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Abstract

Temporal-difference (TD) algorithms have been proposed as models of reinforcement

learning (RL). We examine two issues of distributed representation in these TD algo-

rithms: distributed representations of belief and distributed discounting factors. Dis-

tributed representation of belief allows the believed state of the world to distribute across

sets of equivalent states. Distributed exponential discounting factors produce hyperbolic

discounting in the behavior of the agent itself. We examine these issues in the con-

text of a TD RL model in which state-belief is distributed over a set of exponentially-

discounting “micro-Agents”, each of which has a separate discounting factor (γ). Each

µAgent maintains an independent hypothesis about the state of the world, and a sepa-

rate value-estimate of taking actions within that hypothesized state. The overall agent

thus instantiates a flexible representation of an evolving world-state. As with other TD

models, the value-error (δ) signal within the model matches dopamine signals recorded

from animals in standard conditioning reward-paradigms. The distributed representation

of belief provides an explanation for the decrease in dopamine at the conditioned stimu-

lus seen in overtrained animals, for the differences between trace and delay conditioning,

and for transient bursts of dopamine seen at movement initiation. Because each µAgent

also includes its own exponential discounting factor, the overall agent shows hyperbolic

discounting, consistent with behavioral experiments.
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Introduction

Temporal-difference (TD) learning algorithms have been proposed to model behavioral

reinforcement learning (RL) [1–3]. The goal of reinforcement learning is to learn what

actions to select in what situations by learning a value function of situations or “states” [4].

(As noted by Daw et al. [5], it is not necessarily true that the agent’s estimate of the world-

state always corresponds to the actual state of the world. We have already explored

some of the potential consequences of this mismatch in another paper [6] and will not

address it here.) In TD models, the value function is learned through the calculation of a

value-prediction error signal (termed δ, [4, 7, 8]), calculated each time the agent changes

world-states. δ reflects the difference between the value-estimate and the actual value

(including immediate reward) observed on the transition. From δ, the value-estimate of

the old state can be updated to approach the observed value. This δ signal appears at

unexpected rewards, transfers with learning from rewards to anticipatory cue stimuli, and

shifts with changes in anticipated reward [4, 8]. This algorithm is a generalization of the

early psychological reward-error models [9, 10]. Components of these models have been

proposed to correspond to neurophysiological signals [1, 2, 8, 11–14]. In particular, the

firing of midbrain dopaminergic neurons closely matches δ.

TD RL models have been able to provide strong explanations for many neurophysiolog-

ical observations, such as qualitative changes in dopamine firing [1, 5], including changes

at first thought not to reflect prediction error (e.g. generalization and exploration [15]).

More recent experiments have shown quantitative matches to the predictions of these

models [16–22]. In addition, more recent models have been based on distributed repre-

sentations of belief within those state-spaces [5, 23–26].

In this paper, we examine the effects of distributed state representation, distributed
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value-representation, and distributed discounting rate in TD learning.

• Distributed discounting rates along with distributed value representation lead to hy-

perbolic discounting, matching the hyperbolic discounting experimentally observed

in humans and animals.

• Distributed representations of state-belief allow the agent to divide its believed state

across multiple equivalent states. This distributed state-representation can account

for the slowing of learning rates across intertrial intervals and trace conditioning

paradigms, and can account for dopamine signals seen at movement initiation in

certain instrumental conditioning paradigms.

These two hypotheses are separable and produce separable predictions, but together they

form a coherent and parsimonious description of a multi-micro-agent (µAgent) TD model

of reinforcement learning that provides a good fit to the experimental data. We will make

clear in the simulations below which components are necessary for which results, and in

the discussion which predictions follow from which hypotheses.

This multiple micro-agents model is consistent with anatomical studies suggesting

that the basal ganglia consist of separable “loops” that maintain their separation through

the basal ganglia pathway [27–29]. The model is also consistent with recent fMRI studies

suggesting that the striatum consists of functional “slices” reflecting a range of discounting

factors [30, 31].

Methods

It is important to note that the theoretical consequences of distributed representation

are independent of many of the methodological details. However, in order to implement
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simulations, specific choices have to be made. Throughout the methods section, we will

identify which simulation details are theoretically important and which are not.

The simulation comprised two entities: the world and the agent. The world consisted

of a semi-Markov state space (MW ) with two additions. First, it provided observations

and rewards to the agent; second, its current state could be changed by an action of the

agent. The agent consisted of a set of µAgents, each of which contained a model of the

world MA
i , a hypothesis of the state of the world si, a value function of those states Vi( · ),

and an exponential discounting factor γi. On each time step, a value-prediction-error δi

was calculated independently by each µAgent. The overall agent performed actions based

on the state beliefs and value functions of the µAgents, and the δ signals of all µAgents

could be averaged to represent an overall δ signal. The world and agent were simulated in

discrete time-steps. The world provided an observation or null-observation to the agent

on each time-step, and the agent provided an action or null-action to the world on each

time-step. See Figure 1 and Table 1 for an overview of the model structure.

State-space/process-model

Both the world and the agent contain an internal state-space: MW and MA, respectively.

In principle it is not necessary that MA = MW . In fact, it is quite possible for each

µAgent to have an individual world-model MA
i . In the simulations used, all µAgents used

an identical state-space model MA, defined as identical to the world-model MW .

States corresponded to temporally extended circumstances salient to the agent, such

as being located at an arm of a maze or waiting within an interstimulus interval. Transi-

tions defined jumps from one state to another. On entry into a state, a random time was

drawn from that state’s dwell-time distribution, which determined how long the world

would remain within that state before a transition occurred. Observations provided feed-
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back from the world to the agent on each time-step and were drawn from the P (O|S)

distribution, dependent on the actual state of the world S ∈ MW . Rewards were a special

type of observation, which included a magnitude and were used in the calculation of δ.

The world

The world consisted of a semi-Markov state process, a current state sW (t), a dwell-time

within that state tW (t), a current observation O(t), and a current reward R(t). Only

observation (O(t)) and reward (R(t)) were provided to the agent.

A transition in the state of the world could occur due to a process inherent in the

world or due to the action of the agent. For example, in our model of the adjusting-delay

assay, the world will remain in the action-available state (providing an observation of two

levers to the animal) until the agent takes an action. In contrast, once the agent has

taken an action and the world has transitioned to one of the delay states (ISI-1, or ISI-2),

the world will remain in that state for an appropriate number of time-steps and then

transition to the reward state, irrespective of the agent’s actions.

The macro-agent

The macro-agent corresponded to the animal or traditional “agent” in reinforcement learn-

ing models. The macro-agent interacted with the world and selected actions. Internal

to the macro-agent were a set of nμ µAgents, which instantiated the macro-agent’s belief

distribution of the state of the world. Smaller nμ yielded noisier output. However, results

were qualitatively unchanged down to nμ=10. Results were stabler with explicitly uni-

form distributions of γi. The only simulation in which this made a noticeable difference

was in the measure of hyperbolic discounting (because the hyperbolic function emerges
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from the sum of many exponentials).

Individual µAgents

Each µAgent i was fully specified by a five-tuple 〈si, ti, γi, δi, Vi(s)〉, encoding the µAgent’s

currently believed state, si; the believed dwell-time, ti (i.e., how long since the last state

transition), the µAgent’s internal discounting parameter γi, the current value-prediction-

error signal δi, and the µAgent’s value estimation function Vi(s). Each µAgent contained

its own individual discounting parameter γi, drawn from a uniform random distribution

in the range 0 ≤ γi ≤ 1.

The state, si(t), and dwell-time, ti(t), of each µAgent are hypotheses of the actual

state of the world, sW (t), and the actual dwell-time, tW (t) of the world within that state.

Even if the µAgent knew the true initial state of the world, that hypothesis could diverge

from reality over time. In order to maintain an accurate belief distribution, µAgents at

each time-step computed the probability P (si(t)|O(t)), where O(t) was the observation

provided by the world at time t, and si(t) was µAgent i’s state at time t. µAgents with low

P (si(t)|O(t)) updated their state belief by setting si to a random state s∗ selected with

probability P (s∗|O(t)). This is one of three mechanisms by which µAgents could change

state (see below). An individual δi value error signal was computed at each µAgent state

transition (see below).

Action selection

Actions can only occur at the level of the macro-agent because they are made by the

organism as a whole. Because the state belief and value belief are distributed across the

µAgents, a mechanism was required to select the best action given that belief distribution.

In the model as implemented here, the macro-agent simply “took a vote” from the µAgents
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as to which action to perform. Each µAgent provided an equally-weighted measure of the

expected value for each action. The exact action selection algorithm is not crucial but

must take account of the belief distribution and must balance exploration and exploitation.

Actions were selected based on an ε-greedy algorithm [4], with ε decreasing with each

trial. This produces exploration early and exploitation later. At each time-step, a random

number was drawn between 0 and 1. If that number was less than ε, then actions were

taken based on the µAgents’ vote on what actions were possible. If the number was greater

than ε, then actions were taken based on the µAgents’ vote on the expected values of the

subsequent states. ε started at 1 and was multiplied by a factor of 0.95 each time reward

was delivered, producing an exponential decrease in exploration with experience.

Exploration. If the macro-agent decided to explore, the action to be taken was drawn

from a distribution based on which actions the µAgent population suggested was possible.

X(aj) =
∑

i∈µAgents

OK(aj |si) (1)

where OK(aj|si) was true (1) if action aj was available from µAgent i’s believed state

si and false (0) otherwise. Actions were then selected linearly from the distribution of

possible actions:

P (select action aj) =
X(aj|si)∑
j X(aj|si)

(2)

Exploitation. If the macro-agent decided to exploit the stored value functions, then

actions were selected based on the normalized expected total value of the achieved state:

Q(aj) =
∑

i∈µAgents

(E[R(s′i)] + E[V (s′i)]) (3)
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where s′i the state that would be achieved by taking action aj given the current state si of

µAgent i, E[R(s′i)] the expected reward in state s′i, E[V (s′i)] the expected value of state s′i.

E[R(s′i)] was calculated from the internal world model MA
i , and E[V (s′i)] was calculated

from the internal value representation stored in µAgent i. If action a was not available

from the current state of µAgent i, µAgent i was not included in the sum. Because our

simulations only include reinforcement, only positive transitions were included, thus Q(aj)

was rectified at 0. (Our simulations only include reinforcement primarily for simplicity.

The mechanisms we describe here can be directly applied to aversive learning; however,

because the extinction literature implies that reinforcement and aversion use separate,

parallel systems [6], we have chosen to directly model reinforcement here.) Actions were

then selected linearly between the possible Q functions:

P (select action aj) =
Q(aj)∑
j Q(aj)

(4)

Once an action was selected (either from X(aj) or from Q(aj)), a decision was made

whether to take the action or not based on the number of µAgents who believed the action

was possible:

P (take selected action aj) =
X(aj)

nμ
(5)

If the selected action was taken, the agent passed action aj to the world. If the selected

action was not taken, the agent passed the “null action” (which did not change the state

and was always available) back to the world. If the macro-agent tried to take action aj ,

but action aj was incompatible with the actual world state sW , no action was taken, and

the “null action” was provided to the macro-agent.

When proportions of actions were measured (e.g. in the discounting experiments),

proportions were only measured after 200 trials (by which time ε < 0.0001).
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µAgent transitions

There were three possible mechanisms by which µAgents could make transitions between

hypothesized belief states si → s′i.

1. Internal transitions. On each time-step, each µAgent i decided whether to transi-

tion or not as a function of the dwell-time distribution, given its hypothesized state

si and its hypothesized dwell-time ti. If the µAgent took a transition, it followed

the transition matrix stored within MA
i .

2. Taking an action. If the macro-agent took action aj , providing A(t) = aj to

the world, all µAgents were then updated assuming the action occurred given the

state-hypothesis of the µAgent si. If the action was incompatible with the µAgent’s

state belief, the µAgent’s belief-state si was revised as described below.

3. Incompatible observations. On each time step, each µAgent i compared the

observation provided by the world O(t) with the observation expected given its

internal hypothesized state P (O|si). If P (O|si) was 0 (meaning the observation

was incompatible with si), the µAgent transitioned to a new state based on the

probability of the state given the current observation P (s′|O(t)).

Calculating the error signal: δ

µAgents could experience a state transition as a consequence of the macro-agent taking an

action, as a consequence of its dwell-time belief, or as a consequence of revising its state

hypothesis due to low fitness. No matter how the µAgent changed its state hypothesis

si → s′i, when µAgent i made a transition, it generated a δ contribution δi according to

δi = γ ti
i (R(t) + Vi[s

′
i])− Vi[si] (6)
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where γi was the discounting parameter of the µAgent, ti was the µAgent’s hypothesized

time since the last transition, R(t) was the observed reward at time t, s′i was the new

state hypothesis to which the µAgent transitioned, and si was the old state hypothesis

from which the µAgent transitioned. Of course, the process of transitioning set the

µAgent’s believed state to be s′i and ti to be 0. Note that R(t) is not a function of si,

but rather delivered to the agent from the world, based on the world state sW (t). Note

that equation 6 is an exponential discounting function. Thus, each µAgent performed

exponential discounting. The macro-agent showed hyperbolic discounting as an emergent

process from the set of all the µAgents. Also, note that both the value of the new state

and the current reward were discounted, as the sum of these quantities represents the total

expected value of making a transition to a new state. Thus the sum (R(t) + Vi[s
′
i]) must

be discounted proportional to the time the agent remained in state si before reaching the

new state s′i.

On each µAgent state transition, the µAgent updated its internal estimation of the

value of its hypothesized state si, using its individual δi:

Vi[si]← Vi[si] + αδi (7)

where α was the learning rate. The mean of the δi signals
∑

i δi/nμ from all µAgents

conforms to the quantity reported in this paper as “the δ signal of the model” but never

appeared explicitly within the simulation code. It is this total δ signal, however, which

was compared to the population dopamine signal [13, 32–35].
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Results

Hyperbolic discounting

Value, as defined in reinforcement learning models, is the integrated, expected reward,

minus expected costs. The longer one must wait for a reward, the more likely it is for

an unexpected event to occur, which could invalidate one’s prediction [36, 37]. Agents,

therefore, should discount future rewards: the more one must wait for the reward, the

less valuable it should be. In addition, early rewards are more valuable than late rewards

because early rewards can be invested (whether economically or ethologically) [36–38].

Any function that decreases with time could serve as a discounting function. In many

situations, humans and other animals discount future rewards using a hyperbolic function

[38–42] matching equation 12 rather than equation 11 (Figure 2).

TD algorithms incrementally learn an estimate of the value function, and thus re-

quire either a general analytical solution to the discounting function or an incremental

calculation such that the value can be discounted with each timestep [8, 43, 44]. Because

the discounting rate changes with time in hyperbolic discounting [38, 41], the calculation

cannot be performed incrementally [8]. We suggest a possible mechanism for generat-

ing hyperbolic discounting via a multitude of exponential discounting factors. In the

limit as the number of exponential discounters (having uniformly distributed discounting

factors γ) approaches infinity, the average resultant discounting approaches hyperbolic.

(See Supporting Information Appendix S1 for mathematical proof.) In practice, having

dozens or more of exponential discounters produces a close approximation to hyperbolic

discounting.

Because each µAgent has an independent (exponential) discounting factor but actions

are taken by the macro-agent based on a voting process of actions suggested by the
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µAgents, the macro-agent will show a discounting curve that is the average of all the

µAgent discounting curves. If the µAgent discounting curves are exponential functions

with γ uniformly distributed over the range from 0 to 1, then the macro-agent will show

approximately hyperbolic discounting in its behavior. The hypothesis that hyperbolic

discounting arises from a (finite) set of exponential factors is consistent with recent fMRI

observations [30,31] and suggests that the difference between this approximate hyperbolic

and true hyperbolic discounting could be tested with sufficiently large data sets [45, 46].

Simulations. In order to measure the effective discounting function of our model, we

modified the adjusting-delay assay of Mazur [39]. A five-state state-space was used to

provide the macro-agent a choice between two actions, each of which led to a reward. In

short, the agent was provided two choices (representing two levers): action a1 brought

reward r1 after delay d1 and action a2 brought reward r2 after delay d2. For a given

experiment, both rewards r1, r2 and one delay d1 were held fixed, while the other delay

d2 was varied. For each set of 〈r1, r2, d1〉, the delay d2 was found where the number of

a1 choices taken matched the number of a2 choices taken in 300 trials. At this point, the

actions indicate that the two discounting factors in the two delays exactly compensate

for the difference in magnitudes of the two rewards. The delay d2 at this equivalent

action-selection point can be plotted against different fixed values of d1. The slope of that

curve indicates the discounting function used by the agent [39]. In the case of exponential

discounting (γD where γ is the discounting factor, 0 ≤ γ ≤ 1, and D is the delay), the

slope will be 1, regardless of r1 or r2. In the case of reciprocal (R/D) discounting, the

slope will equal to the ratio of rewards r2/r1, and the y-intercept will be 0. In the case

of hyperbolic discounting (R/(1 + kD), [39, 40, 47]), the slope will equal the ratio r2/r1,

and in the case where k = 1, the y-intercept will be r2/r1 − 1. Simulations produced



14

a slope equal to the ratio of rewards r2/r1 (Figure 3) and a y-intercept approximating

r2/r1−1, indicating that, even though each individual µAgent implemented an exponential

discounting function, the macro-agent showed hyperbolic discounting, compatible with the

behavioral literature [39–41,47, 48].

Discounting across multiple steps. Temporal difference learning can use any func-

tion as a discounting function across a single state-transition. However, if hyperbolic

discounting is implemented directly, a problem arises when discounting is measured over

a sequence of multiple state transitions. This can be seen by comparing two state-spaces,

one in which the agent remains in state S0 for ten timesteps and then transitions to state

S1 (Figure 4A), and another in which the time taken between state S0 and S1 are di-

vided into ten substates, with the agent remaining in each for one timestep (Figure 4H).

These two statespaces encode equivalent information over equivalent time and (theo-

retically) should be discounted equivalently. If temporal discounting were implemented

directly with equation 12, then the agent would show hyperbolic discounting across the

first statespace, but not the second.

We tested this explicitly by comparing four simulations (see Figure 4):

1. Discounting is not distributed, and δ is calculated by

δ =
(R(t) + V [s′])

1 + t
− V [s] (8)

In this condition, the measured discounting of the model was hyperbolic over a

single-step state-space (Figure 4G). However, over an equivalent chained state-space

(Figure 4N), the macro-agent discounted each state-jump hyperbolically. Since each

state had a delay of D=1, the amount of discounting for each state-jump was 1
1+D

=
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0.5, leading to exponential discounting (with γ = 0.5) over the chain of states.

This occurred whether or not value representation was distributed (Figure 4D,K).

2. Discounting is not distributed, and δ is calculated by

δ = γ t/τ (R(t) + V [s′])− V [s] (9)

where γ = 0.75. In this condition, the measured discounting of the model was expo-

nential over both the single-step state-space (Figure 4F) and the chained state-space

(Figure 4M). This occurred whether or not value representation was distributed

(Figure 4C,J).

3. Discounting is distributed (i.e., each µAgent has a different exponential discounting

rate γi drawn uniformly at random from (0, 1)). δ is thus calculated using Eqn. 6 as

specified in the Methods section. However, value representation is not distributed;

all µAgents access the same value representation V (s). Thus, Eqn. (7) was replaced

with

V [si]← V [si] +
αδi

nμ
(10)

In this equation, although the µAgents could update different states based on their

hypothesized state-beliefs, all values were united into a single universal value func-

tion V (s). In this condition, the macro-agent reverted to the one-step hyperbolic

equation in version 1 (Eqn 8), showing hyperbolic discounting in the single-step

state-space (Figure 4E) but not the chained state-space (Figure 4L). In the chained

state-space, the sum of distributed exponential discounting rates produces hyper-

bolic discounting across each state-jump, so across the chain of states discounting

was exponential (with γ = 1
1+1

= 0.5).
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4. Both discounting (Eqn. 6) and value (Eqn. 7) are distributed. This model showed

hyperbolic discounting under both the single-step state-space (Figure 4B) and the

chained state-space (Figure 4I). Because each µAgent has its own value representa-

tion for each state, the value decrease across each state-jump was exponential, with

each µAgent having a different γ. Thus the average value of a state was the average

of these exponentially-discounted values, which was hyperbolic.

It is still an open question whether real subjects show differences between single-step

and chained state-space representations. Such an experiment would require a mechanism

to change the internal representation of the subject (as one state lasting for ten seconds or

as ten states lasting for one second each). This could be tested by concatenating multiple

delays. Simulation 1, using explicit hyperbolic discounting, predicts that discounting

across a chained state-space will be much faster than discounting across a single-step.

Whether this occurs remains a point of debate [49]. The model of distributed discounting

and distributed values best fits the data that discounting is hyperbolic even across multiple

delays.

Non-uniform distributions of discounting rates. So far in exploring distributed

discounting, we have selected γi uniformly from (0, 1). Using this γ distribution, the

overall agent exhibits hyperbolic discounting as 1
1+d

. However, different γ distributions

should produce different overall discounting functions.

We tested this by altering the γ distribution of the µAgents and measuring the result-

ing changes in discounting of the overall agent. In the uniform distribution (which was

also used for all other simulations in this paper), P (γ < x) = x, x ∈ (0, 1) (Figure 5A).

As was also shown in Figure 4B, this results in hyperbolic discounting for the overall

agent (Figure 5B). Fitting the function 1
1+d

to this curve gives an R2 of 0.9999 (using 200
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µAgents; the fit improves as nμ increases). To bias for slow discounting rates, we used the

distribution P (γ < x) = x2 (Figure 5C). The measured discounting of the overall agent

using this γ distribution was slower (Figure 5D) and was well-fit by the function 1
1+0.5d

.

To bias for fast discounting rates, we used the distribution P (γ < x) =
√

x (Figure 5E).

The measured discounting of the overall agent using this γ distribution was faster (Fig-

ure 5F) and was well-fit by the function 1
1+2d

. These results match theoretical predictions

for the effect of biased γ distributions on discounting [37]. Mathematically, it can also be

shown that non-hyperbolic discounting can result from γ distributions that do not follow

P (γ < x) = xa; for example if the γ distribution is bimodal with a relative abundance of

very slow and very fast discounting µAgents.

Smokers, problem gamblers, and drug abusers all show faster discounting rates than

controls [48, 50–53]. Whether discounting best-fit by different time-constants is exactly

hyperbolic or not is still unknown (see, for example, [48, 51, 54], in which the hyperbolic

fit is clearly imperfect). These differences could be tested with sufficiently large data sets,

as the time-courses of forgetting have been: although forgetting was once hypothesized

to follow hyperbolic decay functions, forgetting is best modeled as a sum of exponentials,

not as hyperbolic or logistic functions [45,46]. Similar experiments could differentiate the

hyperbolic and multiple-exponential hypotheses.

All subsequent experiments used a uniform distribution of γi.

Distributed belief

Because each µAgent instantiates an independent hypothesis about the state of the world,

the macro-agent can maintain a distributed belief of world-state. We describe two conse-

quences of distributed belief that explain experimental data.

First, some situations contain readily identifiable cues which allow those times when
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the agent is in those situations to be separated from times when the agent is not. For

example, during delay conditioning, there is a specific stimulus (e.g. a light or tone) that

is played continuously through the delay. Separating “tone-on” situations from “tone-off”

situations readily identifies the inter-stimulus-interval. Other situations are not as readily

identifiable. For example, during inter-trial intervals and during the inter-stimulus interval

in trace conditioning, there is a gap in which the agent does not know what cues to attend

to. Our model simulates this cue ambiguity by representing the gap with a set of identical

equivalent states. These equivalent states slow value learning because each state only holds

a fraction of the µAgent state-belief distribution and therefore only receives a fraction of

the total δ produced by a state-transition. We suggest that equivalent-states explain the

well-established slower learning rates of trace compared to delay conditioning [55], and

explain the slow loss of dopamine signal at conditioned stimuli with overtraining [32].

Second, distributed belief allows TD to occur in ambiguous state-spaces [5, 6], which

can explain the generalization responses of dopamine [15, 34] and the transient burst of

dopamine observed at movement initiation [56, 57].

Trace and delay-conditioning

In delay conditioning, the CS remains on until the reward is delivered, while in trace

conditioning there is a gap between the CS and US — the CS disappears before the US

appears [55, 58]. This simple change produces dramatic effects: trace conditioning takes

much longer to learn than delay conditioning, and requires the hippocampus, unlike delay

conditioning [55,59,60]. One possible explanation for the difference is that, because there

is no obvious cue for the animal to pay attention to, the intervening state representation

during the gap in trace conditioning is spread out over many multiple “equivalent states”.

(There is new evidence that trace conditioning requires hippocampus only under aversive
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training conditions [61], which may suggest that other structures can bridge the gap in

appetitive trace conditioning. This does not change our primary hypothesis — that trace

conditioning entails an “equivalent states” representation of the gap between CS and US.)

Because the µAgents model can represent distributed belief, we can model trace con-

ditioning by placing a collection of equivalent states between the cue and the reward. As

noted above, because value learning is distributed across those equivalent states, value is

learned more slowly than in well-identified states.

Simulations. In order to test the effect of a collection of equivalent states in the inter-

stimulus time, we simulated a Pavlovian conditioning paradigm, under two conditions:

with a single state intervening between CS and US, or with a collection of 10 or 50

equivalent states between the CS and US. As can be seen in Figure 6, the value of the

initial ISI state (when the CS turns on) V (CS) increases more quickly under delay than

under trace conditioning. This value function is the amount of expected reward given

receipt of the CS. Thus in trace conditioning, the recognition that the CS implies reward

is delayed relative to delay conditioning. Increasing the number of equivalent states in

the ISI from 10 to 50 further slows learning of V (CS) (Figure 6).

Discussion and implications. Sets of equivalent states can be seen as a model of

the attention the agent has given to a single set of identified cues. Because the stimulus

remains on during delay conditioning, the stimulus may serve to focus attention, which

differentiates the Stimulus-on state from other states. Because there is no obvious atten-

tional focus in the interstimulus interval in trace conditioning, this may produce more

divided attention, which can be modeled as a large collection of equivalent intervening

states in the ISI period. Levy [62] has explicitly suggested that the hippocampus may

play a role in finding single states with which to fill in these intervening gaps, which may
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explain the hippocampal-dependence of trace-conditioning [55, 59]. Consistent with this,

Pastalkova et al. [63] have found hippocampal sequences which step through intervening

states during a delay period. Levy’s theory predicted that it should take some time for

that set of intervening states to develop [62]; before the system has settled on a set of

intervening states, µAgents would distribute themselves among the large set of potential

states, producing an equivalent-set-like effect. This hypothesis predicts that it should be

possible to create intermediate versions of trace and delay conditioning by filling the gap

with stimuli of varying predictive usefulness, thus effectively controlling the size of the set

of equivalent states. The extant data seem to support this prediction [55, 64].

The disappearance of CS-related dopamine signals with overtraining

During classical conditioning experiments, dopamine signals occur initally at the delivery

of reward (which is presumably unexpected). With experience, as the association between

the predictive cue stimulus (CS) and the reward (unconditioned stimulus, US) develops,

the dopamine signal vanishes from the time of delivery of the US and appears at the

time of delivery of the CS [34]. However, with extensive overtraining with very regular

intertrial intervals, the dopamine signal vanishes from the CS as well [32].

Classical conditioning can be modeled in one of two ways: as a sequence of separate

trials, in which the agent is restarted in a set S0 state each time or as a loop with an

identifiable inter-trial-interval (ITI) state [5,8,14,24]. While this continuous looped model

is more realistic than trial-by-trial models, with the inclusion of the ITI state, an agent

can potentially see across the inter-trial gap and potentially integrate the value across all

future states. Eventually, with sufficient training, an agent would not show any δ signal

to the CS because there would be no unexpected change in value at the time the CS

was delivered. We have found that this decrease happens very quickly with standard TD
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simulations (tens to hundreds of trials, data not shown). However, Ljungberg et al. report

that monkeys required >30,000 movements to produce this overtraining effect. This effect

is dependent on strongly regular intertrial intervals (W. Schultz, personal communication).

The µAgents model suggests one potential explanation for the slowness of the transfer

of value across the ITI state in most situations: Because the ITI state does not have a

clearly identifiable marker, it should be encoded as a distributed representation over a

large number of equivalent states. Presumably, in a classical conditioning task, the inter-

stimulus interval is indicated by the presence of a strong cue (the tone or light). However,

the appropriate cue to identify the inter-trial-interval (ITI) is not obvious to the animal,

even though there are presumably many available cues. In our terminology, the ITI state

forms a collection of equivalent states. Because all of these ITI states provide the same

observation, the agent does not know which state the world entered and the µAgents

distribute over the many equivalent ITI states. The effect of this is to distribute the δ

signal (and thus the change in value) over those many equivalent states. Thus the value

of the ITI states remains low for many trials, and the appearance of an (unexpected) CS

produces a change in value and thus a positive δ signal.

Simulations. In order to test the time-course of overtraining, we simulated a standard

classical conditioning task (Figure 7A). Consistent with many other TD simulations, the

value-error δ signal transferred from the reward to the CS quickly (on the order of 25

trials) (Figure 7B,C,E). This seemingly steady-state condition (δ in response to CS but

not reward) persists for hundreds of trials. But as the learned value-estimates of the

equivalent ITI states gradually increase over thousands of trials, the δ signal at the CS

gradually disappears (Figure 7D,E). The ratio of time-to-learn to time-to-overlearn is

compatible with the data of Ljungberg et al. [32]. Increasing the number of equivalent
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states in the ITI further slows abolition of δ at the CS (Figure 7E).

Discussion and implications. The prediction that the inability of the delta signal

to transfer across ITI states is due to the ITI state’s lack of an explicit marker suggests

that it should be possible to control the time course of this transfer by adding markers.

Thus, if explicit, salient markers were to be provided to the ITI state, animals should

show a faster transfer of delta across the ITI gap, and thus a faster decrease in the delta

signal at the (no-longer-unexpected) CS. This also suggests that intervening situations

without markers should show a slow transfer of the delta signal, as was proposed for trace

conditioning above.

Transient dopamine bursts at uncued movement initiation.

Dopamine cues occurring at cue-stimuli associated with expected reward have been well-

studied (and well-modeled) in Pavlovian conditioning paradigms. However, dopaminergic

signals also appear just prior to uncued movements in instrumental paradigms [56, 65]

and can appear even without external signals [57]. One potential explanation is that this

dopamine signal is indicative of an internal transition occurring in the agent’s internal

world-model, perhaps from a state in which an action is unavailable to a state in which

an action is available, thus providing a change in value and thus providing a small δ

signal. Only a few µAgents would have to make this transition in order to produce such a

signal and initiate an action. Once the action was initiated, the other µAgents would be

forced to update their state belief in order to remain compatible with the ensuing world

observations.

Simulations. In order to test the potential existence of dopaminergic signals just prior

to movement appearing with no external cues, we built a state-space which contained an
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internally- but not externally-differentiated GO state (Figure 8A). That is, the GO-state

was not identifiably different in the world, but actions were available from it. µAgents

in the ITI state would occasionally update their state belief to the GO state due to the

similarity in the expected observations in the GO and ITI states. If a sufficient number of

µAgents were present in the GO state, the agent could take the action. Because the GO

state was temporally closer to the reward than the ITI state, more value was associated

with the GO state than with the ITI state. Thus, a µAgent transitioning into the GO

state would produce a small δ signal. Taking an action requires the overall agent to believe

that the action is possible. However, there is no external cue to make the µAgents all

transition synchronously to the GO state, so they instead transition individually and prob-

abilistically, which produces small pre-movement δ signals. In the simulations, µAgents

gradually transitioned to the GO state until the action was taken (Figure 8B, top panel).

During this time immediately preceding movement, small probabilistic δ signals were ob-

served (Figure 8B, middle panel). When these signals were averaged over trials, a small

ramping δ signal was apparent prior to movement (Figure 8B, bottom panel).

Discussion and implications. As can be seen in Figure 8, there is a ramping of

delta signals as µAgents transfer from the ITI state to the GO state. A similar ramping

has been seen in dopamine levels in the nucleus accumbens preceding a lever press for

cocaine [56, e.g. Figure 2, p. 615]. This signal has generally been interpreted as a causative

force in action-taking [65]. The signal in our simulation is not causative; instead it is a

read-out of an internal shift in the distributed represented state of the macro-agent — the

more µAgents there are in GO state, the more likely the macro-agent is to take action.

Whether this ramping δ signal is a read-out or is causative for movement initiation is an

open-question that will require more detailed empirical study.
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Other TD simulations

The µAgents model proposed here enabled novel explanations and models for (a) hy-

perbolic discounting, (b) differences between trace- and delay-conditioning, (c) effects of

overtraining, and (d) the occurrence of dopamine signals prior to self-initiated movement.

However, TD models have been shown in the past to be able to accommodate a

number of other critical experiments, including (e) that unsignaled reward produces a

positive dopamine signal (δ > 0) [5, 8, 18, 24, 32, 34, 66, 67], (f) that phasic dopamine

signals (δ > 0) transfer from the time of an unconditioned stimulus to the time of the

corresponding conditioning stimulus [1, 2, 8, 18, 19, 21, 32, 34], (g) that dopamine neurons

pause in firing (δ decreases) with missing, but expected, rewards [5, 8, 18, 24, 32–34], (h)

that early reward produces a positive dopamine signal (δ > 0) with no corresponding

decrease at the expected reward time [5,8,24,33], (i) that late reward produces a negative

dopamine signal (δ < 0) at the expected time of reward and a positive dopamine signal

(δ > 0) at the observed (late) reward [5, 8, 24, 33]. Finally, TD models have been able to

explain (j) dopamine responses to changing probabilities of receiving reward [5,8,68], and

(k) generalization responses [15, 34].

Extensive previous work already exists on how TD models capture these key exper-

imental results. Some of these cases occur due to the basic identification of the phasic

dopamine signal with δ [1,2,11]. Some occur due to the use of semi-Markov models (which

allows a direct simulation of time) [5,8,44]. Others occur due to the distributed represen-

tation of belief (e.g. partially observability [5,8,15,44]). Because our µAgents model is an

implementation of all of these, it also captures these basic results. Although the results

included in this supplemental section do not require µAgents, the inclusion of µAgents

does not lose them, which we briefly illustrate here.
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Unsignaled reward produces a positive δ signal. When presented with an unex-

pected reward signal, dopamine neurons fire a short phasic burst [32, 34, 69]. Following

Daw [8], this was modeled by a simple two state state-space: after remaining within the

ITI state for a random time (drawn from a normal distribution, μ = 15, σ = 1 time-steps),

the world transitioned to a reward-state, during which time a reward was delivered, at the

completion of which, the world returned to the ITI state (Figure 9A). On the transition

to the reward state, a positive δ signal occurred (Figure 9B). Standard TD algorithms

produce this result. Using sets of equivalent states to represent the ITI extends the time

that the US will continue to cause a dopamine surge. Without this set of equivalent ITI

states, the dopamine surge to the US would diminish within a number of trials much

smaller than observed in experimental data.

δ transfers from the unconditioned reward to conditioned stimuli. With unex-

pected reward, dopamine cells burst at the time of reward. However, when an expected

reward is received, dopamine cells do not change their firing rate [32, 34]. Instead, the

dopamine cells fire a burst in response to the conditioned stimulus (CS) that predicts

reward [32,34]. Following “the dopamine as δ” hypothesis, this transfer of δ from reward

to anticipatory cues is one of the keys to the TD algorithm [1, 2, 8, 34]. We modeled

this with a three-state state-space (ITI, ISI, and Rwd; Figure 7A). As with other TD

models, δ transferred from US to CS (Figure 7B,C,E). We modeled the ITI state as a set

of equivalent states to extend the time that the CS will continue to cause a dopamine

surge. In previous looped models, the dopamine surge to the CS would diminish within

a small number of trials, giving a learning rate incompatible with realistic CS-US learn-

ing. As with other TD models living within a semi-Markov state-space [5, 8], the delta

signal shifted back from the reward state to the previous anticipatory stimulus without
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progressing through intermediate times [70].

Missing, early, and late rewards. When expected rewards are omitted, dopamine

neurons pause in their firing [18,32,33]. When rewards are presented earlier or later than

expected, dopamine neurons show an excess of firing [33]. Importantly, late rewards are

preceded by a pause in firing at the expected time of reward [33]. With early rewards,

the data is less clear as to the extent of the pause at the time of expected reward (see

Figure 6 of Hollerman et al. [33]). As noted by Daw et al. [5] and Bertin et al. [24], these

results are explicable as consequences of semi-Markov state-space models.

In semi-Markov models, the expected time distribution of the ISI state is explicitly

encoded. µAgents will take that transition with the expected time distribution of the ISI

state. These µAgents will find a decrease in expected value because no actual reward is

delivered. The δ signal can thus be decomposed into two components: a positive δ signal

arising from receipt of reward and a negative signal arising from µAgents transitioning

on their own. These two components can be separated temporally by providing reward

early, late, or not providing it at all (missing reward).

After training with a classical conditioning task, a δ signal occurs at the CS but not

the US (Figure 10A). When we delivered occasional probe trials on which reward arrived

early, we observed a δ signal at the US (Figure 10B). This is because the value of the

CS state accounts for a reward that is discounted by the normal CS-US interval. If the

reward occurs early, it is discounted less. On the other hand, when we delivered probe

trials with late reward arrival, we observed a negative δ signal at the expected time of

reward followed by a positive δ signal at the actual reward delivery (Figure 10C). The

negative δ signal occurs when µAgents transition to the reward state but receive no actual

reward. The observation of the ISI state is incompatible with µAgents’ belief that they
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are in the reward state, so µAgents transition back to the ISI state. When reward is

then delivered shortly afterwards, it is discounted less than normal and thus produces a

positive δ signal.

If reward fails to arrive when expected (missing reward), then the µAgents will tran-

sition to the reward state anyway due to their dwell-time and state hypotheses, at which

point, value decreases unbalanced by reward. This generates a negative δ signal (Fig-

ure 10D). The signal is spread out in time corresponding to the dwell-time distribution

of the ISI state.

δ transfers proportionally to the probability of reward. TD theories explain the

transfer seen in Figure 7 through changes in expected value when new information is

received. Before the occurrence of the CS, the animal has no reason to expect reward

(the value of the ITI state is low); after the CS, the animal expects reward (the value of

the ISI state is higher). Because value is dependent on expected reward, if reward is given

probabilistically, the change in value at the CS should reflect that probability. Consistent

with that hypothesis, Fiorillo et al. [68] report that the magnitude of the dopamine burst

at the CS is proportional to the probability of reward-delivery. In the µAgents model, a

high probability of reward causes δ to occur at the CS but not US after training (Figure 11;

also see Figure 7C and Figure 10A). As the probability of reward drops toward zero, δ

shifts from CS to US (Figure 11). This is because the value of the ISI state is less when

it is not a reliable predictor of reward.

Generalization responses. When provided with multiple similar stimuli, only some

of which lead to reward, dopamine neurons show a phasic response to each of the stimuli.

With the cues that do not lead to reward, this positive signal is immediately followed

by a negative counterbalancing signal [34]. As suggested by Kakade and Dayan [15],
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these results can arise from partial observability: on the observation of the non-rewarded

stimulus, part of the belief distribution transfers inappropriately to the state representing

a stimulus leading to a rewarding pathway. When that belief distribution transfers back,

the negative δ signal is seen because there is a drop in expected value. This explanation is

compatible with the µAgents model presented here in that it is likely that some µAgents

would shift to the incorrect state producing a generalization δ signal which would then

reverse when those µAgents revise their state-hypothesis to the correct state.

To test the model’s ability to capture the generalization result, we designed a state-

space that contained two CS stimuli, both of which provided a “cue” observation. How-

ever, after one time-step, the CS- returned to the ITI state, while the CS+ proceeded

to an ISI state, which eventually led to reward. Because (in this model), both the CS’s

provided similar observations, when either CS appeared, approximately half the µAgents

entered each CS state, providing a positive δ signal. In the CS- case, the half that in-

correctly entered the CS+ state updated their state belief back to the ITI state after one

time-step, providing a negative signal. In the CS+ case, the half that incorrectly entered

the CS- state updated their state belief back to the ISI state after one time-step, providing

a lengthened positive signal. See Figure 12.

Discussion

In this paper, we have explored distributing two parameters of the standard temporal

difference (TD) algorithm for reinforcement learning (RL): the discounting factor γ and

the belief state s. We implemented these distributed factors in a unified semi-Markov

temporal-difference-based reinforcement learning model using a distribution of µAgents,

the set of which provide a distributed discounting factor and a distributed representation
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of the believed state. Using distributed discounting produced hyperbolic discounting con-

sistent with the experimental literature [40, 41]. The distributed representation of belief,

along with the existence of multiple states with equivalent observations (i.e. partial observ-

ability), provided for the simulation of collections of “equivalent-states”, which explained

the effects of overtraining [32], and differences between trace and delay conditioning [55].

Distributed state-belief also provided an explanation for transient dopamine signals seen

at movement initiation [56, 57], as well as generalization effects [15].

Although the µAgents model we presented included both distributed discounting and

distributed belief states (in order to show thorough compatibility with the literature), the

two hypotheses are actually independent and have separable consequences.

Distributed discounting

The mismatch between the expected exponential discounting used in most TD models

and the hyperbolic discounting seen in humans and other animals has been recognized for

many years [5, 8, 37, 38, 41, 71, 72].

Although hyperbolic discounting will arise from a uniform (and infinite) distribution

of exponential functions [37, 73, see also Supporting Information Appendix S1 ], as the

number of exponential functions included in the sum decreases, the discounting function

deviates from true hyperbolicity. Changing the uniformity of the distribution changes the

impulsivity of the agent (Figure 5). We also found that because the product of hyperbolic

functions is not hyperbolic, it was necessary to maintain the separation of the discounting

functions until action-selection, which we implemented by having each µAgent maintain

its own internal value function Vi(s) (Figure 4).
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Other models. In addition to the suggestion that hyperbolic discounting could arise

from multiple exponentials proposed here, three explanations for the observed behavioral

hyperbolic discounting have been proposed [37]: (1) maximizing average reward over

time [5, 71, 74], (2) an interaction between two discounting functions [75–77], and (3)

effects of errors in temporal perception [8, 37].

While the assumption that animals are maximizing average reward over time [5,71,74]

does produce hyperbolic discounting, assumptions have to be made that animals are ignor-

ing intertrial intervals during tasks [37,74]. Another complication with the average-reward

theory is that specific dopamine neurons have been shown to match prediction error based

on exponential discounting when quantitatively examined within a specific task [18]. In

the µAgents model, this could arise if different dopamine neurons participated in different

µAgents, thus recording from a single dopamine neuron would produce an exponential

discounting factor due to recording from a single µAgent within the population.

The two-process model is essentially a two-µAgent model. While it has received ex-

perimental support from fMRI [76, 77] and lesion [78] studies, recent fMRI data suggest

the existence of intermediate discounting factors as well [30]. Whether the experimental

data is sufficiently explained by two exponential discounting functions will require addi-

tional experiments on very large data sets capable of determing such differences [45, see

discussion in Predictions, below].

There is a close relationship between the exponential discounting factor and the agent’s

perception of time [8, 79, 80]. Hyperbolic discounting can arise from timing errors that

increase with increased delays [79, 81, 82]. The duality between time perception and dis-

counting factor suggests the possibility of a µAgent model in which the different µAgents

are distributed over time perception rather than discounting factor. Whether such a

model is actually viable, however, will require additional work and is beyond the scope of
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this paper.

Distributed Belief

The concept of a distributed representation of the believed state of the world has also

been explored by other researchers [5,8,23,24,83]. In all of these models (including ours),

action-selection occurs through a probabilistic voting process. However, the δ function

differs in each model. In the Doya et al. [23] models, a single δ signal is shared among

multiple models with a “responsibility signal”. In the Daw [5] models, belief is represented

by a partially-observable Markov state process, but is collapsed to a single state before δ

is calculated. Our distributed δ signal provides a potential explanation for the extreme

variability seen in the firing patterns of dopaminergic neurons and in the variability seen

in dopamine release in striatal structures [84], in a similar manner to that proposed by

Bertin et al. [24].

Distributed attention. A multiple-agents model with distributed state-belief provides

for the potential for situations represented as collection of equivalent states rather than

as a single state. This may occur in situations without readily identifiable markers. For

example, during inter-trial-intervals, there are many available cues (machinery/computer

sounds, investigator actions, etc.) Which of these cues are the reliable differentiators of

the ITI situations from other situations is not necessarily obvious to the animal. This

leads to a form of divided attention, which we can model by providing the µAgents with

a set of equivalent states to distribute across. While the µAgents model presented here

requires the user to specify the number of equivalent states for a given situation, it does

show that under situations in which we might expect to have many of these equivalent

states, learning occurs at a slower rate than over situations in which there is only one
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state. Other models have suggested hippocampus may play a role in identifying unique

states across these unmarked gaps [62, 63, 85]. While our model explains why learning

occurs slowly across such an unmarked gap, the mechanisms by which an agent identifies

states is beyond the scope of this paper.

The implementation of state representations used by many models are based on dis-

tributed neural representations. Because these representations are distributed, they can

show variation in internal self-consistency — the firing of the cells can be consistent with

a single state, or they can be distributed across multiple possibilities. The breadth of this

distribution can be seen as a representation in the inherent uncertainty of the information

represented [86–90]. This would be equivalent to taking the distribution of state belief

used in the µAgents model to the extreme in which each neuron represents an estimate of a

separate belief. Ludvig et al. [25,26] explicitly presented such a model using a distributed

representation of stimuli (“microstimuli”).

Markov and semi-Markov state-spaces

Most reinforcement-learning models live within Markov state spaces (e.g. [1,2,67,91,92]),

which do not enable the direct simulation of temporally-extended events. Semi-Markov

models represent time explicitly, by having each state represent a temporally-extended

event [5, 93–95].

In a Markov chain model, each state represents a single time-step, and thus temporally

extended events are represented by a long sequence of states [93, 94, 96]. Thus, as a

sequence is learned, the δ signal would step back, state by state. This backwards stepping

of the δ signal can be hastened by including longer eligibility traces [19] or graded temporal

representations [25,26], both of which have the effect of blurring time across the multiple

intervening states. In contrast, in a semi-Markov model, each state contains within it a
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(possibly variable) dwell-time [5, 8, 93, 97, 98]. Thus while the δ signal still jumps back

state-by-state, the temporal extension of the states causes the signal to jump back over

the full inter-stimulus time without proceeding through the intervening times. As noted

by Wörgötter and Porr [70], this is more compatible with what is seen by Schultz and

colleagues [13, 32, 34, 35, 99–101]: the dopamine signal appears to jump from reward to

cue without proceeding through the intermediate times.

Semi-Markov state spaces represent intervening states (ISI states) as a single situa-

tion, which presumably precludes responding differently within the single situation. In

real experiments, animals show specific time-courses of responding across the interval as

the event approaches, peaking at the correct time [102]. The temporal distribution of

dopamine neuron firing can also change across long delays [103]. Because our model in-

cludes a distribution of belief across the semi-Markov state space (the ti terms of the

µAgent distribution), the number of µAgents that transition at any given time step can

vary according to the distribution of expected dwell times. While matching the distri-

butions of specific experiments is beyond the scope of this paper, if the probability of

responding is dependent on the number of µAgents (Equation (5)), then the macro-agent

can show a similar distribution of behavior (see Figure 8).

Anatomical instantiations

The simulations and predictions reported here are based on behavioral observations and

on the concept that dopamine signals prediction error. However, adding the hypothe-

ses that states are represented in the cortex [5, 6, 104], while value functions and action

selection are controlled by basal ganglia circuits [104–107] would suggest that it might

be possible to find multiple µAgents within striatal circuits. Working from anatomical

studies, a number of researchers have hypothesized that the cortical-striatal circuit con-
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sists of multiple separable pathways [27, 28, 108, 109]. Tanaka et al. [30] explicitly found

a gradient of discounting factors across the striata of human subjects. This suggests a

possible anatomical spectrum of discounting factors which would be produced by a pop-

ulation of µAgents operating in parallel, each with a preferred exponential discounting

factor γi. Many researchers have reported that dopamine signals are not unitary (See [8]

for review). Non-unitary dopamine signals could arise from different dopamine popu-

lations contributing to different µAgents. Haber et al. [29] report that the interaction

between dopamine and striatal neural populations shows a regular anatomy, in a spiral

progressing from ventral to dorsal striatum. The possibility that Tanaka et al.’s slices

may correspond to Haber et al.’s spiral loops, and that both of these may correspond to

µAgents is particularly intriguing.

Predictions

Hyperbolic discounting. The hypothesis that hyperbolic discounting arises from mul-

tiple exponential processes suggests that with sufficient data, the actual time-course of

discounting should be differentiable from a true hyperbolic function. While the fit of

real data to hyperbolic functions are generally excellent [39, 40, 48, 110], there are clear

departures from hyperbolic curves in some of the data (e.g. [51, 54]). Rates of forgetting

were also once thought to be hyperbolic [45], but with experiments done on very large

data sets, rates of forgetting have been found, in fact, to be best modeled as the sum

of multiple exponential processes [45, 46]. Whether discounting rates will also be better

modeled as the sum of exponentials rather than as a single hyperbolic function is still an

open question.

True hyperbolicity only arises from an infinite sum of exponentials drawn from a dis-

tribution with P (γ < x) = xa, x ∈ (0, 1). Under this distribution, the overall hyperbolic
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discounting is described by 1
1+kD

, where k = 1/a. Changing the parameter a can speed

up or slow down discounting while preserving hyperbolicity; changing the γ distribution

to follow a different function will lead to non-hyperbolic discounting.

Serotonin precursors (tryptophan) can change an individual’s discount rate [111,112].

These serotonin precursors also changed which slices of striatum were active [112]. This

suggests that the serotonin precursors may be changing the selection of striatal loops [29],

slices [30], or µAgents. If changing levels of serotonin precursors are changing the selection

of µAgents and the µAgent population contains independent value estimates (as suggested

above), then learning under an excess of serotonin precursors may have to be relearned

in the absence of serotonin precursors and vice-versa due to the change in the population

of µAgents occurring with the change in serotonin levels.

In addition, in tasks structured such that exponential discounting maximizes the re-

ward, subjects can shift their discounting to match the exponential to the task [113].

Drug-abusers [48, 50], smokers [51, 52], and problem gamblers [53] all show faster dis-

counting rates than matched control groups. One possible explanation is that these al-

tered overall discounting rates reflect differences in the distribution of µAgent discounting

factors. As shown in Figure 5, biasing the µAgent γ distribution can speed or slow overall

discounting. Further, while a γ distribution following P (γ < x) = xa exhibits hyperbolic

discounting, other distributions lead to non-hyperbolic discounting. Model comparison

could be used on human behavioral data to determine if subsets of subjects show such

patterns of discounting. However, this may require very large data sets [45].

Distributed belief and collections of equivalent states. The hypothesis that the

slow development of overtraining [32] and the differences between trace- and delay con-

ditioning [55] occur due to the distribution of attention across collections of equivalent
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states implies that these effects should depend on the ambiguity of the state given the

cues. Thus, value should transfer across a situation proportionally to the identifiability of

the that situation. Decreasing cue-ambiguity during inter-trial-intervals should speed up

the development of overtraining (observable as a faster decrease in dopamine signal at the

CS). Increasing cue-ambiguity during inter-stimulus-intervals should slow down learning

rates of delay-conditioning. As the cues become more ambiguous and less salient, delay-

conditioning should become closer and closer to trace conditioning. The extant data seem

to support this prediction [55, 64].

Summary/Conclusion

In this paper, we explored distributing two parameters of temporal difference (TD) models

of reinforcement learning (RL): distributed discounting and distributed representations of

belief. The distributed discounting functions provide a potential mechanistic explanation

for hyperbolic discounting. The distributed representations of belief provide potential

explanations for the decrease in dopamine at the conditioned stimulus seen in overtrained

animals, for the differences in learning rate between trace and delay conditioning, and for

transient dopamine at movement initiation. These two hypotheses, although separable,

together provide a unified model of temporal difference reinforcement learning capable of

explaining a large swath of the experimental literature.
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Figure 1. Model overview. The world communicates with the agent by sending
observations and rewards and receiving actions. The world maintains its own ”true”
state and dwell time in that state. The agent is composed of independent µAgents that
each maintain a belief of the world’s state and dwell time. Each µAgent has its own
value estimate for each state and its own discounting factor, and generates an
independent δ signal. The µAgents’ belief is integrated for action selection by a voting
process.
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With an exponential discounting function,
rate of discounting does not change with time.

V (t) =

∫ ∞

t

γτ−tE[R(τ)]dτ (11)

Figure shows expected value of each reward
with a discounting parameter γ = 0.9.
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With a hyperbolic discounting function, rate
of discounting changes with time to reward.

V (t) =

∫ ∞

t

E[R(τ)]

1 + k(τ − t)
dτ (12)

Figure shows expected value of each reward
with a discounting parameter k = 1.0.

Figure 2. Discounting functions. (A) Exponential discounting reduces value by a fixed
percentage over any time interval. Therefore the relative preference of two future
rewards does not change as the time to these rewards approaches. (B) In hyperbolic
discounting, a later/larger reward may be preferred over a sooner/smaller reward until
the rewards draw closer, at which point choice preference can reverse so the
sooner/smaller reward is impulsively preferred. After Ainslie [38, 41].
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Figure 3. Hyperbolic discounting. (A) State-space used. (B-E) Mazur-plots. These
plots show the delay d2 at the indifference point where actions a1 and a2 are selected
with equal frequency, as a function of the delay d1. The ratio of actions a1:a2 is an
observable measure of the relative values of the two choices. Blue circles represent
output of the model, and green lines are least-squares fits. For hyperbolic discounting,
the slope of the line will equal the ratio r2/r1, with a non-zero y-intercept.
Compare [39, 40].
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Figure 4. Discounting across state-chains. (A) Single-step state-space used for B-G.
(B,E) When the model consists of a set of exponential discounters with γ drawn
uniformly from (0, 1), the measured discounting closely fits the hyperbolic function.
(C,F) When the model consists of a single exponential discounter with γ = 0.75, the
measured discounting closely fits the function V = 0.75D (exponential). (D,G) When
the model consists of a single hyperbolic discounter, the measured discounting closely
fits the function V = 1

1+D
(hyperbolic). (H) Chained state-space used for I-N. (I) If

values are distributed so each exponential discounter has its own value representation,
the result is hyperbolic discounting over a chained state space. (J,M) A single
exponential discounter behaves as in the single-step state space, because multiplying
exponentials gives an exponential. (K,N) A single hyperbolic discounter now behaves as
an exponential discounter with γ = 0.5, because each step is discounted by 1

1+D
, where

D = 1. (L) Likewise, a set of exponential discounters with shared value representation
behave as an exponential discounter with γ = 0.5, for the same reason.
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Figure 5. Rate of discounting depends on γ distribution. (A) The uniform distribution
of exponential discounting rates used in all other figures. (B) As shown in Figure 4, the
overall discounting is hyperbolic. (C) A distribution of exponential discounting rates
containing a higher proportion of slow discounters. (D) Overall discounting is slower.
(Note that it is now fit by the function 1

1+0.5D
.) (E) A distribution of exponential

discounting rates containing a higher proportion of fast discounters. (F) Overall
discounting is faster. (It is now fit by the function 1

1+2D
.)
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Figure 6. Trace and Delay conditioning paradigms. (A,B) Explanation of delay (A)
and trace (B) conditioning. In delay conditioning, the cueing stimulus remains on until
the reward appears. In trace conditioning, the cueing stimulus turns back off before the
reward appears. (C,D) State spaces for delay-conditioning (C) and trace-conditioning
(D). In delay conditioning, the presence of the (presumably salient) stimulus produces a
single, observationally-defined state. In trace conditioning the absence of a salient
stimulus produces a collection of equivalent states. (E) Simulations of trace vs. delay
conditioning. Value learning at the CS state is slower under trace conditioning due to
the intervening collection of equivalent states. Larger sets of equivalent states lead to
slower value-growth of the CS state.
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Figure 8. Modeling dopaminergic signals prior to movement. (A) State space used for
simulations. The GO state has the same observation as the ITI states, but from GO an
action is available. (B) Due to the expected dwell-time distribution of the ITI state,
µAgents begin to transition to the GO state. When enough µAgents have their
state-belief in the GO state, they select the action a, which forces a transition to the ISI
state. After a fixed dwell time in the ISI state, reward is delivered and µAgents return
to the ITI state. (C) As µAgents transition from ITI to GO, they generate δ signals
because V(GO) > V(ITI). These probabilistic signals are visible in the time steps
immediately preceding the action. Trial number is represented on the y-axis; value
learning at the ISI state leads to quick decline of δ at reward. (D) Average δ signal at
each time step, averaged across 10 runs, showing pre-movement δ signals. These data
are averaged from trials 50-200, illustrated by the white dotted line in C. B, C, and D
share the same horizontal time axis. Compare to [56].
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occurs when reward is actually delivered. (D) If reward is omitted, negative δ occurs
when reward was expected.



62

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

δ

P(Reward)

δ @ CS

δ @ Reward

Figure 11. Probabilistic reward delivery modulates δ at CS and US. As the probability
of reward drops, the δ signal shifts proportionately from the CS to the US. All
measurements are taken after training for 100 trials.



63

CS+

Stimulus
Reward

Received

ISI

Stimulus

still on

ITI

Random 

delay

CS-

Stimulus

A

-2 -1 0 1 2 3 4 5 6

-0.4

-0.2

0.0

0.2

0.4

0.6

CS+

δ
 s

ig
n
a
l

-2 -1 0 1 2 3 4 5 6

CS-

-0.4

-0.2

0.0

0.2

0.4

0.6

δ
 s

ig
n
a
l

B C

time from CS+ reward time from CS- reward

Figure 12. Effects of generalization on δ signals. (A) State-space used for measuring
generalization. (B,C) Either CS+ or CS- produces a δ signal at time 0. (B) With CS+,
the positive δ signal continues as µAgents transition to the ISI state, but (C) with CS-,
the (incorrect) positive δ signal is counter-balanced by a negative δ correction signal
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Variables

MW world model

sW (t) current world state

tW (t) current dwell time in sW (t)

P (O|s) probability of observing observation O given state S

P (s|O) calculated from P (O|s)
O(t) observation passed from world to macro-agent at time t

A(t) action passed from macro-agent to world at time t

γi discounting factor, ∈ (0, 1) for µAgent i

δi(t) value-prediction-error for µAgent i

MA
i µAgent world model (= MW ) for µAgent i

si(t) hypothesized state for µAgent i

ti(t) hypothesized dwell time in si for µAgent i

Vi(s) value function for µAgent i

Parameters

nμ number of µAgents 100

α learning rate 0.1

τ time-step compression factor 1.0

ε exploration/exploitation 1.0 ∗ (0.95)[N rwds]

Table 1. Variables and parameters used in the simulations.
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Temporal-difference reinforcement learning

with distributed representations

Zeb Kurth-Nelson, A. David Redish

Appendix S1

Hyperbolic discounting from a sum of exponentials. The summed effect of these

exponential discounting functions provides the overall agent with hyperbolic discounting:

∫ 1

0

γxdγ =
1

1 + x
(13)

By the standard integration power law,

∫ 1

0

γxdγ = lim
γ→+0

−(γx+1 − 1)

x + 1
(14)

which, if x > 0, approaches 1/(1 + x) as γ approaches 0 from γ > 0.
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