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The hippocampus has a central role in episodic memory1, navigation2 
and episodic future thinking3,4. An essential aspect of hippocampal 
contributions to these behavioral phenomena is the notion that the 
hippocampus encodes and stores a record of experience5. If we are 
ultimately to uncover the role the hippocampus plays in navigation, 
imagination and planning processes, it is necessary to understand 
its information processing characteristics. How is experiential infor-
mation encoded and subsequently recalled within the hippocampal 
system? Which features of the encoding process are invariant under, 
and which ones depend on, the behavioral state of the subject and the 
structure of the task?

The leading systems-level model for memory encoding in the hippo-
campus is provided by recordings from hippocampal place cells in 
freely moving rodents2,6. These cells tend to fire when the animal is in 
specific locations in an environment, such that a particular trajectory 
taken by the animal corresponds to a unique sequence of active place 
cells—the experience to be stored. Notably, the hippocampus com-
presses sequences of active place cells, continually repeating them at a 
speed of 5–10× during each cycle of the theta oscillation7 as the animal 
runs8–10. These theta sequences not only provide a repetition of ongo-
ing experience but also bring the spike timing of successively activated 
place cells into the range conducive to spike timing–dependent plasti-
city8,11–14. As such, the content of theta sequences provides a unique 
representational window into what the hippocampus encodes and 
recalls during active experience.

Previous studies have concentrated on this phenomenon from the 
perspective of phase precession, examining how the phase of spiking 
of individual cells and cell assemblies changes8,13–16. Studies of single 
passes through a place field17 and of the timing intervals between pairs 

of cells spiking within a single theta cycle9,18 indicate that the sequence 
within the cycle itself is more reliable than the phase of any single cell’s 
spiking, suggesting that it would be fruitful to directly examine the 
relationship between sequences themselves and behavior.

In this study, instead of measuring the relationship of single cell 
firing to phase of theta, we used the multicell sequence represented 
within each individual theta cycle to determine the spatial path 
represented and examined the properties of that path in relation to 
behavior and task structure. We found that paths represented by theta 
sequences extended farther ahead of the animal as it left landmarks 
and accelerated, whereas sequences started farther behind as the  
animal approached landmarks and decelerated. Even after taking 
these effects into account, we found that theta sequences more fre-
quently represented the space between adjacent landmarks. Thus, 
the environment was represented in chunks, implying a task-related 
segmentation of information processing in hippocampus.

RESULTS
To investigate the relationship between behavior and the paths rep-
resented by theta sequences, we recorded neural ensembles from the 
dorsal CA1 region of hippocampus in six rats trained on a spatial 
decision task19 (Fig. 1a). On a given day the rats had to learn whether 
the rewarded policy was alternation, left turns, or right turns at turn 
2 on the maze. The rewarded policy changed approximately halfway 
through the session. Rats determined both the initial policy and the 
switched policy quickly19.

To determine what spatial path was represented by each theta 
sequence, the beginning and end of each theta cycle were identified (see 
Online Methods) and the neural activity during each cycle was analyzed.  
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theta sequences
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The encoding and storage of experience by the hippocampus is essential for the formation of episodic memories and the 
transformation of individual experiences into semantic structures such as maps and schemas. The rodent hippocampus 
compresses ongoing experience into repeating theta sequences, but the factors determining the content of theta sequences 
are not understood. Here we first show that the spatial paths represented by theta sequences in rats extend farther in front of 
the rat during acceleration and higher running speeds and begin farther behind the rat during deceleration. Second, the length 
of the path is directly related to the length of the theta cycle and the number of gamma cycles in it. Finally, theta sequences 
represent the environment in segments or ‘chunks’. These results imply that information encoded in theta sequences is subject to 
powerful modulation by behavior and task variables. Furthermore, these findings suggest a potential mechanism for the cognitive 
‘chunking’ of experience.
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Theta cycles with three or more active cells, a mean sharp wave ripple  
(SWR) power <1 s.d. above the mean (to exclude awake replay 
sequences20–22) and theta power >1 s.d. below the mean were included for 
analysis. Results were similar with thresholds of four or five active cells 
and with theta power threshold set to the mean theta power or to 2 s.d.  
below the mean (data not shown). Of 618,408 theta cycles, 168,770 met 
these criteria. These theta cycles were analyzed for sequential spiking 
structure, and only cycles with statistically significant sequential struc-
ture (defined in Online Methods) were used in this study (33,397 out 
of 168,770; 19.8%) (Supplementary Fig. 1). Using a Bayesian decoding 
approach, we identified the spatial path represented during each theta 
cycle (see Online Methods). An alternative, non-Bayesian approach for 
decoding spatial paths23 showed qualitatively similar results to those 
presented here. Theta sequences occurred at all locations on the maze 
(Fig. 1b). As expected, rats spent the most time at feeder locations, and 
a smaller proportion of theta cycles were significant at feeder locations 
compared with other locations on the maze.

From the start and end locations of each represented path and the 
rat’s location, we calculated three key distances: the distance from 
the rat’s location to the end of the path (ahead length), the distance 
from the start of the path to the rat’s location (behind length) and 
the total length of the path (path length). We examined the rela-
tionship between rat velocity and path length by creating a two-
 dimensional histogram of velocity as a function of path length. The 
theta sequences naturally grouped into high- and low-velocity fami-
lies (Fig. 1c). The high-velocity sequences were evenly distributed 
across the maze (Fig. 1d), whereas the low-velocity sequences were 
preferentially observed when rats were at the feeder locations and the 
choice point (Fig. 1e). For the remainder of the analyses presented 
here, we focus on high-velocity theta sequences (29,351 sequences), 
although all results are qualitatively unchanged by the inclusion of 
low-velocity sequences.

Ahead and behind representations
We observed that some sequences represented a spatial path extend-
ing farther ahead of the rat, whereas other sequences represented 
paths beginning more behind the rat’s location. Ahead sequences 
were observed at the choice point (Fig. 2), potentially analogous 
to the forward sweeps previously observed in CA3 while rats were 
paused and deliberating at a choice point24. However, we also 
observed ahead-extending sequences at other locations on the  

maze (Fig. 3). Examples of ahead and behind representations at 
various locations on the maze are shown in Figures 2 and 3. Ahead 
sequences tended to occur as rats left physical landmarks on the 
maze. Behind sequences tended to occur as rats approached land-
marks. In between sequences tended to occur during journeys 
between those landmarks.

Ahead and behind length are inversely related
Ahead, behind and overall path length define the spatial information 
represented by each given theta cycle. Ahead length measures how far 
the multicell sequence extends into the space ahead of the rat, behind 
length measures how far behind the rat the multicell sequence begins 
and path length measures the distance covered by the entire sequence. 
(see Online Methods.) To determine the relationships among these 
three lengths, we plotted each mean length with respect to the others. 
As path length increased, both ahead and behind length increased 
(Fig. 4), as expected, because the path length of each theta sequence 
is the sum of its ahead and behind lengths. On the other hand, as 
ahead length increased, behind length decreased. Thus, ahead length 
and behind length were inversely related; spatial paths that extended 
farther forward did not begin as far back and vice versa.

To determine how quickly prospective and retrospective represen-
tations changed on this task, we measured the changes in ahead and 
behind length as a function of theta-cycle separation. The ahead and 
behind lengths of individual theta cycles showed similarities with 
the preceding and following theta cycles; however, they could also 
shift substantially from one theta cycle to the next. For adjacent theta 
cycles, 63% had ahead-length differences <10 cm. The average change 
in the distance represented by a theta sequence ahead or behind the 
rat’s location increased from successive theta cycles to a separation 
of about seven theta cycles and then leveled off (Fig. 4d). Because 
theta sequences generally represent positions near the rat, one would 
expect adjacent theta sequences to represent similar information; this 
analysis shows that the prospective or retrospective nature of adja-
cent theta cycles were more similar than those of nonadjacent theta 
cycles. However, examination of the distribution of changes in ahead 
and behind length between adjacent theta cycles showed that there 
were cases in which large differences occurred, which implies that 
the hippocampal representation can quickly shift from more behind 
to more ahead of the rat or from more ahead to more behind. These 
results may explain the improvement in observations looking at phase 

Figure 1 Distinct populations of theta sequences on the two-choice  
T maze. (a) The two-choice T maze. The maze had two possible physical 
configurations, the second indicated by dashed lines. Noteworthy landmarks 
on the maze include the maze start (MS), turn 1 (T1), turn 2 (T2), top corner 
(TC), feeder 1 (F1), feeder 2 (F2) and bottom corner (BC). Arrows indicate 
the direction of maze traversal. (b) Overall and selected sequence count over 
the linearized maze. Overall sequence count over the maze (n = 618,408 
sequences) is a reflection of the amount of time rats spent at each location 
on the maze. Selected sequence count (n = 33,397 sequences) indicates 
the number of sequences at each location on the maze that passed the 
inclusion criteria described in the main text. (c) Theta sequence histogram 
of rat velocity versus path length, defined as the distance (in centimeters) 
from the decoded start of the sequence of firing within the theta cycle to 
the decoded end of the sequence (see Online Methods). The color of each 
pixel indicates the number of theta sequences with a specified path length 
(x axis) recorded while a rat was running at a particular velocity (y axis).  
The horizontal dashed line separates low- from high-velocity theta 
sequences. (d) High-velocity sequence count (n = 29,351 sequences) over 
the linearized maze. The number of high-velocity sequences (sequences 
above horizontal line in c) at each location on the maze. (e) Low-velocity 
sequence count (n = 4,046 sequences) over the linearized maze. 
Occupancy is defined as time spent at each location on the maze.
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precession on a trial-by-trial basis17 and the more reliable timing 
of cell pairs and sequences within a theta cycle than what would be 
observed if cells phase precessed independently9.

Theta period and gamma cycles increase with path length
As path length increased, we observed that the theta period and the 
number of gamma cycles per theta period also increased (Fig. 5a,b). 
Using the previously reported relationship 
between theta period and velocity (ref. 2 
and Fig. 5c) and the observed relationship 
between velocity and path length (Fig. 1c), 
we determined the relationship between 
theta period and path length if the theta 
period were purely a function of velocity and 
compared it with the observed relationship  
(Fig. 5a). The relationship between veloc-
ity and theta period did not account for the 
increase in theta period with increasing path 
length (Fig. 5a). Similarly, the number of 
gamma cycles increased with increasing path 
length (Fig. 5b). Thus, longer theta periods 
and more gamma cycles per theta cycle were 
associated with longer paths represented 
by theta sequences. Longer theta periods 
were also associated with more active place 
cells, more spikes and more gamma cycles 
(Fig. 5d). Although it is possible that the 
increased cellular activity during longer theta 
cycles contributed to the representation of 
longer paths, it should be noted that there 
was only a slight increase in distance traveled 
by the rats with increasing theta period, and 
controlling for velocity does not affect the 
relationships shown in Figure 5a,b.

Average ahead and behind length over space
To determine whether theta sequences preferentially represented 
space ahead or behind the rat at certain locations on the maze, the 
average ahead length and average behind length were plotted as a 
function of linearized location on the maze (Fig. 6). We observed clear 
peaks and troughs in average ahead length over space and average 
behind length over space (Fig. 6a,c). Furthermore, average ahead 

Figure 2 Examples of ahead sequences while 
rats were located at the choice point. Top, the 
rat’s average velocity over the theta cycle. Each 
place field center represented by a spike in 
the sequence (colored point in corresponding 
bottom panel) is plotted on the two-dimensional 
maze at the location of its two-dimensional 
place field center. The arrow shows the rat’s 
location. Bottom left, spikes plotted by place 
field center location (space) relative to  
the rat’s position (along either a left or right 
loop of the maze) over a single theta cycle (see 
Online Methods). LFPs filtered between 6 Hz 
and 12 Hz (red), 40 Hz and 100 Hz (green) 
and unfiltered (gray) are plotted below. Colored 
points indicate spikes that contribute positively 
to the sequence score according to the 
sequence detection algorithm (for visualization purposes only). The color of the spike indicates its relative time within the sequence (light blue, early; 
light purple, late). For cells with multiple place fields, gray points are plotted at every place field center belonging to the cell (colored points occupy 
the place field center that contributes maximally to the score). Spikes that do not contribute positively to the sequence score are also plotted in gray. 
Bottom right, the Bayesian decoded spatial probability distributions computed over the theta cycle (see Online Methods). Red indicates high probability, 
blue low probability. These examples likely correspond to the previously reported ‘sweeps’24.

Velocity = 35.8 cm s−1 Velocity = 13.2 cm s−1 Velocity = 45.1 cm s−1

Spike consistent with sequence (see color range in bottom right)
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Figure 3 Examples of ahead and behind 
sequences. Top, sequences representing paths 
more ahead of the rat while rats were at various 
locations on the maze. Middle, sequences 
representing paths that are behind and ahead of 
the rat. Bottom, paths more behind the rat.  
See Figure 2 caption for details.
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length and average behind length were anticorrelated over space  
(r = −0.34, P < 0.05), with ahead length peaks aligning with behind 
length troughs and vice versa. This observation is consistent with, but 
not a necessary result of, the inverse relationship between ahead and 
behind length presented above (Fig. 4). Thus, at certain locations on 
the maze, the hippocampus represented more space ahead of the rat 
and less space behind, and at other locations on the maze, the hippo-
campus represented more space behind the rat and less space ahead.

The peaks of ahead length and peaks of behind length had a rela-
tionship to physical landmarks on the maze (turns and feeders). 
Ahead length peaks were generally observed just after landmarks 
(for example, maze start, turn 2 (the choice point), feeder 1, bottom 
corner) and behind length peaks were observed just before landmarks. 
Thus, as rats entered a segment of the maze defined by two physical 
landmarks, the spatial representation was more ahead of the rat; as 
they exited the segment, the representation was more behind the rat. 
In effect, the path representations adjusted so as to focus on the seg-
ment of space between the two landmarks.

Spatial distribution of represented paths
The alternating pattern of ahead and behind representations resulted 
in a sequence of segment representations, as reflected in the spatial 
distribution of represented paths (Fig. 6b). The distribution dem-
onstrated that paths represented by theta sequences preferentially 
occurred between landmarks on the maze, instead of across them.  
The distribution shown was normalized such that the paths represented 

at each location on the maze contributed equally to the distribution 
(occupancy normalization). This ensured that factors such as the rat 
consistently spending more time at a particular location on the maze 
did not misleadingly influence the distribution around that point. This 
distribution was robust across rats (Supplementary Fig. 2).

The observed distribution was compared to a distribution cre-
ated by a shuffling procedure. Keeping the rat location for each theta 
cycle constant, we shuffled the decoded paths and randomly assigned 
them to the rat locations. This was done 100 times, and the average 
spatial distribution was plotted along with the observed distribution 
(Fig. 6b). As would be expected from the occupancy normalization, 
the shuffled distribution was relatively flat, showing that the observed 
spatial distribution of paths was a product of specific sequences occur-
ring at particular locations on the maze. The shuffling procedure was 
also done for the average ahead and behind length over space plot 
(Fig. 6a,c), and, as expected, the shuffled distribution was flat.

Hippocampal cells show spatially localized firing (place fields)2,6.  
Place fields were defined as contiguous linear firing of a given cell 
(Online Methods). We compared the spatial distribution of repre-
sented paths (and ahead and behind lengths over space) shown in 
Figure 6 with the place field density, linearized place field length 
and the rat’s velocity. Neither place field density, place field length 
nor average velocity over space matched the shape of the path  
distribution or ahead and behind length (Supplementary Fig. 3). Place 
field length, plotted by location on the maze, showed some peaks in 
between landmarks; however, the overall shape and magnitude was not 

Figure 5 Theta period and gamma cycles  
vary as functions of path length. (a–c) The 
thick black curves show mean theta  
period (a) or mean number of gamma  
cycles (b) (y axis) with increasing path  
length (x axis). The gray curves were 
generated by multiplying the average  
velocity versus path length relationship  
(Fig. 8b) by the theta period versus  
velocity relationship or gamma cycle  
versus velocity relationship (c). Thus,  
the gray curve is the expected relationship  
if the theta period (a) or the number of  
gamma cycles (b) were merely a function  
of the relationship between theta period  
and velocity and path length and velocity. (d) Mean spike count, cell count, rat distance traveled and gamma cycles as functions of theta period.  
This analysis included 29,351 theta sequences. Line width indicates s.e.m. for a–d. Note that some y axes have non-zero origins.
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consistent with the ahead, behind and spatial path distributions. For 
example, peaks in the ahead and behind distributions between the maze 
start and turn 1 had peak-to-trough distances of ~11 cm and 10 cm,  
respectively (Fig. 6a,c), whereas the peak-to-trough distance of the 
place field length distribution was approximately half that distance 
(6 cm; Supplementary Fig. 3). Although some changes in ahead and 
behind length occurred at physical turns on the maze (such as the sec-
ond choice point), other changes occurred on straight paths, without 
corresponding changes in orientation. For example, a large peak was 
seen in the ahead distribution just after the first feeder, and a large 
peak was seen in the behind distribution just at the second feeder, 
leading to an increased likelihood of representing the between-feeder 
zone, in the absence of a peak in the place field length distribution.

To further examine the representation of spatial paths as a func-
tion of location, we calculated the distribution of positions repre-
sented by all theta cycles occurring at that location. This produced 
a two-dimensional plot with each column representing the average 
region of space covered by theta sequences occurring at each maze 
location. Taking the circular mean of the locations covered by this 
plot produced small deviations above the x = y line where rats left 
landmarks and below the x = y line where they approached them 
(Fig. 7a). Deviations above the line indicate maze locations where 
representations were more ahead of the rat, and deviations below 
the line indicate locations where representations were more behind  
the rat.

These small deviations were amplified by creating the full 
joint probability distribution plot (Fig. 7b, which measures the  
probability that the rat is at location x and the decoded location is  
y given the sequence S, calculated by squaring the matrix in Fig. 7a) 

and by creating the correlation plot (Fig. 7c, which correlates each 
column of Fig. 7a with each column in Fig. 7a). The correlation plot 
is analogous to one used previously25, except that the correlation 
here was carried out on the decoding relationship rather than  
the raw population spiking vectors.

Given that theta sequences over-represented the space between 
landmarks and occur at a fast time scale, one would expect to see 
greater similarity in the population of cells firing in the space between 
landmarks, compared with the space across landmarks. This was 
tested by correlating the average population activity vectors at each 
location on the maze25. This approach did in fact show increased simi-
larity of the average spatial population vectors in the space between 
landmarks (Supplementary Fig. 4). However, the segmentation of 
space by theta sequences (Fig. 7) indicates that not only was segmen-
tation occurring when considering the average cellular activity over 
many experiences, but it occurred during each theta cycle, at a time 
scale that allowed for spike-timing dependent plasticity.

In summary, the spatial distribution of paths represented by theta 
sequences reflected an over-representation of certain segments or 
‘chunks’ of the environment that were bounded by physical landmarks 
on the maze.

Lengths showed a complex relationship with acceleration
Whereas the spatial distribution of paths was only weakly visible in 
measures of place field density, place field length and rat velocity (see 
Supplementary Fig. 3), it did show striking similarities with rat accel-
eration (compare Fig. 6b with Supplementary Fig. 5a). The peaks and 
troughs of acceleration were generally aligned with peaks in ahead length 
and peaks in behind length, respectively (Fig. 6a,c), and ahead length 
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landmarks on the maze. (a) Ahead length as a function of location on maze. 
Peaks indicate locations at which the represented path extended farther 
ahead of the rat, on average. Troughs indicate locations where the represented 
path ended closer to the rat’s location. (b) Density of represented paths as a 
function of location on maze. Peaks indicate regions of the maze that were 
overrepresented by theta sequences. The y axis is the average z score  
(z score computed over each session). (c) Behind length as a function of 
location on maze. Peaks indicate locations at which the represented path 
began farther behind the rat, on average. Troughs indicate locations where the 
represented path began closer to the rat’s location. (d) Average ahead length 
minus average behind length. This plot demonstrates the alternating pattern 
of representations that are more ahead and more behind the rat, as a function 
of location on the maze. This analysis included 29,351 theta sequences. Line 
width indicates s.e.m. Controls in a–c include a curve produced by randomly 
reassigning theta sequences with different rat locations. This shuffling 
procedure was done one hundred times, and the average shuffled distribution is 
plotted alongside the real data. Note that some y axes have non-zero origins.
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was positively correlated (r = 0.41, P = 0.016), and behind length nega-
tively correlated (r = −0.74, P < 0.01), with acceleration over space.

When looking at acceleration as a function of ahead and behind 
length, for shorter length sequences, as ahead length increased, accel-
eration also increased; conversely, as behind length increased, acceler-
ation decreased (Fig. 8a). In contrast, acceleration remained relatively 
constant with increasing path length. Although these relationships 
were strong for shorter ahead and behind lengths, they leveled off to 
zero acceleration for longer lengths. This peak and the subsequent 
drop-off were also seen in the relationship between velocity and path, 
ahead and behind lengths (Fig. 8b); therefore, the peak of the velocity 
versus length distributions were identified and marked on both the 
acceleration and velocity plots. Ahead length and behind length for 
shorter sequences (70% of all sequences) showed a linear relation-
ship with acceleration, but they were more variable as a function of 
acceleration for longer sequences.

To determine whether the relationship between ahead and behind 
length and acceleration could account for the spatial distribution of 
represented paths, we built a model data set using acceleration and 
deceleration within each theta cycle to create ahead and behind repre-
sentations. Using the actual behavioral data and the observed relation-
ship between acceleration and ahead and behind length, we assigned 
each theta cycle an ahead and behind length on the basis of the rat’s 
acceleration during the cycle. We then plotted the spatial distribution 
of represented paths on the basis of this model and found that it did 
not match the segmented nature of the spatial distribution from the 
actual data (compare Fig. 6b with Supplementary Fig. 5b). This dif-
ference was not unexpected given the complex relationship between 
ahead and behind length and acceleration shown in Figure 8a.

Lengths showed a complex relationship with velocity
To determine the relationship between rat velocity and theta sequence 
lengths, we plotted velocity as a function of path, ahead and behind 
lengths (Fig. 8b). As each of the three lengths increased, there was ini-
tially an increase in velocity and subsequently a drop off. For shorter 
theta sequences, path, ahead and behind length all increased with 
increasing velocity; however, for longer sequences, velocity decreased 

or was relatively constant with changes in path, ahead and behind 
length. Thus, the relationship between velocity and path length can-
not be completely explained by a greater sampling of place fields at 
higher speeds. Changes in cell firing with velocity also cannot explain 
the ahead-shifted and behind-shifted representations.

This observation and the presence of low- and high-velocity theta 
sequences presented earlier (Fig. 1c) indicate that there was not a 
simple relationship between velocity and the paths represented dur-
ing theta sequences. Instances of both short and long paths occurred 
while rats were stationary or moving at low velocities in the environ-
ment, as previously observed24. Sequences also occurred as rats were 
moving at higher velocities. These sequences could be divided into a 
set of short-path sequences that increased in length with increasing 
rat velocity similar to those seen by others16,26 and a set of long-path 
sequences that decreased or remained constant in length with increas-
ing velocity. It should be noted that theta, beta, gamma and SWR 
power were relatively constant with increasing path, ahead and behind 
length (Supplementary Fig. 6); thus, the local field potential (LFP) 
profile did not change as the represented path increased in length.

DISCUSSION
Hippocampal neural activity during each theta cycle sequentially rep-
resents a short path that begins just behind the animal and ends just in 
front of the animal8,10,13; however, we found considerable variability 
in the actual paths represented on each theta cycle, comparable to 
the differences seen on each phase-precession pass17. By examining 
each theta cycle independently, we found interesting relationships 
between the spatial representations and velocity, acceleration and 
physical landmarks on the maze. Most notably, we found that theta 
sequences represented the maze in segments. Consistent with this, 
we found that more space was represented ahead of the rat as it left 
physical landmarks on the maze, and more space behind the rat as it 
approached those same physical landmarks, leading to a segmentation 
of the spatial information. These results have implications for how the 
rat might organize its spatial and task knowledge.

Phase precession and neural sequences
As an animal passes through a cell’s place field toward a goal, the 
cell initially fires late in the theta cycle and then gradually fires ear-
lier and earlier in the theta cycle as the animal traverses the place 
field13,15. At the population level, phase precession implies that  
compressed sequences of place cell activity emerge during each  
theta cycle8–14,16,26.

As noted in the introduction, evidence suggests that the compressed 
sequences are actually occurring independently on each theta cycle9,27. 
Our analyses exploit this and differ from previous studies by taking 
a dynamic view of the theta sequences; rather than averaging across 
passes, trials or cells, we calculated the path represented by each theta 
cycle sequence individually and then examined the distribution of 
properties of the individual sequences.

These sequences included both a set of sequences that were 
observed to represent longer spatial paths with increasing velocity 
(consistent with recent reports16,26) and a set of sequences that repre-
sented a variety of path lengths independent of velocity. This second 
set tended to occur while rats were paused in the environment, con-
sistent with previously observed sweep sequences in CA3 (ref. 24),  
but this second set of sequences also occurred during movement. In 
general, we found a more complex relationship between the repre-
sented path and the rat’s behavior than have been observed in previous 
studies9,10,14,16,24,26. For example, long ahead representations were 
previously observed while animals were paused at a choice point24.  
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(a) Relationship between acceleration and path, ahead and behind lengths.  
(b) Relationship between velocity and path, ahead and behind lengths. 
Dashed lines in a and b indicate the peak of the velocity versus length 
relationships. As seen in a, acceleration is relatively constant with 
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In contrast, we observed that these longer sequences occurred at other 
locations on the maze as well, and they did not occur only when rats 
were paused. These longer sequences sometimes represented more 
space ahead of the rat and at other times represented more space 
behind the rat. Our analyses found that representations can start  
farther behind the rat or end farther ahead of the rat on particular 
theta cycles. Whereas adjacent theta cycle sequences are often very 
similar, they can on occasion differ substantially from theta cycle 
to theta cycle. These results indicated that theta sequences are not  
always a simple function of animal behavior and can flexibly represent 
different information on different theta cycles.

The sequence data presented in this paper suggested that there may 
be subtle changes in single-cell phase precession as animals approach 
or leave landmarks. As rats approached landmarks, sequences tended 
to include more space behind the rat (Fig. 6). Thus, we predict that 
single cells participating in these sequences would be more likely to 
be firing in the late aspects of their place fields and early phases of 
theta as animals approach landmarks. Similarly, as rats accelerated 
away from landmarks, sequences tended to include more space ahead 
of the rat, suggesting that cells participating in these sequences would 
be more likely to be firing during late phases of theta. Hints of such 
single cell effects may be seen in Supplementary Figure 7; however,  
they should be clearest in phase-precessing cells whose firing field 
covers a sufficiently large space to be bisected by a landmark, such 
as those in the ventral hippocampus or ventral striatum28,29. Indeed, 
single phase-precessing cells in the ventral striatum show transient 
phase changes that could be indicative of sequence effects29. However, 
a systematic test of this idea should establish if these cells participate 
in theta sequences, but this requires ensemble sizes beyond those 
currently available for ventral regions.

Representations of past and future
A number of studies have investigated whether hippocampal activ-
ity is reflective of the past and/or the future. Some of these studies 
have focused on the spatial path represented during neural activity 
observed in each theta cycle9,10,24,26. Other studies have analyzed 
hippocampal activity with respect to the animal’s past and future 
behaviors and have shown that the activity of individual place cells 
or place cell ensembles (at relatively slow time scales) is sometimes 
more reflective of past behaviors and is sometimes more reflective 
of future behaviors30–33. Thus, there is evidence that the hippocam-
pus represents more than just the current state of the animal during 
behavior and does so at multiple timescales34.

We observed a diversity of sequence representations during theta, 
sometimes reflective of a ‘look ahead’ function and at other times 
reflective of ‘look behind’. We found that when an animal acceler-
ates, the paths represented are shifted forward in space, possibly in 
preparation or anticipation of reaching a desired location, whereas 
when the animal decelerates, the paths represented shift backward in 
space, potentially in review of the experience. It is possible that the 
ahead representations observed here reflect a predictive recall process 
to aid in navigation26,27 whereas the behind representations reflect an 
encoding process to store what was just experienced35,36. This type of 
recall process could be cued by sensory input from upcoming land-
marks, which were previously associated with locations in space37. 
However, it should be noted that the link between multicell sequences 
in hippocampus and memory processes such as encoding, retrieval, 
planning and anticipation is an active area of research and has not 
been proven.

Additionally, place fields are smaller when spikes are shifted to 
anticipate the animal’s location by 120 ms38, and approaches in 

two dimensions overlap only at the late phases of theta39,40, which  
suggests that portions of the place field may be thought of as repre-
senting approach to a future position. We add to this body of work 
by showing that at the theta time scale, the representation of future 
space and past space is dissociable and dependent on the animal’s 
acceleration and landmarks in the environment.

Information processing: theta and gamma
It has been proposed that the information represented during each 
theta cycle is discretized into parts by each cycle of gamma41,42. In 
this view, the information capacity of a given cycle of theta would be 
determined by the number of gamma cycles that occur over the course 
of the theta cycle. In support of these proposals, we observed a linear 
increase in theta period and the number of gamma cycles per theta 
cycle as the length of the represented path increased. It is possible that 
the increase in gamma cycles per theta cycle allows for an increase 
in the number of information processing steps, thus contributing to 
longer represented paths.

Behavioral and neural chunking
Chunking refers to a phenomenon in which information is grouped 
into intuitive, information-rich units. Such recoding is thought to 
increase information-handling abilities43 and to enable planning 
through subgoals44,45. It has been observed that individual ven-
tral striatal neurons, which receive hippocampal projections, have 
receptive fields that represent navigationally relevant segments in 
an environment46. We did find some evidence that the hippocampal 
spatial place field density and place field length distributions reflected 
discrete segments (Supplementary Fig. 3), but the effect was small 
compared to the changes in ahead and behind length (Fig. 6). Instead, 
we found that sequences of place cell activity preferentially repre-
sented particular, navigationally relevant chunks of the environment. 
Thus, chunking was evident from the neural representation of space 
in the hippocampus.

Several studies have suggested that these neural sequences could be 
related to navigation8,26,47, planning24,42 or memory35–37. For example, 
evidence exists that systemic cannabinoid agonists disrupt both phase 
precession and behavioral performance while leaving average place 
fields unchanged47. However, it is unknown whether phase precession 
and behavioral performance are causally related and whether the dis-
ruption of phase precession extends to theta sequences. Nevertheless, 
our data suggest that the information being processed during each 
neural sequence expressed in each cycle of theta reflects cognitive 
segments of the task at hand.

From a behavioral perspective, chunking was also evident on the 2T 
task from the rat’s acceleration-deceleration profile (Supplementary 
Fig. 5). This was not surprising because landmarks on the maze were 
either turns or feeders, and it would be expected for the rats to slow 
down as they approached a turn and speed up afterwards. However, 
we also observed an increase in acceleration before arrival at the top 
corner of the maze, which implies that the behavioral chunking did 
not always perfectly align with the physical landmarks.

Although theta sequences preferentially represented segments of 
the environment, such segmentation was not seen in replay sequences 
during sharp wave ripples, occurring while animals were awake and 
paused at feeder locations on the 2T maze19. It was recently found 
that replay sequences can represent long paths in space and can occur 
across multiple ripple events, suggesting that replay events consist of 
chains of subsequences48. Thus, it is possible that theta sequences 
preferentially encode particular segments of experience, which are 
then concatenated during extended, multiripple replay events.
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Segmentation of the environment by hippocampal theta sequences 
has implications for the encoding of experience and for how the 
hippocampus represents space. Because neural activity during theta 
represents experience as it occurs and operates at the timescale 
required for spike timing–dependent plasticity, it is thought that 
synaptic learning during each theta cycle is the basis for storing 
experience. Thus, theta sequences representing the environment in 
segments may result in the encoding of experience in chunks. Storing 
experience this way could be a coding scheme that the brain uses to 
organize vast amounts of information in a way that is efficient and 
behaviorally useful to animals.

METHODS
Methods and any associated references are available in the online 
version of the paper.

Note: Supplementary information is available in the online version of the paper.
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ONLINE METHODS
Methods including the details about the subjects, surgery, recording, histology 
and the 2T task have been described previously19.

Subjects. Six male Fisher-Brown-Norway hybrid rats, aged 7–10 months  
at the start of recording sessions. All procedures were in accordance with  
the US National Institutes of Health guidelines for animal care and were approved 
by the Institutional Animal Care and Use Committee at the University of 
Minnesota. Rats were housed individually and maintained on a 12-h light-dark 
cycle, with the lights on during the day, when training and recording sessions 
took place.

Surgery, recording and histology. Three rats were each implanted with a single 
bundle 12-tetrode, 2-reference microdrive (Neuro-Hyperdrive; Kopf) directed 
toward the CA1 hippocampal (HC) subfield (3.8 mm posterior and 2.5 mm 
right-lateral from bregma). Another three rats were each implanted with a dou-
ble bundle 12-tetrode, 2-reference microdrive directed toward CA1 and ventral 
striatum (only HC data analyzed here). One reference was placed in the corpus 
callosum for common-mode noise rejection. The other reference was placed in 
the hippocampal fissure. All theta LFP signals were analyzed from the second 
reference electrode (a tetrode with all four channels shorted together) in the 
hippocampal fissure. The results presented here are qualitatively similar when 
sequences included for analysis were only allowed one cell per tetrode.

Additional details of the surgery were as previously presented49. Neural activity 
was recorded, and spikes were sorted into putative cells49. All units were examined 
to have a reasonable isolation distance and L ratio50 and no spikes during the 2-ms 
refractory period. The median isolation distance and L ratio were 21 and 0.09, 
respectively. Only well-isolated units were included in the analyses. Recordings 
from an example tetrode are shown in Supplementary Figure 8.

After the recording phase of the experiment, rats were overdosed with sodium 
pentobarbital (150 mg/kg, Nembutal) and perfused intracardially with forma-
lin. Their brains were then transferred to a 30% (wt/vol) sucrose-formalin solu-
tion, sectioned, and stained with cresyl violet with standard procedures. All 
HC recording locations were verified to lie in the CA1 region of the dorsal HC  
(see Supplementary Fig. 9).

the 2t task. The task was a continuous T maze with two choice points arranged 
in sequence (Fig. 1a). Food delivery occurred at two sites on each return rail, 
contingent on the rat’s choice at the second turn. Training and recording sessions 
lasted 40 min. Training on the task was carried out in three phases. In phase 1, 
rats were trained to run laps on one side of the maze, while the other side was 
blocked. Phase 1 continued until rats ran at least 40 laps on two consecutive 
days. In phase 2, the blocks were removed and on any given day, rats had to run 
all left laps (L), all right laps (R) or alternating left and right laps (A) in order to 
receive reward. After consistently getting 80% of the laps correct on all three task 
contingencies, rats were implanted with hyperdrives. After recovery from surgery,  
phase two of training resumed until the rats regained proficiency and tetrodes 
were in the cell layer. At this point, a 6-d sequence of recording sessions began 
(phase 3). During recording sessions, the task contingency changed approxi-
mately halfway through the session (mean, 18.07 min ± 1.13 min s.d.). There 
were six recording sessions to allow for all possible pairings of the three tasks 
(L-R, R-L, L-A, A-L, R-A, A-R).

data analysis: place fields. Cells firing more than 15,000 spikes over the  
40-min session (6.25 Hz) were excluded to filter putative inhibitory interneurons. 
Additionally, cells with <100 spikes (~0.04 Hz) were excluded. Sessions with >40 
cells were considered for analysis (31 out of the 36 recording sessions). A total 
of 2,046 cells were isolated from 31 recording sessions; 1,881 cells satisfied the 
number-of-spikes criterion, and 1,470 cells contained at least one place field on 
the maze. Position along the maze was linearized separately for left and right laps, 
such that the rat’s position along a lap could be described by a scalar value51. Place 
fields were then identified as contiguous linear pixels (one linear pixel is ~3.5 cm  
along the linearized maze) with average activity >5% of the maximum rate 
observed over the session for any cell at any pixel (cells could have more than one 
place field, although place fields separated by only a single pixel were merged). 
Additionally, cells were required to have at least one place field including three 
adjacent pixels of >2 Hz to be included. Activity during low animal velocity was 

not excluded in place field identification. From the 1,470 place cells, 2,729 place 
fields (and place field centers) were identified. Centers were ordered from maze 
start to maze start in the direction the rats traveled around the maze.

data analysis: detecting theta cycles with significant sequences. All theta 
signals were measured from the electrode placed in the hippocampal fissure 
taken relative to the electrode placed in the callosum. Individual theta cycles were 
separated peak to peak, which is the point of minimal cell firing. Peaks of the 
theta oscillation were identified by first filtering the recording from the reference 
electrode placed in the hippocampal fissure with a fourth-order Butterworth filter 
(pass-band between 6–12 Hz) to identify the theta oscillation. The peaks of the 
filtered signal were then identified by finding the maxima in the filtered signal. 
The point of minimal cell firing was consistent for the significant theta sequences 
used in analysis (see below) and was consistent with changes in ahead, behind, 
and path length (Supplementary Fig. 7). A sequence detection algorithm was 
then used to identify theta cycles whose spike sequence showed significant spatial 
and temporal structure. The algorithm was nearly identical to the one used previ-
ously to analyze replay sequences19, except that sequences were restricted to begin 
and end within the same theta cycle. The full algorithmic details are provided 
below. The algorithm used here and previously19 detected spatial and temporal 
structure in the pattern of place cell activity by comparing the times and place 
field centers of spike pairs. The algorithm was run twice for each session, once 
using left lap place field centers and once using right lap centers19. The resulting 
scores for each spike sequence were then analyzed using two independent boot-
strapping procedures to identify sequences with significant spatial and temporal 
structure occurring during theta cycles with low sharp-wave ripple power. The 
sequence score procedure was only used to identify the set of candidate theta 
cycles to study.

data analysis: sequence identification. The identification of theta sequences 
with significant structure was carried out in two steps. The first step was to 
compute the sequence score based on the neural activity in each theta cycle. 
The second step was to compare the score of each sequence against two distri-
butions created using two separate bootstrapping procedures. These steps are 
described below.

Step 1: Sequence scoring. The algorithm described here is nearly identical to 
the algorithm used previously19. In this study, the algorithm was used to detect 
coherent sequences of place cell activity during each cycle of the theta oscillation, 
rather than replay events during the awake state. The sequence score of place 
cell activity within each theta cycle was calculated as follows. Using the place 
field centers and spike times, each spike in the theta cycle was pairwise com-
pared with other spikes occurring in the same theta cycle. If the place field center  
corresponding to spike A was traversed before the place field center for spike B 
and spike A occurred before spike B, the sequence score was +1, otherwise the 
score was –1. For all spikes in a given theta cycle, all pairwise comparisons were 
summed to determine the cumulative score of the sequence.

The basic sequence scoring algorithm was as follows.
Given:
1. Spike times: T vector: [nSpikes × 1]
2. Spike place field centers: C vector: [nSpikes × 1]
Compute:
1. Time difference for each spike pair: ∆T matrix: [nSpikes × nSpikes]
2. Field center distance for each spike pair: ∆C matrix: [nSpikes × nSpikes]
3.  Element-wise multiply ∆T and ∆C to create ∆TC matrix: [nSpikes × 

nSpikes]
4.  Binarize ∆TC. For each element in ∆TC: if element is positive, replace with 

‘+1’; if element is negative, replace with ‘–1’.
5. Sum over all elements in ∆TC to get the sequence score.
A positive sequence score indicates that the sequence is ‘forward’ ordered.

The scoring presented above requires that each spike be associated with a single 
place field. For cells with multiple place fields, it is unclear which place field is 
being represented by a spike. To address this issue, the algorithm assigned each 
spike from a multifield cell to the place field which best fit with the rest of the 
firing sequence. This was done by maximizing the score over each place field 
available to a spike. Always picking the place field that optimizes the sequence 
score could result in artificially high sequence scores. To provide a fair and  
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statistically justified comparison, this same score maximization procedure was 
conducted for the control sequences produced in the bootstrapping procedure 
described below.

Step 2: Sequence significance testing. Next, each theta sequence was individually 
analyzed to identify significant structure using two independent bootstrapping 
procedures. The first method preserved the identity of the cell to which each 
spike belonged and randomly shuffled the spike times for each event 300 times. 
Each shuffled event had its sequence score recomputed, once again with spikes 
from cells with multiple place fields being assigned to the place field center that 
maximized the sequence score. This ensured that there was no bias resulting from 
assigning spikes to fields that maximized the sequence score. The second boot-
strapping procedure preserved the spike trains, but randomly reassigned each 
spike train to a different cell’s firing field(s)48. Each event was shuffled 300 times, 
once again with spikes from cells with multiple place fields being assigned to the 
place field center that maximized the sequence score. If the unshuffled sequence 
score was >95% of both independent sets of shuffled sequences, the sequence was 
deemed significant and included for analysis. These methods ensured that only 
significant (P < 0.05) theta sequences were included in the analysis.

data analysis: Bayesian decoding. For theta cycles with significant sequential 
structure, the represented path in space was determined using a Bayesian decod-
ing approach52. Decoding was carried out on each theta cycle using a 40-ms 
sliding time window shifted by 10 ms at each step. Decoding was restricted to an 
~190-cm region (half a lap) centered at the rat’s location. Thus, decoding over 
each theta cycle resulted in an nTimeBins × nSpaceBins matrix of probabilities, 
with each row containing the probability distribution over space for a particular 
time bin. All spikes were included in the Bayesian analyses, whether they con-
tributed to the sequence score or not.

data analysis: ahead, behind and path lengths. To detect the beginning of the 
spatial path represented, the probability distributions over space for the first 
half of the theta cycle (matrix size: nTimeBins/2 × nSpaceBins) were summed 
to create a single probability distribution over space (an nSpaceBins-element 
vector). The 5% tail of this distribution (tail on the end of the distribution that is 
behind the rat) was located, providing the beginning location of the spatial path.  

The distance between this point and the location of the rat was defined as the 
behind length, as it measures the distance the sequence travels from behind the rat 
to the rat’s location. Similarly, the end of the represented path was determined by 
summing the probability distributions over space for the second half of the theta 
cycle and locating the 5% tail of that distribution (tail on the end of the distribu-
tion that is ahead of the rat). The distance between the location of the rat and this 
point was defined as the ahead length, as it measures the distance ahead of the rat’s 
location that the sequence progresses. Finally, the total distance from the start of 
the sequence to the end of the sequence was defined as the path length.

The Bayesian decoding results were robust to the use of other time windows 
(20 and 30 ms) or other tail sizes (10%, 15% and 20%) and were similar when 
the first and last time bin were used for determining the ends of the spatial path 
or when the spatial distributions were summed over the entire theta cycle rather 
than over the first and second half separately. Furthermore, the results obtained 
using this Bayesian decoding approach were qualitatively replicated using a sepa-
rate, non-Bayesian approach for detecting the represented path23.

data analysis: location, velocity and acceleration. The rat’s location was defined 
as the location at the middle of the theta cycle (at which cell firing was maximal, 
Supplementary Fig. 7); however, all results are qualitatively unchanged if the rat’s 
location was taken as at another point (beginning or end) of the cycle. Velocity 
was measured as the derivative of the sequence of locations53, and acceleration 
was measured as the derivative of the velocity sequences53.

49. Jackson, J.C., Johnson, A. & Redish, A.D. Hippocampal sharp waves and reactivation 
during awake states depend on repeated sequential experience. J. Neurosci. 26, 
12415–12426 (2006).

50. Schmitzer-Torbert, N.C., Jackson, J., Henze, D., Harris, K. & Redish, A.D. 
Quantitative measures of cluster quality for use in extracellular recordings. 
Neuroscience 131, 1–11 (2005).

51. Schmitzer-Torbert, N. & Redish, A.D. Neuronal activity in the rodent dorsal striatum 
in sequential navigation: separation of spatial and reward responses on the multiple 
T task. J. Neurophysiol. 91, 2259–2272 (2004).

52. Zhang, K., Ginzburg, I., McNaughton, B.L. & Sejnowski, T.J. Interpreting neuronal 
population activity by reconstruction: unified framework with application to 
hippocampal place cells. J. Neurophysiol. 79, 1017–1044 (1998).

53. Janabi-Sharifi, F., Hayward, V. & Chen, C.S.J. Discrete-time adaptive windowing for 
velocity estimation. IEEE Trans. Control Syst. Technol. 8, 1003–1009 (2000).
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Figure S1: Histograms of the number of theta cycles versus the number of active cells per theta

cycle.Left panel includes all theta cycles over 31 recording sessions (618,408 cycles).Middle panel

includes theta cycles with three or more active cells, mean sharp wave ripple power less than one

standard deviation above the mean, and theta power greater than one standard deviation below the

mean (168,770 cycles).Right panel includes theta cycles whose neural activity contains significant

sequential structure as described in the Experimental Procedures (33,397 cycles).
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Figure S2: The distribution of space represented by theta sequences foreach rat. The main results

are robust across individual rats; all six rats chunked the behavior in similar ways.
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Figure S3: Relationship between place field density, place field length,and animal velocity, and

location on maze.(a) Place field density as a function of location on linearized maze (n = 2,729

place fields). The height of the curve reflects the number of place fields overlapping a particular

location in the environment. Y-axis is z-scored place field distribution by session, x-axis is linearized

maze.(b) Mean place field length as a function of location. Place field length is defined as the length

of the place field measured along the linearized maze. Y-axis is centimeters averaged by session,

x-axis is linearized maze.(c) Animal velocity as a function of location on linearized maze. Y-axis is

z-scored velocity by session, x-axis is linearized maze. Gray line width is s.e.m.
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Figure S4: (a) Spatial correlation matrix of place fields. To calculate this matrix, the spatial firing

tuning curve (place field) of each cell was calculated, creating anncell× nspatial-binmatrix, with

each element in the matrix the average firing rate of the cell at that particular location in the envi-

ronment. This matrix was then correlated to create annspatial-bin× nspatial-binmatrix. (b) The

square of the matrix shown in panela. (c) The cross-correlation of the matrix generated in panela.

2,729 place fields were used in this analysis.
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Figure S5: Spatial distribution of paths constructed from an acceleration-based model of represented

spatial paths.(a) Mean acceleration (z-scored by session) as a function of location on linearized

maze. (b) Spatial distribution of paths constructed based on the relationship between acceleration

and ahead and behind length (see main text for details). Comparing this to the spatial distribution

shown inFigure 6 of the main text clearly shows that acceleration is not the sole driving force for

spatial chunking. 29,351 theta sequences were used in this analysis. Line width is s.e.m.
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Figure S6: Mean LFP power as a function of path, ahead, and behind length.29,351 theta cycles

were used in this analysis. Mean LFP power was z-scored by session. Line width is s.e.m.
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Figure S7: Theta sequence versus theta phase relationships.(a) Histogram of putative pyramidal

cell spiking as a function of theta phase for all theta cycles(top) and for those theta cycles included

in the analysis(bottom). Minimal cell firing was observed at the peak of theta (0 and2π). (b) 2D

histograms showing the distribution of spikes over theta phase as path length(left), ahead length

(middle), and behind length(right) increase. Red indicates high spike counts and blue is low spike

counts. As seen in this figure, the distribution of spikes over the theta cycle is similar as the three

lengths increase, and are similar to the distribution of spikes for all significant theta cycles (see panel
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a). Note that the distribution of spikes over the theta cycle for the longest path lengths is based on

relatively few theta cycles, which is the likely cause of the differing distribution. Phases of zero and

2π correspond to peaks of the theta oscillation recorded from the hippocampal fissure.
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Figure S8: Example tetrode recordings from one recording session. Eachspike cluster is shown with

different colors on two projections (right). One millisecond waveforms for each of the four tetrode

channels are plotted for each separable cluster along with the cluster’s Isolation distance and L-ratio

(left). Scale bar next to each cluster’s waveforms is100 µV.
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Figure S9: Schematics showing the position of implanted electrodes. Each colored box indicates the

location of the electrodes within hippocampal region CA1 for each of the six rats in this study.
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