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In this chapter, we address the question of temporal discounting from the perspective of 

computational neuroscience. We first review why agents must discount future rewards in order to 

make reasoned decisions and then discuss the role of temporal discounting in the context of the 

temporal difference reinforcement learning family of decision-making algorithms. These 

algorithms require exponential discounting functions in order to achieve mathematical stability, 

but as noted in the other chapters in this book, humans and other animals show hyperbolic 

discounting functions. In the second half of the chapter, we review four theories for this 

discrepancy: (1) competition between two decision-making systems, (2) interactions between 

multiple exponential discounting functions, (3) normalization by estimates of average reward, 

and (4) effects of errors in temporal perception. All four theories are likely to contribute to the 

effect of hyperbolic discounting.  

1 Introduction  

The necessity of discounting arises from the recognition of uncertainty and risk — something 

may happen that precludes receiving the prima facie value of a delayed reward. Technically, the 

value of each choice is the expected reward integrated over all future possibilities. Thus if the 

expected reward achieved from a decision is not going to be delivered for 24 hours, one has to 

integrate over all the possible events that could happen within that 24 hours, including starving to 

death, being hit by a bus, global thermonuclear war, money raining down from space, and all the 

other possibilities. While many of these possibilities are so rare as to be ignorable in the first 

approximation, any agent1 attempting to actually calculate this integral would face an inordinate 

calculation with nearly infinite unknown variables. Additionally, this integration over future 

possibilities must include all the consequences of selecting an option, carried out for the infinite 

future. In the artificial intelligence and robotics literatures, this problem is known as the infinite 



horizon problem (Sutton and Barto, 1998). In practice, the calculation would be extremely 

computationally expensive. Additionally, the calculation would require estimates of a large 

number of unknown variables (such as the actual probability of thermonuclear war happening in 

the next 24 hours). A much simpler process is to approximate the uncertainty and risk in a 

discounting function which reduces the value of delayed rewards. Similarly, immediately-

delivered rewards are more valuable than they appear on the surface because one can invest 

those rewards (whether in terms of monetary investments (Frederick et al., 2002) or in terms of 

energy resources for increasing offspring and improving evolutionary success (Stephens and 

Krebs, 1987; Rogers, 1997)). As above, this could be calculated explicitly by integrating over all 

possible futures following the choice. Again, this is a computationally expensive calculation with 

many unknown variables. A much simpler process is to approximate the lost investment of 

waiting by a discounting function which reduces the value of delayed rewards.  

Technically, any function which monotonically decreases with time (Eq. 1) will meet the 

primary criteria laid out above (accommodate uncertainty, risk, and lost investments).  
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where  is the estimated value of receiving expected reward r after expected delay d, and iff 

indicates an if-and-only-if relationship. However, for many reasons, an exponential discounting 

function (Eq. 2) is a logically sound choice (Samuelson, 1937).  
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where r is the expected reward and d is the expected delay before receiving the reward; τ is a 

constant that defines the time-scale of the delay. The rate of exponential discounting can be 

expressed either in terms of a temporal constant k > 0 (usually used in the animal and human 



discounting literature, e.g. Mazur, 1997, 2001, Ainslie, 1992, 2001, Myerson and Green, 1995, 

Madden et al., 1997, Bickel and Marsch, 2001) or in terms of a γ discounting factor (0 < γ < 1, 

usually used in the artificial intelligence and robotics literatures, e.g. Sutton and Barto, 1998, 

Daw, 2003). Under simple assumptions of compound interest with no uncertainty, exponential 

discounting is the most logical choice for a discounting function because the discounting rate is a 

constant over time (Samuelson, 1937; Frederick et al., 2002), however, as noted below, there is 

an ongoing debate as to whether exponential discounting remains a logical choice under more 

realistic conditions of uncertainty and measurement error (Sozou, 1998; Gallistel and Gibbon, 

2000; Frederick et al., 2002). Nevertheless, because of its underlying regularity, exponential 

discounting allows a simple iterative calculation of value through experience, which simplifies 

the learning algorithms (Bellman, 1958; Sutton and Barto, 1998; Daw, 2003).  

The Bellman equation. The Bellman equation is most easily seen in the discrete formulation 

(Sutton and Barto, 1998), but it is easily translatable into a temporally continuous formulation 

(Doya, 2000b; Daw, 2003; Daw et al., 2006a). Starting from an exponentially discounted value 

function  
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where V(t0) is the value at time t0 (that is, the total integrated expected reward over the future 

from t0). This is  
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But since value at one time step later t1 = t0 + 1 is also  

 ( ) 0 1 2
1 1 2 3V t r r rγ γ γ= + + +L  (5) 



we can rewrite value at time t0 as a function of value at time t1 = t0 + 1.  

 ( ) ( )0 0 1V t r V tγ= +  (6) 

This provides a mechanism with which one can select actions within a given situation2 by 

estimating the value of taking an action within a given situation  

 ( ) ( ) ( )ˆ ,V s a E r V sγ ˆ ′= +  (7) 

where E(r) is the estimated reward to be received immediately upon taking action a in situation 

s, s' is the estimated new situation one expects to be in (at time t + 1), and  the estimated 

value of being in situation s' (i.e. the maximum estimated value taken over all available actions 

leading from situation s').  

( )V̂ s′

Even more importantly, this equation provides a way of updating one’s estimate of value 

upon taking an action by calculating the value prediction error δ as the difference between the 

expected value-estimate  and observed values (based on the actually-received observed 

reward and the actually identified new situation).  
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where s'  is now the actual new situation one has achieved. The value estimate  can be 

easily updated from this δ term. 

(ˆ ,V s a)

 ( ) ( )ˆ ˆ, ,V s a V s a ηδ← +  (9) 

where η is a constant that controls the learning-rate.  

Equations 8 and 9 can be extended to the continuous formulation easily by moving from a 

discrete-time state-space to a continuous-time state-space (Doya, 2000b; Daw, 2003; Daw et al., 

2006a; Redish, 2004). In both the discrete and continuous models, all information about the 



agent’s history is assumed to be contained in the discrete state s that describes the agent’s 

understanding of the world. In the discrete-time models, the agent is assumed to take an action a 

(potentially the null-action) after each discrete time step Δt, taking the agent from state s(t) to 

state s(t + Δt). In the continuous-time model, the agent is assumed to remain in state s(t) for a 

given amount of time d. When the agent’s hypothesis of the world changes (either through action 

taken by the agent or events in the world), the state changes to a new state s'. Value of a given 

state is identified with entry into that state (Daw, 2003), and thus the value update must take into 

account the time d that the agent spent in state s before transitioning to s'. Thus in the 

continuous-time model, Eq. 8 becomes  
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where d is the time spent in situation s before taking action a to get to situation s'. Because the 

reward was also delayed by time d, it needs to be incorporated into the discounting factor.  

Under specific conditions of stationarity, observability, and sufficient exploration, the 

Bellman exponential update equations can be proven to converge on the actual value of taking an 

action a in situation s: V(s, a) (Sutton and Barto, 1998; Daw, 2003).3  

1.1 Non-exponential discounting functions  

As appealing as the exponential discounting model is, extensive evidence has shown that 

neither humans facing monetary decisions nor animals (including humans) facing more direct 

reward (e.g. food, water) decisions discount future choices with a constant discounting rate 

(Strotz, 1955; Mazur, 1985, 1997; Ainslie, 1992, 2001; Green and Myerson, 2004; Frederick et 

al., 2002). Qualitatively, experimental data show choice-reversal, and quantitatively, the data are 

better fit by regression to non-exponential functions. There are three methods that have been 



used to measure discounting functions: questionnaires (Myerson and Green, 1995; Bickel and 

Marsch, 2001; Bickel et al., 2007), titrated delivery of real rewards after a delay (the adjusting-

delay assay, Mazur, 1985, 1997, 2001; Richards et al., 1997), and correlations with decisions as 

they were made (Tanaka et al., 2004, 2007; Sugrue et al., 2004).  

In questionnaire assays, humans are given a set of choices between receiving a set amount r1 

at a given time t1 (often “now”) with a set amount r2 at a later time t2 (t2 > t1, r2 > r1). From the 

set of choices made for a given delay t2-t1 at a given time t1, it is possible to derive an 

indifference point, defined as the time t2 at which ( ) ( )
1 21t tV r V r= 2 . From the set of indifference 

points, one can calculate the expected value of a given reward r after a given delay d (Myerson 

and Green, 1995; Ainslie, 1992; Bickel et al., 2007). While there have been concerns about 

potential confounds of real versus hypothetical choices (Kirby, 1997; Kacelnik, 1997), 

experiments have found qualitatively similar results under both conditions (Kirby, 1997; Johnson 

and Bickel, 2002). Usually, questionnaires are given in a random order and analyses are done 

post-experiment, but some recent experiments have used a titration method in which intervals are 

narrowed until the indifference point is found (Wittmann et al., 2007). This allows questionnaire 

techniques to achieve a block design capable of being used with fMRI. Although it is obviously 

impossible to directly ask animals questionnaires about hypothetical choices, it is possible to 

signal the values and delays of available choices before an animal acts, providing it with a 

questionaire-like behavior (Sohn and Lee, 2007).  

In the adjusting-delay assay, agents are given two choices a1, a2, leading to two rewards r1, 

r2, delivered after two delays d1, d2. Action a1 brings reward r1 after delay d1; action a2 brings 

reward r2 after delay d2. For a given experiment, both reward (r1, r2) and the first delay (d1) 

variables are held fixed, and delay d2 is titrated until the probability of choosing each action is 



equal: if the agent chooses action a1, the delay d2 is reduced on the next trial, while if the agent 

chooses action a2, the delay d2 is increased on the next trial. At the point where the two actions 

are chosen with equal probability, we can say that the agent’s estimate of the values of the two 

choices are equal ( ) ( ) ( ) ( )
1 1 1 2dV r V a V a V r= = =

2 2d . The slope of the curve of titrated d2 delays 

as a function of fixed d1 delays indicates the discounting function used by the agent (Mazur, 

1997). In the case of exponential discounting (Eq. 2), the slope will be 1, regardless of r1 or r2. In 

the case of hyperbolic discounting, the slope will reflect the ratio of rewards 2 1r r  (Mazur, 1997). 

Experiments consistently show slopes significantly different from 1, and generally consistent 

with the ratio of rewards 2 1r r  and with hyperbolic discounting (Mazur, 1985, 1997; Richards et 

al., 1997). Because these experiments require actual choices, actual rewards, and actual delays, 

these experiments are limited to fast time courses (seconds). Because these experiments are 

based on repeated trials, one may need to take into account the actual reward sequence achieved 

(or potentially available) to the animal (Daw, 2003), including the inherent variability of that 

sequence (Kacelnik and Bateson, 1996). Such procedures can be used in both animal (Mazur, 

1997) and human (McClure et al., 2007) experiments.  

The third option is to calculate the expected value from an agent given a long sequence of 

decision choices with a complex reward structure (e.g. Tanaka et al., 2004, 2007, or Sugrue et 

al., 2004). In particular, these sequences include changes in the value delivered to the agent. For 

example, Tanaka et al. (2004) tested subjects in an experiment in which they had to continuously 

alternate between a task in which the optimal solution was to select immediate rewards (SHORT 

condition) and a task in which the optimal solution was to select delayed rewards (LONG 

condition). From each subject’s actual selections, Tanaka et al. calculated the estimated value 

(based on an exponential discounting function) at each moment in time. This function is, of 



course, dependent on the discounting factor γ. This calculation gave Tanaka et al. two time 

series: one of the value at time t which was a function of the discounting factor used, and the 

other the fMRI BOLD signal. They then correlated the two signals to determine if there were any 

significant relationships between value estimates and the BOLD signal. Similar procedures have 

been used in animal decision-making tasks (Sugrue et al., 2004; Bayer and Glimcher, 2005; 

Bayer et al., 2007).  

These experiments measure discounting functions at different timescales (questionnaires: 

days to weeks to years; titrated delay: seconds; decision choices: seconds to minutes) and with 

different substances (money, food, drugs). Although analogous procedures to all three 

experiments can be used on both humans and animals, for obvious reasons, questionnaires tend 

to be used with humans, while titrated delay experiments tend to be used with animals. Thus, 

some of the differences in timescales may be due to differences in subjects rather than the 

procedures themselves.  

Discounting rates in humans have been found to change with both size of reward offered 

(e.g. $1000 vs. $10000 (Myerson and Green, 1995; Green et al., 1997; Kirby, 1997)) and with 

substance (e.g. food vs. money, (Odum and Rainaud, 2003; Estle et al., 2007)). Titration 

experiments in animals (rats, pigeons) have not found a similar effect of size of reward on 

discounting rate (Grace, 1999; Green et al., 2004; Ong and White, 2004). Recent evidence, in 

fact, has found that reward size and delay to reward receipt are encoded in different populations 

of neurons within the rodent orbitofrontal cortex (Roesch et al., 2006). Although experiments 

comparing valuation of different substances have been done in several animal species (Tremblay 

and Schultz, 1999; Kelley and Berridge, 2002; Padoa-Schioppa and Assad, 2006, 2008), these 

experiments have not directly examined the dependence of delay on valuation. However, 



lexigraphic experiments in multiple species have consistently found differences in ability to 

inhibit responding and ability to wait (related to discounting rate) between lexigraphic rewards 

(in which rewards are indicated by symbols) and directly-given rewards (in which the rewards 

are directly visible) (Mischel and Underwood, 1974; Boysen and Berntson, 1995; Metcalfe and 

Mischel, 1999; Evans and Beran, 2007), which may indicate the importance of linguistic abilities 

for long delays (Beran et al., 1999; Metcalfe and Mischel, 1999).  

It is unclear at this point whether these various paradigms access the same systems and 

mechanisms or whether there are systems and mechanisms specifically aligned to specific time-

courses or specific rewards. However, all of the available neural models are based on the concept 

that all three experimental paradigms are measuring the same phenomena. Data, such as the 

recent fMRI data from McClure et al. (2003, 2004, 2007) and Tanaka et al. (2004, 2007) suggest 

that the same neural structures are involved in the discounting seen by all three methods. 

However, fMRI data from humans in a titrated questionnaire paradigm suggest that there may be 

different structures involved with medium-time-scale (< 1 year) and very long time-scale (> 1 

year) discounting functions (Wittmann et al., 2007).  

The changing discount function is usually modeled by a hyperbolic discounting function, as 

suggested by Ainslie (1975, 1992, 2001) and Mazur (1985, 1997)  

 ( )
1d

rV r
kd
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where r is the expected reward and d is the expected delay before receiving the reward.4  This 

function fits the animal experimental data at fast time scales (seconds) significantly better than 

exponential functions (Mazur, 1985, 1997) and has been found to explain a large percentage of 

the variance as evidenced from questionnaires (addressing long time scales, days to weeks to 

years, Myerson and Green, 1995; Madden et al., 1997; Reynolds, 2006; Bickel et al., 2007). 



However, there is some deviation of the animal experimental data from Eq. 11. Similarly, 

indifference points measured by questionnaires show consistent deviations from Eq. 11, 

particularly, at longer time-scales (Myerson and Green, 1995; Madden et al., 1999; Mitchell, 

1999; Reynolds, 2006; Bickel et al., 2007).  

While the issue of whether a hyperbolic discounting function is a more valid normative 

accounting of decision making than an exponential function is still being debated (Ainslie, 1992, 

2001; Kacelnik, 1997; Rogers, 1997; Sozou, 1998; Frederick et al., 2002), there is little doubt 

that it is a more valid descriptive account than an exponential function (Myerson and Green, 

1995; Mazur, 1997; Bickel et al., 2007). Although there are still some researchers who argue that 

the hyperbolic discounting is a consequence of the specific research methods designed to study 

the question (e.g. Rubenstein, 2003), if animals (including humans) did, in fact, use an 

exponential discounting function to discount future choices, one would still require an 

explanation for choice reversal. Any non-exponential discounting function must produce 

changing choices with changing delays — a decision which prefers option B delayed by two 

weeks over option A delayed by one week can switch when option A is offered immediately and 

option B offered in a week (Strotz, 1955; Ainslie, 1992, 2001; Frederick et al., 2002; Ainslie and 

Monterosso, 2004). Because the discount rate for exponential discounting does not change with 

time, choice reversal cannot occur. However, delay-dependent choice reversal is well-established 

at all time-scales (Mazur, 1997; Ainslie, 1992, 2001; Bickel et al., 2007).  

A number of other functions have also been proposed (see Rodriguez and Logue, 1988, for 

review), most notably the “extended hyperbolic” equation  

 ( )
( )1d b

rV r
kd

=
+
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where b is an additional constant, which Myerson and Green and colleagues (Myerson and 



Green, 1995; Green and Myerson, 2004; Green et al., 2005) report provides a better fit to the 

data than Eq. 11. Including the b term generalizes the standard hyperbolic discounting function 

to a more general power law. Whether another function can better describe the data remains an 

open question.  

Unfortunately, hyperbolic discounting has several computational difficulties. First, because 

the discounting rate changes with each time step, there is no analytical solution to Equation 11, 

nor can the calculation be performed incrementally analogous to the Bellman equation (Daw, 

2003). One can substitute the hyperbolic discounting function into the Bellman equation (Eq. 10) 

anyway  

 ( )
( ) ( )( ) (

ˆ
ˆ,

1

r t V s
s a V s a

kd
δ

′+
= −

+
),  (13)  

where k is the discounting factor and d is the time spent in situation s before taking action a. This 

equation is equivalent to that used in the addiction simulations of Redish (2004, see also Kurth-

Nelson and Redish (2004)). A similar proposal has been made recently by Kalenscher and 

Pennartz (2008). Action-selection based on this equation leads to generally reasonable behavior 

(unpublished data, Kurth-Nelson and Redish), but this equation is intrinsically inconsistent, 

because the discounting rate depends on the number of subparts identified within a task. A 

situation identified as a single part (situation s0  proceeds to situation s') that lasts for a given 

time before an action is taken is discounted hyperbolically, but if the same situation is identified 

by a set of subparts (situation s0  leads to situation s1  leading to situation s2  ... eventually leading 

to situation s'), then the discounting function deviates from the predicted hyperbolic function 

(Eq. 11) dramatically.  

For example, take a Pavlovian experiment (with no actual choices being made), in which a 

cue is followed some set number of seconds later by a reward. At the appearance of the cue, the 



animal can predict the subsequent appearance of a cue. The expected value of that cue should 

take into account the delay before that cue. If the neural representation encodes this as two 

situations (an interstimulus interval [ISI] lasting for the set number of seconds followed by a 

reward-received state, Daw, 2003; Redish, 2004; Daw et al., 2006a), Equation 13 only performs 

a single step of hyperbolic discounting. In contrast, if the neural representation encodes each 

second as a different situation (ISI-1, ISI-2, ISI-3, etc., Daw (2003); Niv et al. (2005)), then 

Equation 13 runs through ten steps. Since a composition of hyperbolic terms is no longer 

hyperbolic, the effective valuation of the first state is no longer hyperbolic in time. Whether 

dopamine signals in the primate brain imply that time is encoded by two-situation or by chained-

state-space representations is still debated (Fiorillo et al., 2005; Niv et al., 2005; Wörgötter and 

Porr, 2005).  

Simulations demonstrating this effect are shown in Figure 1 which compares a simulated 

agent that remains in the inter-stimulus interval ISI situation through the entire delay before 

transitioning to a reward-delivery situation (panels A,B), and another in which the inter-stimulus 

interval is represented by multiple one-second sub-situations (panels C,D). If the temporal 

difference reinforcement learning algorithm is implemented directly with Eq. 13, then the agent 

shows hyperbolic discounting across the first state-space, but not the second. The multiple-

exponentials model (see below) shows hyperbolic discounting across both by maintaining 

multiple independent exponential discounting “micro”-agents. Each micro-agent (µAgent) 

applies a complete temporal-difference reinforcement learning agent (Sutton and Barto, 1998; 

Daw, 2003), with independent situation si, value-estimation5 ( )ˆ ,iV s a , value-prediction error (δi), 

and action-selection components (Kurth-Nelson and Redish, 2004; Redish, 2004).  

This analysis shows that the one-step hyperbolic equation (Eq. 13) is inconsistent. Different 



conceptual representations of the time during an inter-stimulus interval produces different 

discounting functions. This means that if temporal difference reinforcement learning algorithms 

are implemented with a one-step hyperbolic equation (Eq. 13), it may be possible to change the 

discounting function by providing more or less information during ISI delays (which may drive a 

subject to represent the intervening interval by a different number of sub-intervals). Whether real 

discounting functions used by real animals are actually subadditive remains a point of debate 

(Read, 2001).  

[Figure 1 about here.]  

2 Neural models  

Because hyperbolic discounting functions are computationally difficult to work with, several 

neural models have been proposed that use computationally tractable mathematics internally but 

show behavioral discounting rates that change with time. We will review four of these models 

and the data supporting each in turn. 

2.1 Normalization by estimates of average reward  

Following the rate conditioning literature (see Gallistel, 1990, for review), and the 

observations by Kacelnik (1997) that applying discounting factors in the titrated delay task (e.g. 

Mazur, 1997) ignores the effects of rewards expected in future trials, Daw (2003, see also Daw 

and Touretzky, 2000 and Daw et al., 2006a) has suggested an alternative to the discounting 

concept based on the concept of average reward. This model assumes that agents have evolved to 

optimize the total expected reward, integrated over many multiple trials (Stephens and Krebs, 

1987; Kacelnik, 1997). Kacelnik (1997) notes that Mazur’s titration experiments are, in fact, 

repeated trials, and notes that humans answering questionnaires (e.g. Myerson and Green, 1995; 



Bickel and Marsch, 2001; Bickel et al., 2007) may be treating the choices as elements of a 

system considering time in terms of repeated trials (but see Mazur, 2001, 2006). In this model, 

decisions are assumed to be made based on the rate of reward rather than as a single decision 

between two immediate values (Gallistel, 1990; Kacelnik, 1997; Daw and Touretzky, 2000). In 

this model (see Daw, 2003), value estimates are updated by  

 ( ) ( )( ) ( )( )ˆ ˆ( ) 1r t t V s t V s tδ ρ= − + + −
  (14)  

which maximizes the function  

 ( ) ( ) ( )
0

0
t t

V t r t tρ
∞

=

= −⎡ ⎤⎣ ⎦∑   (15)  

where ρ(t) is the estimate of the average reward available to the animal over long time scales.  

[Figure 2 about here.]  

The problem with these models is that titration experiments have shown that when the inter-

trial-interval is increased after the small reward (thus matching the total time between small 

rewards and between large rewards), animals can still show impulsive choices (Mazur, 2001, 

2006). One possible explanation for this is that animals ignore the inter-trial-interval and only 

make decisions based on the time between the cueing stimulus and the reward (Stephens and 

Krebs, 1987; Gallistel and Gibbon, 2000; Daw, 2003). Daw and Touretzky have shown that an 

average decay model that takes into account only the time between the cueing stimulus and the 

reward can show hyperbolic-like behavior (Figure 2).  

2.2 Temporal perception  

Daw (2003, p. 98) notes that there is a strong relationship between an exponential 

discounting factor γ and the agent’s perception of the delay d. A similar proposal has been made 

by Staddon and Cerutti (2003, see also Kalenscher and Pennartz, 2008) that hyperbolic-like 



discounting can arise from timing errors due to Weber’s law applied to timing.  

Because the discounting applied to a given delay depends not on the actual delay, but rather 

on the perceived delay, variability in delay perception combined with a set exponential 

discounting function would be mathematically equivalent to a distribution of exponentials (Daw, 

2003; Staddon and Cerutti, 2003), which would lead to an approximation of hyperbolic 

discounting (Kacelnik, 1997; Sozou, 1998, or at least to a power-law Staddon et al., 2002). A 

number of researchers have noted that the perceived delay of an actual delay d follows a 

Gaussian distribution with mean d and standard deviation proportional to d (Gibbon et al., 1988; 

Gallistel and Gibbon, 2000; Staddon and Cerutti, 2003). This is, of course, the expectation of the 

distribution that would arise if delay perception were driven by a clock firing with Poisson 

statistics (Gallistel and Gibbon, 2000).6  Daw (2003) has shown that this simple assumption 

about perceived delays leads to indifference functions compatible with those found by Mazur 

(1997, 2001). See Figure 3.  

d̂

As noted by Daw (2003), there is a duality between the exponential discounting rate γ and 

the delay to reward receipt d (see Equation 2). A uniform distribution of discounting rates 

 (which produces a hyperbolic discounting function when summed) can be rewritten as 

an (admittedly complex) distribution of delays. However, even within this model, slight 

differences from hyperbolic discounting are seen at very small and very large delays (Daw, 2003, 

see Figure 3). It is not yet known whether those differences occur in actual subjects. Nor is it yet 

known whether the actual errors in delay estimation (producing a distribution of delays over 

trials) are compatible with the complex functions needed to produce realistic discounting 

functions.  

(0,1γ ∈ )

If this delay perception hypothesis were true, then one would expect to see hyperbolic 



functions arising in other delay tasks, such as in memory recall tasks. Hyperbolically decreasing 

functions are better fits to memory recall probabilities than exponentially decreasing functions 

(Rubin and Wenzel, 1996; Rubin et al., 1999; Wixted and Ebbesen, 1997); power laws and sums 

of exponentials provide even better fits than hyperbolic functions (Wixted and Ebbesen, 1997; 

Rubin et al., 1999). The possibility that the power laws that fit the memory recall data may arise 

from different forgetting factors (mathematically equivalent to discounting factors) in different 

subjects has been addressed (Anderson and Tweney, 1997). Even when looking at individuals, 

power laws are better fits to the memory recall data than exponential functions (Wixted and 

Ebbesen, 1997). Staddon and Higa (1999) explicitly proposed a theory in which interval timing 

arises from multiple components, which when added together produce non-exponential timing 

(and thus discounting) functions.  

An interesting consequence of the temporal-perception hypothesis would be that agents with 

faster discounting functions (such as addicts) would have show a similar over-emphasis on local 

time-perception preferences. When asked to speculate about their future, normal subjects 

included details ranging up to 4.5 years in the future. In contrast, addicts only included details 

about the next several days (Petry et al., 1998).  

[Figure 3 about here.]  

2.3 Competition between two systems  

Even some of the early economics literature suggested that the observed changing 

discounting rate with time may be due to interactions between two systems, each with different 

discount preferences. Generally, these proposals have entailed an impulsive subsystem preferring 

immediate rewards and a second subsystem willing to delay gratification.  

Mathematically, this has been primarily studied from the perspective of the βδ hypothesis 



(Laibson, 1996; McClure et al., 2004, 2007) in which discounting is assumed to be  

 ( ) d
dV r rβδ=   (16)  

where r is the expected reward and d is the expected delay before receiving the reward. β 

encodes the willingness to wait for later rewards (i.e. 1/β encodes the impulsivity), while δ is an 

exponential discounting component (equivalent to γ, Eq. 2, above). McClure et al. (2007) notes 

that Equation 16 can be decomposed into two components:  

 ( ) ( ) ( )
0

0 0
1 1 t

t t

V t r t r t tδ
β

∞

=

⎛ ⎞
= − + +⎜ ⎟
⎝ ⎠

∑ 0   (17)  

The first component (the β-system, impulsive) emphasizes immediate rewards (r(t0)), while 

the second component (the δ-system) shows exponential discounting (compare Eq. 2). This 

model essentially entails an exponential discounting function with an added (impulsive) 

preference for immediate rewards. This would predict that an agent that could ignore or 

inactivate the impulsive system would show exponential discounting.  

While many questionnaire experiments are based on a choice of immediate rewards versus 

delayed reward, Wittmann et al. (2007) used a task in which both options entailed reward-receipt 

after delays and found equivalent hyperbolic discounting functions. Green et al. (2005) have 

found that their more general hyperbolic equation (Eq. 12) fits both situations in which an 

immediate reward is contrasted with a delayed reward and situations in which one delayed 

reward is contrasted with a later more-delayed reward. While many animal delay reward 

experiments are based on the choice between immediate and delayed reward (e.g. Cardinal et al., 

2001), the classic titrated experiments of Mazur (1985, 1997) are based on situations in which 

both rewards are delayed. The βδ equation cannot accommodate the non-exponential discounting 

seen in these paired delay experiments.  



However, the fundamental hypothesis that changing discount rates are due to competing 

neural systems is more general than Equation 16. All that is required is that discounting can be 

written as the sum of two functions  

 ( ) ( ) ( ) ( )0 1, 1 ,dV r f r d f r dα α= ⋅ + − ⋅   (18)  

where f0 has a fast (impulsive) decay function and f1 is slower (more willing to wait); α controls 

the balance between the two. The underlying neural hypothesis is that these two discounting 

functions arise from different neural structures competing for behavioral control.  

fMRI data has found positive correlations between hemodynamic activity (the BOLD signal) 

in specific structures (including ventral striatum, medial orbitofrontal cortex, medial prefrontal 

cortex, and posterior cingulate cortex) and the availability of imminent rewards (McClure et al., 

2004). While direct correlations between other structures and longer delays were not found, 

McClure et al. (2004, 2007) suggest that the “δ-system” may be engaged in all conditions, while 

the impulsive system is only engaged when immediate rewards are selected. Supporting this, 

they found that decisions were related to the ratio of hemodynamic activity in other structures 

(such as lateral prefrontal cortex) and the impulsive-related structures listed above (McClure et 

al., 2004). Whether this is due to lack of activity in “impulsive” structures or increased activity in 

delay-preferring structures is unknown, but does suggest a competition between the two systems. 

McClure et al. (2007) have recently extended these results to direct (e.g. juice) rewards with 

actual delays on the order of minutes rather than hypothetical delays on the order of days and 

found similar structures involved in the impulsive (β) component (anterior cingulate cortex, 

nucleus accumbens [ventral striatum], medial orbitofrontal cortex). Different structures were 

found to be involved in delayed rewards, including lateral frontal cortical structures and posterior 

parietal structures. These results imply a competition between neural subsystems, one of which 



drives a preference for immediate, impulsive choices and one of which drives a willingness to 

wait for delayed rewards.  

[Figure 4 about here.]  

Lesion data has also provided support for a competition between systems hypothesis, but, 

again, which structures are involved in which systems is still unclear. For example, lesions of the 

ventral prefrontal cortex are correlated with an increase in impulsive decisions, particularly in 

cases of reversals and developing negative consequences (Grant et al., 2000; Bechara, 2005; 

Bechara and van der Linden, 2005; Torregrossa et al., 2008, however, see also Clark et al., 

2003). However, the lack of consensus on definitions of substructure within the ventral 

prefrontal cortex has made the comparison of studies difficult (Barbas, 2007; Murray et al., 

2007; Price, 2007). Lesions of the ventral striatum have been found to make animals more 

impulsive and less capable of delaying responses to receive rewards (Cardinal et al., 2001). 

Interestingly, there is very little data in which lesions drive animals to be less impulsive. What 

little data there is suggests a role of orbitofrontal cortex in re-evaluating the discounted delayed 

rewards (Winstanley et al., 2004), particularly the likelihood of its delivery (Mobini et al., 2002), 

which may suggest a role for orbitofrontal cortex in between-session changes and reversals 

(Murray et al., 2007; Schoenbaum and Shaham, 2008; Torregrossa et al., 2008). Neural 

recordings from orbitofrontal cortex suggest that some OFC neurons signal the discounted value 

of rewards (Roesch et al., 2007), and anticipate future rewards (Ramus et al., 2007). These 

neurons can change their responses under changing reward conditions (Tremblay and Schultz, 

1999; Schoenbaum et al., 2006; Padoa-Schioppa and Assad, 2008).  

Many neuroscientists have suggested that these two systems may reflect two more general 

decision-making systems, one of which (often referred to as the impulsive system) reacts quickly 



to specific stimuli while the other is capable of considering longer-term possibilities (see 

O’Keefe and Nadel, 1978, Squire, 1987, Metcalfe and Mischel, 1999, Redish, 1999, Poldrack 

and Packard, 2003, Cardinal, 2006, and Redish and Johnson, 2007, for reviews). Bernheim and 

Rangel (2004) explicitly suggested that agents switch between two modes (“hot” and “cold”), in 

which agents reacted to the highest value most immediately available reward when under the 

influence of the “hot” system but considered consequences (under appropriate slow discounting 

functions) when under the influence of the “cold” system (see also Metcalfe and Mischel, 1999). 

In Bernheim and Rangel’s model, the presence of drug-related cues forced an agent into the 

“hot” mode. Many experiments have shown that when faced with drug-related cues, addicts 

become highly impulsive and unable to inhibit drug-related responses (Tiffany, 1990; Lubman et 

al., 2004; Noël et al., 2007)  

One of the few papers to build a working model of the two systems is that of Daw et al. 

(2005), in which the impulsive system is assumed to be a slowly-learned “habit” system in which 

values are stored and only changed with experience, while the other (cognitive) system is a 

flexible “planning” system in which values are calculated on the fly from expectations. Daw et 

al. suggest that which system controls behavior is dependent on underlying uncertainty — the 

more uncertain a situation is, the more the agent should rely on the flexible, cognitive system. 

Although not phrased in terms of impulsivity (the cached-value system Daw et al. model also 

incorporates a slow discounting factor), the two systems in this model react very differently to 

changes in reward delivery probabilities — the cached-value system can only react slowly (if at 

all), while the planning system is more flexible. However, neither Bernheim and Rangel (2004) 

nor Daw et al. (2005) consider whether the average behavior of such an agent would match the 

discounting functions seen in the human or animal literatures.  



This literature is related to the very large impulsivity (Evenden, 1999; Zermatten et al., 2005; 

Glimcher et al., 2007; Torregrossa et al., 2008) and behavioral response inhibition literature 

(Gray, 1982a,b; Gray and McNaughton, 2000). In response inhibition experiments, a subject is 

faced with one simulus (S1) after which taking an action (go) leads to reward and a second, 

similar stimulus (S2) after which not taking that action (no-go) leads to reward. Because S1 is 

shown much more often than S2, the subject expects S1 and prepares for S1. In order to get 

reward after S2, the subject has to inhibit the prepared response. Response inhibition is now 

known to require the anterior cingulate cortex (Braver et al., 2001; Botvinick et al., 1999; Walton 

et al., 2007; Rushworth et al., 2007) and other aspects of frontal cortices (such as the 

supplementary motor area, Isoda and Hikosaka, 2007, and the dorsomedial prefrontal cortex, 

Brass and Haggard, 2007). Anterior cingulate cortex is currently thought to monitor conflict 

(Amiez et al., 2005) or to integrate historical trends (Walton et al., 2007; Rushworth et al., 2004; 

Kennerley et al., 2006), while supplementary motor, dorsomedial prefrontal, and ventral frontal 

cortices override prepotent actions stored in direct sensory-motor connections (Okano and Tanji, 

1987; Crutcher and Alexander, 1990; Tanji, 2001; Rushworth et al., 2004; Bechara, 2005; 

Bechara and van der Linden, 2005; Brass and Haggard, 2007; Chamberlain and Sahakian, 2007; 

Isoda and Hikosaka, 2007). Response inhibition can be envisioned as a flexible system 

overriding an impulsive, more habitual system (Gray and McNaughton, 2000; Daw et al., 2005; 

Redish et al., ress).  

While there is strong evidence for a competition between systems, it is not completely clear 

which structures are involved in which systems. This may be due, in part, to the available 

resolution in fMRI, lesion, and recording experiments.  



2.4 Multiple exponential discounting systems  

While the sum of two exponential discounting functions leads to changing discount rates 

with delay and thus to preference reversals (Laibson, 1996; McClure et al., 2004, 2007), it does 

not closely approximate the hyperbolic discounting function (Eq. 11) reported in much of the 

literature (e.g. Ainslie, 1992; Mazur, 1985, 1997; Vuchinich and Simpson, 1998). A larger, 

uniform distribution of exponential distributions would, however, match the hyperbolic 

discounting seen experimentally (Kacelnik, 1997; Sozou, 1998; Daw, 2003; Kurth-Nelson and 

Redish, 2004; Redish, 2004). We (Kurth-Nelson and Redish, 2004, see also Redish, 2004) 

recently suggested a model in which multiple “micro-agents” compete to make decisions. Each 

of these µAgents instantiates a hypothesis about the state of the world (the current situation si 

and the time ti spent within that situation), maintains a value estimate of that state , and 

independently carries out an individual temporal difference reinforcement learning algorithm 

(thus requiring an individual value-prediction-error-term δi, Sutton and Barto, 1998; Bertin et al., 

2007) with exponential discounting 0 < γi < 1 drawn from a uniform random distribution. The 

hypothesized state, si(t), and dwell-time, ti(t), of each µAgent instantiated a hypothesis of the 

actual state of the world, sW(t), and the actual dwell-time, tW(t) of the world within that state. 

Even if the µAgent knew the initial state correctly, that hypothesis could diverge from actuality. 

In order to maintain an accurate belief distribution, µAgents at each time-step computed the 

probability , where O(t) was the observation provided by the world at time t, and 

si(t) was µAgent i’s state at time t. µAgents with low 

(ˆ ,iV s a)

)( ) ( )( |iP s t O t

( ) ( )( )|iP s t O t  updated the belief to a 

random hypothesis consistent with the current observation by setting si to a random state s∗  

selected with probability ( ) ( )( * |P s t O t ) , and setting ti to 0. If the µAgent made a transition that 



entailed a change in estimated value, it delivered a value prediction error signal (δi). Actions 

were selected based on the normalized, expected total value of the predicted state that would 

occur should an action be selected Q(a), determined from the probability distribution over 

predicted states  

 ( ) ( ) ( ) ( )( )1 is_possible |j j i i
i

Q a a s E r s E V s
nμ

⎡ ⎤′ ′= ⋅ + i⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦⎣ ⎦∑   (19)  

where si was the state-hypothesis of µAgent i, is′  the state that would be achieved by taking 

action aj from state si, ( )iE r s′⎡⎣ ⎤⎦ the expected reward in state is′ , ( )iE V s′⎡ ⎤⎣ ⎦  the expected value of 

state is′ , and ( ) { }is_possibl 0,1e |j ia s ∈  was a binary variable  indicating whether action aj was 

available from state si. 

In order to determine the discounting function produced by our model, we modified the 

adjusting-delay assay of Mazur (1997, see above). See Figure 5. A five-state state-space was 

used to provide the macro-agent a choice between two actions, each of which led to a reward 

after a given delay. We ran the experiment for five agents (each of which consisted of 1000 

µAgents) in this state-space for reward ratios of 2:1, 1:1, 3:2, and 3:1. As can be seen in Figure 

5, the slopes of the indifference lines approximate the reward ratios, with a non-zero intercept. 

As reviewed above, this implies a hyperbolic discounting function like Equation 11 (Mazur, 

1997). Thus, if each µAgent has a specific, different, exponential discounting function γi and 

maintains an independent estimate of the value of taking specific actions in a given situation, 

then the overall, behaviorally-observable “macro-Agent” will show hyperbolic discounting.  

[Figure 5 about here.]  

Working from anatomical studies, a number of researchers have hypothesized that the 

striatum consists of multiple separable pathways (Alexander et al., 1986; Alexander and 



Crutcher, 1990; Graybiel et al., 1991; Strick et al., 1995). This suggests a possible anatomical 

spectrum of discounting factors which would be produced by a population of µAgents operating 

in parallel. Many researchers have reported that dopamine signals are not unitary (See Daw, 

2003, for review). Non-unitary dopamine signals could arise from different dopamine 

populations contributing to different µAgents. Haber et al. (2000) report that the interaction 

between dopamine and striatal neural populations shows a regular anatomy, in a spiral 

progressing from ventral to dorsal striatum. Recently, Tanaka et al. (2004) explicitly found a 

gradient of discounting factors across the striata of human subjects.  

In their recent fMRI experiment, Tanaka et al. (2004) found strong correlations between 

BOLD signals in striatum and different γ discounting factors (Eq. 2). They trained subjects to 

perform two tasks, each containing three states. Each state was identifiable by a clearly-

differentiable cue. In both tasks, action a1 led a transition from state s1 to s2 to s3, while action a2 

led through a transition from state s3 to s2 to s1. In the first task (the SHORT condition), positive 

rewards were given for all three transitions produced by action a1 and negative rewards 

(punishments) were given for all three transitions produced by action a2. In the second task (the 

LONG condition), positive rewards were given for two of the three transitions produced by 

action a1 and one of the transitions produced by action a2, and punishments were given for two 

of the three transitions produced by action a2 and one of the transitions produced by action a1. 

The effect of this was that in the SHORT condition, action a1 was the optimal choice, which 

could be determined from a short horizon, while in the LONG condition action a2 was the 

optimal choice, but required a longer horizon to determine. SHORT and LONG conditions were 

interspersed in a blocked format.  

For each timestep in the task, for a given sequence of choices, for a given hypothesized γ, the 



value at that moment could be calculated from the rewards delivered over the subsequent 

timesteps. This produced a family of functions ( )V tγ , which could then be correlated with the 

BOLD signals measured in the subjects. Fast discounting factors 0γ →  were more strongly 

correlated with BOLD signals in ventral-anterior aspects of striatum; slower discounting factors 

1γ →  were more strongly correlated with BOLD signals in dorsal-posterior aspects of striatum. 

Tanaka et al. found a continuous distribution of best-correlated γ factors along the ventral-

anterior to dorsal-posterior axis.  

Since BOLD activity is more highly correlated with local field potentials (Logothetis, 2002) 

and local field potentials are more closely related to synaptic activity than local neural firing 

(Buzsáki, 2006), it is likely that the functional slices observed by Tanaka et al. (2004) reflect 

differential inputs rather than direct changes in striatal activity. Nevertheless, the possibility that 

Tanaka et al.’s slices may correspond to Haber et al.’s spiral loops, and that both of these may 

correspond to µAgents is particularly intriguing.  

Reinforcement learning with multiple models (sometimes called multiple experts) has a long 

history (Doya et al., 2002; Bertin et al., 2007). The suggestion that the basal ganglia consist of 

multiple separable loops also has a long history (Alexander et al., 1986; Alexander and Crutcher, 

1990; Haber et al., 2000; Middleton and Strick, 2000), yet remains controversial (Parthasarathy 

et al., 1992; Graybiel, 2000). The suggestion that these separate loops are indicative of separate 

discounting factors (Tanaka et al., 2004; Kurth-Nelson and Redish, 2004) is, however, novel. 

More work needs to be done to confirm or reject that hypothesis. In any case, it is likely that the 

Tanaka et al. (2004) data reflect patterns of activity that could correspond to a parallel 

computation based on a continuum of discounting factors.  

[Figure 6 about here.]  



One important consequence of this multiple-exponential hypothesis is that shifts in the 

distribution of included exponentials would produce discounting functions that deviate from 

Equation 11. While the hyperbolic fit for the animal behavior literature is often excellent (Mazur, 

1985, 1997; Richards et al., 1997), the fit for the human decision literature is more variable 

(sometimes excellent (Vuchinich and Simpson, 1998), and sometimes less so (Reynolds, 2006), 

particularly for drug-users (Madden et al., 1999; Mitchell, 1999)). Schweighofer et al. (2006) 

report that under specific conditions in which a single exponential discounting rate is optimal, 

humans can learn to match that factor and show an exponential discounting function.  

Changes in serotonin levels have long been associated with impulsivity [with lower levels of 

serotonin correlating with more impulsivity] (Chamberlain et al., 2006; Carver and Miller, 2006; 

Chamberlain and Sahakian, 2007). Rats with dorsal raphe (serotonin) lesions showed earlier 

indifference points on Mazur’s adjusting-delay paradigm (Mobini et al., 2000; Wogar et al., 

1993). These rats were still able to accurately time delays when no contrast was involved, so the 

change was not due to loss of temporal recognition (Morrissey et al., 1993). Changing levels of 

serotonin precursors (e.g. tryptophan) can change the measured discounting rates in human 

subjects (Tanaka et al., 2007). Doya (2000a, 2002) has explicitly suggested that serotonin may 

control the discounting rate used in an exponential discounting module. Alternatively, serotonin 

may control the distribution of exponential components contributing to the behavior. These 

proposals still constitute a controversial hypothesis and there is little direct evidence to support 

it; however, recent experiments in the Doya laboratory (Tanaka et al., 2007) have found that 

changes in serotonin precursors (e.g. tryptophan) can reduce activity in certain of the discounting 

slices seen by Tanaka et al. (2004) while enhancing activity in others.  

A sum of internal exponential discounting functions will only produce hyperbolic 



discounting in the case of a uniform distribution of exponentials covering the entire available 

range. In general, a sum of internal exponential discounting functions will produce a power law 

behaviorally.  

 ( ) ( )
0

d
dV r r g e dκ

κ
κ κ

∞ −

=
= ∫   (20)  

where g(κ) is the distribution of exponential discounting factors 0 κ< < ∞ . For simplicity, we 

assume g(κ)= κβ, where β is a constant that controls the distribution of components. (In this 

formulation, β = 0 implies a flat distribution of exponentials, β > 0 implies more high κ, faster 

discounting components, while β < 0 implies more low κ, slower discounting components.) 

Under these assumptions, the integrated value function can be written analytically as  

 ( ) ( )1dV r r
d β

α
+= ⋅  (21)  

where α is a constant term and β is derived from the g(κ) distribution. When β = 0, this 

corresponds to a hyperbolic 1/d discounting function. As β increases this function deviates from 

hyperbolic to become more impulsive, and as β decreases this function deviates from hyperbolic 

to become less impulsive (see Figure 7). Both group data and individual data are well-fit by 

power-laws such as Eq. 21 (Redish, Landes, Bickel, unpublished observations), although it is not 

clear yet whether Eq. 21 provides any better fit to the experimental data than standard hyperbolic 

discounting analyses (e.g. Eq. 11). Of course, the actual g(κ) distribution could be any mix of 

exponential functions, and could potentially be variable under pharmacological or experimental 

control (Tanaka et al., 2007; Schweighofer et al., 2007), including becoming a single exponential 

function under the right conditions (Schweighofer et al., 2006).  

[Figure 7 about here.]  



3 Summary/Conclusion  

In making a decision between multiple choices, a complete description of the values of the 

two choices would require specification and integration over all potential possibilities, taking 

into account the uncertainty, risk, and investment opportunities with each decision. This infinite 

calculation is, of course, impossible to do with a finite decision process. A reasonable method of 

solving this problem is to discount delayed rewards. Humans and animals discount delayed 

rewards with functions better described as hyperbolic or power-law functions (with changing 

discount rates over time) than as exponential functions (with constant discount rates). Four sets 

of neural models have been proposed to explain this discrepancy: (1) that agents are actually 

maximizing rates of reward, normalizing observed rewards by current expectations of average 

rates of reward, (2) that changes in time perception produce variations in underlying estimates of 

delays, leading to a spreading out of the exponential discounting function, which leads to a 

hyperbolic-like power law, and (3,4) that neural systems include two (or more) subsystems 

which discount future rewards at different rates. The extensive neural data support the multiple 

subsystem hypothesis quite strongly; however, the number of subsystems and the identity of the 

specific components making up each subsystem remain unresolved. Although a number of 

specific algorithms have been proposed to underlie these subsystems, these proposals remain 

controversial. These multiple subsystems may alse underlie complexities in temporal perception, 

as well as general memory, and behavioral processes. More work testing specific neural 

hypotheses under conditions that change discounting factors is needed.  

Notes  

1.  For simplicity, we use the term “agent” to refer to any decision-making system (including 



humans and other animals as well as simulations). Agency is used without any prejudice or 

presumption re free will.  

2.  The term situation refers to the agent’s classification of the state of the world and the 

agent from which the agent can reason about decisions. We prefer “situation” over the 

psychology term “stimulus” so as to include context, cue, and interactions between cues, all of 

which are critical for appropriate behavior. Similarly, we prefer “situation” over the robotics 

term “state” to prevent confusion with internal parameters of the agent (e.g. “motivation states”). 

See Redish et al. (2007) and Zilli and Hasselmo (2008) for further discussion of these issues.  

3.  New models have begun to explore the limitations of these assumptions, including 

relaxing assumptions of stationarity (e.g. Courville et al., 2006; Redish et al., 2007), assumptions 

of observability (e.g. Daw et al., 2002b, 2006a; Yu and Dayan, 2005), and assumptions of 

exploration (e.g. Kakade and Dayan, 2002; Daw et al., 2006b). Others have begun incorporating 

the potential effects of working and episodic memory (Zilli and Hasselmo, 2008). However, 

these issues are not immediately relevant to this review and will not be pursued further here.  

4.  In other chapters in this book, the term A is used for amount of reward. This chapter uses 

the term r for reward to avoid confusion with action a.  

5.  This model maintains independent value-estimations across all the µAgents. If the 

µAgents instead maintain a shared value-estimation, the model reverts to be equivalent to the 

direct implementation of hyperbolic discounting (Eq. 13), showing hyperbolic discounting across 

only a single state-transition.  

6.  This timing model is still controversial (Staddon and Higa, 1999; Kalenscher and 

Pennartz, 2008).  
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Figures 

FIGURE 1: Discounting across state-chains. (A) Single-step state space. (B) Discounting 

over a single-step state space as a function of the delay D in state S0. Both value functions 

derived from Equation 13 and a sum of exponentials model (section 2.4) show hyperbolic 

discounting. (C) Chained state-space. (D) Discounting over a chained-state as a function of total 

delay from state S0 to reward state. The single-step hyperbolic model (Eq. 13) no longer shows 

hyperbolic discounting, while the multiple-exponentials model continues to do so. 

FIGURE 2: Calculation of indifference points as a function of delay in the indifference task. 

Reprinted from Daw and Touretzky (2000) with permission from author and publisher (Elsevier, 

© 2000). The indifference points predicted by the average reward model. Indifference points are 



shown as dots, and the line of best fit is also shown. 

FIGURE 3: Calculation of indifference points using an exponential decay model with 

Poisson-like time-estimation (mean of the estimated delay = actual delay, variance of estimated 

delay proportional to actual delay). Reprinted from Daw (2003) with permission from author (© 

N. D. Daw, 2003). 

FIGURE 4: Consistent brain areas are activated for intertemporal choices across reward 

modality, but different brain areas are activated for β-related (impulsive) and δ-related (more 

general decision-related) areas. Reprinted fromMcClure et al. (2007) with permission from 

author and publisher (Society for Neuroscience, © 2007). Original figure in color. 

FIGURE 5: Discounting with multiple exponentials. (A) State-space used. (B-E) Mazur-

plots. These plots show the delay d2 needed to make an agent choose actions a1 and a2 equally 

for a given delay d1. The ratio of actions a1:a2 is an observable measure of the relative values of 

the two choices. For hyperbolic discounting, the slope of the line will equal the ratio of r2/r1, 

with a non-zero y-intercept. A sum-of-exponentials model produces near-perfect hyperbolic 

discounting. 

FIGURE 6: Correlations between reward prediction V(t) and BOLD signal are significantly 

most correlated to different discounting factors γ. Reprinted from Tanaka et al. (2004) with 

permission from author and publisher (Macmillan Publishers Ltd: Nature Neuroscience, © 

2004). Original figure in color. 

FIGURE 7: (top) Distributions of exponentials as β changes. (bottom) The resulting value-

discounting functions can become more or less impulsive with changing distributions of 

exponentials. A uniform distribution of exponential discounting functions (characterized by β=0) 

produces a very close match to hyperbolic discounting. 
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