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Wikenheiser AM, Redish AD. Changes in reward contingency
modulate the trial-to-trial variability of hippocampal place cells. J
Neurophysiol 106: 589–598, 2011. First published May 18, 2011;
doi:10.1152/jn.00091.2011.—Pyramidal cells in the rodent hippocam-
pus often exhibit clear spatial tuning. Theories of hippocampal func-
tion suggest that these “place cells” implement multiple, independent
neural representations of position (maps), based on different reference
frames or environmental features. Consistent with the “multiple
maps” theory, previous studies have shown that manipulating spatial
factors related to task performance modulates the within-session
variability (overdispersion) of cells in the hippocampus. However, the
influence of changes in reward contingency on overdispersion has not
been examined. To test this, we first trained rats to collect food from
three feeders positioned around a circular track (task1). When subjects
were proficient, the reward contingency was altered such that every
other feeder delivered food (task2). We recorded ensembles of hip-
pocampal neurons as rats performed both tasks. Place cell overdis-
persion was high during task1 but decreased significantly during task2,
and this increased reliability could not be accounted for by changes in
running speed or familiarity with the task. Intuitively, decreased
variability might be expected to improve neural representations of
position. To test this, we used Bayesian decoding of hippocampal
spike trains to estimate subjects’ location. Neither the amount of
probability decoded to subjects’ position (local probability) nor the
difference between estimated position and true location (decoding
accuracy) differed between tasks. However, we found that hippocam-
pal ensembles were significantly more self-consistent during task2

performance. These results suggest that changes in task demands can
affect the firing statistics of hippocampal neurons, leading to changes
in the properties of decoded neural representations.

hippocampus; decoding; overdispersion; multiple maps

THE UBIQUITY OF SPATIAL TUNING in the rodent hippocampus is
well established (O’Keefe and Dostrovsky 1971; O’Keefe and
Nadel 1978; Redish 1999). In an impressive range of experi-
mental settings, the best behavioral correlate of hippocampal
pyramidal cell discharge is the animal’s position within the
environment. The spatial tuning of hippocampal “place cells”
is robust enough to allow accurate estimation of position based
solely on hippocampal ensemble activity (Brown et al. 1998;
Wilson and McNaughton 1993; Zhang et al. 1998), and spatial
firing patterns are manifest even as rats perform tasks that are
not interrupted by hippocampal lesions (reviewed in Redish
1999).

In contrast to the marked spatial selectivity of place cells,
their temporal variability can be great. To quantify the “inter-
trial” variability of place cells, Fenton and Muller (1998)
examined the number of spikes place cells fired on consecutive

passes through their place fields. Although only behaviorally
identical passes through each field were compared, the number
of spikes emitted by a place cell during a given pass fluctuated
greatly, exceeding even the variance of inhomogeneous Pois-
son model predictions (Fenton and Muller 1998). Data char-
acterized by such unexplained variability are described as
“overdispersed,” and Fenton and Muller (1998) suggested that
place cell overdispersion results from modulation of firing rate
by internal, cognitive processes (Johnson et al. 2009; Olypher
et al. 2002).

The overdispersed firing patterns (Fenton and Muller 1998;
Fenton et al. 2010; Jackson and Redish 2007) and several other
properties of place cell activity challenge the notion that the
hippocampal representation of space is a unified, Cartesian
map of the environment (reviewed in Eichenbaum et al. 1999).
Instead, it has been suggested that place cells participate in
multiple, distinct submaps constructed to subserve the behav-
ioral task the animal must solve (McNaughton et al. 1996;
Redish and Touretzky 1997; Samsonovich and McNaughton
1997; Touretzky and Redish 1996). In the “multiple maps”
framework, the within-session variability of place cells reflects
switching between submaps on a fast timescale (�1 s or less;
Olypher et al. 2002; Jackson and Redish 2007). The multiple
maps hypothesis predicts that the nature of a behavioral task
should influence the overdispersion of hippocampal place cells.
When no submap or reference frame is particularly well-suited
to performing a given task, overdispersion should remain high
as the active hippocampal map cycles between equally useful
submaps. In contrast, a task that forces subjects to rely on one
particular reference frame or set of cues should increase the
stability of the appropriate submap, and hippocampal neurons
participating in that submap should exhibit decreased intertrial
variability (reviewed in Redish 1999). In support of the map-
switching explanation of overdispersion, requiring rats to nav-
igate toward a goal location reduces overdispersion relative to
undirected foraging for food scattered randomly in the same
environment (Fenton et al. 2010; Jackson and Redish 2007;
Olypher et al. 2002). Furthermore, tasks that encourage pref-
erential use of a subset of multiple, concurrently available cues
also decrease the overdispersion of place cells (Fenton et al.
2010).

Demonstrations of behavioral control of overdispersion have
been achieved thus far through manipulation of spatial factors.
Imposing a goal requirement on the cylinder foraging task
(Jackson and Redish 2007; Olypher et al. 2002) introduces a
spatial contingency to what was previously a randomly re-
warded task. Likewise, requiring subjects to use one particular
cue set encourages the use of one particular spatial reference
frame (Fenton et al. 2010; Kelemen and Fenton 2010).
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Here we examined how changing the reward contingency of
a behavioral task affects neural representation by hippocampal
cells, paying particular attention to the within-session variabil-
ity of place cell spiking and the quality of reconstructed
ensemble representations. Subjects were first trained to collect
food from each of three feeder sites around a circular track.
After rats achieved proficiency, the order in which feeder sites
dispensed pellets was modified, to change the reward contin-
gency subjects experienced. Because overt behavior remains
largely similar after the switch, this task allows us to assess
how a covert, cognitive change induced by the new task
contingency impacts hippocampal neural activity.

EXPERIMENTAL PROCEDURES

Subjects. Male Fisher-Brown Norway hybrid rats (n � 5; Harlan,
Indianapolis, IN) were maintained on a 12:12-h light-dark cycle, with
behavioral sessions occurring at the same time daily, �1 h. Rats were
handled for at least 7 days before beginning behavioral training,
during which time they were acclimated to the 45-mg food pellets
earned during task performance (Test Diet; Richmond, IN). Subjects
were food deprived to no less than 80% of their free-feeding weight,
and water was always freely available in the home cage. All experi-
mental and animal care policies complied with National Institutes of
Health guidelines for animal care and were approved by the Institu-
tional Animal Care and Use Committee at the University of
Minnesota.

Training and surgery. Subjects ran clockwise laps around an
elevated circular track with a diameter of 80 cm (Fig. 1). Running
direction was enforced by physically blocking attempts to run back-
wards, although in practice this rarely occurred. Three equally spaced
feeder sites were located on platforms extending from the main
circular track. At the end of each platform, automated food dispensers
(Med Associates; St. Albans, VT) were positioned to deliver pellets
into small cups. Extramaze cues were present in the experimental
room and remained stable throughout all experiments. Behavioral
sessions occurred daily and lasted 30 min. During presurgical training,
rats ran laps around the track for food reward, receiving two food
pellets as they arrived at each feeder site. Once rats ran �35 laps for
at least 3 consecutive sessions, they were implanted with a 14-tetrode

microdrive (Kopf, Tujunga, CA) directed toward the CA1 region of
the right hippocampus (�3.8 mm anteroposterior, 3.0 mm lateral from
bregma). Surgical procedures have been described in detail previ-
ously, as have perfusion and histological methods (Johnson and
Redish 2007; Schmitzer-Torbert and Redish 2004). After experiments
were complete, current was passed through each tetrode (10 �A for
�5 s) to mark its final location, and recording locations were subse-
quently verified to lie within CA1 hippocampus.

Behavioral task. To examine how changes in a behavioral task’s
reward structure influence hippocampal neural activity, we designed
two task variants that preserved similar behavior but allowed us to
manipulate reward contingency. Task1 was identical to training ses-
sions; each feeder site was baited on every visit. Within task2,
however, every other feeder site was baited. For example, after food
is received at feeder 1, feeder 2 is inactive, so the subject should
proceed directly to feeder 3 to receive food. From feeder 3, feeder 1
is unrewarded, so the subject should run to feeder 2 to collect food
(Fig. 1, bottom). Although subjects were not explicitly punished for
pausing at unrewarded feeders, feeder sites were extended off the
main track to increase the cost of investigation, encouraging subjects
to skip unrewarded locations after the switch to task2. Rats ran task1

sessions after implantation, as tetrodes were advanced toward CA1
hippocampus. Once tetrodes were in position, neural ensembles were
recorded as subjects performed task1. Subjects continued to perform
task1 for at least five recording sessions and then switched to task2.
The switch was entirely uncued, forcing subjects to learn the new
reward contingency by trial and error.

Neural recordings. Action potentials were recorded by a 64-
channel Neuralynx (Bozeman, MT) Cheetah system. The voltage of
each tetrode channel was monitored at 32 kHz and filtered between
600 Hz and 6 kHz. When the voltage on any channel of a tetrode
exceeded a user-defined threshold, a 1-ms voltage sample from all
channels was saved to disk and time-stamped with microsecond
resolution. Spikes were sorted off-line with MClust 3.5 (Redish et al.,
http://redishlab.neuroscience.umn.edu/MClust/MClust.html).

Behavioral analysis. All behavioral and neural analyses were
carried out with Matlab (MathWorks, Natick, MA). Position tracking
data were linearized by conversion to polar coordinates, and we
detected whether or not subjects investigated a feeder site by measur-
ing their excursion from the center of the track; when rats fully
explored a site, they proceeded farther from the center than when they
passed by without investigating. The maximum distance from center
for each pass by a feeder site was z-scored, and a boundary of z � �2
reliably distinguished feeder investigation from feeder skipping. To
assess learning during task2 sessions, each pass by a feeder was
scored. Bypassing an unrewarded site or collecting food from a
rewarded location was counted as a correct pass, while investigating
an unrewarded location or failing to collect food at a rewarded site
was scored as an error.

Place fields. Units that fired �100 spikes during task performance
(�0.05-Hz session mean firing rate) were excluded from place field
analyses, as were units with a session mean firing rate �5 Hz (putative
interneurons). Spikes that occurred when the animal’s speed was �5
cm/s were excluded from place field analysis. To find the one-
dimensional place field(s) of a unit, the linearized track was
divided into �5-cm bins, and the unit’s firing rate within each bin
was computed over the session. Contiguous bins in which the firing
rate was elevated �15% of the cell’s session maximum firing rate
were considered place fields. Fields separated by �3 bins were
merged (Gupta et al. 2010).

Firing rate. Firing rates of neurons recorded during task1 and task2

performance were compared in two ways. First, the mean task firing
rate was computed by averaging the firing rates of all neurons with
place fields separately for task1 and task2 sessions. To test whether
average firing rates differed at specific locations in space across task1

and task2, the track was divided into 64 bins, each �5 cm in size. The
mean firing rate of each bin was calculated over all cells. For each bin,

Fig. 1. Rats ran laps around an elevated circular track (diameter � 80 cm).
Salient extramaze cues were available around the maze and remained stable
throughout all experimental sessions. In task1, rats obtained food from each
feeder site on every lap. In contrast, task2 manipulates reward contingency by
rewarding visits to every other feeder along the path. The active feeder site
consequently precesses around the track.
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the mean task1 firing rate was plotted against that bin’s mean task2

firing rate, and the points were fit with a linear model using Matlab’s
“regress” function.

Calculating overdispersion. The overdispersion of each place field
was calculated after Fenton et al. (2010). Briefly, the expected number
of spikes for each pass through a place field was determined by
multiplying the average firing rate at each position by the amount of
time spent in that position. For each pass, we calculated z:

z � Spikesobserved � Spikesexpected ⁄ �Spikesexpected

The overdispersion of each field is the variance of this distribution of
z-scores. Because z is calculated in standard deviation units, distribu-
tions can be combined for multiple cells, to test ensemble overdisper-
sion. Because the tasks differed in reward contingency, we expected
rats’ behavior to vary somewhat, especially near feeder sites. Thus, to
ensure that neural analyses were restricted to epochs with consistent
behavior, place fields with centers located within 10 cm of a feeder
site were excluded.

Bayesian decoding and decoding quality. One-step Bayesian de-
coding (Zhang et al. 1998) was applied to the entire ensemble of cells
recoded during each session, using a �5-cm spatial bin size, a time
step of 200 ms, and a uniform spatial prior. This method returns a
probability distribution of the rat’s location over space for each
decoded time step. The general pattern of decoding results was the
same at different bin sizes, and the statistical significance of our
analyses was not changed (data not shown).

To quantify local probability, we assigned the subject’s mean
position during each decoding time step to a spatial bin and then
averaged the collection of decoded position probability distributions
within each bin. For each session, mean decoded distributions were
plotted against actual position, and the average value of pixels along
the diagonal of this plot (i.e., the amount of decoded probability
matching the subject’s actual location) was computed. Because this
value depends on the size of the ensemble used for decoding
(Schmitzer-Torbert and Redish 2008; van der Meer et al. 2010; Zhang
et al. 1998), the mean local probability of each session was plotted
against the number of cells recorded that day. Task1 and task2 sessions
were plotted separately, and each collection of points was fit with a
linear model.

To measure decoding accuracy, the subject’s decoded position
was taken to be the peak of the probability distribution for each
decoded time step. Decoding error was then computed as the absolute
value of the difference between the subject’s actual and decoded
positions for each time step. Like local probability, decoding accuracy
varies as a function of the number of cells available for decoding
(Schmitzer-Torbert and Redish 2008; van der Meer et al. 2010; Zhang
et al. 1998), so the mean decoding error for each session was plotted
as a function of ensemble size and linear regression was performed
separately for each task.

i
Ensemble self-consistency was computed following the devel-

opment of Jackson and Redish (2003). The goal of this measure is
to quantify how much neural activity recorded during task perfor-
mance differs from neural activity predicted given the decoded
position of the animal and the tuning curves of cells in the
ensemble. If representations are self-consistent, the difference be-
tween actual and predicted activity should be small (Jackson and
Redish 2003; Johnson et al. 2008). Briefly, for each time step,
actual activity packets were constructed by summing ensemble
tuning curves weighted by the firing rates of cells during that time
step. Expected activity packets were constructed similarly but were
weighted by the expected firing rates of cells, obtained by evalu-
ating the tuning curves at the position decoded during that time
step. The difference between actual and expected activity packets
for each time step was measured as the root mean squared error
(RMSE) (Jackson and Redish 2003).

RESULTS

Behavior. Across both tasks, rats ran increasingly more laps
per session (Fig. 2, top). Accordingly, subjects’ mean speed
increased across task1 sessions, eventually stabilizing during
task2 performance (Fig. 2, middle). In task2 sessions, each pass
by a feeder site was scored as correct or incorrect. Retrieving
food from a rewarded feeder and avoiding an unrewarded site
were counted as correct responses, while skipping a rewarded
site and checking an unrewarded feeder were marked as errors.
Subjects learned to skip unrewarded feeders in task2 sessions,
asymptoting to �90% correct responses (Fig. 2, bottom),
demonstrating sensitivity to the new reward contingency.

Fig. 2. The task performance curve (top) shows that rats ran increasingly more
laps across the experimental sequence. Subjects’ mean running speed showed
a similar increase across sessions (middle). To construct the task2 learning
curve (bottom), skipping an inactive site and collecting food from a baited
location were counted as correct passes. Across task2 sessions, rats learned to
skip unrewarded feeders.
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Firing rates. As subjects performed the tasks, ensembles of
neurons were recorded from the CA1 region of hippocampus.
Consistent with previous work, many hippocampal units dis-
played spatial tuning (O’Keefe and Dostrovsky 1971; O’Keefe
and Nadel 1978; Redish 1999). Because neural variability can
vary with firing rate (Barlow and Levick 1969; Rodieck 1967),
we first looked for gross changes in the firing rates of neurons
between tasks. The mean firing rate of cells recorded during the
tasks (0.90 Hz and 0.91 Hz, task1 and task2, respectively) did
not differ (P � 0.38, rank-sum test). To assess whether the
firing rates of cells differed systematically at different positions
on the track, we divided the track into 64 spatial bins and
computed the average firing rate for each bin across all rats,
sessions, and cells for each task. We then plotted the bin’s
mean rate during task1 against its task2 mean rate (Fig. 3).
Uniform spatial firing across tasks would result in points

distributed along a diagonal line of unity slope and y-intercept
of 0. We fit points with a linear model and found that the slope
and y-intercept of the regression line were not statistically
distinguishable from 1 and 0, respectively (slope CI95%: 0.79 to
1.08; y-intercept CI95%: �0.01 to 0.14), indicating that the
distribution of spiking across space did not vary significantly as
a function of task.

Overdispersion. To compare the intertrial variability of
place cells between tasks, we computed the overdispersion of
place cells (Fenton and Muller 1998; Fenton et al. 2010).
Consistent with previous work, we found that place cells
exhibited highly variable firing patterns during task1 sessions
(�2 � 5.36, n � 1,577 passes, Fig. 4). In contrast, cells
recorded during task2 sessions (following the switch in reward
contingency) displayed significantly decreased within-session
variability (�2 � 2.99, n � 1,810 passes, F-test, P � 10�6,
F � 1.79). The decrease in overdispersion was observed for all
subjects (Fig. 4, right). Place cell overdispersion was relatively
stable both before and after the task switch, exhibiting a sharp,
steplike transition following the change in reward contingency
(Fig. 5).

Other factors besides the switch in reward contingency could
account for the decreased trial-to-trial variability of place cells
recorded during task2. For instance, running speed (Fig. 2,
middle) is known to influence place cell discharge (Mc-
Naughton et al. 1983; Wiener et al. 1989). To test the relation-
ship of running speed and overdispersion, we regressed place
cell overdispersion onto subjects’ running speed for each
session (Fig. 6, top). We found a significant correlation be-
tween mean running speed and place cell overdispersion (P �
0.001; r2 � 0.1583; Fig. 6, top). However, when we performed
separate regressions for task1 and task2 sessions (Fig. 6, top),
no significant correlations between place cell variability and
speed were observed (Ptask1 � 0.12; Ptask2 � 0.73). We also
examined place cell overdispersion in sessions in which run-
ning speed was similar but the task differed. Regression anal-
ysis was restricted to sessions in which mean running speed
was between 60 and 70 cm/s, the region of greatest overlap of
running speeds between task1 and task2 sessions (Fig. 6, top).
For sessions matched by rat running speed, the correlation
between speed and overdispersion was not significant (P �
0.40; Fig. 6, middle). Finally, we examined the rate at which

Fig. 3. The distribution of spiking did not vary across tasks. The mean firing
rate within each of 64 spatial bins (across all cells) in task1 sessions is plotted
against the task2 average firing rate for the same spatial bins. A perfect
correspondence of firing rates across tasks would result in points distributed
along the diagonal (solid line). The linear regression line fit to firing rate data
(dashed line) did not statistically deviate from the diagonal.

Fig. 4. Place cell within-session variability decreased
during task2 performance. Overdispersion was high
during task1 but was significantly reduced in task2

sessions (left; F-test, P � 10�6). This effect was ob-
served in all 5 subjects (right).
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running speed and overdispersion changed across sessions. We
plotted the difference in running speed and overdispersion
between successive sessions over the course of the experiment
(Fig. 7). Running speed increased by an approximately con-
stant amount throughout most of the experiment, eventually
reaching an asymptote during the final few task2 sessions (Fig.
7, top). Overdispersion, on the other hand, changed little within
task1 sessions, decreased sharply during the first several task2

sessions, and then stabilized for the remainder of the experi-
ment (Fig. 7, bottom).

Increasing familiarity with the experimental conditions
across days or increasing proficiency at performing the task
could also influence the firing statistics of hippocampal neu-
rons. Such an effect would manifest as a significant correlation
between overdispersion and session number, so to test this idea
we plotted overdispersion against session number for all sub-
jects and performed regression analysis (Fig. 6, bottom). Ses-
sion number and overdispersion were significantly correlated
(P � 0.001, r2 � 0.2498), but this correlation was not signif-
icant when the regression was performed within sessions of
each task (Ptask1 � 0.78; Ptask2 � 0.17).

Differences in the reward contingencies of the two tasks give
rise to differences in trajectories that could affect place cell
intertrial variability. In task1 sessions, because subjects were
rewarded at every feeder site, the majority of passes through a
given place field were initiated and terminated at consistent
track locations (Fig. 8, top). In task2, however, because sub-
jects learned to skip unrewarded feeders, passes through a
particular place field were more likely to begin and end at
multiple, unique positions on the track (Fig. 8, top). To control
for this effect, we categorized passes through each place field
during task2 sessions as proximal (initiated from the nearest
feeder preceding the field) or distal (initiated from the feeder
preceding the “proximal” site; Fig. 8, top). We calculated
overdispersion separately for task2 proximal and distal passes
(Fig. 8, bottom). Compared with task1 passes (all of which are
“proximal” because subjects did not skip feeder sites), the

overdispersion of both proximal and distal task2 passes was
significantly lower (task2 proximal: �2 � 2.81, n � 351 passes,
F-test, P � 10�6, F � 1.91; task2 distal: �2 � 2.97, n � 393
passes, F-test, P � 10�6, F � 1.80). In contrast, the overdis-
persion of proximal and distal task2 passes was not statistically
different (F-test, P � 0.60; F � 0.95).

Ensemble decoding. To examine whether the change in
reward contingency between tasks affected the content or
quality of hippocampal neural representations, we used one-
step Bayesian decoding (Zhang et al. 1998) to estimate sub-
jects’ positions during task performance and assessed the
quality of decoded position representations with three mea-
sures: local probability, decoding accuracy, and ensemble self-
consistency (Jackson and Redish 2003; Johnson et al. 2008).
Together, these three measures provide a detailed character-
ization of hippocampal ensemble representations.

Local probability. We first asked how much probability
decoded to the rat’s actual location during each session. In
Fig. 9, the mean decoded position probability distribution
(averaged over all rats, separated by task) is plotted for each
location on the track. For both tasks, probability was concen-
trated along the diagonal, indicating a strong correspondence
between decoded position and actual location. Ensemble size
affects decoding accuracy (van der Meer et al. 2010; Zhang et
al. 1998), so to quantitatively compare local probability in
task1 and task2 sessions, we averaged the probability along the
diagonal of the position-averaged decoded probability plot for
each session. We plotted this session mean local probability
against ensemble size (Fig. 10). This relationship shows how
the quality of distributed representations is affected by ensem-
ble size, providing a measure of decoding efficiency. As
expected, local probability and ensemble size were positively
correlated for both task1 and task2 (Fig. 10). We performed
linear regressions on these distributions separately for task1
and task2 sessions. The 95% confidence intervals on the slopes
of regression lines fit to these plots overlapped completely
(task1 slope CI95%: 0.00093–0.002; task2 slope CI95%: 0.00059–
0.0019; task1 y-intercept CI95%: 0.004–0.010; task2 y-intercept
CI95%: 0.008–0.029; see shading in Fig. 10).

Decoding accuracy. To estimate how well each ensemble
predicted location, we took the peak of the decoded probability
distribution for each time step to be the animal’s decoded
position, and then quantified error as the absolute value of the
distance between estimated and actual position. Like local
probability, this measure depends on ensemble size. Accord-
ingly, Fig. 11 plots the mean decoding error as a function of the
number of cells recorded during that session. As with local
probability, we fit points from task1 and task2 sessions with
linear models to look for differences in decoding error as a
function of task. We found that the regression lines for each
session were not statistically distinguishable (task1 slope
CI95%: �1.242 to �0.3959; task2 slope CI95%: �1.112 to
�0.3975; task1 y-intercept CI95%: 35.93–44.17; task2 y-inter-
cept CI95%: 32.29–44.17; see shading in Fig. 11).

Self-consistency. Finally, we compared the self-consistency
of neural ensembles recorded during the tasks. Bayesian de-
coding returns a position estimate for each decoded time step
but makes no claims about the underlying probability distribu-
tion from which the estimate is derived. Self-consistency
quantifies how well cells in the ensemble “agree” with the
decoded estimate, based on their tuning curves. Self-consis-

Fig. 5. Overdispersion was stable during task1 and task2 sessions. The mean
within-session variability (collapsed across subjects, error bars � SD) is
plotted for task1 and task2 performance. Place cell variability was stable during
task1 and task2 performance but dropped sharply after the switch between tasks
(vertical dashed line).
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tency does not depend on how well decoded and actual position
match; instead, self-consistency assesses whether the network
state at a given moment is consistent with the corresponding
decoded representation. Unlike the previously described mea-
sures of representation quality, ensemble self-consistency was
not correlated with the number of simultaneously recorded

cells (P � 0.52, r2 � 0.008). Self-consistency was, however,
significantly correlated with hippocampal overdispersion (P �
0.01 , r2 � 0.355). Comparing self-consistency across tasks
(Fig. 12), we found that hippocampal ensembles were signifi-
cantly more self-consistent during task2 performance (task1
session mean RMSE: 5.77, task2 session mean RMSE: 2.79;
P � 0.038, rank-sum test).

DISCUSSION

Here we have shown that after a change in the reward
contingency of a behavioral task the overdispersion of hip-
pocampal place cells decreased significantly. Our findings
extend previous work investigating behavioral modulation of
place cell spiking variability (Fenton and Muller 1998; Fenton
et al. 2010; Jackson and Redish 2007; Lansky et al. 2001;
Olypher et al. 2002), demonstrating that, like changes in spatial
factors associated with a task, changes in the task’s reward
structure can also influence the reliability of place cell firing
patterns. These results are consistent with several possible
interpretations, discussed below.

Fig. 6. Running speed and task familiarity do not account for decreased
within-session place cell variability. We plotted mean running speed (top) and
session number (bottom) against the measured place cell overdispersion for all
sessions and fit the distribution with a regression line (dashed line). Both speed
and session number were significantly correlated with overdispersion (r2 �
0.1583, 0.2498, respectively; P � 0.001 for both speed and session number).
However, in both cases, correlations were not significant when regression was
performed separately for task1 (solid line) and task2 (dotted line) sessions.
When the analysis was restricted to behavioral sessions with similar running
speeds (middle), the correlation between speed and overdispersion was not
significant (P � 0.40).

Fig. 7. To examine the dynamics of running speed and overdispersion across
sessions, we plotted the difference in each variable across consecutive sessions
(i.e., current session value � previous session value). Individual subject data
are plotted in gray and the mean in black. The switch between tasks (between
sessions 5 and 6) is marked with a vertical line. Running speed (top) increases
throughout the experiment by an approximately constant amount, reaching an
asymptote toward the end of task2 performance (�running speed approaches
0). In contrast, overdispersion is stable during task1 performance (�overdispersion
is 0) but drops sharply after the switch to task2 before stabilizing again.
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Multiple maps and overdispersion. Our findings mesh well
with the multiple map theory of hippocampal function (Mc-
Naughton et al. 1996; Redish and Touretzky 1997; Samsonov-
ich and McNaughton 1997; Touretzky and Redish 1996). In
this framework, overdispersion is thought to reflect the hip-
pocampus cycling between representational submaps. Because
whether a cell fires depends upon both the organism’s behavior
and the currently active map, switching between submaps
introduces variability to hippocampal cell spiking.

Analyses of large ensembles of simultaneously recorded
neurons have demonstrated that map switches in the hippocam-
pus are networkwide events that occur on the order of a second
or less (Jackson and Redish 2007). Behavioral tasks that render
one hippocampal submap selectively advantageous to the or-

ganism are thought to result in increased stability of that
submap within the hippocampus. Consequently, place cells
participating in the stabilized submap would exhibit less vari-
ability on consecutive passes through their place fields. In this
way, the multiple map theory can accommodate behavioral
effects on hippocampal overdispersion. Previous work has
shown that navigation toward a goal decreases levels of over-
dispersion compared with random foraging tasks (Jackson and
Redish 2007; Olypher et al. 2002). Similarly, other experi-
ments have shown that forcing rats to attend to one subset of
the array of concurrently available cues decreases hippocampal
overdispersion (Fenton et al. 2010). Such findings are consis-
tent with reduced overdispersion resulting from increased sta-
bility of a behaviorally relevant spatial submap.

Fig. 8. In task2 sessions, because subjects skipped unrewarded
feeders, they encountered place fields at different points in
their trajectory between feeder sites (top). Proximal passes
began from the feeder site nearest the place field (represented
by gray shading) in question, while distal passes originated
from 1 feeder farther back in the sequence. In contrast, all
task1 sessions were proximal passes because subjects did not
skip rewarded feeders. We split passes through place fields
during task2 performance into distal or proximal based on
where the subject began his trajectory and computed the
overdispersion of these passes separately (bottom). Overdis-
persion was not significantly different between distal and
proximal task2 passes (P � 0.60, F-test), but both types of
task2 passes were less overdispersed than task1 passes (P �
10�6 for both proximal and distal passes, F-test).

Fig. 9. Average decoded probability distribu-
tions for position are plotted for each position
along the track, with greater probability density
indicated by “hotter” colors. Probability is con-
centrated along the diagonal for both tasks.
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Our finding that a change in reward contingency reduces
overdispersion can be accommodated in the multiple maps
framework. The switch between tasks requires subjects to shift
their strategy from approaching every feeder site to skipping
unrewarded locations. Previous work has shown that strategy
shifts can affect hippocampal representations (Johnson et al.
2009; Kentros et al. 2004; Markus et al. 1995). In task1,
location in the environment was entirely predictive of reward
delivery, and subjects might have solved the task by using a
spatial strategy. During task2, however, subjects had to run past
a particular sequence of feeders for food to be delivered. In this
case, proximity to a feeder site was not in itself enough to
predict reward delivery. Because decreased overdispersion
during task2 performance suggests increased hippocampal sub-
map stability, it is possible that a hippocampal submap was
formed in association with the newly acquired strategy to

facilitate task2 performance. A hippocampal submap devoted
to the sequential feeder-sampling strategy subjects adopted
would be selectively stabilized during task2 sessions, resulting
in the decreased overdispersion we measured.

Task familiarity and proficiency. It is possible that other
differences between the tasks caused the change in overdisper-
sion we observed. For instance, because subjects performed
task1 sessions first, slow changes operating over the course of
both tasks might have caused decreased overdispersion during
task2 sessions simply because they occurred later. However,
the stability of place cell variability before and after the switch
in tasks argues against this idea (Fig. 5). Overdispersion
decreases in a stepwise manner after the task switch, which
suggests that some attribute of the new task is responsible for
the differences in firing statistics of the hippocampal ensembles
we recorded. Furthermore, although session number was cor-
related with overdispersion (Fig. 6), this correlation did not
hold when computed separately within task1 and task2 sessions,
again suggesting that overdispersion differs between tasks but
is stable within a task. Together, these observations argue that
general familiarity with the task and increasing task proficiency
do not fully account for changes in overdispersion.

Running speed. Subjects ran more laps across sessions
throughout the experiment, and consistent with this, their mean
speed increased across sessions (Fig. 2). Since running speed
can affect the firing rate of place cells, it is possible that this
difference explains the change in overdispersion we observed.
To minimize this issue, we excluded place fields located at or
near feeder sites, as we expected subjects to travel through
these areas at different speeds during task1 and task2. To
further address this issue, we asked whether mean running
speed was systematically related to hippocampal overdisper-
sion (Fig. 6). We found a correlation between running speed
and overdispersion, but again this correlation disappeared
when the regression was evaluated separately for the two tasks
and when sessions were matched by running speed. Examining

Fig. 10. For each session, the mean local probability is plotted as a function of
ensemble size. Local probability was higher for sessions with a greater number
of simultaneously recorded cells. Regression lines were fit to task1 (solid line)
and task2 (dashed line) distributions. The 95% confidence intervals on the
regression lines (red shading � task1, blue shading � task2) overlapped almost
completely.

Fig. 11. The mean decoding error for each session is plotted against the number
of simultaneously recorded cells. The 95% confidence regions of regression
lines fit to task1 (solid line) and task2 (dashed line) sessions overlapped
extensively (red shading � task1; blue shading � task2).

Fig. 12. Session mean root mean squared error (RMSE, a measure of ensemble
self-consistency) was significantly lower for task2 sessions, indicating that
hippocampal ensembles were significantly more self-consistent as subjects
performed task2 (P � 0.038, rank-sum test).
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the dynamics of running speed and overdispersion across
sessions (Fig. 7) revealed that running speed changed steadily
across the experiment, but overdispersion was stable before
and after the task switch but dropped sharply at the switch
between tasks. Changes in speed alone thus cannot account for
the increased place cell reliability during task2.

Trajectories. The simple spatial reward contingency of task1
requires only that subjects run directly from feeder to feeder,
collecting food at each site (Fig. 1). The modified reward
contingency of task2, however, encourages multiple trajecto-
ries across the track. Consequently, during task2 sessions,
subjects passed through a place field early in their trajectory in
some cases and in other instances passed through the same field
later in the trajectory (Fig. 8). To address this difference, we
separated passes through each place field in task2 sessions
based on how near to the place field the subject was when
beginning the trajectory. We found that distal and proximal
passes during task2 sessions showed similar levels of overdis-
persion, suggesting that differences in the length of motion
sequences within task2 are not related to overdispersion in a
systematic way. However, both categories of task2 passes were
significantly less variable than task1 “proximal” passes (Fig. 8).

Other explanations for changes in overdispersion. Our re-
sults show that some difference between the two behavioral
tasks caused a persistent decrease in the within-session vari-
ability of place cells. We have argued that this decrease reflects
a strategy shift between tasks with spatial and sequential
reward contingencies, but other interpretations are possible.
For instance, during task2 sessions, subjects might have used
dead reckoning (Redish 1999) to keep track of the distance
between reward deliveries. This way, instead of determining
where to go by learning the new reward contingency, subjects
instead might have simply traveled the appropriate “interre-
ward” distance to arrive at the next active site. It has been
suggested that an attentional process governs the rate of hip-
pocampal map-switching (Fenton et al. 2010). Greater atten-
tion to self-motion information during task2 sessions might
have decreased map-switching, which could account for the
decrease in overdispersion. Similarly, the hippocampus has
been implicated in cognitive control-related processes (Kele-
men and Fenton 2010), such as coordinating between multiple
sensory input channels. If task2 sessions increased the rele-
vance of self-motion information, the extent to which this input
stream influenced place cell firing might have increased in
parallel. Both of these explanations are consistent with the
findings presented here.

Temporal variability and decoding quality. Interestingly,
during task2 performance we detected a large decrease in place
cell temporal variability but did not observe changes in two
measures of the quality of decoded neural representations.
Although this finding seems counterintuitive, it underscores
that the Bayesian decoding method we utilized here is unlikely
to be an algorithm implemented by neurons in the brain. For
instance, Bayesian decoding does not utilize information that
may be present in networkwide correlation phenomena such as
overdispersion (Zhang et al. 1998), but neural information
processing algorithms might be able to do so (Averbeck et al.
2006). Because we rarely have a complete understanding of
how the brain extracts and utilizes the information contained in
the firing patterns of neurons, our results highlight the utility of
subtle measures of neural activity (such as intertrial variability

or self-consistency) that can be highly sensitive to changes in
neural dynamics not necessarily detected by other analyses
(decoding error, local probability).

Comparison to dorsal striatum. The findings we report here
contribute to a growing body of work highlighting the funda-
mentally different computations carried out by the hippocam-
pus and dorsal striatum (Barnes et al. 2005; Berke et al. 2009;
Schmitzer-Torbert and Redish 2008). Schmitzer-Torbert and
Redish (2008) showed that representations in rat dorsal stria-
tum were influenced by changes in the spatial contingency of
reward. In that study, when food delivery was contingent on
arrival at a feeder site, subjects’ location could be decoded
from dorsal striatal ensembles with considerable accuracy (see
also van der Meer et al. 2010). However, when rats were
rewarded for traveling past a fixed number of feeder sites (in a
task topologically similar to task2 used here), position was no
longer decodable from dorsal striatal ensembles (Schmitzer-
Torbert and Redish 2008). Thus, in the dorsal striatum, spatial
information is available in neural representations as rats per-
form a spatially rewarded task but not after a change in reward
contingency. In contrast, our results showed that hippocampal
representations contained spatial information regardless of the
reward contingency, and in fact show decreased within-session
variability during the arguably less spatially contingent task2
condition.

Summary. In conclusion, we have shown that when rats
adapt their strategies to changes in the reward structure of a
behavioral task, hippocampal cells reflect the switch with a
decrease in intertrial variability, resulting in more temporally
reliable representations of position. We showed that this de-
crease in variability manifested as increased ensemble self-
consistency without impacting other measures of Bayesian
decoding quality. This work supports models of the hippocam-
pal function based on multiple, interacting representations of
space (McNaughton et al. 1996; Redish and Touretzky 1997;
Samsonovich and McNaughton 1997; Touretzky and Redish
1996), influenced by behavioral processes such as attention
(Fenton et al. 2010) or cognitive control (Kelemen and Fenton
2010).
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