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ABSTRACT: The firing of place cells in the rodent hippocampus is reli-
able enough to infer the rodent’s position to a high accuracy; however,
hippocampal firing also reflects the stages of complex tasks. Theories
have suggested that these task-stage responses may reflect changes in ref-
erence frame related to task-related subgoals. If the hippocampus repre-
sents an environment in multiple ways depending on a task’s demands,
then switching between these cell assemblies should be detectable as a
switch in spatial maps or reference frames. Place cells exhibit extreme
temporal variability or ‘‘overdispersion,’’ which Fenton et al. suggest
reflects changes in active cell-assemblies. If reference-frame switching
exists, investigating the relationship of the single cell variability described
by Fenton and collegues to network level processes provides an entry
point to understanding the relationship between cell-assembly-like mech-
anisms and an animal’s behavior. We tested the cell-assembly explanation
for overdispersion by recording hippocampal neural ensembles from rats
running three tasks of varying spatial complexity: linear track (LT), cylin-
der-foraging (CF), and cylinder-goal (CG). Consistent with the reports by
Fenton and colleagues, hippocampal place cells showed high variance in
their firing rates across place field passes on the CF and CG tasks. The
directional firing of hippocampal place cells on LT provided a test of the
reference-frame hypothesis: ignoring direction produced overdispersion
similar to the CF and CG tasks; taking direction into account produced a
significant decrease in overdispersion. To directly examine the possibility
of a network modulation of cell-assemblies, we clustered the firing pat-
terns within each pixel and chained them together to construct whole-
environment spatial firing maps. Maps were internally self-consistent,
switching with mean rates of several hundred milliseconds. There were
significant increases in map-switching rates following reward-related
events on the LT and CG tasks, but not on the CF task. Our results link
single cell variability with network-level processes and imply that hippo-
campal spatial representations are made up of multiple, continuous sub-
maps, the selection of which depends on the animal’s goals when reward
is tied to the animal’s spatial behavior. VVC 2007 Wiley-Liss, Inc.

KEY WORDS: place cell; neural ensemble; cell assembly; tetrode;
overdispersion

INTRODUCTION

In 1949, Hebb proposed the concept of a ‘‘cell-assembly’’—that
within a self-recurrent network, subnetworks would form, which would

be detectable by sets of related firing (Hebb, 1949).
The hippocampus is noted for its self-recurrent con-
nections (Lorento do Nó, 1933, 1934; Amaral and
Witter, 1989) and thus forms a particularly useful
candidate for the study of the cell-assembly hypothesis
(McNaughton and Morris, 1987; Harris, 2005). The
first-order behavioral correlates of rodent hippocampal
pyramidal cells are their spatial firing correlates or
place fields (O’Keefe and Dostrovsky, 1971; O’Keefe,
1976; Redish, 1999). The spatial correlates of hippo-
campal firing provide leverage to examine the dynam-
ics of cell assemblies within the hippocampus allowing
the distinction to be made between single cell
response properties and phenomena that can only be
observed at the population level.

While the firing of place cells is reliable enough
spatially to infer the rodent’s position to within 1 cm
given only the current firing pattern in a hippocampal
ensemble and the spatial tuning of each neuron
(Wilson and McNaughton, 1993; Zhang et al., 1998;
Brown et al., 1998), hippocampal cell firing also
reflects the stages of complex tasks (Eichenbaum
et al., 1987; Wiener et al., 1989; Sakurai, 1990,
1994; Cohen and Eichenbaum, 1993; Hampson
et al., 1993; Deadwyler et al., 1996; Gothard et al.,
1996b). For example, in linear environments, hippo-
campal firing depends on the direction of travel
(McNaughton et al., 1983; O’Keefe and Recce, 1993;
Markus et al., 1995; Gothard et al., 1996a; Redish
et al., 2000) and in certain spatial alternation tasks,
hippocampal firing depends on the future and past
paths of the animal (Wood et al., 2000; Ferbinteanu
and Shapiro, 2003; Bower et al., 2005; Ainge et al.,
2005; Ferbinteanu et al., 2006). Theories have sug-
gested that these nonspatial changes may reflect multi-
ple submaps reflecting the different reference frames
needed for goal planning (Touretzky and Redish,
1996; Redish and Touretzky, 1997; Redish, 1999;
Touretzky and Muller, 2006) or rapid changes in
attention to cues (Worden, 1992; McNaughton et al.,
1994; Fenton et al., 1998; Zinyuk et al., 2000). If the
hippocampus represents an environment in multiple
ways depending on a task’s demands, then switching
between these reference-frames should be detectable as
a switch in the active cell-assemblies.

Fenton and Muller (1998) found that place cells ex-
hibit extreme temporal variability or overdispersion in
that their firing patterns are much less reliable tempo-
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rally than would be predicted by a spatial, inhomogeneous
Poisson process based on the neuron’s own spatial tuning curve.
Fenton and colleagues suggested that the overdispersion they
observed may be the result of the rat switching reference frames
at a mean rate of 1 to 2 times per second (Lánský et al., 2001;
Olypher et al., 2002). Lánský et al. (2001) characterized this
overdispersion in terms of a doubly-stochastic Poisson process
that switches between two mean spike emission rates at a mean
interval of 1–2 s. Olypher et al. (2002) showed that the over-
dispersion decreases to approximately expected levels during
navigation to a goal on a goal-directed task and suggested that
the reference-frame switching may be due to changes in tran-
sient goals.

Later, Harris et al. (2003) reported an improvement in the
prediction of a place cell’s firing when the activity of other neu-
rons in the ensemble was taken into account. The improvement
in prediction resulting from these subgroups of neurons lasted
for a short duration (�25 ms; Harris et al., 2003). It was
argued that these neuronal dynamics are similar to Hebb’s con-
cept of cell assemblies and may be evidence of ‘‘internal cogni-
tive processes’’ (Harris et al., 2003; Harris, 2005).

Taken together, these reports suggest that the extreme vari-
ability in the spatial responses of neurons may be due to inter-
nal dynamics of the hippocampus that result in the formation
of cell assemblies. It is not known, however, whether the vari-
ability reported by Fenton and Muller (1998) is related to any
ensemble-level modulation, and previous data suggest this may
not be the case (Fenton and Muller, 1998). Furthermore, the
effect of cell assembly-like dynamics on the spatial tuning of
neurons and the relation of these dynamics to an animal’s inter-
nal goals is not understood. We therefore hypothesized that if
multiple maps are used by an animal during exploration, this
should resemble ensemble-level modulation that may explain
overdispersion. If so, switches between maps may be tied to
task parameters, such as switching from goal seeking to
foraging.

Using neural ensemble recording methods, we tested the
cell-assembly hypothesis of Fenton et al. by recording hippo-
campal neural ensembles from rats running three different tasks
of varying spatial complexity: a one-dimensional linear track, a
two-dimensional cylinder-foraging task, and a two-dimensional
cylinder-goal task. The directional firing of hippocampal place
cells on linear tracks provides a baseline test of the reference-
frame hypothesis: (1) taking direction into account produces
two separate representational maps which should have less over-
dispersion than when rats run in two-dimensional tasks; (2) if
overdispersion results from unexpected switching between inter-
nal maps, then ignoring directional differences on the linear
track should produce overdispersion (i.e. serving as a positive
control). The cylinder-foraging task provides a baseline since it
is a commonly used experimental condition and the variability
of place cell firing on this task has been previously documented
(Fenton and Muller, 1998). The cylinder-goal task provides our
experimental test for the goal-dependent reference-frame
switching hypothesis since overdispersion is known to change
in a behaviorally-dependent manner on this task, possibly indi-

cating changes in the set of active reference frames (Olypher
et al., 2002). Comparing these three tasks, we found that the
directional firing on the linear track mimicked the variability
observed in the foraging and goal tasks and that invoking cell-
assembly concepts allowed the separation of multiple maps on
all three tasks. These transitions between active maps depended
on the behavioral state of the animal, switching just after food
delivery on tasks where reward was tied to the animal’s spatial
behavior.

METHODS

Experimental Methods

Subjects

Male Brown-Norway Fisher-344 hybrid cross rats were
housed individually in a specific pathogen-free (SPF) vivarium
maintained on a synchronous day/night cycle. Animals were
handled daily for 15 min for at least 1 week prior to beginning
behavioral training. One day prior to commencement of behav-
ioral training, animals were denied access to food in their
home cage while water access remained ad libitum. Subse-
quently, animals received their full daily complement of food
on the tasks based on their behavioral performance. All proce-
dures were approved by the University of Minnesota IACUC
and met all NIH guidelines for animal use in research.

Behavioral training

Food deprived rats were trained to run on a series of multi-
ple tasks, including shuttling back and forth along a 137 cm
by 15 cm linear track (LT), foraging for scattered pellets in an
92 cm-diameter cylindrical arena (CF), or navigating to a
small, invisible goal for food reward in the same cylindrical
arena (CG).

The linear track task was similar to the shuttling tasks stud-
ied by O’Keefe and Recce (1993) and others: 2–4 (depending
on the animal and session), 45-mg food pellets (TestDiet, Rich-
mond VA) were delivered via automated feeders (Med Associ-
ates, St. Albans VT) when the animal reached the end of the
track. The linear track was placed in the same position in the
room each day, thus making the location of reward-delivery as
well as the location of reward-receipt constant across days in
the room reference frame. Animals were required to alternate
between track ends to receive food.

The cylinder foraging task (CF) was a variant of that studied
by Muller et al. (1987) and others: food was delivered ran-
domly into the cylinder at 10-s Poisson intervals. Forty-five
milligram food pellets were delivered from one of three sites
above the cylinder chosen randomly. The cylinder was placed
in the same position in the room each day, but food-delivery
was independent of the behavior of the animal. Because of
large variations in pellet speed and ejection trajectory, the food
distribution that reached the cylinder floor was highly uniform
and random.
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The cylinder-goal (CG) task was a variant of that studied by
Rossier et al. (2000) and Olypher et al. (2002): in order to
receive food, the rat had to enter a 7-cm diameter goal region.
Once the rat entered the goal region, a tone was played and
three pellets were delivered from the automated feeders. Like
the cylinder-foraging (CF) task, the food scattered randomly
upon dispensing. The goal was not rearmed until the rat had
been outside a 14 cm surrounding region for 4 s. The cylinder
was placed in the same position in the room (the same position
as for the CF task). The goal was randomly placed within the
cylinder on each session, but remained at a constant location
within each session. Since the CF and CG tasks used the same
arena, the arena was wiped down with 70% isopropyl alcohol
before each CF and CG task to reduce carry-over of odor cues.

Naive rats were trained on each task individually until profi-
cient. Training began with single 30–40 min sessions on a single
task (task training order counter-balanced across rats) until an
animal was proficient on that task: full coverage of arena on
CF; at least 30 successful goal entries on CG; at least 50 trials
on LT. On the CG task, the time between successful goal trig-
gers, is also referred to as a trial. Once the training criterion
for a task was met, animals were then trained on the next task
to proficiency. This continued until animals had been trained
on each task individually. This usually took about 1 week per
task. The single-task training criteria above were intended to
ensure robust performance on three-task sessions and do not
apply to later training and recording since the three-task ses-
sions were shorter in duration. Next, animals were familiarized
with the three-task protocol for at least 4 days such that they
encountered each ordering at least once: LT–CF–CG; LT–
CG–CF; CF–CG–LT; CG–CF–LT. Thus, final-training and
the post-implantation recording sessions consisted of 20-min
exposure to each of the three tasks pseudorandomly ordered
each day (goal location also varied pseudo-randomly each day)
with a 5 min rest period before and after each task.

Surgery

Once a rat was running proficiently on all three tasks, it was
implanted with a 14-tetrode microdrive (Kopf Neuro-Hyper-
drive, David Kopf Instruments, Tujunga, CA; 12 tetrodes and
2 references) at (Bregma 23.8 mm A/P, 2.0–2.5 mm M/L,
Paxinos and Watson, 1998). Rats were deeply anesthetized with
an intraperitoneal injection of Nembutal (sodium pentobarbi-
tal, 40–50 mg/kg, Abbot Laboratories, North Chicago, IL),
shaved on the scalp, and placed on a stereotax. A 0.5–2.0%
isofluorane–oxygen mixture was then provided to maintain
general anesthesia. About 0.1mL Dualcillin (Phoenix Pharma-
ceutical Inc., Saint Joseph, MI) injection was administered to
each hind limb. The scalp was disinfected first with alcohol
then with Betadine (Purdue Frederick, Norwalk, CT). Skin and
fascia were removed from the skull around the implantation
site, and the wound was cauterized. Holes were drilled for the
8–9 jeweler’s screws and 1-ground screw which were distributed
around the implant to anchor it to the skull. Once the screws
were in place, a craniotomy was opened above the target using

a surgical trephine (Fine Science Tools, Foster City, CA), and
the hyperdrive was lowered into place. Ground screws were sol-
dered to a steel wire prior to implantation and were connected
to a steel wire from the hyperdrive ground terminal using
Amphenol pins during implantation. A Silastic (Dow Corning
3140) barrier filled the space between the hyperdrive bundle
and the skull. Dental acrylic (Perm Reline and Repair Resin,
The Hygenic Corp., Akron, OH) was used to fix the hyper-
drive to the bone screws and seal the wound. After removal
from the stereotax, 3 mL saline was administered subcutane-
ously. Some rats received regimens of 0.1 mL Baytril (2.27%
enrofloxacin, Bayer Corp., Shawnee Mission, KS) injected sub-
cutaneously each day following surgery for 3 days. Animals
received 0.8 mL Children’s Tylenol orally immediately upon
waking and in their water supply (25 mL mixed in 0.275 L
water) during recovery.

Recording

After surgery, electrodes were advanced into the pyramidal
layer of the CA1 region of hippocampus over the course of
approximately 1 week. The pyramidal layer was identified by
the presence (and wave morphology) of strong high-frequency
(100–200 Hz) ripples (Ylinen et al., 1995). Recordings were
carried out in 10 ft 3 10 ft room enclosed in copper screen.
All electrophysiological and video tracker recordings were
digitized and synchronously time-stamped by a 64-channel
Cheetah Data Acquisition system (Neuralynx, Tucson AZ) and
recorded to disk.

Extracellular action potentials were recorded at 32 kHz for a
1-ms window when the voltage crossed a threshold set by the
experimenter on any of the four channels on a tetrode. A 1-ms
window was taken for each action potential consisting of 32
samples per spike-waveform per channel. The signals were first
amplified at the headstage with unity gain amplifiers, then
passed through multistrand cables and a commutator before
reaching variable gain amplifiers (1–50,0003). There, they
were band pass filtered from 600 to 9,000 Hz for spike record-
ings using 48 channels of a Neuralynx 64 channel Cheetah sys-
tem, or filtered from 1–475 Hz and sampled at 2 kHz for local
field potential recordings (LFP) using 16 channels of the same
Neuralynx Cheetah system. Binding of recording cables due to
rotation of the rat was minimized by a torque-sensing, motor-
ized 72-channel commutator (Neuralynx, Tucson, AZ; Dragonfly,
Ridgeley, WV; AirFlyte, Bayonne, NJ) and on rare occasions
corrected by the experimenter.

The positions of LEDs mounted on the animal’s headstage
were detected by a camera mounted in the center of the record-
ing room’s ceiling. The video frame data was sampled at 60 Hz
and digitized and time-stamped by a Cheetah data acquisition
system (Neuralynx, Tucson, AZ); for each video frame, pixels
with luminance above an experimenter-defined threshold were
recorded to disk. Real-time position data was accessed by in-
house behavioral control software implemented in Matlab (The
Mathworks, Natick, MA). This software used the serial ports to
communicate with an experimental control box (constructed by
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JCJ) to trigger food delivery (45 mg pellets: Research Diets,
New Brunswick, NJ; food dispensers: Med-Associates, St.
Albans, VT) and simultaneously signal the Cheetah recording
system for a synchronous food delivery time-stamp (each feeder
had a unique digital identification).

Position data were then preprocessed for post hoc analysis by
extracting the center of mass of all pixels with suprathreshold
luminance. Video interlacing effects were removed from the
data through linear interpolation of odd and even position
samples (two 30-Hz time-series) to produce two 60-Hz time
series, which were then averaged to yield a single, stable 60-Hz
time series.

Data Analysis

Place-fields

The tuning of a cell is the average or expected firing rate of
a neuron measured over a given behavioral variable; in this
case, this variable is the animal’s spatial location. Spatial tuning
curves, or place fields, were constructed by binning the task
area into 11 pixel 3 11 pixel (approximately 3 cm 3 3 cm)
bins and creating two 2-dimensional histograms: a histogram
of the number of spikes emitted in each bin and a histogram
of the number of video-tracker samples in each bin. The occu-
pancy time for each bin was determined by dividing the num-
ber of positions samples per bin by the video sampling rate.
The firing rate per bin was determined by dividing the spike
count in each bin by the occupancy time in that bin.

SW and theta detection

To reduce the possibility of known network states, such as
LIA and SW, contaminating the analysis, we removed all SW
events and used only data from high-theta/low-delta periods.
SW events and theta epochs were detected and defined as in
Jackson et al. (2006).

SW events were extracted by down-sampling the LFP traces
by a factor of 2 (using an anti-aliasing low-pass filter), and
bandpass filtering from 100 to 250 Hz. Amplitude for each
trace was found via Hilbert-transform and then averaged across
traces. The distribution of log-transformed average amplitude
was used to find samples more than 2.5r from the mean
power. Visual inspection of a subset of the data revealed ripple
events synchronous across LFP channels. Threshold crossings
shorter than 20 ms were removed, the remaining events were
concatenated if less than 100 ms apart. Twenty millisecond was
added to the beginning and end of each SW to capture the tails
of the SW.

A similar method was used for detecting theta epochs. Theta
times were extracted by down-sampling the LFP traces by a fac-
tor of 5 (using an anti-aliasing low-pass filter), and bandpass
filtering from 6 to 10 Hz to obtain theta-band signals, and
from 2 to 4 Hz to obtain delta-band signals. Amplitude for
each trace’s band was found via Hilbert-transform and then
averaged across traces to obtain two averaged signals: an average

theta-band amplitude and an average delta-band amplitude.
The distribution of the log-transformed ratio (theta/delta) of
average amplitudes was used to identify samples with a low
power-ratio more than 1r from the session mean, these were
taken to be non-theta brain states. Visual inspection of a subset
of the data revealed low theta amplitude epochs that clustered
at locations of immobility (i.e. the linear track ends). These
non-theta epochs were concatenated if less than 500 ms (the
low frequency cutoff for the delta-band) apart, and events
smaller than 100 ms (the high frequency cutoff for the theta-
band) were removed. These high theta band power and low
delta band power epochs tended to coincide with times when
the animal was moving.

Measuring firing rate dispersion

In order to quantify the variability of single cell firing, a sta-
tistical measure is needed that allows the inclusion of neuronal
response parameters. One possible model of the behavioral or
stimulus dependence of a neuron’s firing is that of an inhomo-
geneous Poisson point process where the intensity of the spike
emission rate at any given time is dependent on the stimulus
or behavioral value at that moment. This was the approach
used by Fenton and Muller (1998) to examine the variability
of hippocampal neurons as the animal passes through their
place field. In order to compare the results of our experiment,
we implemented the analysis described in their paper (Fenton
and Muller, 1998).

First, a neuron’s place field was taken as the largest contigu-
ous body of bins with nonzero firing rate. Therefore, every bin
in a place field shared a border with at least one other pixel in
the place field. The center of a place field was taken as the 3 3 3
group of pixels with the highest mean firing rate.

An animal’s pass through a place field was only considered if
it satisfied all of the following conditions: (1) the pass went
through the center of the place-field, (2) the pass lasted longer
than 1 s, (3) the tracking of the animal was continuous
throughout the pass with high theta rhythm and not inter-
rupted by sharp-waves. The actual number of spikes S of a
neuron during each pass through its place field that met the
above conditions was compared with the expected number of
spikes N given the spatial tuning specified by its place field. As
described in Fenton and Muller (1998), for N > 4, the Poisson
distribution can be approximated by a normal distribution with
mean l 5 N and variance r2 5 N. Thus, the Z-transform of
the number of spikes transmitted relative to N for each pass
through a place field can be calculated as follows:

Z ¼
S � N � 1

2ffiffiffiffiffi
N

p if S � N ;

S � N þ 1
2ffiffiffiffiffi

N
p if S < N ;

8>>><
>>>:

ð1Þ

where S is the number of spikes actually emitted on each pass.
The factor of 1/2 is a correction for the discrete distribution.
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Pair-wise correlation analyses

Since our experiments generated large ensembles of simulta-
neously recorded neurons, we examined correlations in the dis-
persion z-score between pairs of simultaneously recorded neu-
rons in our data. The overlap of place-fields for all neuron pairs
in an ensemble was measured as the number of bins greater
than zero firing rate in both neurons’ tuning curves. The distri-
bution of overlap values was divided such that pairs in the
upper 75% of overlap scores for each task were chosen for
analysis. The pass times for each neuron in a pair were then
compared to find all passes that overlapped temporally by any
amount. The dispersion z-score values for these matched passes
were then added to the pool of pair-wise data. Correlations
were then performed on this pooled data. Higher and lower
overlap cutoffs (50% and 95%, when possible) were also
assessed and qualitatively similar results were obtained. Data
were compared with a control condition in which one neuron’s
z-score values were randomized across passes prior to matching
the pass times for the pair.

Map splitting

If cell assemblies are subsets of coactive neurons bound
together through repeated cofiring (Hebb, 1949), then their
functional properties in the hippocampal network at a given
location should be observable as distinctly uncorrelated (not
necessarily anti-correlated) ensemble firing patterns on passes
through the same location if different cell assemblies exist.
We hypothesized that neurons are therefore switching
between activity states depending on the activity states of
other neurons in the ensemble (See H1, Fig. 1A). This is in
contrast to switches in activity states independent of other
neurons in the ensemble (See H0, Fig. 1A). To examine the
spatial properties of such subensemble interactions, we clus-
tered the firing patterns that occurred within each spatial
bin of an environment to construct multiple whole-environ-
ment spatial firing maps. The process described below is
depicted in Figure 1C. Sufficient numbers of simultaneously
recorded neurons were required for all map-splitting and
coherency analyses described below, therefore only the 10
sessions with greater than 25 simultaneously recorded neu-
rons were used.

Clustering of firing rates within a spatial bin. Firing rates
were calculated for each neuron by binning spikes into 10-ms
bins and convolving the result with a 100-ms exponential decay
function normalized within a 500-ms convolution window. For
each 11 pixel 3 11 pixel bin (3 cm 3 3 cm bin), all ensemble
firing patterns observed when the animal was in that bin were
clustered using a k-means algorithm using correlation as the
distance metric (i.e. d 5 1 2 q, where d is the distance
between two samples and q is the correlation between those
two samples). The correlation metric was used since it is
bounded and robust to changes in whole ensemble excitability

(i.e. fluctuations in ensemble mean firing rates) and therefore
allows the grouping of correlated firing patterns.

Since previous research has suggested that the overdispersion
phenomenon is best described using a two-state model (Lánský
et al., 2001; Olypher et al., 2002), we set the k-means algo-
rithm to output 2 clusters. Larger numbers of clusters were also
tried; however, extracting more than 2 clusters fragmented the
data too much for the analyses. Thus, there was insufficient
data for dispersion analyses with more than 2 clusters. Figure 1
shows two patterns isolated from one 3 cm 3 3 cm bin. Based
on the clusters for each bin, we constructed two preliminary
2-dimensional firing rate maps (labeled Sub-Map 1 and Sub-
Map 2 in Fig. 1C) by sorting each pixel’s clusters into one or
the other map by maximizing correlations of the cluster’s mean
firing pattern with the mean firing pattern of clusters in the
neighboring pixels. Finally, the times when the animal’s firing
patterns were detected in each preliminary map were extracted
and used to partition the behavior into either of the two repre-
sentational states. (We use the term ‘‘state’’ in this paper to
define the map, or stack of place fields, that the ensemble activ-
ity pattern best corresponds with. For example, saying the hip-
pocampus is in ‘‘State 1’’ corresponds to the ensemble firing
being more closely related to Map 1 than Map 2.) These times
were referred to as the map-switching times. Ensemble switching
times were then used to construct state-dependent place fields
for each neuron. We refer to this process of deriving multiple
spatial tuning curves from ensemble firing patterns as map-
splitting.

Dispersion (leave-one-out). To test against the null hypothesis
that neurons switch firing states independent of the rest of the
ensemble (see H0, Fig. 1A), we examined the effect that
switching maps would have on the dispersion of neuronal firing
rates using a leave-one-out approach. For each neuron in an
ensemble, the map-splitting and assembly analysis was per-
formed on the ensemble excluding that neuron to obtain
switching times for the ensemble. These ensemble switching
times were applied to the left-out neuron to partition the posi-
tion and spike data into separate states for the construction of
spatial tuning-curves (i.e. place fields) for each state. The dis-
persion analysis was then run for the state times using these
supposed state-dependent firing fields. Only neurons in ensem-
bles that were large enough to perform the map-splitting analy-
sis and only passes through a place field that were not inter-
rupted by a map-switch were used. As an additional control for
the partitioning of states, dispersion z-score distributions were
calculated from spatial tuning-curves that were constructed by
applying shuffled map-switching intervals from sessions drawn
at random (including sessions from other animals) to each neu-
ron’s spike train. This was repeated 100 times resulting in dis-
persion values for two randomized maps each, totaling 200 z-
score distributions for control dispersion variance estimates.
The distribution of these variance estimates was approximately
Gaussian. The distribution of variance estimates was used to
calculate mean dispersion variance and 95% confidence inter-
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vals under random splitting conditions with similar first-order
state transition temporal statistics.

Map-switching measures. Whole-ensemble switching times
were used for the rest of the analyses described below. Dwell

time in each state was calculated as the product of the position
sampling period and the number of position samples detected
in each respective state, divided by the number of transitions
into each state. Similarly, the switching rate was calculated as
the number of transitions into each state divided by the prod-

FIGURE 1. Splitting hypothetical maps. (A) Two hypotheses for
state-dependent switching of neuronal firing rates. H0 depicts random
modulation of individual neuronal firing rates independent of modu-
lation of other neurons in the ensemble. H1 depicts random modula-
tion of whole-ensemble firing rates. White and gray background
depicts two states: neurons 1 and 3 fire maximally in the white state,
and neurons 2 and 4 fire maximally in the gray state. (B) An example
of actual firing rate vectors associated with each video tracker sample
found within an 3 cm 3 3 cm region were clustered using a k-means
algorithm. Times have been sorted into one of two clusters. Times
when no firing occurred within the ensemble are not shown. (C)
Schematic of the splitting process. Average firing fields result from

the customary method of averaging all firing patterns that occur in
each spatial bin (e.g. Bin 1). To test whether multiple maps can be
derived from hippocampal ensemble firing, the firing rate for each
neuron (shading by firing rate) for each time detected in a bin of in-
terest was clustered (Clustered Firing Patterns) then sorted into the
map with the highest correlation for neighboring Bins (Bins in Sub-
Map 1 and Bins in Sub-Map 2). Completing this process results in
two sets of firing fields (i.e. maps; Sub-Map 1 and Sub-Map 2). The
times associated with firing rates in each cluster were used to deter-
mine which map the animal was using at a given moment and to
derive switching times between maps. [Color figure can be viewed in
the online issue, which is available at www.interscience.wiley.com.]
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uct of the position sampling period and the total number of
position samples detected on the task. These values were aver-
aged over the sessions available to this analysis.

The rate-difference ratio was used to quantify the differences
in rate between place-fields in each map. The rate-difference ra-
tio was calculated as

R ¼ javgðPFMap1Þ � avgðPFMap2Þj
maxðavgðPFMap1Þ; avgðPFMap2ÞÞ

; ð2Þ

where avg(PFMap1) is the average firing rate of the place-field in
Map1, avg(PFMap2) is the average firing rate of the place-field
in Map2, max denotes the maximum of either the average rate
in Map1 or Map2, and |x| denotes the absolute value of x.

Coherency calculation. In order to test whether the maps
derived by the map-switching analysis were consistent, stable
features of the ensemble, we applied a coherency analysis previ-
ously shown to detect changes in reference frames (Redish
et al., 2000) and aberrant network states (Jackson and Redish,
2003). The whole-ensemble switching times were used for this
coherency calculation. Coherency measures the self-consistency
of a representation within a neural ensemble (Jackson and
Redish, 2003). Briefly, measuring coherency within a time win-
dow t over a behavioral variable (x, y, for place fields) entails
calculating an activity packet (defined as the firing rate
weighted tuning curves, Redish et al., 2000; Jackson and
Redish, 2003), calculating an expected activity packet (using
the expected firing rate rather than the actual firing rate, Jackson
and Redish, 2003), and then comparing them using a compari-
son measure (Redish et al., 2000; Jackson and Redish, 2003;
Johnson et al., 2005; Jackson, 2006; Johnson et al., in press).
The actual and expected activity packets were compared using
the IRMS measure (Jackson and Redish, 2003),

IRMSðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR
x

R
yðAðx; y; tÞ � Âðx; y; tÞÞ2 dx dy

q
R
x

R
y Âðx; y; tÞ dx dy

: ð3Þ

IRMS measures the difference or inconsistency between the two
packets; A(x,y,t) indicates the actual activity packet and Â(x,y,t)
indicates the expected activity packet:

Aðx; y; tÞ ¼
P

k PFkðx; yÞ � FkðtÞP
k PFkðx; yÞ

ð4Þ

and

Âðx; y; tÞ ¼
P

k PFkðx; yÞ � PFðx̂ðtÞ; ŷðtÞÞP
k PFkðx; yÞ

; ð5Þ

where x̂ðtÞ and ŷðtÞ are the current x and y position of the ani-
mal at time t, PFk(x, y) is the tuning curve (or place field) of
neuron k over the two-dimentional space x, y, Fk(t) is the firing
rate of neuron k at time t, and Sk is the sum over all neurons
in the ensemble.

The IRMS measure is sensitive to absolute differences in en-
semble firing across the population. Other measures sensitive to
relative differences or to similarities in ensemble firing across
the population were also used and yielded qualitatively similar
results (ISTD, IVAR, for more details see Jackson, 2006). To cal-
culate the coherency ratio Cindex

1–2 to examine the maps derived
from the map-splitting analysis, the data set was split in half by
interleaving minutes. Thus, one half of the data set consisted
of all odd one-minute blocks of data, and the other consisted
of all even one-minute blocks of data. One half was used to
derive the state-dependent place fields for the other given the
switching times between maps and vice versa. This eliminates
issues of tautology. The ensemble measure (i.e. IRMS) of one
half was then calculated given the place fields of the other half
and vice versa. The coherency ratio was then defined as

C1�2
indexðtÞ ¼

Coherency1ðtÞ � Coherency2ðtÞ
Coherency1ðtÞ þ Coherency2ðtÞ ; ð6Þ

where Coherency1 and Coherency2 are the coherency values
for the two cluster-derived maps, respectively. Coherency(t)
was defined as the proportion of times in the same data set
that the actual and expected activity packets matched as well or
better than the sample of interest at time t:

CoherencyðtÞ ¼ 1� cdf IRMS
ðIRMSðtÞÞ ð7Þ

where cdfIRMS
(IRMS (t)) means that the IRMS values from each

half were concatenated and used to calculated the cumulative
distributions cdf. (This does not result in a tautology since this
is used only for a relative comparison. At most, this concatena-
tion only lowers our sensitivity working against a significant
result.)

This index Cindex
1–2 of how coherent one state was with respect

to the other will be above zero if the ensemble firing pattern is
more similar to map 1 than to map 2, and less than zero if en-
semble firing is more similar to map 2 than to map 1. The
coherency of firing patterns occurring in one half of the session
was calculated using place fields derived from ensemble firing
given the switching times in the other half of that session,
thereby circumventing any tautological issues. The coherency
index was then aligned to switching times from one state to
the other for each task for the half of the data that was not
used to construct the place fields. Similar results were found
when the tautology was used. Ensemble coherency values were
calculated for each theta cycle, with each theta cycle identified
by positive peaks in the filtered local field potential.

Behavioral analysis: peri-event time histograms. We con-
structed peri-event time histograms (PETH) to examine the
relationship between task events and transitions between repre-
sentational maps. For the PETH switching analysis, the time of
switching was measured relative to the onset of key task events
such as food delivery (on CF and LT) or to goal-entry (on
CG). The number of switching times at each time lag were
binned into 0.1 s bins for the 6 s before and after each event,
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summed for all event times, and normalized by the number of
position samples detected in each bin to yield the transition
rate at each time lag from the event. The rates for each session
were averaged and the standard error of the mean was calcu-
lated for each bin. The transition rate after an event was com-
pared with the transition rate before the event using an
unpaired t-test given the mean across sessions. The 95% confi-
dence intervals corrected for multiple comparisons were found
using a bootstrap. For each session, 50 randomly selected event
times were drawn from a uniform distribution and PETH of
switching times were created for each of these pseudosessions.
The distribution of 50 runs 3 120 bins followed a normal dis-
tribution very closely. The mean and standard deviation of this
distribution were used to calculate the 95% confidence intervals
corrected for multiple comparisons (.025/Ntimes, .975/Ntimes),
where Ntimes 5 120 (the number of bins per PETH).

RESULTS

Six hundred ninety-six spike-trains were recorded from 6 rats
over 24 sessions in ensembles of up to 96 neurons/session (30 6
31 neurons/session; mean 6 SD) while rats ran three tasks. Neu-
rons with session average firing rates of >2.0 or <0.04 spikes/s
(i.e. firing less than 150 spikes in the entire recording session)
were excluded from analysis. These restrictions effectively
removed interneurons and cells not specifically activated by be-
havioral tasks leaving 600 neurons for further analysis. Rats ran
25 6 12 (SD) trials/session on LT, 37 6 15 (SD) trials/session
on CG, and tended to cover the environment on CF.

Replication of Previous Single-Cell Variability
Measurements: Overdispersion

While hippocampal neurons have highly reliable spatial
responses, the temporal variability of these spatial responses is
known to be quite large when compared to a noisy model
based on Poisson statistics (Fenton and Muller, 1998). Consist-

ent with the previous reports (Fenton and Muller, 1998; Lán-
ský et al., 2001; Olypher et al., 2002), hippocampal place cells
showed high variance in their firing rates across place field
passes on the CF task (r2 5 6.0, l 5 20.02, Npasses 5 3830,
nrats 5 6, v2 test, p(r2 5 1.0) < 10210; number of qualifying
passes per place field 5 10.37 6 0.40 SEM). The mean of the
dispersion z-scores was not significantly different from zero
(p(l 5 0) 5 0.59, t 5 20.53, df 5 3829). Figure 2 shows
the distribution of firing rate z-scores comparing the number
of spikes emitted on each pass through a place field to the
expected distribution of spikes given an inhomogeneous Pois-
son process model. The thin black line shows the expected dis-
tribution with zero-mean and unit variance. The sharp peak at
negative z-scores was the result of passes through place fields
when no spikes were fired. Thus, removing no-fire passes
resulted in a smooth, unimodal distribution of similar width
(Fig. 2B). The negative peak could not be explained by the
inclusion of low-firing rate neurons since exclusion of neurons
with less than 10 Hz in-field firing rates did not abolish this
negative peak nor did it visibly alter the positive skew (data not
shown).

It has been reported that this extreme temporal variability is
reduced when animals are required to navigate to a goal. A
similar overdispersion was seen on the CG task (r2 5 6.7, l
5 0.05, npasses 5 4419, p(r2 5 1) < 10210; number of quali-
fying passes per place field 5 11.25 6 0.49 SEM). The mean
of the dispersion z-scores was not significantly different from
zero (p(l 5 0) 5 0.19, t 5 1.30, df 5 4418). Consistent with
reports by Olypher et al. (2002), we observed a similar reduc-
tion in variance in the 5 s pregoal (r2 5 5.1, Npasses 5 896,
nrats 5 6, significantly less than overall dispersion, F-test, p <
1026, F 5 1.3), there was a general reduction in the variance
as the animals approached the goal: r4s

2 5 4.9, r3s
2 5 5.1, r2s

2

5 4.6 (See Fig. 3). (All four conditions less than overall disper-
sion p < 1024, but the decrease as the animal approached the
goal was not significant.)

Fenton and colleagues suggested that the overdispersion they
observed may be the result of the rat switching goals or refer-

FIGURE 2. Overdispersion of hippocampal place cells on the
Cylinder Foraging (CF) task. Figure shows histogram of z-scores
for the number of spikes emitted on a pass through a place field
given the expected number of spikes predicted by a Poisson point
process model. (A) Place cells on the cylinder foraging (CF) task
exhibited a comparable amount of excess variability to previous

reports (e.g. see Fenton and Muller, 1998). Sharp peak at negative
z-scores is due exclusively to no-fire passes. Black solid line repre-
sents expected variability of a Poisson point process model. (B)
Data same as in A but excluding passes through a place field when
no spikes were fired.
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ence frames (Fenton and Muller, 1998; Lánský et al., 2001;
Olypher et al., 2002). The directional firing of hippocampal
place cells on linear tracks provides a baseline test of the refer-
ence-frame hypothesis (McNaughton et al., 1983, 1996;
O’Keefe and Recce, 1993; Touretzky and Redish, 1996; Redish,
1999). Taking direction into account on the linear track pro-
duces two separate representational maps (Fig. 4), which should
have less overdispersion than when rats run in 2 dimensional
tasks. Likewise, we predicted that if the high variance observed
in the CF and CG tasks is related to the switching of reference
frames, then taking a task known to demonstrate two separate
firing maps for each direction should generate overdispersion of
similar magnitude to that seen on CF and CG.

FIGURE 3. Overdispersion of hippocampal place cells on the
Cylinder Goal (CG) task. (A) Overall variability on the CG task
(r2 5 6.7, Npasses 5 4419) and variability on approach to goal:
5 seconds prior to goal entry (r5s

2 5 5.0, Npasses 5 855); 4 seconds
prior to goal entry (r4s

2 5 4.8, Npasses 5 648); 3 seconds prior to
goal entry (r3s

2 5 4.9, Npasses 5 439); 2 seconds prior to goal entry
(r2s

2 5 4.3, Npasses 5 185); Note that the primary change to the
distribution of z-scores observed as the animal approaches the
goal, is the reduction in the low-z-score peak associated with no-
fire passes and an increase in the positive tail of the distribution.
This indicates that the chance that at least some spikes are fired is
increasing along with the overall firing rate. Black solid line repre-
sents expected variability of a Poisson point process model. (B)
Data same as in A but excluding passes through a place field when
no spikes were fired.

FIGURE 4. Map-splitting analysis yields directional specific-
ity of maps (A) Original and split spatial firing fields of 6 sample
neurons from each of two different rats. The firing fields shown
to the right of the line were created by one of three methods: (D)
splitting a session based on the animal’s direction of travel, (S)
splitting the session based on ensemble firing patterns using the
map-splitting analysis (See methods), or (R) splitting the session
based on randomized times. The assignment of Map 1 and Map
2 for S was based on which map (i.e. stack of place fields) corre-
lated best with Map 1 vs. Map 2 derived by the directional split
D. Randomly split maps used shuffled switching times, but were
matched in a similar manner across tasks. Small number in the
lower left-hand corner of each group is the firing rate associated
with dark on the map. Not all neurons are represented, however
all neurons shown for each session were recorded simultaneously.
(B) An example of the positions where an animal was detected in
each state by our map-splitting analysis. Red and green samples
show times when hippocampal ensemble firing patterns were
detected in one or the other map. Thin gray points show all
positions sampled. Note that the red and green times segregate
well to movement in one direction or the other. Gaps in red and
green represent low-theta power epochs or sharp-wave ripples
that were excluded from analysis; these generally correspond to
resting periods at the track ends. Scale bar is 10 s, displacement
along the x-direction is approximately 1 m. State splitting was
accomplished by clustering firing rate vectors into two clusters
using a k-means algorithm and sorting into one of two maps by
maximizing correlation of cluster means with neighboring pixels
based on cluster means. The times that the ensemble firing was
clustered to one map or the other were used to partition the
data set for construction of the place fields for each map. [Color
figure can be viewed in the online issue, which is available at
www.interscience.wiley.com.]
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Our predictions of the effects of switching representational
maps based on the direction of travel on the neuronal response
variability in linear track were confirmed. Ignoring directional-
ity yielded a highly variable distribution of firing rates (r2 5
7.1, Npasses 5 3801, nrats 5 6, p(r2 5 1) < 10210; number of
qualifying passes per place field 5 11.38 6 0.59 SEM). The
mean of the dispersion z-scores was significantly different from
zero (l 5 20.14, p(l 5 0) < 0.001, t 5 23.36, df 5 3800).
Importantly, splitting by direction resulted in a significant
decrease in overdispersion (F-test, p < 10210), showing a
strong trend toward convergence of the actual firing rates with
the Poisson-process based model (See Fig. 5; LT A ? B: r2 5
2.1, Npasses 5 922; LT B ? A: r2 5 2.8, Npasses 5 1392; nrats
5 6.). Figure 5B shows how removing the few remaining no-
fire passes from the directionally-split data results in a z-score
distribution of near unit variance.

These results are summarized in Table 1.

Pair-wise Correlations

Since network-level switching of reference frames or the tem-
porary transition between cell assemblies should result in corre-
lated increases and decreases among some cell pairs with over-
lapping place-fields, we began our examination of the these
hypotheses with a pair-wise analysis. For each task, the disper-
sion of cell pairs with the most overlap was compared on passes
when the animal went through both place fields (the pairs with
overlap in the top 75% among all pairs on a task, see Methods;
LT: 16 or more pixels, approximately 144 cm2 or more; CF:
20 or more pixels, approximately 180 cm2 or more; CG: 22 or
more pixels, approximately 198 cm2 or more; higher and lower
overlap cutoffs—50% and 95%, when possible—were also
assessed and qualitatively similar results were obtained). On the
cylinder foraging (CF) task, we found that there were indeed

weak but highly significant positive correlations between disper-
sion z-score for neurons with overlapping place fields (q 5
0.047, P(q 5 0) 5 0.0048, Npairs 5 966). This correlation
was absent in randomized controls (randomizing the order of
the z-scores for the mutual passes [passes that went through
both neurons’ place-fields] for one neuron in each pair, q 5
0.0092, P(q[randomized] 5 0) 5 0.59) suggesting that sheer
increases in the number of points were not resulting in a false
appearance of coupling between cells. On the cylinder goal
(CG) task, there was a similar level of correlation (q 5 0.049,
P(q 5 0) 5 0.00095, Npairs 5 1105) which was absent in the
randomized controls (q 5 0.016, P(q 5 0) 5 0.27). This cor-
relation almost doubled when considering the five seconds prior
to goal entry (q 5 0.095, P(q 5 0) 5 0.036, Npairs 5 323).
The linear track with its two-reference-frame nature was, how-
ever, not correlated significantly under any condition (LT non-
directional: q 5 20.011, P(q 5 0) 5 0.48, Npairs 5 897; LT

FIGURE 5. Overdispersion on the linear track (LT). (A) Ignor-
ing directionality results in a highly variable distribution of firing
rates (r2 5 7.0, l 5 20.14, Npasses 5 3801, nrats 5 6). However,
splitting by direction (A-end to B-end versus B-end to A-end)
resulted in a trend toward convergence of the actual firing rates

with the Poisson-process based model (LT A ? B: r2 5 2.1, Npasses

5 922; LT B ? A : r2 5 2.8, Npasses 5 1392). Black solid line
represents expected variability of a Poisson point process model.
(B) Data same as in A but excluding no-fire passes.

TABLE 1.

Task-Dependent Variability

Task

All passes Exluding no-fire passes

r2 Npasses r2 Npasses

LT 7.1 3,801 7.0 2,513

LT A ? B 2.1 922 1.9 822

LT B ? A 2.7 1,392 2.6 1,210

CF 6.1 3,830 5.9 2,993

CG 6.7 4,419 6.4 3,547

CG 5s 5.1 855 4.8 687

CG 4s 4.8 648 4.6 522

CG 3s 4.9 439 4.7 350

CG 2s 4.3 185 3.8 150
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A ? B: q 5 20.018, P(q 5 0) 5 0.60, Npairs 5 222; LT B
? A: q 5 0.037, P(q 5 0) 5 0.11, Npairs 5 359). The
randomized controls were also not significant (LT: q 5
20.018, P(q 5 0) 5 0.24; LTAB: q 5 20.028, P(q 5 0) 5
0.42; LTBA: q 5 20.015, P(q 5 0) 5 0.53).

The significant correlation of z-score across cell pairs on CF
and CG suggested that there was indeed a process coupled
across cells, perhaps at the network level, that was influencing
their variability. The fact that we did not see this on LT sug-
gests that either the expected anti-correlation between place-
cells that prefer opposite directions was swamping the expected
correlation between cells that prefer the same directions or that
hippocampal dynamics were fundamentally different on LT
compared to tasks in the open arena.

Representational Maps

The cell-pair data suggested that the modulation of neuronal
firing was at least partially explained by cell-assembly properties
(i.e. including multiple cells, but not the entire ensemble). To
directly examine the possibility of a network-level modulation of
cell-assemblies (Lánský et al., 2001; Olypher et al., 2002; Harris
et al., 2003; Harris, 2005), we clustered the firing patterns
within each pixel and assembled them together to construct
whole-environment spatial firing maps (see Methods; Fig. 1).

Because place cells on the linear track are directional
(McNaughton et al., 1983; Muller et al., 1994; see Redish,
1999, for review), we expected this directionality to produce
two ‘‘maps’’. Not surprisingly, on the linear track, the place
fields of the maps derived by our map-splitting analysis closely
matched those based on the animal’s direction of movement
(See Fig. 4). This same process was next applied to the CF and
CG data.

Applying the map-splitting analysis to the CF and CG data
resulted in similar splits on both tasks. Within the same task,
there were clear instances where multiple-place-field neurons
had one place field split between maps (e.g. Cells 6 and 29 of
Session R031-2003-05-15; Fig. 6A), where place-fields were
assigned to one map and not the other (e.g. Cells 25 and 34 of
Session R041-2004-01-19 and cell 16 Session R031-2003-05-
15; Fig. 6A), or where a place field in one map had a higher
firing rate than in the other map (e.g. Cells 27 and 36 of Ses-
sion R041-2004-01-19 and cell 46 Session R031-2003-05-15;
Fig. 6A). Comparing CF and CG revealed slight differences in
coding across maps (e.g. Cell 36 of Session R041-2004-01-19
and cells 16 and 29 Session R031-2003-05-15; Fig. 6A). The
maps in Figure 6A were aligned so that ensemble Map 1 and
ensemble Map 2 on CF were most correlated with Map 1 and
Map 2 across the ensemble of CG, respectively.

The difference in spatial firing between maps (Fig. 6A) sug-
gest a rate-remapping-like process similar to that described by
Leutgeb et al. (2005), with a variable level of rate-modulation
spanning 0–100%. To quantify the extent of these rate differ-
ences across maps, we compared the rate-difference ratio
between maps for the random splitting and splitting based on
ensemble switching times (Fig. 6B). As expected, random split-

FIGURE 6. Two distinct maps are found on CF and CG. (A)
Example place fields before and after map-splitting from two different
sessions from two different rats. Original place-fields are shown to the
left of the line for each group; split maps are shown on top row to the
left of the line (S); and randomly split maps are shown on the bottom
row (R). Firing rate vectors were clustered into two clusters using a k-
means algorithm and sorted into one of two maps by maximizing corre-
lations with neighboring pixels based on cluster means. Place fields were
then constructed for times when the ensemble firing patterns were asso-
ciated with each map. The assignment of Map 1 and Map 2 for CF and
CG was based on which map (or stack of tuning curves) on CF corre-
lated best with Map 1 vs Map 2 on CG. Randomly split maps used shuf-
fled switching times, but were matched in a similar manner across tasks.
Small number in the lower left-hand corner of each group is the firing
rate associated with dark on the map. Gray thick arc represents cue-card
location; gray circle represents goal location (note: goal location was dif-
ferent for every session). Not all neurons are represented, however all
neurons shown for each session were recorded simultaneously. Note
there are instances of switched maps from CF to CG (e.g. Cells 16 and
29 of Session R031-2003-05-15), instances of dropped place-fields
between Map 1 and Map 2 (e.g. Cells 25 and 34 of Session R041-2004-
01-19 and cell 16 Session R031-2003-05-15), instances where bimodal
place fields are separated into two separate maps (e.g. Cells 6 and 29 of
Session R031-2003-05-15), and even instances of rate remapping
between maps where one field has a higher firing rate in one map than
in the other (e.g. Cells 27 and 36 of Session R041-2004-01-19 and cell
46 Session R031-2003-05-15). Comparing CF and CG revealed slight
differences in coding across maps (e.g. Cell 36 of Session R041-2004-
01-19 and cells 16 and 29 Session R031-2003-05-15). (B) Map-splitting
results in non-random rate-remapping across the ensemble. Distribu-
tions of the rate difference ratio between split maps is shown for each
task for ensemble-based splitting (‘‘Actual’’; black bars) and for boot-
strapped distributions of splitting based on a randomized switching
times (‘‘Random’’; gray bars). Actual splitting on all tasks was signifi-
cantly different from randomized splitting (LT: p < 0.001; CF: p <
0.001; CG: p < 0.001; sign-test on difference between random and
actual rate ratios for all cells). [Color figure can be viewed in the online
issue, which is available at www.interscience.wiley.com.]
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ting often resulted in maps with very little rate difference with
the majority of rate-difference ratios near zero (‘‘random’’; Fig.
6B). By contrast, splitting based on actual ensemble firing pat-
terns often resulted in maps with a wide variety of rate differ-
ences (‘‘actual’’; Fig. 6B). These two distributions were signifi-
canly different for maps from each task (LT: p < 0.001; CF:
p < 0.001; CG: p < 0.001; sign-test on difference between
random and actual rate ratios for all cells).

Given the complexity of the map-switching analysis, it could
be possible that these maps result from random assignments of
transient ensemble firing patterns to ‘‘maps’’ that may not be con-

sistent across the duration of a session. To be sure that these
maps indeed represent coherent stable states of the ensemble, we
tested the consistency of these states using a coherency measure-
ment previously shown to detect network-state instabilities and
reference-frame switches (Redish et al., 2000; Jackson and Redish,
2003). We defined our network states by the maps derived from
a subset of a session’s data and tested the switching dynamics of
the rest of the data from that session. We then defined a coher-
ency index that would be positive if the network was in a state
that resembled Map 1 and negative if the network was in a state
that resembled Map 2. There was a significant increase in the
coherency index as the ensemble switched from state 2 to state 1,
and a significant decrease in the coherency index when the en-
semble switched from state 1 to state 2 (for statistics, see Table
2). This indicates that these states are stable and represent robust
differences in the ensemble firing pattern, suggesting that the net-
work did indeed encode at least two stable (yet separate) maps
within the same environment (Fig. 7). Thus, the switching times
found by our map-switching analysis indeed represented transi-
tions in the network from one stable map to another. Similar
results were found for other measures of network consistency
(data not shown; see Jackson, 2006, for more details).

The temporal dynamics of state switching were next
explored. Table 3 shows the transition statistics for the state

TABLE 2.

Significant Changes in Coherency at Transitions

Task Transition P(before > after) Transition P(before < after)

LT (S1 ? S2) 3.2 3 1025 (S2 ? S1) 1.4 3 1028

CF (S1 ? S2) 2.5 3 1028 (S2 ? S1) 4.1 3 10217

CG (S1 ? S2) 3.3 3 1027 (S2 ? S1) 9.4 3 10216

The probability that the coherency index Cindex
1–2 5 (Coherency1 2 Coher-

ency2)/(Coherency1 1 Coherency2) of both states was not increased for transi-
tion (S2 ? S1) or decreased for transition (S1 ? S2) was calculated for each
transition between states. Data shown in Figure 7.

FIGURE 7. States are stable features of ensemble information
processing. The coherency index Cindex

1–2 was measured for IRMS, see
Equations 3, 6. The other measures gave similar results. (left)
Transitions into Map 1. (right) Transitions into Map 2. Note that
each map remains coherent for some time before and after each

transition. Error bars show standard error of the mean over ses-
sions. Statistics are provided in Table 2. [Color figure can be viewed
in the online issue, which is available at www.interscience.
wiley.com.]
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switching processes described above. The average switching rate
l#switch, defined as the reciprocal of the time between any switch
between maps (i.e. the in-state dwell), was approximately 3.2
Hz; the average cycle rate l#?#

switch, defined as the reciprocal of
time to get from one state back to the same state, was therefore
approximately 1.6 Hz. The in-state dwell was approximately
380 ms; thus, these states often persisted through multiple
theta cycles on average.

Map-Switching as an Explanation for
Overdispersion

If the overdispersion described by Fenton and colleagues
arises from effects occurring within each cell, independent of
the other cells in the network, then map-switching times calcu-
lated from the other cells in the network would have no effect
on the overdispersion of the cell in question. In contrast, if
overdispersion does in fact reflect changing cell-assemblies, then
map-switching determined from the other cells in the network
should produce a reduction in the overdispersion of firing of
the cell in question. This is similar to testing whether the cell-
assembly-like effects described by Harris et al. (2003) can
account for the single-cell variability described by Fenton and
Muller (1998), while at the same-time testing the reference
frame hypothesis for overdispersion (Lánský et al., 2001;
Olypher et al., 2002).

We therefore tested the cell-assembly hypothesis using a
leave-one-out approach. For each cell, map-switching times
were calculated from all the cells except the cell in question,
and then the overdispersion of the cell in question’s firing was
determined for each sub-map (see Methods). Only passes that
were not interrupted by a map-switch were used. Because the
cell whose overdispersion is being measured was not included
in the detection of map-switching, any reduction in overdisper-
sion must reflect dynamics of changing cell-assemblies. Thus,
this is a direct test of the hypothesis that overdispersion reflects
changing cell-assemblies.

Table 4 shows that there was much greater dispersion for the
whole-task maps than for the task split maps. (Task original
values are slightly different from the data in Table 1, because
the data reported in Table 1 are from the subset of sessions
with more than 25 neurons recorded simultaneously, see Meth-
ods.) To control for the possibility of this reduction in variance
being a result of a simple inflation of explanatory power result-
ing from dividing the task into two states, the dispersion of
each task was calculated given the randomized switching times.
There was no comparable reduction in variance (Table 4).

Behavioral Relevance

An interesting question that follows from this splitting of
hippocampal representational states is whether these artificially
derived states are of any relevance to the animal. We examined
this by identifying the locations at which map-switching tended
to occur and by testing whether the switching times were in
any way related to the task requirements.

To examine the relevance of spatial position to map-switch-
ing, we generated rate-maps of the animal’s position at map-
switching times by dividing the number of map-switches in
each spatial bin on the task by the time the animal spent in
that bin (see Fig. 8). All three tasks were significantly different
from random (ANOVA, measuring the effect of position on
map-switch rates: LT, F(1,15) 5 18.98, p < 1025; CF: F(1,229)
5 11.47, p < 1025; CG: F(1,229) 5 8.37, p < 1025).
The CF and CG tasks were significantly different from each
other (ANOVA, effect of task, F 5 24.63, p < 1025, including
an interaction between task and position, F(1,227) 5 1.45,
p < 1025).

To examine the relation of these temporal dynamics to the
task behavioral parameters, a PETH was constructed from all
state transition times derived from the ensemble state to yield
the transition rate ratio leading up to each task event (viz.,
food delivery on LT or CF, and the qualifying tone on CG).
These normalized PETHs are shown in Figure 9. There were
significant increases in switching rates following reward-related
events on the LT and CG tasks, but not on CF (LT: P(pre 5
post) < 1028; CG: P(pre 5 post) < 0.003; CF: P(pre 5 post)
5 0.87; 2-sample unpaired t-tests comparing 6 s before and
6 s after food delivery). While reward in the LT and CG tasks
was contingent on the location of the animal (thus providing
the animal with goals that change with times of reward-deliv-
ery), the reward on the CF task was delivered independent of
the behavior of the animal.

DISCUSSION

The data presented here, showing multiple self-consistent
spatial firing maps across a hippocampal ensemble within a sin-
gle task, suggest that the hippocampus can switch the reference

TABLE 3.

State Transition Statistics

Task lswitch
#?# (Hz) Dwell (s)

LT 1.5 0.35

CF 1.6 0.31

CG 1.6 0.33

TABLE 4.

Dispersion of Firing Patterns on Each Task Before and After Splitting

by Representational Map: a Leave-One-Out Analysis

Task Original Map1 Map2

Randomized controls

mean 6 95% CI

LT 6.7 2.9 2.4 5.9 6 (4.3, 7.5)

CF 5.2 2.5 4.6 4.7 6 (3.5, 6.1)

CG 5.8 3.5 2.8 4.7 6 (3.7, 5.8)
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frame used to solve a task within a task depending on the task
requirements. This is consistent with experimental data show-
ing an internal switch of reference frames within task when this
switch was required for proper task performance (Eichenbaum
et al., 1987; Cohen and Eichenbaum, 1993; Markus et al.,
1995; Gothard et al., 1996a,b; Redish, 1999; Redish et al.,
2000; Zinyuk et al., 2000; Rosenzweig et al., 2003). Our
results suggest a network-wide modulation occurring at behav-
iorally-relevant times, such as the delivery of food reward.
However, given that these shifts occur also with a high fre-
quency during noncontingent spatial tasks, it is possible that
these shifts in network state correspond to internal cognitive

FIGURE 8. Spatial distribution of map switches in the three
tasks. Number of map-switches were measured per second for each
bin (total number of switches in that bin divided by the time spent
in that bin). Because the linear track is effectively a linear task, the
location of the map-transitions were collapsed across the width of
the track to make position 1-dimensional. The location of the cue
card is marked with the small arc in the CF and CG tasks. [Color
figure can be viewed in the online issue, which is available at
www.interscience.wiley.com.]

FIGURE 9
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shifts in motivation or behavioral planning such as spatial tar-
get selection (e.g. switching from pellet foraging behavior to
targeted navigation; Markus et al., 1995; Fenton et al., 1998;
Olypher et al., 2002; Kentros et al., 2004).

A number of theorists have suggested that the hippocampal
cognitive map may contain submaps or ‘‘maplets’’ (Worden,
1992; McNaughton et al., 1994; Samsonovich and McNaughton,
1997; Touretzky and Muller, 2006). The question of how uni-
fied the interaction between place cells is has been a conten-
tious one over the years (McNaughton et al., 1994; Samsono-
vich and McNaughton, 1997; Redish et al., 1998; Redish,
1999; Harris et al., 2003; Harris, 2005; Touretzky and Muller,
2006) with data supporting both the idea that cells respond
individually (Anderson and Jeffery, 2003; Tanila et al., 1997;
Lee et al., 2004) and other data supporting changes occurring
in the map as a whole (O’Keefe and Conway, 1978; Markus
et al., 1995; Barnes et al., 1997; Leutgeb et al., 2005, 2007)
as well as data suggesting partial remapping (Quirk et al.,
1990; Skaggs and McNaughton, 1998; Knierim, 2002; Leutgeb
et al., 2004; Vazdarjanova and Guzowski, 2004; Lee et al.,
2004; Fuhs et al., 2005). Similarly, place cell responses to sub-
goals within a task (Eichenbaum et al., 1987; Wiener et al.,
1989; Cohen and Eichenbaum, 1993; Hampson et al., 1993;
Wood et al., 2000; Ferbinteanu and Shapiro, 2003) have been
proposed to arise from goal-dependent submaps (Touretzky
and Redish, 1996; Redish and Touretzky, 1997; Redish, 1999).
The existence of multiple, coherent, goal-dependent maps
within a single task provide direct evidence for the existence of
submap fragments.

Reference Frame Switching

Since an ensemble of hippocampal place cells will generally
tend to have a stable pattern of place-fields distributed uni-
formly throughout an environment, this is taken as the neural
instantiation of a spatial map or reference frame (see, for review,

O’Keefe and Nadel, 1978; Redish, 1999). Markus et al. (1995)
found that within an open field foraging task, simply changing
the task from foraging to directed running (tapping on 1 of 4
locations in sequence) for food caused place fields to partially
remap. Thus, partial remapping can result from modification of
task behavioral parameters and remapping with respect to goal-
directed behavior could be taken to mean that an animal is
referencing its position with respect to a particular spatial goal
(Markus et al., 1995). In this sense, the maps derived from the
CG task may be relevant to different behavioral states associated
with the task (i.e. navigating to the goal and searching for pel-
lets) similar to how previous studies distinguished between spa-
tial reference frames based on behavioral requirements (Redish
et al., 2000; Rosenzweig et al., 2003).

One further question is why CF would have multiple spatial
reference frames with switching statistics similar to CG. Here
the answer may lie in the qualitative description of the animal’s
behavior. On CF, the animal’s behavior appears to alternate
between pellet searching and less-directed wandering. It is pos-
sible that even these two behavioral states are differentiated in
the CA1 code. This may be due to the animal’s knowledge of
the statistics of food delivery, which sometimes could result in
long waiting times. However, it is important to note that one
map in CF did not have dispersion z-scores different from
randomized controls (see Table 4), this may be evidence that
this second map may be composed of fragments of submaps
perhaps relating to a variety of subgoals, such as individual
pellet locations. Thus, fitting more than two maps to CF may
lower the dispersion further, but to test this would require
larger ensembles and longer recording times than were available
for the current experiment. Alternatively, this high dispersion
of one map may represent a less attentive state such as has
been described in mice (Kentros et al., 2004).

Finally, why is the rate of switching between maps largest
near the edges of the environment? It may be that the wall
serves as a point of reference for the animal where the path
integrator can be reliably reset. If this true, high contrast loca-
tions on the wall, such as the cue card, may be especially
important and should demonstrate a higher likelihood of
switching. In Figure 8, there appears to be a slight tendency to-
ward a higher switching rate near the cue card on CF and per-
haps more specifically at the cue-card edges on CG. The overall
rate of switching on CG looks slightly more uniform than on
CF. This may be due to increased goal-related switching (see
Fig. 9); however, this would be averaged out over the surface of
the arena due to random goal placement in each session. Thus,
switching may be related both to goal-related and landmark-
related resets. Another possible interpretation of the increased
switching near the walls on CF is that switches may be related
to when the animal changes from searching for more pellets to
a more direct navigation toward pellets that have been de-
livered. Animals often favored the wall more during searching
and crossed the center more during chasing. The pellets drop
from above the rat and bounce after hitting the arena floor,
making noise to which the animals clearly oriented. If there
was a switch of maps that corresponded to the behavioral

FIGURE 9. State switching dynamics leading up to and fol-
lowing key task events. (top) State switching is suppressed during
approach to the feeder on LT (P(pre 5 post) < 1028, 2 sample
unpaired t-test comparing 6 s before and after food delivery).
There is a significant drop in state switching (blue arrow) during
running (green) with an abrupt increase at food delivery (red
arrow; note animal is still in motion). Black gradient depicts de-
parture-time distributions. (middle) There is no visible change in
the transition rate between maps on CF (P(pre 5 post) 5 0.87, 2
sample unpaired t-test comparing 6 s before and after food deliv-
ery). (bottom) There is a significant increase in the rate of state
switching (red arrow) following the qualifying tone (P(pre 5 post)
5 0.0023, 2 sample unpaired t-test comparing 6 s before and after
food delivery). The solid red line is the mean of the boot-strapped
distribution, the dotted red lines are the 95% confidence intervals
corrected for multiple comparisons. The red arrow points to a sig-
nificant increase in switching (this time approximately corresponds
with the time that it takes the pellets to reach the arena floor).
[Color figure can be viewed in the online issue, which is available
at www.interscience.wiley.com.]
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switch from searching to chasing, this should be evident as an
increase in switching rate just after pellet delivery (see Fig. 9).
Our data does not support such an explanation of the higher
switching at the wall since there is no clear relation between
pellet delivery and map switching on CF.

Why are there no-fire Passes on Directionally
Split LT Data?

While no-fire passes on cylindrical arena tasks would be
expected for neurons with strong rate differences between
maps, one would not expect there to be many times when a
neuron would not fire during a pass through a directionally
defined place field on the linear track. In the directionally fil-
tered data, it is possible that the internal cognitive state of the
animal near the ends of the track is different from our external
expectations based on direction. The PETHs representing the
map-switching on linear track with respect to reward delivery
(which resulted in an audible click before the animal reached
the food port), show a dramatic spike in map-switching just af-
ter food delivery while the animal is still running. Thus, the
animal is switching maps while it is still moving in the same
direction based on an external temporal event. No-fire passes in
the directionally filtered data may then relate to a deviation of
the animal’s cognitive state from our expectation that move-
ment direction is the only external feature governing the inter-
nal cognitive state.

Other Possible Sources of Network Switching

These results cannot be explained by phenomena such as
phase precession and transitions in the behavioral state from
theta to LIA. As presented in the Methods, these analyses were
conducted only on periods of data with high-theta and low-
delta power. As a further restriction, high-frequency events such
as sharp-waves were removed. Thus, the network switching dis-
cussed here is not likely to be a result of gross fluctuations in
the hippocampal processing state (i.e. from movement related
theta rhythm to resting LIA states). Furthermore, the average
dwell time was 380 ms, on the order of about three theta
cycles. While faster and slower switches were observed, it is
unlikely that the network switches reported here are simply due
only to a switch from the end of each theta cycle to the begin-
ning of the next. This time-scale is also much shorter than
most continuous theta epochs in our data. Finally, the overdis-
persion results are averages over passes through place fields that
lasted 1 s or more. Thus, these results should be robust to fluc-
tuation on the order of a single theta cycle such as phase pre-
cession. Likewise, the overdispersion of the split maps used
only passes where the network remained in one state through-
out the pass (similar results were obtained after loosening this
restriction, data not shown).

Comparison to Fenton and Colleagues

We replicated Fenton et al.’s findings of excessive variance in
place cell discharge (‘‘overdispersion’’) and its task dependence

(Fenton and Muller, 1998; Lánský et al., 2001; Olypher et al.,
2002). Consistent with expectations, we found that on a task
with known reference-frame switching (the linear track), split-
ting by representational state (direction of travel) resulted in
greatly reduced variability. In contrast to Fenton and Muller
(1998), however, we found significant local interactions
between neurons with overlapping place-fields. We also found
that separating the ensemble firing patterns into two maps pro-
duced coherent and consistent patterns, thus implying that the
overdispersion phenomenon was a consequence of a network-
level process. Additionally, the variability of the firing patterns
within these reference frames was greatly reduced. We found that
transitions between these reference frames occurred at behaviorally
relevant times, such as delivery of reward on spatially-contingent
tasks (e.g. LT, CG).

Our results argue for a faster average switching rate with
deeper modulation than suggested by Olypher et al. (2002). As
mentioned earlier, the prominent, left-shifted peak in our data
(see Fig. 2) is due to no-fire passes. Figure 6 depicts numerous
state-remappings where a place field exists in one state and is
absent in the other state. If an animal runs through this region
in one state, spikes will be fired, but spikes will not be fired
during passes in the other state. Markus et al. (1995) reported
the fast remapping of spatial responses in an environment to
changes in the task reward contingencies within same session.
(Both Markus et al.’s and our animals had had extensive experi-
ence with the tasks before recording began.) It may be that
training our animals on two behaviorally different tasks has
produced hippocampal spatial representations that contrast
these behaviorally different tasks ultimately resulting in deeper
modulation between maps than in the data of Olypher et al.
(2002). This would increase the incidence of no-fire passes on
both tasks and contribute a large left-shifted component to the
distribution of z-scores.

Controls: Are We Just Adding Parameters?

One possible interpretation for the reduced variance of the
split times shown in Table 2, is that it is simply a phenomenon
of explaining the variance by adding another parameter. This is
unlikely for a number of reasons. First, comparing the disper-
sion of the split maps was significantly lower than the maps
created by random switching (see Table 4). Second, if neuronal
firing was independent of the rest of the ensemble, the leave-
one-out analysis should have provided the same results as the
random split, because the cell being tested was not included in
the map-splitting process. Third, regardless of whether or not
the smoothing that results from maximizing correlations with
neighboring pixels within a map is responsible for the reduc-
tion in variance after splitting, there remains the spatial and
temporal significance of the transition times between maps,
which emphasize the salience of ensemble interactions that led
to the reduced variance. For instance, the maps correlate well
with the maps corresponding to the directions of travel on the
linear track and tend to switch right after food-delivery (while
the rat is running, just before the rat reaches the food-site).
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This switch was unrelated to changes in local field potential ac-
tivity (i.e., the rat remained in theta through the transition).
Likewise, on CG, the transition between maps corresponds
closely with the reward, with an increase in transition rate
between maps after the tone indicating the animal reached the
goal. Again, the rat remained in theta through the transition.
Thus, the parameter of ensemble interactions is behaviorally
relevant, and the reduction in variance after adding this param-
eter is more than would be expected by simply splitting the
data arbitrarily into two states.

Representing Internal Goals

The increase of switching responses following reward-related
cues (see Fig. 9) strongly suggests that these maps may be
related to an animal’s representation of internal goals with
respect to the external world. A recent report by Hok et al.
(2007), shows specific modulation of hippocampal firing dur-
ing a waiting period on a goal-related task. They suggest that
the hippocampus may code both spatial and goal-related infor-
mation. Another example of goal-related modulation of hippo-
campal place firing was reported by Hollup et al. (2001), where
a buildup of place fields was observed near the hidden platform
location in an annular water maze. The tasks in both of these
studies differ from our CG task in that their goal region was
fixed across sessions. Nevertheless, the gross changes observed
in hippocampal firing in these studies support the dynamic en-
semble-level modulations observed in our data. Our data, how-
ever, extend these findings to tasks where no specific experi-
menter-defined goal is specified, as in the CF task. Together,
these data suggest that goal-related modulation of hippocampal
pyramidal cell firing can be reflected in the spatial responses of
neurons across the hippocampal network at short time scales
within a task.

Cell Assemblies

Cell assemblies are by definition neurons bound together by
common inputs and reciprocal connections such that their
spiking is more interrelated within an assembly than across
assemblies. While CA1 itself lacks the recurrent connectivity of
CA3, the inhibitory network within CA1 as well as the cou-
pling of CA1 to CA3 and the trisynaptic-loop circuitry should
provide the basis for the formation of cell-assemblies in CA1.
If we apply the above definition to our hippocampal data, we
see that there are multiple continuous cell assemblies. Multiple
in the sense that distinct spatial tuning maps result from clus-
tering the firing patterns observed on the task. Continuous in
the sense that each map is extended in time and space such
that the pattern of neurons active within one map gradually
evolves as the animal moves through space until the hippocam-
pus switches to the next map.

The evidence for these cell assemblies is in the pair-wise cor-
relations. If neurons are part of the same cell assembly they
could be bound together spatially and temporally, while neu-
rons from a different cell assembly may overlap spatially and
remain temporally independent or anticorrelated. This is con-

sistent with recent reports (Harris et al., 2003; Harris, 2005;
Lin et al., 2005). The ensemble activation patterns in our data
overlapped to some extent in that there was a generalized simi-
larity between the two maps extracted from CF and CG with
variations in firing rate depending on which state the network
was in and occasional remapping of neuronal responses to new
preferred locations in the environment. This level of overlap is
reminiscent of the partial and rate remapping phenomena
observed across environments (Leutgeb et al., 2005; Anderson
and Jeffery, 2003) and when changing tasks within the same
environment (Markus et al., 1995).

While we can account for some of the variance in the over-
dispersion of place-cell firing by splitting the ensemble map
into two spatial reference frames, there was still more variance
than would be expected given a Poisson point process. Some of
this variance may be due to the non-Poisson nature of hippo-
campal pyramidal cells (Ranck, 1973; Barbieri et al., 2001).
Additional variability is likely to be generated from a number
of sources such as speed modulation (McNaughton et al.,
1983), changes in specialized, nonlocal firing patterns (Jensen
and Lisman, 2000; Johnson and Redish, 2005; O’Neill et al.,
2006; Jackson et al., 2006), as well as variations in plasticity as
a function of experience and the regularity of spatial behavior
(Mehta et al., 1997). There also remains the distinct possibility
that other internal cognitive processes such as navigational
planning and transient nonlocal encoding may also influence
the temporal variability observed in hippocampal neurons
(Jensen and Lisman, 1998, 2005; Koene et al., 2003; Johnson
and Redish, 2006; Ferbinteanu et al., 2006).

In conclusion, we have presented data that link single cell
variability in the hippocampus to network-level processes. This
variability could be largely accounted for by the switching of
network states made up of continuous assemblies of cells that
formed multiple spatial maps of the environment. Taken to-
gether our results imply that hippocampal spatial representa-
tions of tasks are made up of multiple, continuous submaps,
the selection of which depends on the animal’s goals.
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1995. Sharp wave-associated high-frequency oscillation (200 Hz) in
the intact hippocampus: Network and intracellular mechanisms.
J Neurosci 15:30–46.

Zhang K, Ginzburg I, McNaughton BL, Sejnowski TJ. 1998. Inter-
preting neuronal population activity by reconstruction: Unified
framework with application to hippocampal place cells. J Neuro-
physiol 79:1017–1044.

Zinyuk L, Kubik S, Kaminsky Y, Fenton AA, Bures J. 2000. Under-
standing hippocampal activity by using purposeful behavior: place
navigation induces place cell discharge in both taskrelevant and
task-irrelevant spatial reference frames. Proc Natl Acad Sci USA
97:3771–3776.

NETWORK DYNAMICS OF HIPPOCAMPAL CELL ASSEMBLIES 1227

Hippocampus DOI 10.1002/hipo



APPENDIX: KNOWN PHENOMENA WHICH
CAN PRODUCE NON-POISSON CHANGES

IN FIRING RATE

Place Field Expansion and Repetition

One possible mechanism that can produce a change in
expected firing rate is experience-dependent modification of
place-fields (Mehta et al., 1997, 2000; Shen et al., 1997;
Ekstrom et al., 2001). To examine the effect of this phenom-
enon in our data, we measured the correlation between the fir-
ing rate z-score and the number of times the animal passed
through a place field. On the CF task, there was no significant
correlation between a neuron’s z-score on a particular pass and
the cumulative number of passes through that neuron’s place
field up to that pass (q 5 0.024, P(q 5 0) 5 0.13). However,
there was a significant positive correlation on the CG task (q
5 0.043, P(q 5 0) 5 0.0030). On the LT task, the firing rate
z-score was also correlated with the number of passes whether
ignoring directionality or splitting by direction (LT: q 5
0.047, P(q 5 0) 5 0.0024; LT A ? B: q 5 0.086, P(q 5 0)
5 0.0064; LT B ? A: q 5 0.056, P(q 5 0) 5 0.029).

The task difference seen above suggests that differences in
the regularity of behavior may drive differences in overdisper-
sion. To explore the contribution of cumulative stereotypy in
the animal’s spatial behavior to the changes in the variability of
neuronal firing, we wanted to measure the development of
path regularity in different regions of the environment. There-
fore, we calculated the average amount of disorder observed in
an animal’s previous movements in a place-field for each subse-
quent path taken through that place-field (Jackson et al.,
2006). We call this quantity behavioral entropy.

The x, y-position data was binned into identical bins as the
tuning curves: 11 pixel 3 11 pixel blocks (3 cm 3 3 cm) and
the transition probability from each bin into every other bin was
updated as the animal transitioned from one bin to another as
above. With each transition (e.g. moving from bin j to bin k),
the Shannon entropy Hj of the transition probability from bin j
to all other bins was calculated for the previously occupied bin:

Hj ¼
XN
i

�pi;j log2 pi;j ðA1Þ

Thus, a cumulative record of the entropy of every location trav-
ersed in the animal’s path throughout the session was compiled.
For comparison with the dispersion z-score of each pass
through a place fields, the average cumulative entropy of the
path during that pass was used. Since the quantity Hj is related
to the regularity of an animal’s path through location j, we
refer to Hj as the local behavioral entropy.

Since our video sampling is sufficiently high enough that an
animal is unable to move more than one spatial bin in each of
eight possible directions from its current spatial bin and since
we only counted transitions from one bin to another bin, the
maximum value for Hj corresponding to equal transitions to all
neighboring bins is Hj ¼ 8 �1=8ð Þ log2 1=8ð Þ ¼ 3. Lower val-
ues of Hj correspond to more ordered local paths.

We compared the behavioral entropy of the task defined above
with the firing rate z-scores. There were significant positive corre-
lations between an animal’s behavioral entropy and the magni-
tude of the dispersion observed on the linear track and the cylin-
der goal task (LT: q 5 0.078 6 0.020, P(q 5 0) 5 0.0022;
CG: q 5 0.081 6 0.029, P(q 5 0) 5 0.0085). This correlation
was even stronger on CG when considering the five seconds lead-
ing up to goal entry (q 5 0.19 6 0.05, P(q 5 0) 5 0.0015).
However, splitting by direction on LT yielded significant negative
correlation in the A ? B direction (q 5 20.12 6 0.051, P(q
5 0) 5 0.049), and near zero correlation in the B ? A direc-
tion (q 5 20.0069 6 0.059, P(q 5 0) 5 0.91). More impor-
tantly, there was no significant correlation on the cylinder forag-
ing task CF (q 5 0.013 6 0.045, P(q 5 0) 5 0.57). These
data suggest that changes in regularity of behavior do not explain
the overdispersion seen on the CF task, implying that some other
phenomenon is driving the overdispersion effect.

Velocity Dependence

The small but significant pair-wise correlations and correla-
tions with number of passes and behavioral entropy would not

TABLE A1.

Velocity vs. Z-Score: Correlation and Regression Results

Task q P(q 5 0) Intercept

Slope

(s/cm) R2 F P-value

LT 0.13 6.3 3 10216 20.60 0.024 0.016 62.8 3.0 3 10215

LT A ? B 0.11 1.4 3 1023 20.47 0.008 0.009 8.1 4.6 3 1023

LT B ? A 0.10 4.3 3 1024 20.54 0.013 0.011 15.0 1.1 3 1024

CF 0.14 3.9 3 10218 20.87 0.051 0.020 77.2 < 10218

CG 0.12 6.8 3 10215 20.78 0.048 0.015 65.5 7.8 3 10216

CG 5s 0.17 3.1 3 1027 20.89 0.069 0.035 30.8 3.9 3 1028
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fully explain the large variance observed in the over-dispersion
phenomenon. However, there have been reports of speed and
direction modulation of place cell activity (McNaughton et al.,
1983; Markus et al., 1995; Huxter et al., 2003). Therefore, we
examined the relationship between speed and the dispersion z-
score. On all tasks, the correlations between z-score and veloc-
ity were positive and significant (see Table A1).

We tested this trend by performing a regression on each cell’s
dispersion as a function of velocity. The average slope was signifi-
cantly above zero on CF and CG (CF: slope 5 0.019 6 0.0044,
P(slope 5 0) 5 0.000048; CG: slope 5 0.018 6 0.0047,
P(slope 5 0) 5 0.00022; slopes are mean 6 SE). This relation-
ship was also found on LT and LT A ? B, but was not signifi-
cant on LT B ? A (LT: slope 5 0.010 6 0.0049, P(slope 5 0)
5 0.037; LT A ? B: slope 5 0.0077 6 0.0028, P(slope 5 0)
5 0.010; LT B ? A: slope 5 0.0036 6 0.0033, P(slope 5 0)

5 0.29; slopes are mean 6 SE). The intercepts were significantly
negative on all task conditions except on LT B ? A (negative,
but not significant; data not shown).

Testing this trend across all neurons allows an estimate of
the amount of variance in the z-score that can be explained by
speed. On all tasks, there was an overall significant positive
effect of velocity on the dispersion z-score for each pass (LT: R2

5 0.016, F 5 62.8, p < 0.0000001; LT A ? B: R2 5 0.009,
F 5 8.1, p < 0.005; LT B ? A: R2 5 0.011, F 5 15.0, p <
0.0002; CF: R2 5 0.020, F 5 77.2, p < 0.0000001; CG: R2

5 0.015, F 5 65.5, p < 0.0000001; for more detail see Table
A1). Thus, although speed has a significant effect on biasing
the z-score toward higher firing rates at higher velocities, this
effect is not sufficient to explain more than about 4% of the
variance observed in our data as evidenced by R2 values of 0.04
or less.
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