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Opinion
Neural activity in the mammalian CNS is determined by
both observable processes, such as sensory stimuli or
motor output, and covert, internal cognitive processes
that cannot be directly observed. We propose methods
to identify these cognitive processes by examining the
covert structure within the apparent ‘noise’ in spike
trains. Contemporary analyses of neural codes include
encoding (tuning curves derived from spike trains and
behavioral, sensory or motor variables), decoding
(reconstructing behavioral, sensory or motor variables
from spike trains and hypothesized tuning curves) and
generative models (predicting the spike trains from
hypothesized encoding models and decoded variables).
We review examples of each of these processes in
hippocampal activity, and propose a general method-
ology to examine cognitive processes via the identifi-
cation of dynamic changes in covert variables.

Introduction
The standard neurophysiological approach to understand-
ing how neuronal activity encodes information is to
examine neural activity while a subject is repeatedly pre-
sented with the same stimulus, or performs multiple trials
of the same behavior. Typically, the relationship of a single
neuron’s activity to an overt variable is described by the
tuning curve of the cell, which is constructed under the
assumption that noise sources are independent of the overt
variable of interest and will, thus, average to zero in the
tuning curve. In addition to this noise assumption, the
standard approach also assumes that neurons indepen-
dently contribute to the representation of the overt vari-
able so that a neural representation can be understood by
computing an average of the independent tuning curves.

Althoughthe standard ‘encoding’ approachhasbeenused
to successfully characterize neural representations of overt
variables in several areas of neuroscience, it has been more
difficult to apply the encoding approach to identify repres-
entations of covert cognitive variables like attention, de-
cisions and planning. One difficulty is found at the level of
experimental design because such covert variables might
not be expressed repeatedly and reliably, even given an
identical set of external conditions. However, even beyond
this experimental difficulty, the noise and independence
assumptions that underlie the definition of tuning curves
Corresponding author: Redish, A.D. (redish@umn.edu).

1364-6613/$ – see front matter � 2008 Elsevier Ltd. All rights reserved. doi:10.1016/j.tics.2008.1
are at odds with the theoretical framework of ensemble
representations (e.g. cell assemblies [1]). Within an ensem-
ble framework, information is represented by conjoint
activity distributed across a functionally defined neuronal
subgroup or cell assembly composed of many neurons.
Furthermore, eachneuron in a cell assembly canparticipate
in other cell assemblies that represent different overt and
covert variables. According to this view, understanding a
neural representation requires characterizing conjoint
neural activity rather than just an average from individual
neurons. It is also unlikely that a neuron will be tuned to a
single variable. Both of these considerations are difficult to
reconcile with the standard encoding approach based on
tuning curves.

A growing body of evidence supports the cell assembly
framework, especially in recent studies of the representa-
tion of location in hippocampal ensemble activity. Here, we
consider evidence that what might seem to be noise in
tuning curves actually results from operation of an exper-
imentally unobserved (covert) variable or process. We focus
on recent studies of hippocampal place cell representations
of locations, which have gone beyond the encoding approach
to provide compelling evidence of covert cognitive variables
in hippocampal discharge. Based on these studies, we out-
line a general ‘generative’ approach for finding covert cog-
nitive variables in the apparent noise of tuning curves.

An early example: decoding mental rotation in
cortical discharge
An important study by Georgopoulos et al. [2] showed that
coherent, cell assembly-like dynamics within a neuronal
population were related to cognitive function. Monkeys
were trained to reach towards a target selected on each
trial from one of eight potential directions around a circle.
However, on a subset of probe trials, a bright target
indicated that the rewarded direction would be rotated
90 degrees from the signaled direction. Georgopoulos et al.
[2] characterized the correspondence between observed
spiking activity in the motor cortex immediately before
reaching and the direction of the subsequent reach by
computing tuning curves for a population of cells during
the unrotated trials. Prior to reaching on the rotated probe-
trials, spiking within this population changed dynami-
cally, such that the orientation represented by this popu-
lation rotated 90 degrees. This study showed that apparent
noise activity in themotor cortex was actually organized as
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a coherent, dynamic representation of movements before
reaching, and demonstrated that a covert cognitive process
could be observed by characterizing the dynamics of spik-
ing activity in a population of neurons (Figure 1).

Georgopoulos et al. [2] is an early demonstration that
explanations of spiking activity in the neocortex by the
overt stimulus and response properties of static tuning
curves could be substantially improved by the addition of
experimentally covert, dynamic cognitive variables.
Although several more recent studies have shown spiking
activity that is most readily explained as cell assembly
Figure 1. Decoded direction from a population of motor cortex neurons shows

mental rotation. Motor cortex neurons were recorded during direct reaches to a

target or during reaches to a location offset by 90 degrees. In standard trials,

decoding yielded a constant direction. By contrast, decoding during reaches 90

degrees counterclockwise from the target produced a decoded direction of

reaching that rotated systematically from the trained direction to the rotated

target. This covert, mental rotation of the planned movement could only be

observed through the decoding process. The population in this study were

recorded sequentially, not simultaneously, which makes the assumption of a

constant cognitive representational dynamic from trial to trial. Modern technology

enabling the simultaneous recording of large neural ensembles has alleviated this

constraint. (a) Task. (b) Decoded population vector over time. (c) Spatial view of

decoded population vectors shown in (b). (d) Decoded direction from the

population vector. Reprinted, with permission, from Ref. [2].
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dynamics in the neocortex [3–5], these investigations into
cognition have been hampered by the long training times
required for primate experiments (which tend to lead to the
use of non-cognitive processes [6]). By contrast, many
behavioral tasks that model cognition are quite amenable
to unit recordings in rodents, often allowing for recordings
throughout both acquisition and performance of the task
[7,8]. The combination of these tasks, the highly selective
spiking activity of hippocampal pyramidal cells and the
well-established use of chronic recording technologies
make the hippocampus a model system for studying the
representation of cognitive variables in neural discharge.

Dynamic spatial information in hippocampal ensembles
The location of the animal relative to its environment is the
clearest signal in the spiking activity of hippocampal pyr-
amidal cells recorded in behaving rodents, leading to the
adoption of the term ‘place cell’ [7–9]. Each pyramidal
neuron primarily spikes when the animal is in a particular
part of its environment (the cell’s ‘place field’), which
indicates that the activity across the place cell population
creates a map-like representation of the animal’s current
position in an environment [7–9]. This idea led to the
convention of constructing a spatial tuning curve for indi-
vidual place cells as a time-averaged firing rate map of cell
spiking as a function of position [10,11]. This time-indepen-
dent firing rate map can be interpreted as a tuning curve of
firing to spatial position. The strength of the spatial signal,
the remarkable stability of these firing rate maps in con-
stant environmental conditions and their response to well-
defined changes of the spatial environment [8,10–13] led to
the prevailing view that a given hippocampal pyramidal
neuron is either a place cell or not active in a given environ-
ment [14]. Momentary spiking activity that deviated from
the tuning curve of a cell was taken as noise and ignored by
averaging across several minutes of recording.

Changes in place field firing (under, for example,
environmental changes [12,13]) were identified as changes
between multiple maps [15–18]. This hypothesis led to the
suggestion that these transitory events in which spiking
activity deviated from the tuning curve of a cell might
reflect self-consistent information about other locations or
other maps, presumably as the animal shifted its attention
from its current position to other kinds of information. If
this were true, then one should be able to detect these
covert cognitive shifts between input streams by examin-
ing the ‘noise’ for statistical structure, even if the under-
lying parameters of that structure were unknown.
Identifying cognitive function then entails finding the
cognitive bases for the covert parameters: tying these
often-fleeting sets of active neurons that coalesce and
disappear to the psychological processes that they presum-
ably underlie, such asmemory, decision-making and atten-
tion. We review current progress towards these admittedly
ambitious goals in the hippocampus and describe a general
computational approach towards finding covert cognitive
processes in the firing patterns of neural ensembles.

Dynamics at long timescales
Although we are mainly concerned with the dynamics of
hippocampal neurons at the millisecond timescale, there is
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abundant evidence for the dynamic influence of cognitive
processes on the firing of hippocampal neurons at longer
timescales, notably with regard to the property of place
cells called ‘remapping’ [8,12,19]. Although a place cell can
indeed have the same place field for months in a constant
environment [20], unlike sensory neurons, place cells can
also completely change their spatial tuning curves between
experiences within an environment [13,19,21–23].
Although this remapping most commonly happens in
response to changes in environmental cues (e.g. putting
the animal in a novel environment), remapping is not a
straightforward sensory transformation of the changed
cues [8,13,23–30]. Moreover, place cells can remap without
any change whatsoever in the available spatial cues, for
instance when an animal changes its behavioral strategy
Figure 2. Remapping depends on covert, cognitive variables. (a) Observations of place f

conditions but not others. (b) These effects are significantly modulated by cognitive va

structure in the place cell remapping. Tuning curves (green) are generated from observat

is dependent on covert processes of attention, task and behavioral relevance. Part (a) r

from Ref. [22].
[31], uses different coordinate systems [32–35] or as infor-
mation about a context is acquired [36,37]. Often, the
remapping can best be thought of as multiple stable states,
with different environments or conditions associated with
particular sets of place cells that are stably retrieved upon
subsequent reintroductions to the appropriate environ-
ment, or as the animal switches between tasks or coordi-
nate systems (Figure 2).

What might govern these shifts in the information
reflected by hippocampal neurons, and how might they
be tied to cognition? Kentros et al. [22] found that place
fields in mice spontaneously remapped far more often than
those of rats under the same simple behavioral conditions
(chasing after randomly dropped food pellets in a familiar
environment). However, mice recorded while accurately
ield distributions between two experiences on a task show remapping under some

riables, such as the presence of a spatial task. (c) Diagram of the identification of

ions of spiking data and behavioral variables (orange). The likelihood of remapping

eproduced, with permission, from Ref. [21]. Part (b) reproduced, with permission,
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performing a spatial task in the same familiar environ-
ment had place fields that were as stable as those of rats.
Kentros et al. [22] suggested that the key difference was
that the animals doing the spatial task had reason to pay
attention to the available spatial cues, so they remembered
them, which was reflected in the stability of their place
fields. These studies support the hypothesis that covert
cognitive processes (such as what the animal is paying
attention to) influence the long-term dynamics of place
fields. However, attention typically operates at much
shorter timescales, on the order of seconds to milliseconds.
This suggests the possibility of finding task-related shifts
in network activity in hippocampal neurons at these time-
scales as well.

Dynamics at short timescales
Might the covert variables that control map retrieval upon
entering an environment also operate on short timescales
to repeatedly switch between multiple maps in constant
conditions? If the tuning curve maps were sufficiently
different, almost any repetitive map switching would
appear as noise in place cell tuning curves [38]. Indeed,
in the simple foraging tasks in which stable place fields are
typically observed, a place cell has unexpectedly high
Figure 3. During simple tasks, there is noise in place fields that can be explained as chan

attentive and goal-related conditions. In simple foraging tasks, there is a high variabil

approach produces variability consistent with the predicted tuning curves. (b) Using

hypothesized covert variables (Abbreviations: S, split by covert variable; R, random shu

assembly dynamics indicate the presence of covert variables (purple). Tuning curves

variables (orange) with those hypothesized covert variables (purple). The hypothesiz

reproduced, with permission, from Ref. [38]. Part (b) reproduced, with permission, from
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levels of spiking variability inside its place field [39]. In
these tasks, a robust place cell might emit 20 or more
action potentials on a single pass through a place field, but
fail to emit any action potentials seconds later on a pass
that is behaviorally indistinguishable. The statistics of
these deviations are incompatible with the hypothesis that
place cell activity simply varies randomly about a mean
described by a single spatial tuning curve [38,39], and
instead support a hypothesis that place cell activity reflects
a small number of spatial tuning curves that differ mainly
in firing rate and are alternatively switched on and off with
a period of about one second [38,40,41] (Figure 3).

This proposal is analogous to the suggestion that the
hippocampus maintains multiple spatial maps of the
environment and somehow switches between those maps
very quickly. Support for this proposal comes from studies
by Harris et al. [42] and Jackson and Redish [41]. Harris
et al. [42] initially showed that predicting the spiking
activity of hippocampal place cells using both position
and the spiking activities of a set of simultaneously
recorded place cells was significantly better than predict-
ing hippocampal place cell activity using position infor-
mation alone. Harris [43] argued that the covariation of
place cell spiking activity was evidence for use of multiple
ges in covert, cognitive variables. (a) The noise in place field firing differs between

ity. In tasks with a goal, the variability decreases. Taking only firing during goal-

generative models, it is possible to split place cell firing rate maps apart using

ffled control). (c) Diagram of the identification of structure as covert variables. Cell

(green) are generated by combining observations of spiking data and behavioral

ed covert variables explain large portions of the residual ‘noise’ (blue). Part (a)

Ref. [41].
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cell assemblies within the hippocampus. Jackson and
Redish [41] showed that coherent fast switching between
multiple hippocampal cell assemblies could explain the
excess variability observed within place cell spiking
activity observed by Fenton and Muller [39]. Furthermore,
Jackson and Redish [41] showed that fast switching be-
tween cell assemblies was clearly aligned to specific beha-
vioral phases in certain tasks and produced multiple and
distinct tuning curve maps. The cell assemblies observed
on the linear track, for instance, were generally aligned
with the running direction of the animal, and their pro-
jection onto spatial position was apparent as directional
place fields. Although directional place fields have been
previously explained as indicative of multiple reference
frames (maps) in linear track tasks [10,17,18,32,41,44],
Jackson and Redish [41] showed that reference frames
are not specific to linear track tasks and can explain the
excess variability first identified by Fenton and Muller
[39].

The high levels of place cell spiking variability is unli-
kely to be noise because it has an across cell organization
that can be explained as coordinated activity [41–43].
These observations further indicate that internal, unob-
servable or covert processes mediate the active tuning
curve of the cell and, consequently, determines the dis-
charge of the cell at that moment. Observations that these
cell assembly dynamics are modulated by cognitive
demands [22,38] and aligned to specific task components
[41] indicate that cell assembly dynamics are better
described as a reflection of covert cognitive processes than
of noise.

Extra-field spikes during sleep, rest and directed
behavior
Although place fields described pyramidal cell firing
during awake behavior, these same pyramidal cells fired
during specific sleeps states (e.g. during sharp-waves
occurring within slow-wave sleep and during REM sleep
[7,45]). This sleep-related firing was difficult to explain
from a traditional tuning-curve perspective. Similarly,
place fields fire extra spikes outside their place fields
during rest, grooming, eating and other, non-attentive
pausing behaviors [7]. Subsequent studies showed that
during sleep states these extra-field spikes entail a reacti-
vation of place cell firing sequences that is both reliable and
coherent. Cell pairs, ensembles and the temporal order
therein that were active during awake behavior are reac-
tivated during subsequent sleep states [46–52] – hippo-
campal pyramidal cell spiking activity continues to be
organized with respect to the representation of previously
experienced space during sleep. The firing of hippocampal
cells during sleep is better described as ‘replay’ than as
noise (Figure 4).

Decoding algorithms applied to neural ensembles found
that the decoded location during awake rest states
deviated from the observed location of the rat [53], but
Jensen and Lisman were not able to identify any structure
in these processes and concluded that they were noise.
Recent studies, however, have found that these extra-field
spikes occurring during rest can be understood as reacti-
vation of recently experienced behaviors [54–59]. These
results indicate that the noise identified by Jensen and
Lisman [53] actually contains structure and reflects a
covert (cognitive) event.

Johnson and Redish [60] examined place cell firing at
a decision point. At difficult decision-points, rats pause
but remain attentive to their surroundings: they turn
back and forth, orienting down potential choices in a
process termed vicarious trial-and-error (VTE [61]).
During these behaviors, the hippocampus remains in
an active theta state (similar to running behavior
[7,60,62]). Johnson and Redish [60] found that during
these behaviors, place cells fired spikes even if the
animal was outside of the cell’s place field, at a location
where the tuning curve predicted zero spikes [60]. Decod-
ing activity during these behaviors revealed a sequential
sweep of positions from the current position of the
animal to potential future positions on each arm. The
non-local forward representations contained sequential
structure, they were predominantly ahead of the animal
and were related to the orientation of the animal during
the VTE behavior. These data indicate that place cell
activity that occurs outside of a cell’s place field signals a
covert process related to the prediction of potential
spatial positions available to the animal rather than
simple noise (Figure 5).

Discussion: encoding, decoding and generative
approaches
The studies reviewed earlier indicate a correspondence
between covert, cognitive variables and deviation of neural
activity from the tuning curve of a cell. The conclusions
from these studies result from at least one of three distinct
approaches to analysis, ‘encoding’, ‘decoding’ and ‘genera-
tive’. Each approach is a distinct way to evaluate the
validity of a hypothesized neural code and determine
how well a variable can be related to neural activity [59]
(Box 1).

Encoding approaches
If a cell reliably changes its firing as a function of different
stimulus conditions or differences in a behavioral
parameter, then one can say that the cell is tuned to the
parameter in question [63]. The tuning curve thus
describes how activity represents information about the
parameter [64]. Within the encoding approach, validity of
a neural code is based on howmuch information the neural
code provides about the variable in question [63–65]. The
amount of information can be measured using either
Shannon information [64] or Fisher information [63].
However, information measures depend on the concept
of a signal separated from noise, and they all effectively
measure the extent to which the signal can be differen-
tiated from an unstructured, unexplainable noise com-
ponent. Identifying covert, cognitive processes using
encoding approaches depends on making covert processes
overt by aligning cognitive events to behavioral tasks so
that they always occur at the same time on each trial or by
creating tasks that differ only in the hypothesized covert
processes. The encoding approach has enjoyed some suc-
cess within tightly controlled behavioral experiments
on attention [22], categorization [66] and various other
59



Figure 4. Replay after behavior is an example of a covert, cognitive event identified by clear structure within extraneous spiking. (a) Direct examination of cell firing shows

that cells fire in the same sequence during post-behavior sleep (bottom) as the place fields during behavior (top). (b) Direct observation of firing during sharp-waves during

awake states shows sequential replay akin to that seen during sleep. (c) Diagram of the identification of structure in the noise. Tuning curves (green) are generated from

observations of spiking data and behavioral variables (orange, top). When compared to observations of spiking data from sleep states (orange, bottom), these tuning curves

can be used to decode represented position (blue). Structure in the decoding leads to the conclusion that there are covert variables (replay). (d) Diagram of the identification

of structure in the noise during awake states. Tuning curves (green) are generated from observations of spiking data and behavioral variables (orange, top). During sharp-

waves, there is a mismatch between the spiking predicted by the tuning curves and the observed spiking. When decoding represented position (blue), structure in the

decoding leads to the conclusion that there are covert variables (replay). Part (a) reproduced, with permission, from Ref. [49]. Part (b) reproduced, with permission, from Ref.

[57].
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Figure 5. Extraneous spiking during awake behaviors can be explained by covert, cognitive ‘planning-like’ events. (a) Decoding extra-field spikes at the choice point shows

non-local sweeps of locations ahead of the animal down potential paths. (b) These decoded variables are significantly different at the choice point relative to a matched-

time approach to that choice point. (c) Diagram of the identification of structure in the noise during awake states. Tuning curves (green) are generated from observations of

spiking data and behavioral variables (orange, top). At the choice-point, there is a mismatch between the spiking predicted by the tuning curves and the observed spiking.

When decoding represented position (blue), structure in the decoding leads to the conclusion that there are covert variables (forward sweeps). Parts (a,b) reproduced, with

permission, from Ref. [60].
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aspects of decision-making [67], including complex higher-
order transformations of complex variables [68,69]. How-
ever, encoding approaches offer only limited and indirect
methods for assessing the dynamic organization of neural
populations that, according to cell assembly concepts,
support cognitive function by coordinated changes across
many cells within a single trial.

Decoding approaches
Decoding compares a sample of neural activity to an estab-
lished tuning curve in an attempt to predict the value of the
encoded behavioral, environmental or cognitive parameter
[53,64,70,71]. Decoded results that deviate from the obser-
vation are interpreted as errors [53,70–72]. Average errors
are used to distinguish between multiple decoding algor-
ithms [70–72], but individual decoding errors are typically
thought to indicate noise or the inadequacy of the neural
code used for decoding.

Analysis of covert, cognitive processes present a
distinct problem for the decoding approach to neural codes
because the cognitive variables implied by these processes
are not typically experimentally observable. In decoding
approaches, these cognitive processes will probably appear
as decoding errors. To avoid the problem of calling these
deviations ‘errors’, decoding approaches to covert, cogni-
tive processes have either highlighted unexpected struc-
ture within the distribution of decoding errors or compared
the time series of predicted (decoded) cognitive variables
with a hypothetical time series that is derived from
subjective expectations about the cognitive processing.
The application of the decoding approach to cognitive
processing has been successful in several studies on popu-
lation vector rotation in motor cortex [2,4] and route replay
in hippocampus [49,53,54,57–59]. However, the decoding
approach to cognitive processing provides a weak form of
statistical testing because it depends entirely on how the
hypothesized cognitive time series has been defined. As a
result, decoding approaches to covert cognitive processes
are usually reducible to an extended cross correlation
analysis that is informed by the tuning curve of each cell,
which requires the potentially dubious assumption that
the covert cognitive variable is constant across many trials
[2,4,48,49,51,55,73].

Generative approaches
The studies of within sessionmulti-stability and extra-field
spiking used what we call the generative approach. The
generative approach exploits the fact that a tuning curve is
not merely descriptive; it can also be used as a basis for
generating a prediction of neural activity from a given set
of behavioral, environmental or cognitive parameters
[39,41,42,59,64]. The generative approach enables direct
comparisons between the predictions that a spike should
occur and actual observations. The generative approach
can be used in flexible tasks that are more likely to involve
cognition. As a result, the generative approach provides a
framework for detecting and quantifying the multi-neuron
cell assembly dynamics that Hebb [1] originally proposed.

Support for the validity of a proposed neural code within
the generative approach is determined by how well an
61



Box 1. Analyzing neural ensembles

Current technology enables the simultaneous recording of large

neural ensembles from awake, behaving animals. The simultaneity of

the large neural ensembles enables the identification of both decoded

behavioral variables (reconstruction) and the prediction of spike trains

(generative models) from hypothesized processes (Figure I).

Encoding

Tuning curves are generated from the correlations of behavioral

variables and simultaneously observed spike trains. Behavioral

variables can include sensory inputs, motor outputs or task-related

behavioral variables (as shown here).

Decoding

By definition, a tuning curve encodes a description of an observed

variable, such as a behavior, as a function of spike trains. Through

standard methods, it is possible to invert this description to predict

the behavioral variable from an observation of spike trains.

Generative models

Because the tuning curve is a description of the spike train as a

function of the behavioral variable, it is possible to predict the spike

trains from the observed behavior and/or the value of a hypothesized

or decoded covert variable.

Comparisons

The decoded behavioral variable can be compared with the actual

behavioral variable. These differences (and similarities) can be

examined for structure, which provides evidence for cognitive

processes. Similarly, the predicted spike trains can be compared with

the actual spike trains for differences and similarities, which can be

examined for underlying structure and provides evidence for

cognitive processes.

Figure I. Example of the encoding-decoding-generative models cycle. Encoding – tuning curves are generated from behavior variables (here, the location of the rat

during foraging within a 1m cylinder) and from ensemble spike trains (here, showing diagrammatic action potentials from nine of 93 cells; spikes from each cell are

indicated by a different color). Decoding – combining tuning curves and observed spike trains produces decoded variables. This example shows a Bayesian probability

distribution of the location of the rat given the tuning curves and spike trains at a given time. The white star indicates the observed location of the animal. Generative

models – combining decoded behavioral variables with tuning curves produces predicted spike trains.
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observed set of neural activity can be predicted from beha-
vioral, environmental or cognitive variables [41,42,59,64].
At a superficial level, the application of the generative
approach to covert, cognitive processes faces the same pro-
62
blem encountered within decoding approaches (that a
hypothetical time series of a cognitive variable must be
proposed for evaluating validity). However, several appli-
cations of the generative approach have circumvented this
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problem by inferring the time series of a covert variable’s
value on the basis of neural ensemble activity [41,42,59].
Insteadof relyingonassumedpsychologicalprocesses, these
variants of the generative approach either implicitly [42] or
explicitly [41,59] used decoding algorithms to infer the time
series of the covert variable. These studies showed that
apparent noise at the single unit level was actually self-
consistent within the set of simultaneously recorded
neurons. The ensemble activity was coordinated even when
it deviated from what the experimenter expected given the
position of the animal in the maze and presumed spatial
map; these experimentally unexpected deviations were con-
sistent with switching between spatial maps [41], route
replay [59] and other non-local spatial representations
[60]. The success of the generativeapproach in identification
of covert processes illustrates the power of basing validity
tests of the neural code on a biological signal (ensemble
activity) instead of relying on more indirect expectations
that arbitrarily delimit cognition.

Conclusion
Cognitive processes fundamentally and often subtly change
how information is represented in the brain. As a result,
understanding the neural bases of cognition requires one to
distinguish between noise and covert, internally generated
changes in neuronal firing patterns. The generative
approach provides a distinct advantage over approaches
that stop at encoding or decoding because generative
approaches can quantitatively differentiate between ran-
dom noise and structured variability that is by definition
not noise, but cannot be accommodated by the tuning curve
of the neuron. As techniques for recording large neural
ensembles become a more standard tool for investigating
the neural basis of cognition across the brain, the theor-
etical problem of how to analyze neural data under con-
ditions in which constancy of the cognitive variable cannot
be safely assumed becomes crucially important. Analysis of
this ‘excess’ variability provides a point of departure for
understanding how attention, memory consolidation and
decision-making contribute to, and refine, traditional ideas
of spatial representations present in hippocampal activity.
Further technological advances in the quality and density
of recording neural ensembles will offer unprecedented
opportunities to understand the dynamics of neural popu-
lation activity, with the promise of defining many of the
largely covert, subjective processes we call cognition in
terms of objective biological mechanisms.
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