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ABSTRACT: If addictions and problematic behaviors arise from interac-
tions between drugs, reward sequences, and natural learning sytems,
then an explanation of clinically problematic conditions (such as the
self-administration of drugs or problem gambling) requires an under-
standing of the neural systems that have evolved to allow an agent to
make decisions. We hypothesize a unified decision-making system con-
sisting of three components—a situation recognition system, a flexible,
planning-capable system, and an inflexible, habit-like system. In this
article, we present a model of the planning-capable system based on a
planning process arising from experimentally observed look-ahead dy-
namics in the hippocampus enabling a forward search of possibilities and
an evaluation process in the nucleus accumbens. Based on evidence that
opioid signaling can provide hedonic evalutation of an achieved outcome,
we hypothesize that similar opioid-signaling processes evaluate the value
of expected outcomes. This leads to a model of craving, based on the
recognition of a path to a high-value outcome, and obsession, based on a
value-induced limitation of the search process. This theory can explain
why opioid antagonists reduce both hedonic responses and craving.
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INTRODUCTION

We start from the assumption that neural systems have evolved to allow
an agent to make decisions that will allow it to survive and procreate. This
means that if we want to understand action-selection processes that lead to
clinically problematic situations, such as self-administration of drugs1–3 or the
continued pursuit of problematic behaviors such as gambling,4–7 we need to
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first understand that natural learning system and how those addictive processes
access it. Making optimal decisions requires calculations of the expected utility
or value of taking specific actions in specific situations. Expected utility (or
value) can be defined as the expected reward, taking into account the expected
magnitude of the reward, the expected probability of receiving the reward, and
the expected delay before receiving that reward.8,9

To predict the expected reward and the appropriate action to achieve that
reward, the agent must first recognize the situation it is in. This recognition
process is fundamentally a classification problem—this situation is like these
and not like those. For example, if one is deciding whether or not to put a
dollar in a soda machine, to predict the consequences of putting the dollar in
and pushing the soda button, one needs to correctly recognize that one is in front
of a soda machine, not in front of a bank ATM. In the psychology literature,
this is referred to as accessing the correct schema. Importantly, one needs to
recognize not only the general soda machine schema, but also to determine
whether there are any specific situation cues available. For example, is this
a Coke or a Pepsi machine? Is this machine more or less reliable than other
machines?

Once one has identified the situation one is in, calculating the value of
the actions to be taken requires some combination of cached memory and
search of the possibilities.10 In the computer science literature, this has been
termed depth of search, and is a fundamental basis of heuristic reasoning.
Interestingly, there is strong behavioral evidence that there are two systems
in the mammalian brain with differing levels of search: (1) a flexible system,
which is capable of being learned quickly, but is computationally expensive to
use, and (2) an inflexible system, which can act quickly, but must be learned
slowly. The flexible system allows the planning of multiple paths to achieve a
goal and takes the expectation of that goal into account in its decision making.
In contrast, the inflexible system simply retrieves the remembered action for
a given situation.11–14 The flexible system can be learned quickly because of
its flexibility—knowing the existence of a potential path to a goal does not
commit one to taking that path. However, the complexity of planning through
those potential paths makes the flexible system computationally expensive.
In contrast, the inflexible system must be learned slowly because it would
be dangerous to commit to always taking an action in a situation until one
knows that that action is the correct one. However, the limited search done in
the inflexible (habit) system allows it to work quickly requiring only limited
computational resources.

The existence of these two systems has been proposed in both the animal nav-
igation (cognitive map vs. route strategies,11,12 place vs. response strategies13)
and learning theory literatures (situation–outcome (S–O) vs. situation–action
(S–A) associations14,15).

In the navigation literature, the interaction of multiple navigation systems
can be seen in how rats solve the classic single-T maze task.13,16–19 Limited
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training leads to a place strategy in which animals return to the same goal
location when started from multiple starting points, even through this may
require different actions. In contrast, extended training leads to a response
strategy in which animals perform the same actions on entering the maze, even
if that leads them to different goals. The place strategy depends on the integrity
of the hippocampus and ventromedial striatum, whereas the response strategy
depends on the integrity of the dorsolateral striatum.13,18,19

In the learning theory literature, the interaction of multiple learning systems
can be seen in how rats respond to devaluation.14,15,20 Classically, these dif-
ferences are measured by first training an animal to take an action sequence
leading to reward, and then, changing the value of the reward to the animal,
usually in a different context. The value of a reward can be changed by pro-
viding excess amounts of the reward (satiation14) or by pairing the reward
with an aversive stimulus, such as LiCl (devaluation20,21). Finally, the animal
is provided the chance to take the action. If the action selection process takes
into account the current value of the reward, then the animal will not respond,
but if the action selection process is an association between the situation and
the action (thus does not take into account the value of the reward), the animal
will continue to respond. With extended training of a reliable association, an-
imals switch from a devaluation-capable system to a devaluation-independent
system.14,22 The devaluation-capable system (S–O) is dependent on the in-
tegrity of the ventral striatum,23,24 the prelimbic medial prefrontal cortex,22

and the orbitofrontal cortex,20,25 whereas the devaluation-independent system
(S–A) is dependent on the integrity of the dorsal striatum19,26,27 and the infral-
imbic cortex.22,28

This leads us to hypothesize a unified system incorporating three subsys-
tems, a situation recognition system and two contrasting decision systems—a
flexible, planning-capable system that accommodates multiple paths to goals
and takes into account the value of potential outcomes, and an inflexible, habit-
like system, which reacts with a single action to each situation and does not
take into account the value of potential outcomes (see FIG. 1).

Both the planning-capable and habit-like systems require a recognition of
the agent’s situation. This recognition system entails a categorization process,
which is likely to arise in cortical systems through competitive learning,29–32

using content-addressable memory mechanisms.33–35

The first (flexible, planning) decision-making system requires recognition
of a situation S, recognition of a means of achieving outcome O from situation
S,

S
(a)· · · → O (1)

as well as the evaluation of the value of achieving outcome O, which will
depend on the agent’s current needs N

E(V ) = V (E(O), N ) (2)
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FIGURE 1. Three systems involved in decision making.

where E(V ) is the expectation of the value of taking action a in situation S,
which is a function of the expected outcome

∗
E(O) and the needs of the agent

N . Because the value of the outcome is calculated on the fly (online), that
calculation can take into account the needs (N) of the agent.

The second (inflexible, habit) decision-making system entails a simple asso-
ciation between situation and action. Thus, the habit system requires recogni-
tion of a situation S, and a single, identified action to take within that situation.
We describe this system with the simple formulation

S
a−→ (3)

Evaluation in the second (inflexible, habit) system entails a memory recall of
the learned associated (cached10) value of taking action a in situation S,

E(V ) = V (S, a) (4)

most likely learned through temporal-difference reinforcement learning mech-
anisms.8 These two systems, along with a situation-recognition component (S),
form a unified theory of decision-making processes.

∗Computationally, the outcome O is simply a future state S′, but we refer to it as the “outcome” to
emphasize the importance of the “completion of needs” that the new situation O = S′ will achieve.
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While the S
a−→ system has been well modeled through the TDRL algo-

rithms,9,36–39 the mechanisms that underlie the S
(a)· · ·→ O system are more

controversial.40 Following a recent suggestion that one possible difference be-

tween S
a−→ and S

(a)· · ·→ O systems is the depth of search,10 we propose a

model of the S
(a)· · ·→ O system based on a consideration of possibilities signal

provided by the hippocampus.

A COMPUTATIONAL MODEL OF THE
DEVALUATION-CAPABLE/MAP-NAVIGATION SYSTEM

The key to both devaluation and map navigation is the ability to consider the
possible consequences of one’s actions. This hypothesized mechanism needs
three components: (1) a recognition of the situation at hand (S), (2) a process
by which the system can calculate the expected consequences of taking avail-

able actions (retrieval of the S
(a)· · ·→ O relationship), and (3) evaluation of

the expected outcome (E(V ) = V (E(O), N)). We hypothesize that the plan-
ning component is instantiated through hippocampal dynamics and the evalu-
ation component is instantiated through processing in orbitofrontal cortex and
through opioid signaling in the nucleus accumbens.

Planning

We have recently observed look-ahead dynamics in the hippocampal neural
ensemble recordings of rats facing a high-cost choice.41,42 Briefly, rats were
trained to run a choice task in which they made choices to receive food. Rats,
particularly early in the session, paused at high-cost choices and showed behav-
ior reminiscent of vicarious trial and error (VTE43–45). Because of the spatial
tuning of hippocampal pyramidal cells,12,46 it is possible to reconstruct the
position of the animal x from the firing pattern F using Bayesian reconstruc-
tion techniques.47–50 The reconstructed distribution P(x|F) tracked the animal
well as the animal ran through the central path. When the animal paused, the
reconstructed distribution moved out along one choice, and then the other,
alternating a few times before the rat began moving again.

It is not known what effect these nonlocal planning signals seen in the
hippocampus have on downstream structures, but it is known that other hip-
pocampal processes representing nonlocal information (i.e., sharp wave ripple
complexes occurring during slow-wave sleep in which replay of recent experi-
ences is known to occur51–54) do have effects on downstream structures, such
as nucleus accumbens.55 Thus, it is likely that these representations could also
be translated downstream, providing a potential planning signal (recognition

of a potential S
(a)· · ·→ O path) for decision making.
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Alternative Structures Involved in Planning

Historically, planning and expectation of outcome have been associated with
prefrontal structures,56–58 and Daw et al.10 have suggested the prefrontal cor-

tex as the site of the S
(a)· · ·→ O process. Hippocampus projects to medial

prefrontal cortex,59 and prefrontal structures have been observed to contain
goal-related processes.60,61 The relative roles of hippocampus and prefrontal
cortex in planning remain to be elucidated.

In the motor control fields, the cerebellum has been hypothesized to be the
site of “forward models” predicting the consequences of one’s actions.62–64

While the cerebellum has been identified in cognitive processes as well as
motor,65 the processes controlled by the cerebellum tend to be those with
tightly controlled timing, likely controlled by highly specialized cerebellar cir-
cuits,62,63,66,67 which once learned become inflexible. In contrast, the planning
processes addressed above require flexible circuits capable of evaluating con-
sequences over variable and longer time periods. Neither devaluation nor map
navigation have been found to be dependent on cerebellar integrity.

EVALUATION

To evaluate the value of an outcome, the system needs a signal that recog-
nizes hedonic value. Two structures that have been suggested to be involved in
the evalutation of an outcome are the orbitofrontal cortex20,68–72 and the ventral
striatum.9,73–76 Neurons in the ventral striatum show reward correlates,75,77–81

and anticipate predicted reward.77,78,82,83 The hippocampus projects to ventral
striatum,84–86 and ventral striatal firing patterns reflect hippocampal neural
activity.55,87 Neurons in the orbitofrontal cortex encode parameters relating to
the value of potential choices.68,69 Both fMRI,70,71 and lesion20,56,88,89 data
have also implicated the orbitofrontal cortex in the evaluation of value. An-
ticipatory neural firing of goal-related information in orbitofrontal cortex is
dependent on hippocampal integrity.90

Berridge and Robinson91,92 suggest that hedonic signals (“liking”) are car-
ried by opioid signaling, as evidenced by the effect of opioid agonists and
antagonists on taste reactivity. Consistent with these ideas, Levine and col-
leagues93,94 report that opioid antagonists directly interfere with the reported
qualia of hedonic pleasure associated with eating sweet, without interfering in
taste discrimination.

There are multiple opioid receptor types in the mammalian brain (�,
�, �,95–97). Whereas �-receptor agonists are rewarding, euphorigenic, and
support self-administration, �-receptor agonists are aversive, dysphoric,
and interfere with self-administration.95–103 † �-receptor antagonists block

†The role of � receptors is more controversial.96,102,104
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self-administration and conditioned approach to drug cues, but blocking the
other opioid receptors (�, �) do not.95,102,103 Each receptor type is associated
with a preferential endogenous opioid signaling peptide (�: �-endorphin, the
endomorphins; �: dynorphin, �: the enkephalins).96,99,105 These data suggest
that the opioid system is well situated to provide a direct evaluation of an event:
rewarding signals via � receptors and aversive signals via � receptors.

It is important to differentiate hedonic rewards and costs from reinforcement
and aversion.37,91,92,106 Reinforcement and aversion entail changes reflecting
changes in expectation (i.e., the value prediction error term in temporal dif-
ference learning8,9). If one correctly predicts the hedonic pleasure provided
by a reward, then one’s value prediction error signal is zero, even though one
presumably still feels that hedonic pleasure on achieving the reward. While
euphoria and dysphoria have been associated with opioid signals,95–103 rein-
forcement signals have been associated with dopamine.9,91,92,106,107

If endogenous opioids signal the actual hedonic evaluation of an achieved
outcome, then when faced with potential outcome signals arriving from the
hippocampus, one might expect similar proccesses to evaluate the value of
expected outcomes. This predicts that the effect of hippocampal planning sig-
nals on accumbens structures will be to trigger evaluative processes similar to
those that occur in response to actual achieved outcomes. This has immediate
consequences for craving and obsession.

IMPLICATIONS

Craving

Craving is the intense desire for something. It is, fundamentally, a subjective,
internal feeling, and may or may not always be reflected in external actions.
In the terminology presented above, craving is the recognition that there is
a pathway to a high-value outcome. This expectation can only occur in the

S
(a)· · ·→ O (planning) system; the S

a−→ (habit) system does not include a
recognition of the expected outcome. Because the flexible (planning) system
only entails the recognition that an action can lead to a potential path to a goal
and does not entail a commitment to action, craving is not necessarily going to

produce action selection. In the S
(a)· · ·→ O planning system, when the forward

planning (hippocampal) component reaches a goal that is evaluated to have a
high value, this will produce a strong desire to achieve that goal. We suggest
that the psychological effect of that recognition is to produce “craving.”

Obsession

It is important to remember that the forward search component of the

S
(a)· · ·→ O system requires a memory retrieval process. This search process
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entails the exploration of multiple consequences from situation S. Oversensi-

tization of a single S
(a)· · ·→ O relationship is likely to limit the exploration of

possibilities, which would appear as a cognitive blinding to alternatives. Sen-

sitization of an S
(a)· · ·→ O relation would also mean that when an animal is

returned to situation S, it is more likely to remember that it can reach outcome O,
which would make it more likely to remember the existence of outcome O, thus
more likely to experience craving in situation S. Craving would then lead to a

recurring search of the same S
(a)· · ·→ O path, which would appear as cognitive

blinding or obsession.

DISCUSSION: PREDICTIONS AND OPEN QUESTIONS

In this article, we have proposed a model of craving based on a computational
theory of planning processes,10 which we have suggested arise from an inter-
action between a consideration-of-possibilities process involving hippocam-
pus and an evaluative process involving nucleus accumbens or orbitofrontal
cortex. Essentially, this produces an outcome-expectancy108,109 model of crav-
ing:110,112 craving entails recognition that there is a means of achieving a highly
charged positive outcome (or of relieving a highly charged negative outcome).
This model is consistent with new interpretations of Pavlovian conditioning
as a memory-of-expectations process.113 This process is fundamentally an
associative memory process in that it requires the memory that there is a
path to outcome O from situation S. Thus, it suggests that craving should in-
volve structures involved in memory, particularly working memory, such as
frontal cortex114,115 and hippocampus.12,116 Craving should also involve struc-
tures involved in the evaluation of future rewards, such as orbitofrontal cortex
(OFC)68,117 and nucleus accumbens.118–120 Evidence from cue-induced crav-
ing responses in addicts supports these hypotheses.112,121–123 The theory also
provides immediate explanations for why opioid antagonists can be used to
block craving, and makes predictions about a hippocampal role in devaluation.

Competitive opioid antagonists have been used clinically to reduce crav-
ing.98,124–126 The model of the planning system laid out above provides an
immediate explanation for this effect: when the predictive component of the

planning system identifies the completion of an S
(a)· · ·→ O pathway and a po-

tential means of achieving an outcome, the evaluative component will release
reward signals (i.e., endogenous opioids), identifying the value of that out-
come for evaluative purposes. As noted above, the identification of a pathway
to high reward leads to craving for that reward. The hypothesis that reward
signals are released on recognition of a pathway to a high-value outcome im-
plies that blocking those reward signals would not only dampen the subjective
hedonic value of receiving reward, but would also dampen craving for those
rewards. If that reward signal is based on opioid signaling, then this may
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explain why opioid antagonists such as naltrexone or nalmefene can reduce
craving.

Addiction has been proposed to entail a transition from exploratory use, to
(in some users) the development of strong desires (craving), followed in some
users by a strong, habitual use in which the user loses control of the drug
use.127–130 This sequence follows the sequence of normal learning. Flexible,
map-based, devaluation-capable strategies are learned first;12,13,17 but with
repeatable, regular experience, animals switch to automated, inflexible, route-
based, devaluation-resistant strategies.12–14,17,28,131 In animals, drug-seeking
also first involves more ventromedial aspects of striatum132,133 and later in-
volves the more dorsolateral aspects.133,134 This theory predicts that drug ad-
diction should progress through a flexible strategy based on intense craving to
an inflexible, habit-based strategy, which is independent of craving.

This unified hypothesis leads to important open questions and predic-
tions. An important, but as yet unresolved question is: How well does the
map/route differentiation in the navigation literature11,12 translate to the deval-
uation/nondevaluation distinction?14 In the navigation literature, the key dif-
ference between map- and route-based strategies is flexibility. Map strategies
are highly flexible, allowing paths around obstacles,11,12 and journeys to the
same location from different starting points.13,16 In contrast, route strategies are
highly inflexible, requiring the same paths under the same conditions.11–13,135

In early maze experiments, overtrained rats were found to run full speed into
novel obstacles136,137 or off shortened tracks.138 In the devaluation literature,
the key difference lies in the inclusion of the outcome in action selection. S−O
strategies entail a consideration of the outcome, while S−A strategies do not.
Anatomically, map learning is critically dependent on the hippocampus.11,12

However, Corbit and Balleine139 found that hippocampal lesions had no effect
on devaluation. Importantly, these lesions were partial and occurred before
training. Similarly sized partial lesions that occurred before training have little
or no effect on place finding in the Morris water maze,140 which is the classic
hippocampal-dependent navigation task. Ostlund and Balleine141 report that
hippocampal lesions after training devastate devaluation learning, as it does
place finding in the Morris water maze.140,142

The crucial test of this hypothesis, however, is the prediction that similar
opiate signaling will occur in response to both veridical inputs (reflecting real
receipt of reward/punishment, leading to euphoria/dysphoria) and to hypothet-
ical inputs (reflecting planning, leading to craving/dread). These hypotheses
could be tested with simultaneous recordings of hippocampus and ventral
striatum.

ACKNOWLEDGMENTS

This work was supported by a Career Development Award from the Univer-
sity of Minnesota TTURC (to ADR, NCI/NIDA P50 DA01333), by a graduate



REDISH & JOHNSON 333

fellowship from the Center for Cognitive Sciences at the University of Min-
nesota (to AJ, T32HD007151), by a Fulbright scholarship (to AJ), as well as
by NIMH R01-MH06829 and by the Land Grant Professorship program at the
University of Minnesota. We thank Daniel Smith, Carolyn Fairbanks, Jadin
Jackson, Zeb Kurth-Nelson, Suck-Won Kim, Steve Jensen, and Paul Schrater
for helpful discussions.

REFERENCES

1. VOLKOW, N. & T.-K. LI. 2005. The neuroscience of addiction. Nature Neurosci.
8: 1429–1430.

2. KALIVAS, P.W. & N.D. VOLKOW. 2005. The neural basis of addiction: a pathology
of motivation and choice. Am. J. Psychiatry 162: 1403–1413.

3. O’BRIEN, C.P., N. VOLKOW & T.-K. LI. 2006. What’s in a word? Addiction versus
dependence in DSM-V. Am. J. Psychiatry 163: 764–765.

4. CUSTER, R.L. 1984. Profile of the pathological gambler. J. Clin. Psychiatry 45:
35–38.

5. WAGENAAR, W.A. 1988. Paradoxes of Gambling Behaviour. Hillsdale, NJ.
6. PETRY, N.M. 2006. Should the scope of addictive behaviors be broadened to

include pathological gambling? Addiction 101: 152–159.
7. POTENZA, M.N. 2006. Should addictive disorders include non-substance-related

conditions? Addiction 101: 142–151.
8. SUTTON, R.S. & A.G. BARTO. 1998. Reinforcement Learning: An Introduction.

MIT Press. Cambridge, MA.
9. DAW, N.D. 2003. Reinforcement learning models of the dopamine system and

their behavioral implications. Ph.D. thesis, Carnegie Mellon University. Pitts-
burgh, PA.

10. DAW, N.D., Y. NIV & P. DAYAN. 2005. Uncertainty-based competition between
prefrontal and dorsolateral striatal systems for behavioral control. Nature Neu-
rosci. 8: 1704–1711.

11. O’KEEFE, J. & L. NADEL. 1978. The Hippocampus as a Cognitive Map. Clarendon
Press. Oxford.

12. REDISH, A.D. 1999. Beyond the Cognitive Map: From Place Cells to Episodic
Memory. MIT Press. Cambridge, MA.

13. PACKARD, M.G. & J.L. MCGAUGH. 1996. Inactivation of hippocampus or caudate
nucleus with lidocaine differentially affects expression of place and response
learning. Neurobiol. Learn. Mem. 65: 65–72.

14. BALLEINE, B.W. & A. DICKINSON. 1998. Goal-directed instrumental action: con-
tingency and incentive learning and their cortical substrates. Neuropharmacol-
ogy 37: 407–419.

15. DICKINSON, A. 1980. Contemporary Animal Learning Theory. Cambridge Uni-
versity Press. New York.

16. TOLMAN, E.C., B.F. RITCHIE & D. KALISH. 1946. Studies in spatial learning. II.
Place learning versus response learning. J. Exp. Psychol. 36: 221–229.

17. RESTLE, F. 1957. Discrimination of cues in mazes: a resolution of the ‘place-vs-
response’ question. Psychol. Rev. 64: 217–228.

18. BARNES, C.A., L. NADEL & W.K. HONIG. 1980. Spatial memory deficit in senes-
cent rats. Can. J. Psychol. 34: 29–39.



334 ANNALS OF THE NEW YORK ACADEMY OF SCIENCES

19. YIN, H.H. & B.J. KNOWLTON. 2004. Contributions of striatal subregions to place
and response learning. Learn. Mem. 11: 459–463.

20. SCHOENBAUM, G., M. ROESCH & T.A. STALNAKER. 2006. Orbitofrontal cortex,
decision making, and drug addiction. Trends Neurosci. 29: 116–124.

21. NELSON, A. & S. KILLCROSS. 2006. Amphetamine exposure enhances habit for-
mation. J. Neurosci. 26: 3805–3812.

22. KILLCROSS, S. & E. COUTUREAU. 2003. Coordination of actions and habits in the
medial prefrontral cortex of rats. Cerebral Cortex 13: 400–408.

23. SCHOENBAUM, G., T.A. STALNAKER & M.R. ROESCH. 2006. Ventral striatum fails to
represent bad outcomes after cocaine exposure. Soc. Neurosci. Abstr. Program
No. 485.16. 2006 Neuroscience Meeting Planner. Atlanta, GA: Society for
Neuroscience, 2006. Online.

24. CORBIT, L.H., J.L. MUIR & B.W. BALLEINE. 2001. The role of the nucleus ac-
cumbens in instrumental conditioning: evidence of a functional dissociation
between accumbens core and shell. J. Neurosci. 21: 3251–3260.

25. SCHOENBAUM, G. et al. 2006. Encoding changes in orbitofrontal cortex in reversal-
impaired aged rats. J. Neurophysiol 95: 1509–1517.

26. YIN, H.H., B. KNOWLTON & B.W. BALLEINE. 2004. Lesions of dorsolateral stria-
tum preserve outcome expectancy but disrupt habit formation in instrumental
learning. Eur. J. Neurosci. 19: 181–189.

27. YIN, H.H., B.J. KNOWLTON & B.W. BALLEINE. 2006. Inactivation of dorsolateral
striatum enhances sensitivity to changes in the action-outcome contingency in
instrumental conditioning. Behav. Brain Res. 166: 189–196.

28. COUTUREAU, E. & S. KILLCROSS. 2003. Inactivation of the infralimbic prefrontal
cortex reinstates goal-directed responding in overtrained rats. Behav. Brain Res.
146: 167–174.

29. GROSSBERG, S. 1976. Adaptive pattern classification and universal recoding: I.
parallel development and coding of neural feature detectors. Biol. Cyber. 23:
121–134.

30. RUMELHART, D.E. & J.L. MCCLELLAND, Eds. 1986. PDP: Explorations in the
Microstructures of Cognition. Vol. 1. Foundations. MIT Press. Cambridge, MA.

31. ARBIB, M., Ed. 1995. The Handbook of Brain Theory and Neural Networks. MIT
Press. Cambridge, MA.

32. REDISH, A.D. 2005. Implications of the temporal difference reinforcement learn-
ing model for addiction and relapse. Neuropsychopharmacology 30: S27–S28.

33. HEBB, D.O. 1949. The Organization of Behavior. Wiley, New York. Reissued
2002. LEA.

34. HOPFIELD, J.J. 1982. Neural networks and physical systems with emergent col-
lective computational abilities. Proc. Natl. Acad. Sci. USA 79: 2554–2558.

35. HERTZ, J., A. KROGH & R.G. PALMER. 1991. Introduction to the Theory of Neural
Computation. Addison-Wesley. Reading, MA.

36. MONTAGUE, P. R., P. DAYAN & T.J. SEJNOWSKI. 1996. A framework for mesen-
cephalic dopamine systems based on predictive Hebbian learning. J. Neurosci.
16: 1936–1947.

37. REDISH, A.D. 2004. Addiction as a computational process gone awry. Science
306: 1944–1947.

38. DOYA, K. 2000. Reinforcement learning in continuous time and space. Neur.
Comput. 12: 219–245.

39. DAW, N.D., A.C. COURVILLE & D.S. TOURETZKY. 2006. Representation and timing
in theories of the dopamine system. Neur. Comput. 18: 1637–1677.



REDISH & JOHNSON 335

40. DAYAN, P. & B.W. BALLEINE. 2002. Reward, motivation, and reinforcement learn-
ing. Neuron 36: 285–298.

41. JOHNSON, A. & A.D. REDISH. 2005. Observation of transient neural dynamics in
the rodent hippocampus during behavior of a sequential decision task using
predictive filter methods. Acta Neurobiol. Exp. 65: 103.

42. JOHNSON, A. & A.D. REDISH. 2006. Neural ensembles in CA3 transiently encode
paths forward of the animal at a decision point: a possible mechanism for the
consideration of alternatives. Program No. 574.2. 2006 Neuroscience Meeting
Planner. Atlanta, GA: Society for Neuroscience, 2006. Online.

43. MEUNZINGER, K.F. 1938. Vicarious trial and error at a point of choice I. a general
survey of its relation to learning efficiency. J. Genet. Psychol. 53: 75–86.

44. TOLMAN, E.C. 1939. Prediction of vicarious trial and error by means of the
schematic sowbug. Psychol. Rev. 46: 318–336.

45. HU, D. & A. AMSEL. 1995. A simple test of the vicarious trial-and-error hypothesis
of hippocampal function. Proc. Natl. Acad. Sci. 92: 5506–5509.

46. O’KEEFE, J. 1976. Place units in the hippocampus of the freely moving rat. Exp.
Neurol. 51: 78–109.

47. RIEKE, F. et al. 1997. Spikes. MIT Press. Cambridge, MA.
48. ZHANG, K. et al. 1998. Interpreting neuronal population activity by reconstruc-

tion: Unified framework with application to hippocampal place cells. J. Neuro-
physiol. 79: 1017–1044.

49. BROWN, E.N. et al. 1998. A statistical paradigm for neural spike train decoding
applied to position prediction from ensemble firing patterns of rat hippocampal
place cells. J. Neurosci. 18: 7411–7425.

50. JOHNSON, A., J. JACKSON & A.D. REDISH. In press. Measuring distributed prop-
erties of neural representations beyond the decoding of local variables—
implications for cognition. In Mechanisms of Information Processing in the
Brain: Encoding of Information in Neural Populations and Networks. C.
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