DSM-IV for borderline personality disorder (BPD), and there

is a positive diagnosis when five or more of these criteria are met. Thus two people could

have only one criterion in common and receive the same diagnosis of BPD (and likely be

offered the same pharmacological treatment, when the underlying anatomical and neuro-

modulatory pathologies may be completely different). The superficiality of the symptom

space is analogous to diagnosing “chest pain”. A deeper understanding of mechanism re-

veals that either acid reflux or heart disease can cause chest pain. Likewise, computational

psychiatry argues that psychiatric disorders ought to be classified based on their distance in

“causal” or “functional” space, and treated based on an understanding of the links between

the anatomy and physiology of the brain and the dimensions of this mechanistic space.

In each decision-making system in the brain, there are parameters which, when set inap-

propriately, produce maladaptive decisions — in other words, vulnerabilities (Redish and

others, 2008). Drug-addiction, for example, has been partially modeled as a disorder of the

habit (cached-action) system (Redish, 2004). We saw that the phasic firing of dopaminer-

gic neurons encodes the reward prediction error signal of TDRL (Schultz and others, 1997).

Since many drugs of abuse share the common mechanism of boosting phasic dopamine

firing to mediate their reinforcing effects, it is logical that these drugs are pharmacologi-

cally manipulating the computations in the learning process to produce an uncompensable
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prediction error, such that the reward expectation following drug-seeking actions is per-

petually revised upwards. However, there are features of addiction that extend beyond

habit. Addicts will sometimes engage in complex planning (deliberation) to obtain drugs

(Heyman, 2009). There are differences in how important the dopamine signal is to differ-

ent users’ taking of different drugs (Badiani and others, 2011). This suggests that addiction

is also accessing vulnerabilities in the deliberative and other systems (Redish and others,

2008).

Similarly, depression has also been suggested to have roots in deliberative decision-

making processes (Huys, 2007). In deliberative decision-making, the agent attempts to

make inferences about the future consequences of its actions. A key feature of depression

is the sense of “helplessness”: a belief that the agent has little control over the future re-

inforcers it will receive. Thus, if we make the assumption of normative inference, we can

predict the types of prior beliefs (perhaps genetically modulated) or the kinds of experi-

ences that would lead an agent into periods of depression (Huys, 2007).

Although we have not discussed the “support structures” of motivation and situation-

categorization here, both systems can have their own failure modes, which can drive decision-

making errors (Flagel and others, 2011; Redish and others, 2007). For example, both the

cached-action and deliberative systems require some form of dimensionality reduction of

the input space in order to learn situation-action mappings (cached-action), or to search

over (deliberative). Pathologies in this cognitive state classification system can also be de-

scribed computationally. It has been proposed that in problem gambling, agents classify

wins as consequences of their actions but attribute losses to ancillary factors (Langer and

Roth, 1975).

With an understanding of psychiatric conditions at this mechanistic level, we can start

to make more reasoned predictions about what kinds of treatment will be most effective

for each individual. The multiple decision-making theory takes us one step closer to that
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mechanistic level.
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Box 1. Functional subsystems. The concept of multiple functional systems should not

be taken to imply that there are truly separable “modules” — these systems depend

on interactions among multiple brain structures, each of which is providing a different

computational component. A useful analogy is that of a hybrid gas/electric car: al-

though there are two separate systems, which depend on dissociable components, both

systems also share many components. The car, for example, has only one drive train.

Similarly, the car requires numerous other support systems that are shared between the

two components, such as the steering system. We would therefore predict that while

there will be dissociations in both the information processing and effects of lesions be-

tween the systems (van der Meer and others, 2010; Yin and Knowlton, 2004), individual

anatomy structures will also be shared between the systems, although they may provide

different computational components to each system. For example, the ventral striatum

seems to be involved in all three components, including providing mechanisms to re-

evaluate changes in Pavlovian value (McDannald and others, 2011), covert represen-

tations of valuation during deliberative events (van der Meer and Redish, 2009), and

training up Habit systems (Atallah and others, 2007).

There are five functional subsystems that can be indentified as playing roles in

decision-making: Pavlovian action-selection, Habit-based action-selection, Deliberative

action-selection, and the Motivational and Situation-Recognition support systems. Al-

though our knowledge of the anatomical instantiations of these systems is still obvi-

ously incomplete and the roles played by each structure in each functional subsystem

are still an area of active research, we can make some statements about components

known to be important in each subsystem.

The Pavlovian system (pink, Figure 1) includes the periaqueductal gray (PAG), the

ventral tegmental area (VTA), the amygdala (AMG), the ventral striatum (vStr), and
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the orbitofrontal cortex (OFC) (Ledoux, 2002; McDannald and others, 2011). The Habit

system (orange, Figure 2) includes the substantia nigra pars compacta (SNc), the dor-

solateral striatum (dlStr), the ventral striatum (vStr), and likely the motor cortex (MC)

(Yin and Knowlton, 2004; Cisek and Kalaska, 2010). The Deliberative system (blue, Fig-

ure 3) includes the hippocampus (HC), the prefrontal cortex (PFC), the ventral striatum

(vStr), and likely the ventral tegmental area (VTA), and the dorsomedial striatum (dm-

Str) (Johnson and Redish, 2007; van der Meer and Redish, 2009; Schacter and Addis,

2011; Yin and Knowlton, 2004). In addition, decision-making involves several support

structures, not discussed in depth in this review, a Motivation system, likely including

the hypothalamus (HyTM), the ventral striatum, and the insula and cortical visceral ar-

eas (Craig, 2003; Sanfey and others, 2003), and a Situation categorization system, likely

including most of neocortex (Redish and others, 2007).
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Box 2. Temporal difference Reinforcement Learning (TDRL) in three systems. Cur-

rent theories of reinforcement learning are based on the concept of the temporal difference

rule. The basic concept of this system is that an agent (a person, animal, or computer

simulation) traverses a state-space of situations. In many simulations, this state-space

is provided to the simulation, but real agents (animals or humans) need to determine

the situations and their relationships. (What is the important cue in the room you are in

right now?) Differences in the interpretation of that state-space can produce dramatic

differences in decision-making (Kurth-Nelson and Redish, in press). Different forms of

TDRL have been applied to each of the decision-making systems.

Pavlovian. “Blocking” experiments demonstrated that if animal has learned that CS1

predicts a certain US, then pairing CS1+CS2 with the US does not result in a CR to CS2

subsequently presented alone (Bouton, 2007). (However, if aspects of the US change,

then the second CS will gain associations related to the observed changes, Bouton, 2007;

McDannald and others, 2011.) Rescorla and Wagner (1972) proposed that Pavlovian

learning requires a prediction error: a mismatch between what is expected and what

occurs. Since in the blocking experiment, the US is fully predicted by CS1, no CS2-US

association develops. In the 1990s, Sutton and Barto showed that this is a special case

of the temporal difference learning rule, in which one associates value with situations

through a value-prediction-error signal (Sutton and Barto, 1998). The temporal-difference

rule maintains an estimated future reward value for each recognized situation, such

that prediction errors can be computed for any transition between situations, not just

for those resulting in reward. Neurophysiological recordings of the firing of dopamine

neurons and fMRI BOLD signals of dopamine-projection areas have been shown to

track the value-prediction-error signal in Pavlovian conditions remarkably accurately
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(D’Ardenne and others, 2008). Flagel and colleagues have found that dopamine release

in the core of the nucleus accumbens (the ventral striatum) of sign-tracking rats (but

not goal-tracking rats) matches this value-prediction-error signal and that only sign-

tracking rats (not goal-tracking rats) can use the CS as a subsequent CR for secondary

conditioning (Flagel and others, 2011).

Habit. In the TDRL literature, “habit” learning corresponds to the original temporal

difference rule originally proposed by Bellman in 1958 and introduced into the litera-

ture by Sutton and Barto (Bellman, 1958; Sutton and Barto, 1998). In the most likely

formulation (known as the actor-critic architecture), one component learns to predict the

value of actions taken in certain situations based on differences between observed value

and expected value. That difference signal is also used to train up situation-action asso-

ciations. It can be shown that under the right conditions of exploration and stationarity,

this architecture will converge (eventually) on the decision-policy that maximizes the

total reward available in the task (Sutton and Barto, 1998); however, this can take many

trials and is inflexible in non-stationary worlds (Dayan and Niv, 2008).

Deliberative. In the TDRL literature, “deliberative” decision-making is based on the

concept of model-based TDRL (Sutton and Barto, 1998). Here, the agent is assumed to

have a model of the causal structure of the world, which it can use to predict the con-

sequences of its actions. From these predictions, the agent can evaluate those expected

consequences at the time of the decision, taking into account its current needs and de-

sires (Niv and others, 2006). This hypothesis predicts that deliberative decision-making

will be slow (because it requires search, prediction, and evaluation steps; van der Meer

and others 2010), and that representations of hypothesized outcomes and covert repre-

sentations of reward expectation will be detectable in structures critical for deliberative
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decision-making. As is discussed in the main text, such predictive and covert represen-

tations have been found in the hippocampus, ventral striatum, and orbitofrontal cortex

(Johnson and Redish, 2007; van der Meer and Redish, 2009; van der Meer and others,

2010, Steiner and Redish, Society for Neuroscience Abstracts, 2010).
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List of Figures

1 Pavlovian action-selection. (A) Anatomy of the Pavlovian action-selection

system in rat (left) and human (right). (B) We can write Pavlovian action-

selection as an association between stimulus (S) and outcome (O) that re-

leases an action (a) associated with that outcome. (C) Seen from the point of

view of TDRL (Box 2), situations (indicated by circles in the top panel and

corresponding colored locations in the bottom panel) are associated with in-

herent valuations. Animals approach stimuli with inherent value. (D) This

becomes a problem in sign-tracking where animals approach and interact with

cueing stimuli rather than using those cueing stimuli to predict the location

of a goal goal-tracking. Histological slices from www.thehumanbrain.info

and brainmaps.org, used with permission. Abbreviations: PFC, prefrontal

cortex; OFC, orbitofrontal cortex; MC, motor cortex; dmStr, dorsomedial

striatum; dlStr, dorsolateral striatum; vStr, ventral striatum; HC, hippocam-

pus; AMG, amygdala; PAG, peri-aquaductal gray; VTA, ventral tegmental

area; SNc, substantia nigra pars compacta. . . . . . . . . . . . . . . . . . . . . . 42
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2 Habit-based action-selection. (A) Anatomy of the habit action-selection sys-

tem in rat (left) and human (right). (B) We can write habit-based action se-

lection either in terms of cached value [as an association between a situation

(S), a potential action (A), and an expected value (E(V )), leading to a choice

of action], or as cached-action [as an association between a situation (S) and

an action (a)]. (C) Current theories suggest that habit action-selection occurs

by learning action-values (Q(S,A) = E(V ) given situation S and potential

action A), which are learned through a comparison between observed and

expected values — the value prediction error (δ). (D) Because cached-action

selection is fast, it should not require time to process. As shown in the video

(Supplemental Video S1), behavior becomes extremely stereotyped as the

habit system takes over. Diagrams correspond to the late laps shown in the

video. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3 Deliberative action-selection. (A) Anatomy of the deliberative action-selection

system in rat (left) and human (right). (B) Deliberation requires a serial search

through future possibilities, including expectations of potential situations

(E(S)) and valuations performed online of those expecations (E(V )). (C)

Computationally, this requires a forward model to search over. (D) In prac-

tice, this computation takes time and produces pausing and vicarious trial

and error behavior. As shown in the video (Supplemental Video S1), deliber-

ative behavior is visible as pausing and head swings. Diagrams correspond

to laps 2 and 4 shown in the video. . . . . . . . . . . . . . . . . . . . . . . . . . 44
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4 Hippocampal contributions to decision-making. (A) The hippocampus en-

codes a map of the environment through the activity across the place cells. (B)

Two example place cells from a choice-task. The animal runs north through

the central stem, turns right or left at the top of the maze, and receives food on

the right or left return rails depending on a complex decision-making crite-

rion. (C) The existence of this map allows imagination and planning through

the firing of cells with place fields away from the animal. (D) An example

planning sequence. The top panel shows the same maze as in panel (B), with

each spike from each cell that fires within a single 150 ms theta cycle plotted

at the center of that cell’s place field. Colors indicate time in the single theta

cycle. The bottom panel shows the firing of the same cells, ordered by their

place fields around the maze, with the theta cycle in the local field potential

beneath. (E) Both remembering the past and imagining the future activate

hippocampus in humans. Subjects were instructed to initially imagine or re-

member an event (construction) and then to bring to mind as many details

about that event as possible (elaboration). Compared to a control task, hip-

pocampus was differentially active during both of these processes. Data in

panels (B) and (D) from Gupta (2011), used with permission. Data in panel

(E) from Addis and others (2007), used with permission of author and pub-

lisher. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
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5 Dorsolateral striatal contributions to decision making. (A) The dorsolateral

striatum associates situations with actions. On a spatial task, different situ-

ations recall different actions. (B) The dorsolateral striatal neural ensemble

only encodes spatial information on spatial tasks. On the Multiple-T (MT)

task, rats run through the central sequence and turn left or right for reward.

The correct action is completely determined by the position of the animal on

the maze. On the Take-5 (T5) task, rats must run five sides around a rectangle

to get food. This means that the food location changes on each trial, which

dissociates the position of the animal from the appropriate action. Because

decoding quality (R2 correlation between decoded position and actual posi-

tion) depends on the number of cells in the ensemble, the correct measure of

the decoding quality is the slope as a function of the number of cells in the

ensemble. Dorsal striatum reliably encodes spatial position on MT, but not

on T5. In both cases, the striatal ensemble reliably encodes reward delivery

information. Panel (B) from Schmitzer-Torbert and Redish (2008), reprinted

with permission from the publisher. . . . . . . . . . . . . . . . . . . . . . . . . 46
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6 Ventral striatal contributions to decision-making. (A) Value plays a role in

deliberative decision-making in that it is a necessary step during deliberative

events. (B) Ventral striatal reward-related cells show extra activity during

deliberative events. Gray dots show the same MT task seen in earlier fig-

ures. Black dots show locations of the animal when this single cell fired its

spikes. Note that most spikes are fired at the feeder locations (two locations

each on the right and left return rails). But a few extra spikes occur at the

choice point where deliberation occurs (arrow). The cell was recorded from

a tetrode (four channels per electrode), so there are four waveforms for the

single cell, one from each channel. (C) Value plays a role in habit decision-

making in that it is necessary to develop a continuous function that encodes

the value of each situation. (D) Ventral striatal “ramp” cells show increasing

activity to reward-sites. (Animals are running the same task as in panel (B).

F1 = food site 1 approximately 1/3 the way down the return rail. F2 = food

site 2 approximately 2/3 the way down the return rail.) Data in panel (B)

from van der Meer and Redish (2009). Data in panel (D) from van der Meer

and Redish (2011). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

7 Striatal components. (A) Lesion studies differentiating anterior dorsal stria-

tum from posterior medial striatum find that anterior dorsal striatum is crit-

ical for response and habit strategies, while posterior medial dorsal striatum

is critical for place and deliberative strategies. (Right side panel modified

from Yin and Knowlton (2004) with permission of author and publisher.) (B)

fMRI studies find that ventral striatum is active in both Pavlovian and instru-

mental (deliberative, habit) tasks, while dorsal striatum is only active during

instrumental (in this case, habit) tasks. Figures in panel B from O’Doherty

and others (2004), reprinted with permission of author and publisher. . . . . . 48
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8 Multiple decision-making systems and neuroeconomics. Three potential

reconciliations between the multiple decision-making system theory and neu-

roeconomics. (A) Microeconomic valuation is a description of the overall

behavior, but is not applicable to neuroscience. (B) Each of the multiple

decision-making systems proposes a valuation of a potential option which

is then compared and evaluated in a single evaluation system. (C) Each ac-

tion selection system proposes an action which is then selected through some

non-microeconomic mechanism. The mechanism can be some function of the

internal confidence of each system, measured, for example, by the internal

self-consistency of each system’s action proposal (Johnson and others, 2008),

or through explicit arbitration by another support system (such as prefrontal

cortex, Rich and Shapiro, 2009). The potential inclusion of reflexes as a fourth

action-selection system, which clearly does not use microeconomic valuation

in its action-selection algorithm, suggests panel (C) as the most likely hy-

pothesis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
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