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Introduction

Neural representations are distributed. This means that more information can be gleaned
from neural ensembles than from single cells. Modern recording technology allows the si-
multaneous recording of large neural ensembles (of more than 100 cells simultaneously) from
awake behaving animals. Historically, the principal means of analyzing representations en-
coded within large ensembles has been to measure the immediate accuracy of the encoding of
behavioral variables (”reconstruction”). In this chapter, we will argue that measuring imme-
diate reconstruction only touches the surface of what can be gleaned from these ensembles.

We will discuss the implications of distributed representation, in particular, the usefulness
of measuring self-consistency of the representation within neural ensembles. Because repre-
sentations are distributed, neurons in a population can agree or disagree on the value being
represented. Measuring the extent to which a firing pattern matches expectations can provide
an accurate assessment of the self-consistency of a representation. Dynamic changes in the
self-consistency of a representation are potentially indicative of cognitive processes. We will
also discuss the implications of representation of non-local (non-immediate) values for cogni-
tive processes. Because cognition occurs at fast time scales, changes must be detectable at fast
(ms, tens of ms) timescales.

Representation

As an animal interacts with the world, it encounters various problems for which it must find
a solution. The description of the world and the problems encountered within it play a fun-
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damental role in how an animal behaves and finds a solution. Sensory and memory processes
within the brain provide a description of the world and within that description the brain’s
decision making processes must select some course of action or behavior.∗

The resulting open question is how the information about the world is represented and
organized across these brain areas. The use of information from the world in behavior involves
two critical processes. The first process is appropriate transformation of information about the
world into a representation that is relevant and useful for behavior. The second process is the
projection of that representation onto a behavior that allows the animal to interact with its
world.

We will call the representation of the world within the brain or any transformation of that
representation toward behavior (even if the behavior is not executed) a neural representation.
This definition is intentionally broad such that the operations underlying directly observable
behavior and covert mental activities can be considered.

Encoding (Tuning curves)

What makes a neuron fire? The question can be asked with respect to the neuron’s immediate
environment — its afferents and ion channels — and with respect to the world beyond. An-
swering the latter question requires knowing what information is encoded by the neuron. An
encoding model describes a hypothesis relating the information represented by the cell (sensory,
perceptual, motivational, motor, etc.) to the activity of a single neuron. The hypothesized re-
lationship between the encoded information x and the neural activity, typically considered in
terms of spikes, s can be written as the function p(s(t)) = T(x(t)) where p(s(t)) probability
of a spike at time s(t).† This definition is easily extended to include both preceding experi-
ence and planned future behaviors in the encoded information x. For simplicity, the present
discussion neglects identification of the precise temporal offset in describing the relationship
between s(t) and x(t).

These encoding models have classically been found by standard tuning curves. More re-
cently, these encoding models have been stated in terms of Shanon information theory, iden-
tifying the mutual information between behavioral variables and spike timing (Rieke et al.,
1997; Dayan and Abbott, 2001). Other encoding definitions have been based on linear filter

kernels, which reflect the recent history of variable x in the firing of a cell’s spikes (Bialek et al.,

∗The decision to not act is still a decision made.
†Of course, the actual activity is also a function of the history of spiking of the neuron (e.g. neurons show

refractory periods, bursting, and other history-dependent processes).
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1991) (or bursts (Kepecs and Lisman, 2003)).‡ These encoding models can be measured rela-
tive to any available behavioral variable, whether it be immediate sensory input, such as the
frequency of an auditory tone, an immediate motor output, such as the target of a saccade
or the direction of a reach, or a cognitive variable, such as the location of an animal in the
environment.

Decoding (Reconstruction)

Because the variability of a single cell is usually insufficient to fully describe the entire space
of encoded information, information is generally encoded across a population of neurons that
differ in their tuning curves (often described by a family of tuning curves), such as retinotopic
Gaussians or place fields. If information is consistently represented across a population of
neurons, then it should be possible to infer the expectation of the variable x by examining the
neural activity across the population. This inference can be made using Bayes’ rule

p(x, s) = p(x|s)p(s) = p(s|x)p(x) (1)

where p(s|x) is the probability of observing some set of neural activities given the variable of
interest and p(x|s) is the probability of the variable of interest given some set of neural activity.
This means that the variable x can be decoded from the neural activity across the population
s by

p(x|s) = p(s|x)p(x)/p(s) (2)

The probability p(x|s) describes how information can be read out or decoded from the net-
work. What should be clear from this simple account is that decoding critically depends on
the encoding model, p(s|x).

The term s in equation 2 reflects the pattern of neural activity across the entire population
of cells at time t. This analysis thus requires sufficient data to infer the probability density
function across an n-dimensional space (n, where n is the number of cells in the ensemble).
For even moderately-sized ensembles, appropriate sampling of s thus requires an inordinate
amount of data due to the curse of dimensionality. In many situations, it is convenient to
assume that the activity of each cell is conditionally independent, relative to the represented
variable x (Zhang et al., 1998; Brown et al., 1998), so that

p(x|s) = p(x) ∏
i∈cells

p(si|x)
p(si)

(3)

‡Kernal based methods explain the observed neural activity in terms of both the represented information and
the neuronal dynamics of the cell itself. The generative method below effectively extends this perspective to
include unobserved variables that can only be determined by examining ensembles with decoding.
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However, the validity of this assumption is still controversial (Nirenberg and Latham, 2003;
Schneiderman et al., 2003; Averbeck et al., 2006).

Although Bayes’ rule (Eq. 2) provides an optimal solution for decoding, even the simplied
version (Eq. 3) is often not computationally tractable. As a result, several other non-probability
based methods have been developed for decoding (e.g. template matching, Wilson and Mc-
Naughton, 1993; Averbeck et al., 2003a; Zhang et al., 1998, linearly weighted averaging, Geor-
gopoulos et al., 1983; Salinas and Abbott, 1994; Zhang et al., 1998). These can be considered as
reduced forms of Bayes’ rule (Dayan and Abbott, 2001).

Non-local reconstruction (Memory and cogntition)

While neural activity is typically measured and discussed in terms of an observable external
variable x(t): p(s(t)) = T(x(t)), a more inclusive statement is that neural activity reflects an
internal representation of this variable. That internal representation can potentially deviate
from the external world. This point is particularly important when investigating processes in
which cognition potentially plays a role; one of the hallmarks of cognitive processing is the
connection of the observable world with the animal’s externally invisible goals or motivations
(Tulving, 1983, 2001, 2002; Suddendorf and Busby, 2003; Gray, 2004; Ferbinteanu et al., 2006;
Johnson and Redish, 2006).

During normal navigation, as rats perform active behavioral tasks on an environment, the
first order information encoded within hippocampal pyramidal cells is the location of the an-
imal (O’Keefe and Nadel, 1978; Redish, 1999). However, when rats are sleeping or when they
pause at feeder sites to eat or groom, the hippocampus changes state, and the hippocampal fir-
ing reflects internal dynamics rather than its primary inputs (O’Keefe and Nadel, 1978; Wilson
and McNaughton, 1994; Chrobak and Buzsáki, 1994, 1996; Ylinen et al., 1995; Csicsvari et al.,
1999; Chrobak et al., 2000). Cell firing during subsequent sleep states reflects recently expe-
rienced memories rather than the current location of the animal (Wilson and McNaughton,
1994; Kudrimoti et al., 1999; Nádasdy et al., 1999; Sutherland and McNaughton, 2000; Hoff-
mann and McNaughton, 2002; Lee and Wilson, 2002). Reconstruction during non-attentive
waking states reveals representations of non-local information (Jensen and Lisman, 2000; Jack-
son et al., 2006, see Fig. 1).

[Figure 1 about here.]

The slow dynamics in which reconstruction tracks behavior (Wilson and McNaughton,
1994; Zhang et al., 1998; Brown et al., 1998) and the fast dynamics of replay (e.g. Fig. 1) are ex-
amples of different information processing modes (Harris-Warrick and Marder, 1991; Hasselmo
and Bower, 1993; Buzsáki, 1989; Redish, 1999). These two modes occur in recognizably distinct
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brain states, characterized by distinct local field potential frequencies. The neural firing pat-
terns of both projection (pyramidal) cells and interneurons change between modes, as do the
neuromodulators present (Vanderwolf, 1971; O’Keefe and Nadel, 1978; Hasselmo and Bower,
1993; Somogyi and Klausberger, 2005). These modes are thought to be differentially involved
in learning, storage, and recall (Buzsáki, 1989; Hasselmo and Bower, 1993; Redish, 1999). Later
in this chapter, we will discuss the implications of multiple generative models pM(s|x) for un-
derstanding these multiple information processing modes. In order to differentiate between
models, we first need to address the question of self-consistency.

Self-consistency (Coherency)

While the development of ensemble based reconstruction methods such as those described
above has allowed us to probe more deeply into the brain’s processing of behavioral infor-
mation, we run the risk of assuming that an animal’s brain rigidly adheres to representing the
present behavioral status of the animal. In doing so, reconstruction errors are viewed as “noise
in the system”, ignoring the cognitive questions of memory and recall that are fundamental to
the brain’s inner workings. For instance, what is recall or confusion and how does the brain
represent competing values in ambiguous situations? To answer these questions, we need to
consider how units within a network function together to form a coherent representation i.e.
one that is internally consistent across all units.

A coherent or self-consistent representation is one in which the firing of all neurons in a
network conforms to some pattern expected from observations during normal (local, baseline)
encoding. For instance, if one records from an ensemble of motor cortical cells, one possible
model of the network would be to assume that the firing of each neuron is tuned to the direc-
tion of movement. This tuning, if it exists, should dictate the distributed pattern of activity
across the neurons in the network. If the network is representing a particular direction, all
neurons with any tuning to that direction should be firing to some degree specified by their
respective tuning curves and neurons that are tuned to very different directions should be fir-
ing rarely if at all. In other words, neurons with similar preferred directions should respond
similarly if the network is responding in a manner consistent with the data set used to con-
struct the neuronal tuning curves. If this is not true, there is a fundamental difference between
the model and the current status of the network. This principle allows for the formulation of
a measure of the coherency or self-consistency of a neural ensemble (Redish et al., 2000; Jackson
and Redish, 2003; Jackson, 2006). (See Figure 2.)

[Figure 2 about here.]
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Figure 2 B, C, and D show three hypothetical states for a network made up of neurons with
tuning curves shaped like the one depicted in Figure 2 A, but centered at even intervals along
x. The behavioral variables x̂1 and x̂2 are shown for reference. The pattern in B is consistent
with behavioral variable x̂2 but not with x̂1. A reconstruction algorithm would yield value
x̂2. If the actual value was x̂1, then reconstruction error |x̂2 − x̂1| would be high even as the
network state is internally consistent. The left mode of the pattern in C is consistent with
behavioral variable x̂1 but neither mode is consistent with x̂2. A vector based reconstruction
algorithm would yield value x̂2, while template matching or Bayesian methods would yield
x̂1 or the right peak depending on the noise in the system. If the actual value was x̂1, then
reconstruction error |x̂2 − x̂1| would either be low or high depending on the reconstruction
method and the noise in neuronal activity. However, neither reconstruction measure would
reveal the underlying representational ambiguity. The state in D is not consistent with either
behavioral variable x̂1 or x̂2. However, each reconstruction method would yield a value such
as x̂1 or x̂2 even though the underlying state is completely random. Each of these scenarios
suggests very different cognitive processes are occurring in this brain network; accessing these
processes though an appropriate measure of internal consistency is one primary aim of this
chapter.

Redish et al. (2000) first suggested that a mathematical comparison between expected
and actual activity patterns could provide useful information about the dynamics of neural
processes. They used such a comparison to identify when the hippocampal ensemble transi-
tioned between two spatial reprsentations.

Averbeck and colleagues (Averbeck, 2001; Averbeck et al., 2002, 2003b) recorded from
frontal and parietal neural ensembles in a shape-copying task and compared the neural ac-
tivity patterns during the time monkeys were actually drawing the shapes with the neural
activity patterns during the preparatory period. They first calculated the n-dimensional tu-
ple of firing rates during each segment of the copying process (e.g. Fbottom line of square =
( f1, f2, . . . , fn), where fi is the firing rate of cell i, and n is number of cells in ensemble). They
then measured the Euclidean distance between the firing rate patterns of the ensembles in
each 25 ms bin of the preparatory period and the firing rate pattern of the ensemble during
each segment of the copying process. They found that at the end of the preparatory period,
the first component was most likely to be closest in this distance metric, while the second
component was next closest, the third component next, and so forth.

In the limited condition of cosine-tuned neurons (Georgopoulos et al., 1983), one can mea-
sure self-consistency by measuring the length of the population vector (Smyrnis et al., 1992,
which is a measure of the variance of the circular distribution, Mardia, 1972, Batschelet, 1981).
Georgopoulos et al. (1988) used this to measure development of a motor plan during mental
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rotation tasks. As the animal developed a motor plan, the length of the population vector
increased.

While the comparison process laid out by Jackson and Redish (2003, see below) requires
a hypothesized behavioral variable x̂ in order to define the expected activity packet Â, the
hypothesized behavioral variable does not have to reflect anything about the outside world.
It can be based on the estimated representation of a given variable x̂. This estimated variable
can be found by an internal decoding process (i.e. reconstruction). For example, Johnson et al.
(2005) recorded neural ensembles of head direction cells from the postsubiculum of rats in a
cylinder-foraging task and calculated the coherency of the head direction representation rela-
tive to the reconstructed head direction φ̂. Populations that were highly self-consistent were
more likely to provide an accurate representation of the world. In other words, actual recon-
struction error (e.g. |φ̂ − actual φ|) was reflected in the self-consistency of the representation,
even though the self-consistency could be determined from entirely internal signals. Thus, if
down-stream structures used only self-consistent representations for making decisions, then
the animal would be more likely to be using accurate representations of the outside world.

Comparing actual and expected activity patterns

In the following section, we review the results of Jackson and Redish (2003) and show the
generality of the results. Further details can be found in the original paper.

Activity packets were defined as the weighted sum of the tuning curves. (Jackson and
Redish (2003) showed that normalizing by the average tuning curve made this a linear calcu-
lation and simplified subsequent analyses.)

A(x, t) = ∑k Tk(x) · Fk(t)
∑k Tk(x)

(4)

where k ranges over the available cells in the ensemble, Tk(x) is the tuning curve of cell k

relative to variable x, and Fk(t) is the firing rate of cell k at time t. The activity packet is thus
a function over both the behavioral (possibly multi-dimensional) variable x and time. The
expected activity packet is then defined as the weighted sum of the tuning curves, weighted,
not by the actual firing rate of the cells, but rather by the expected firing rate of the cells.

Â(x, t) = ∑k Tk(x) · E(Fk(t))
∑k Tk(x)

(5)

= ∑k Tk(x) · Tk(x̂(t))
∑k Tk(x)

(6)

where x̂(t) is the hypothesized value of variable x at time t.
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Once the actual activity packet A(x, t) and the expected activity packet Â(x, t) have been
defined, then the self-consistency of the population can be measured by comparing the two
packets. We have explored multiple comparison methods, including dot-product (DP, Redish
et al., 2000), root-mean-squared-error (RMS, Jackson and Redish, 2003), variance (VAR, John-
son et al., 2005), which can be brought into the same units as RMS by taking the square-root
and using the standard-deviation instead (STD, Jackson, 2006). See Jackson (2006) for a review.

CDP(t) = Â(x, t) · A(x, t) (7)

IRMS(t) =

√∫
x(A(x, t) − Â(x, t))2dx∫

x Â(x, t)dx
(8)

IVAR(t) =
varx(A(x, t) − Â(x, t))∫

x Â(x, t)dx
(9)

ISTD(t) =
stdevx(A(x, t) − Â(x, t))∫

x Â(x, t)dx
(10)

Here, we use a C to denote that the measure CDP measures the consistency, or similarity, be-
tween the actual and expected representations; we use I to denote the other measures, which
measure inconsistency, or dissimilarity, between the actual and expected activity packets. The
integration is done over the entire representational space. We include CDP for completeness,
but we have found that IRMS and ISTD are the most sensitive and recommend their use for
experimental analyses (Jackson, 2006).

Statistically, the self-consistency of the ensemble relative to hypothesized behavioral vari-
able x̂ ∈ x can be defined as the probability of accepting the null hypothesis that the actual
and expected activity packets are the same:

H0 : ∀x∀t A(x, t) = Â(x, t) (11)

In practice, we expect the validity of this hypothesis to vary over time and generally measure
it as a function of time

For a given time t, H0(t) : ∀x A(x, t) = Â(x, t) (12)

The probability of accepting the null hypothesis can be found by empirically determining
the probability distribution of the measurement of choice under conditions of stability. Self-

consistency can then be defined as the deviation from this expected probability distribution. If
the measure implemented detects differences between the activity packets, this probability is
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equal to the probability of seeing a larger difference between the actual and expected repre-
sentation given the data in the training set. If this probability is sufficiently small, the actual
and expected activity packets are more different than a large majority of the samples in our
training set and we can reject the null hypothesis that the actual representation is the same as
the expected representation.

Validation: simulations

Simulations provide a fast, efficient, and, most importantly, controlled means of generating
data for the purposes of characterizing ensemble measures. The attractor network used for the
simulations was a standard local-excitatory/global-inhibitory network used to model which
has extensively studied (Wilson and Cowan, 1973; Amari, 1977; Ermentrout and Cowan, 1979;
Kohonen, 1982, 1984; Redish, 1999; Eliasmith and Anderson, 2003; Jackson and Redish, 2003)
and has been used to model numerous systems in the brain (Droulez and Berthoz, 1991;
Munoz et al., 1991; Arai et al., 1994; Skaggs et al., 1995; Redish et al., 1996; Zhang, 1996; Sam-
sonovich and McNaughton, 1997; Redish and Touretzky, 1998; Redish, 1999; Tsodyks, 1999;
Doboli et al., 2000; Laing and Chow, 2001; Goodridge and Touretzky, 2000; Tsodyks, 2005;
Wills et al., 2005). Briefly, this network employed symmetric local excitatory connections be-
tween neurons with similar preferred directions and global inhibition with periodic boundary
conditions. Thus, this network can be thought of as a circular ring of neurons with a stable
attractor state consisting of a single mode of active neurons, which could be located anywhere
on the ring. This local-excitation/global-inhbition, ring-based attractor network has several
useful properties for the study of self-consistency; however, it is important to note that the
self-consistency equations above (Eq. 4– 12) make no assumptions about the shape or struc-
ture of the tuning curves or the network connectivity (Jackson and Redish, 2003). The only
assumption made is that tuning curves are stable over the course of the training and test sets.

Issue 1: Random Network Firing vs. Stable Activity Mode. When started from random
noise, neurons in a ring attractor will compete until a group of neighbors wins and the net-
work settles to a stable mode of activity at that location (i.e. representing one direction). Neu-
rons with preferred directions near this direction will have higher firing rates than those dis-
tant from this direction. Thus, the final mode will be randomly selected given a random input
(Wilson and Cowan, 1973; Kohonen, 1977).

In this situation, reconstruction techniques such as the vector mean (Mardia, 1972, also
known as the population vector, Georgopoulos et al., 1983) always provide an answer and
cannot be used to differentiate the random and settled states. In contrast, self-consistency
measures differentiate the random and settled states (see Figure 3). Because of the non-
linearities of the measure, IRMS detected the time of settling accurately, displaying a stark
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difference between the two states. While in the random state, the self-consistency measure-
ment showed that the random state was significantly different from the expected “bump”
of activity (p < 0.005). After the network transitioned to a stable representational state, co-
herency showed a higher probability of match.

[Figure 3 about here.]

Issue 2: Rotation vs. Jump. When this system is in a stable state (i.e. representing one di-
rection), and network inputs drive neurons with preferred directions near the represented
direction (within 60◦ in our network), the represented direction will shift toward the input
(Redish et al., 1996; Zhang, 1996; Samsonovich and McNaughton, 1997; Redish, 1999). Chain-
ing this extra-network excitation to the represented direction forces the network to rotate con-
tinuously. In contrast, when the network inputs drive neurons with preferred directions far
from the represented direction (greater than 60◦ in our network), the system will non-linearly
jump to a new direction if the strength of the drive is large enough to overcome the global
inhibition (Zhang, 1996; Samsonovich and McNaughton, 1997; Redish, 1999).

Reconstruction showed a smooth transition through intermediate orientations in both the
rotation and jump conditions (Figure 4). Reconstruction thus suggested that both of these
transitions were simple rotations, yet the dynamics of these two transitions were fundamen-
tally different. IRMS, however, detected the difference. In the jump condition, IRMS showed a
strong transient increase at the time of transition (IRMS: time-steps 562–609, p < 0.005), but no
corresponding increase during the rotation (time-steps 200–800, p > 0.005).

[Figure 4 about here.]

Issue 3: Ambiguous vs. single valued representations. If the network is started from a bi-
modal state (i.e. with inputs at two different directions), the population of neurons represent-
ing each input location will compete until the network settles on a single “bump” (Kohonen,
1977, 1982, 1984; Redish, 1999). This can serve as a selection process to resolve ambiguity
(Wilson and Cowan, 1973; Kohonen, 1977; Redish and Touretzky, 1998). The location of the
specific result will depend on the noise in the network and the difference in direction between
the candidate inputs (Redish, 1997).

During the settling process, there will temporarily be more than one bump of activity, one
at the center of each input, essentially representing multiple values. Classical reconstruction
techniques will be unable to determine whether or not the network has resolved the ambi-
guity. As shown in Figure 5, self-consistency measures readily identify the resolution of the
ambiguity.

[Figure 5 about here.]
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Self-consistency in a Bayesian framework

The self-consistency measures reviewed above are based on observed changes in expected
distributions, allowing the generation of statistical p-values identifying times when the rep-
resentation significantly differs from the expected distribution (null hypothesis H0, Eq. 12,
above). Recent reconstruction analyses have been based on Bayesian and information mea-
sures (Rieke et al., 1997; Zhang et al., 1998; Brown et al., 1998; Zemel et al., 1998; Dayan and
Abbott, 2001). It is possible to reinterpret the self-consistency question in terms of Bayesian
reconstruction.

In the methods above, the activity packet (Eq. (4)) measures the expected distribution of
variable x given the firing rate at time t, F(t). In Bayesian terms, the posterior distribution
p(x|s(t)) (Eq. 2) provides the term analogous to the expected activity packet above. Like the
activity packet, this term is a function over the variable x and time. In the methods above, the
self-consistency equations (Eqs. 7-10) measure the consistency of this reconstruction process
relative to the (implied) model defined by the tuning curves T(x) (defined as the expected ac-

tivity packet, Eq. 6). In the Bayesian formula, after decoding the neural representation, the va-
lidity can be determined by estimating how consistent the decoded representation is with the
observed neural activity. One of the advantages of using a probabilistic approach in compar-
ison to non-probabilistic estimate based methods is that rather that deriving a single estimate
and using that in tandem with the tuning curves to develop the expected activities, the en-
tire posterior distribution p(x|s(t)) can be used to generate the expected activity. Recall that
the probability distribution (or the derived estimate) is a mapping over the space of x. Basic
probability theory shows that the product of this probability with the encoding model pro-
duces a joint distribution over the spiking activity of the ensemble and the decoded variable.
Substituting p(x|s(t)) for p(x) in equation 2 gives

p(ŝ, x̂) = p(ŝ|x̂)p(x̂|s(t)) (13)

where x̂ reminds us that p(x̂|s(t)) is estimating the distribution of the variable x given the
observed spiking patterns, and ŝ reminds us that p(ŝ|x̂) is estimating the firing pattern s given
our estimate of the variable x. Taking the marginal distribution with respect to the neural
activity s (integrating across the variable x) provides the probability of a given neural activity
set.

pconsistency(s) =
∫

x
p(ŝ|x̂)p(x̂|s) (14)

This formulation of consistency indicates the probability that the set of observed neural ac-
tivity were generated by the decoded neural representation provides a normative method for
assessment for competing models, and makes clear that we need to make explicit the genera-
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tive model used.
pconsistency(s|M) =

∫
x

pM(s|x̂)p(x̂|ŝ, M) (15)

where M indicates the generative model used. A generative model is consistent with the ob-
served neural activity when pconsistency(s|M) is high and inconsistent when this probability is
low. Generative models can be compared using standard methods (such as odds ratios and
measured in decibans, Jaynes, 2003).

Multiple Models in hippocampus

The previous sections have developed the idea that neural activity can represent many types
of information – from sensory descriptions of the world to motor planning for behavior and
even to the cognitive processes in between – and that the organization of this information is a
critical aspect for both interpreting that information from within the system (as downstream
neurons) or from outside the system (as experimenters). The suggestion of this approach is
that rather than examining a decoded representation with respect to how well it matches an
experimentally observed or controlled variable, a decoded representation should be examined
on the basis of its intrinsic organization or consistency. In some instances a neural represen-
tation may match an observed variable and be well-organized. In other instances, the neural
representation may be disorganized. However, in other instances, the neural representation
may completely disagree with an observed variable, but remain relatively well-organized.
Spatial representations within the hippocampus provide such an example.

Spatial representations in the hippocampus have been explored using a variety of decod-
ing methods (Wilson and McNaughton, 1994; Zhang et al., 1998; Brown et al., 1998; Jensen
and Lisman, 2000). Generally, the neural activity of place cells and the decoded spatial rep-
resentation very well predicts the animal’s position within the environment; however, recent
studies have shown that place cell activity can remain well-organized even when the decoded
representation does not match the animal’s position (Skaggs et al., 1996; Lee and Wilson, 2002;
Johnson and Redish, 2005, 2006; Foster and Wilson, 2006, see also Figure 1, above).

Within the hippocampus, multiple brain states have been identified based on characteristic
local field potential activity (Vanderwolf, 1971; O’Keefe and Nadel, 1978). The hippocampal
neural representations of space show different representational dynamics during these multi-
ple brain states. In the theta regime, phase-precession describes a dynamic that occurs during
each theta cycle in which the spatial representation sweeps through positions recently occu-
pied by the animal to positions that will likely be occupied by the animal (O’Keefe and Recce,
1993; Skaggs et al., 1996). The neural representation during this sweep is time-compressed
approximately 10-15 times relative to animal behavior during task performance (Skaggs et al.,
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1996). In the large irregular activity (LIA) regime, route replay describes a dynamic that occurs
during slow wave sleep, following task performance in which neuronal activity present dur-
ing task performance is replayed (Kudrimoti et al., 1999; Nádasdy et al., 1999; Lee and Wilson,
2002). Spiking activity in sharp-wave replay is time-compressed 40 times relative to animal
behavior during the task (Nádasdy et al., 1999; Lee and Wilson, 2002). The observation of
both phase precession and sharp wave ripples during awake states (O’Keefe and Nadel, 1978;
O’Keefe and Recce, 1993; Foster and Wilson, 2006; Jackson et al., 2006; O’Neill et al., 2006), sug-
gests that the hippocampal representation of space may operate with multiple spatiotemporal
dynamics, even during awake behaviors.

Application of self-consistency measures provide a method for examining spatial repre-
sentations in the hippocampus with respect to multiple spatiotemporal dynamics. Explicit
comparison of multiple models of hypothesized representation dynamics allows identifica-
tion of the underlying dynamical state of the neural representation. A model of the dynamics
of a neural representation can be most simply described as a Markov process p(x̂t|x̂t−1), that
gives the probability of the representation transitioning from the estimate x̂t−1 to a new esti-
mate x̂t. These models can be as simple as a Brownian walk or as complex as a rigidly specified
directional flow. Models of representational dynamics are easily added to the Bayes’ decoding
equation shown above (equation 2) and can be written in terms of a predictive filter.

The term predictive filter refers to the recursive application of a prediction step which pre-
dicts the temporal evolution of the neural representation given the previous prediction and
the proposed dynamical model and a correction step which corrects the prediction based on the
spikes observed at time t. The prediction can be written as

p(x̂t|st−1) =
∫

p(x̂t|x̂t−1)p(x̂t−1|st−1)dx̂t−1 (16)

where p(x̂t|x̂t−1) describes the hypothesized model of representation dynamics and the term
p(x̂t−1|st−1) represents the previously predicted neural representation. The correction step
can be written as

p(x̂t|st) =
p(st|x̂t)p(x̂t|st−1)

p(st|st−1)
(17)

where p(st|st−1) is the probability of the neural activity set st given the previous set of neural
activity st−1 and the term p(x̂t|st−1) represents a prediction from the previous equation. Pre-
dictive filters have been used for decoding neural activity within a variety of brain areas
(e.g. Brown et al., 1998; Brockwell et al., 2004; Wu et al., 2006).

After decoding the neural representation for each of the proposed models, the validity of
the hypothesized model can be determined by estimating how consistent the decoded repre-
sentation is with the observed neural activity.
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Four generative models were used to perform reconstruction from a hippocampal neural
ensemble recorded from the CA1 region of an animal running on a 4T Multiple-T maze
(Schmitzer-Torbert and Redish, 2002, 2004). Four generative models were examined, each
of which allowed the probability distribution to spread at the prediction step with different
rates: 1× ≡ p(x̂t|x̂t−1)1, 15× ≡ p(x̂t|x̂t−1)15, 40× ≡ p(x̂t|x̂t−1)40, and 99× ≡ p(x̂t|x̂t−1)99,
where p(x̂t|x̂t−1) was a Gaussian function with σ proportional to the average velocity of the
rat. The 99× model provided a nearly uniform distribution over the scale of the Multiple-T
maze. As can be seen in Figure 6, different models were more consistent at different times,
reflecting changes in the neural dynamics.

[Figure 6 about here.]

Model selection was accomplished by calculating an error between the expected spiking
activity given the posterior distribution of each filter and observed spiking data as in Equa-
tion 15, above. As noted above, the different generative models are hypothesized to reflect dif-
ferent information processing modes. In the hippocampus, these modes are reflected in local
field potential signals (O’Keefe and Nadel, 1978; Buzsáki, 1989, 2006; Hasselmo and Bower,
1993; Redish, 1999), thus we hypothesized that the characteristic local field potential power
spectrum for each spatiotemporal filter should show similar trends - specifically, the 1× and
15× filters should show increased power within theta frequencies (7 − 10 Hz) while the 40×
filter should show increased power within slow wave delta (2 − 6 Hz) and sharp wave ripple
(170 − 200 Hz) frequencies. Clear differences were found within slow wave and θ frequen-
cies. Differences between the characteristic power spectra for each filter were similar between
CA1 and CA3. Consistent with previous results (Lee et al., 2004; Leutgeb et al., 2004), subfield
analysis found that more dynamic models (e.g. 99×) were more often selected in CA1 data
sets, relative to the CA3 data sets (see Figure 7).

[Figure 7 about here.]

While generative models have been broadly used to explain and decode neural activity
(e.g. Brown et al., 1998; Rao and Ballard, 1999; Lee and Mumford, 2003; Brockwell et al., 2004;
Serruya et al., 2004; Wu et al., 2006), one notable distinction should be made between the typ-
ical generative model formulation and the present formulation. Because we are concerned
with the dynamical regulation of neural representations by cognitive processes, particularly
explicit memory retrieval, we suggest that multiple generative models are necessary to explain
observed neural activity. A single model is generally not enough because cognition requires
the interactive use of dynamical information based on sensory or motor processes and plan-
ning, motivation or, for lack of another word, cognitive processes. Within each of these types
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of representation, cognition modulates an ongoing process. This is precisely the type of mod-
ulation that is sought when examining learning and memory or any cognitive processes and
mathematically it can be identified as a changes in the model prior p(x). In terms of the gener-
ative model, this simply states that there exists a prior non-uniform distribution p1(x) which
better describes the neural activity than a uniform distribution p2(x). The critical aspect of
this formulation is that the goal is to completely generate the observed neural activity. Be-
cause of the probabilistic treatment, it becomes straightforward to integrate the contributions
of both representation driven aspects of neural activity (e.g. above) and intrinsically driven
neural dynamics such as refractory period (Frank et al., 2002).

Conclusions

A variety of experimental and theoretical results suggest the existence of cognitive processes
requiring active memory use in decision making. These processes are non-trivial to assess in
human populations using such measures as self-report and are even more difficult to assess
in non-human populations. Identifying such cognitive processes in non-human animals will
require the development of measures to examine computations underlying these processes.
Central to this approach is the development of statistical algorithms for decoding neural rep-
resentations at multiple time scales and validation or error-assessment methods that allow
characterization of cognitive processes related to, but not necessarily mirrored by, directly ob-
servable behavior. In this chapter, we have described a method for examining highly dynamic
cognitive processes through observation of neural representations with multiple dynamics.

Reconstruction alone cannot be used to infer internal states of an animal’s sensory and cog-
nitive networks such as the difference between random firing and well-represented variables.
This is particularly important when considering issues of memory and recall. One function
of memory is to appropriately link a current experience to a past experience; in the case of
the hippocampus, this may mean using the same spatial map as was previously used in an
environment. However, a primary usefulness of a memory is in its ability to influence discon-
nected experiences through recall of past events or episodes. In this case of recall, one would
expect that neuronal firing would, by definition, be disconnected from the current behavioral
state of the animal. Recall may be detected by reconstruction methods identifying values very
different from the current behavioral value. Usually, these values are considered noise to be
removed from a reconstruction algorithm. Using a coherency method like those presented
here will allow an investigator to judge whether these aberrant reconstructions are truly valid
representational events.
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List of Figures

1 Replay of experience on the maze during an awake-sharp wave. The rat is sit-
ting at the second feeder throughout the event. The distribution starts at the
base of the first T and moves through the full maze in 220 msec (typical be-
havioral run times through this maze = 10–12 seconds). The reconstructed lo-
cation is indicated by color (red high probability, blue low probability). Panels
arranged from left to right, top to bottom in 20 msec intervals. Note the coher-
ent, but non-local reconstruction of the representation during the sharp wave. 25

2 Self consistency. (A) An example unimodal tuning curve. The stimulus or be-
havioral variable is on the x-axis with firing rate represented along the y-axis.
(B) A “coherent” network firing pattern. The stimulus or behavioral variable
is on the x-axis with firing rate of each neuron represented along the y-axis.
Each line represents the location of a neuron’s preferred stimulus, with height
equal to the neuron’s firing rate. If each neuron in a network had unimodal
tuning curves identical to the neuron represented in A but with the peak firing
occurring at a different preferred stimulus x, then when the preferred stimulus
of the neuron in A is presented, this is the expected network firing pattern. This
pattern is consistent with behavioral variable x̂2 but not with x̂1. (C) A bimodal
representation would represent an ambiguous or incoherent state of the net-
work described in B, since the unimodal tuning curves would predict only one
mode of activity should be possible of a single stimulus x and that outside this
mode neurons should be silent. One mode is consistent with behavioral vari-
able x̂1 but neither mode is consistent with x̂2. (D) As in C this representation
would represent a confused or incoherent state of the network described in B,
since the unimodal tuning curves would predict a prominent mode of activity
and that outside this mode neurons should be silent. This state is not consistent
with either behavioral variable x̂1 or x̂2. From Jackson (2006). . . . . . . . . . . . 26

3 A simulation started with random input to the network settles to a stable state.
(A) The neural activity. Time is shown in time-steps on the x-axis. Neurons
ordered by their preferred direction ( 0◦ – 360◦) along the y-axis, shaded ac-
cording to their firing rate. Black dots indicate the direction extracted from the
population activity using population-vector reconstruction. Note, that the re-
construction algorithm yields a position whether or not there is an actual mode
of activity present at that location. (B) The IRMS measure of inconsistency be-
tween actual and expected activity packets. During the random state, the dis-
crepancy between the actual and expected activity packets is high (p < 0.005,
gray zone). Upon reaching the stable state at time-step 342, the difference drops
(p > 0.005, white zone). From Jackson (2006), see also Jackson and Redish (2003). 27
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4 (A) Offset activity produces a jump in the representation. Layout as in Fig-
ure 3. Note that the reconstructed position shows a smooth rotation from the
initial position of activity before the jump, through positions where there is no
network activity, to the final location of activity after the jump. (B) The IRMS
measure of inconsistency between actual and expected activity packets. The
discrepancy between the actual and expected activity packets is low during the
stable state, before and after the jump (p > 0.005, white zone), but high during
the transient bimodal activity state at the moment of the jump from time-steps
562–609 (p < 0.005, gray zone). C) A smooth rotation induced in the network
yields stable results. Layout as above. The reconstructed position follows the
activity of the network faithfully. (D) The IRMS measure of inconsistency be-
tween actual and expected activity packets. Throughout the rotation, the net-
work maintains a stable state with a small difference between the actual and
expected activity packets (p > 0.005). From Jackson (2006), see also Jackson
and Redish (2003). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5 (A) A simulation started with competing inputs settles to a single mode of activ-
ity. Layout as in Figure 3. Note that the reconstructed position shows a smooth
rotation from the mean position, where there is no network activity to the win-
ning location. (B) The IRMS measure of inconsistency between actual and ex-
pected activity packets. The discrepancy between the actual and expected ac-
tivity packets is high during the initial bimodal state before the competition is
resolved (p < 0.005, gray zone), but low afterwards (p > 0.005, white zone).
From Jackson (2006), see also Jackson and Redish (2003). . . . . . . . . . . . . . 29

6 Multiple generative models in the hippocampus. Four generative models were
examined 1×, 15×, 40×, and 99×. During the first portion (Turns 1–4), the
animal was running through the maze. During the second portion, the animal
paused at the first feeder to rest, groom, and eat. . . . . . . . . . . . . . . . . . . 30

7 Percentage of samples in which each model was found to be the most consistent
(Eq. (15)). The 99× filter was often selected during jumps or intervals in which
few spikes are fired. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

24



Rat is sitting at the second feeder.

0 ms 20 ms 40 ms 60 ms

80 ms 100 ms 120 ms 140 ms

160 ms 180 ms 200 ms 220 ms

0.5 m

FIGURE 1: Replay of experience on the maze during
an awake-sharp wave. The rat is sitting at the second
feeder throughout the event. The distribution starts at
the base of the first T and moves through the full
maze in 220 msec (typical behavioral run times
through this maze = 10–12 seconds). The
reconstructed location is indicated by color (red high
probability, blue low probability). Panels arranged
from left to right, top to bottom in 20 msec intervals.
Note the coherent, but non-local reconstruction of the
representation during the sharp wave.

25



xF
R

 (
sp

ik
es

/s
ec

) A

xF
R

 (
sp

ik
es

/s
ec

) B

xF
R

 (
sp

ik
es

/s
ec

) C

xF
R

 (
sp

ik
es

/s
ec

) D

x1
^ x2

^

FIGURE 2: Self consistency. (A) An example unimodal
tuning curve. The stimulus or behavioral variable is
on the x-axis with firing rate represented along the
y-axis. (B) A “coherent” network firing pattern. The
stimulus or behavioral variable is on the x-axis with
firing rate of each neuron represented along the y-axis.
Each line represents the location of a neuron’s
preferred stimulus, with height equal to the neuron’s
firing rate. If each neuron in a network had unimodal
tuning curves identical to the neuron represented in A
but with the peak firing occurring at a different
preferred stimulus x, then when the preferred
stimulus of the neuron in A is presented, this is the
expected network firing pattern. This pattern is
consistent with behavioral variable x̂2 but not with x̂1.
(C) A bimodal representation would represent an
ambiguous or incoherent state of the network
described in B, since the unimodal tuning curves
would predict only one mode of activity should be
possible of a single stimulus x and that outside this
mode neurons should be silent. One mode is
consistent with behavioral variable x̂1 but neither
mode is consistent with x̂2. (D) As in C this
representation would represent a confused or
incoherent state of the network described in B, since
the unimodal tuning curves would predict a
prominent mode of activity and that outside this
mode neurons should be silent. This state is not
consistent with either behavioral variable x̂1 or x̂2.
From Jackson (2006).
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FIGURE 3: A simulation started with
random input to the network settles to a
stable state. (A) The neural activity. Time is
shown in time-steps on the x-axis. Neurons
ordered by their preferred direction ( 0◦ –
360◦) along the y-axis, shaded according to
their firing rate. Black dots indicate the
direction extracted from the population
activity using population-vector
reconstruction. Note, that the reconstruction
algorithm yields a position whether or not
there is an actual mode of activity present at
that location. (B) The IRMS measure of
inconsistency between actual and expected
activity packets. During the random state,
the discrepancy between the actual and
expected activity packets is high (p < 0.005,
gray zone). Upon reaching the stable state at
time-step 342, the difference drops
(p > 0.005, white zone). From Jackson (2006),
see also Jackson and Redish (2003).

27



ne
ur

on
ne

ur
on

11

7575

10001000
00

0.20.2

timetime

R
M

S
 E

rr
or

R
M

S
 E

rr
or P<0.005P<0.005

di
re

ct
io

n
di

re
ct

io
n

00

360360

ne
ur

on
ne

ur
on

11

7575

10001000
00

0.20.2

timetime

R
M

S
 E

rr
or

R
M

S
 E

rr
or

di
re

ct
io

n
di

re
ct

io
n

00

360360

A

C

D

B

FIGURE 4: (A) Offset activity produces a
jump in the representation. Layout as in
Figure 3. Note that the reconstructed position
shows a smooth rotation from the initial
position of activity before the jump, through
positions where there is no network activity,
to the final location of activity after the jump.
(B) The IRMS measure of inconsistency
between actual and expected activity
packets. The discrepancy between the actual
and expected activity packets is low during
the stable state, before and after the jump
(p > 0.005, white zone), but high during the
transient bimodal activity state at the
moment of the jump from time-steps 562–609
(p < 0.005, gray zone). C) A smooth rotation
induced in the network yields stable results.
Layout as above. The reconstructed position
follows the activity of the network faithfully.
(D) The IRMS measure of inconsistency
between actual and expected activity
packets. Throughout the rotation, the
network maintains a stable state with a small
difference between the actual and expected
activity packets (p > 0.005). From Jackson
(2006), see also Jackson and Redish (2003).
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FIGURE 5: (A) A simulation started with
competing inputs settles to a single mode of
activity. Layout as in Figure 3. Note that the
reconstructed position shows a smooth
rotation from the mean position, where there
is no network activity to the winning
location. (B) The IRMS measure of
inconsistency between actual and expected
activity packets. The discrepancy between
the actual and expected activity packets is
high during the initial bimodal state before
the competition is resolved (p < 0.005, gray
zone), but low afterwards (p > 0.005, white
zone). From Jackson (2006), see also Jackson
and Redish (2003).

29



0

1

Time (50msec blocks)

At Feeder 1

15x block 
Representation 
jumps to feeder

15x block 
Representation
 jumps to turn 4

Turns 1,2

40x block
Representation  
sweeps forward  
to Feeder 2

15x block
Representation 
sweeps 
backward over 
maze

1x
15x
40x
99x

Model

E
xp

la
na

to
ry

 p
ow

er
 o

f m
od

el
(N

or
m

al
iz

ed
)

3 4

99x

1x

FIGURE 6: Multiple generative models in the hippocampus. Four generative models were examined 1×, 15×,
40×, and 99×. During the first portion (Turns 1–4), the animal was running through the maze. During the second
portion, the animal paused at the first feeder to rest, groom, and eat.
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FIGURE 7: Percentage of samples in
which each model was found to be
the most consistent (Eq. (15)). The
99× filter was often selected during
jumps or intervals in which few
spikes are fired.
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