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Abstract—While the use of multi-channel electrodes (ste-
reotrodes and tetrodes) has allowed for the simultaneous
recording and identification of many neurons, quantitative
measures of the quality of neurons in such recordings are
lacking. In multi-channel recordings, each spike waveform is
discriminated in a high-dimensional space, making tradi-
tional measures of unit quality inapplicable. We describe two
measures of unit isolation quality, L,.,, and Isolation Dis-
tance, and evaluate their performance using simulations and
tetrode recordings. Both measures quantified how well sep-
arated the spikes of one cluster (putative neuron) were from
other spikes recorded simultaneously on the same multi-
channel electrode. In simulations and tetrode recordings,
both L,.;, and Isolation Distance discriminated well- and
poorly-separated clusters. In data sets from the rodent hip-
pocampus in which neurons were simultaneously recorded
intracellularly and extracellularly, values of Isolation Dis-
tance and L,,,, were related to the correct identification of
spikes. © 2005 IBRO. Published by Elsevier Ltd. All rights
reserved.
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A major question in neuroscience is how information is
processed in single neurons and in larger ensembles of
neurons. Extracellular recording techniques have allowed
the direct examination of neural responsiveness by provid-
ing access to neural activity in intact, behaving animals.
The extent to which the responses of a single neuron can
be characterized depends on the ability to identify the
action potentials originating from a single cell, and to dis-
criminate these action potentials from other sources of
electrical activity. In traditional microelectrode techniques,
the signal-to-noise ratio (SNR) has served as a quantita-
tive measure of unit quality: spikes with large SNR values
are likely to represent spikes from a source located very
near to the recording region of the electrode, and spikes
with very large SNR are likely to come from a single cell
(Lemon, 1984). In order to examine information processing
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in networks of neurons, it is often desirable to record
multiple neurons simultaneously (Wilson and McNaugh-
ton, 1993; Redish et al., 2000; Harris, 2003; Rosenzweig et
al., 2003; Brown et al., 2004; Bartho et al., 2004). How-
ever, when multiple units are detected on the same micro-
electrode, different cells are likely to be confused with one
another.

This problem may be ameliorated by the use of multi-
channel electrodes, such as stereotrodes (McNaughton et
al., 1983), tetrodes (O’Keefe and Recce, 1993; Wilson and
McNaughton, 1993), and silicon microelectrodes (Drake et
al., 1988; Csicsvari et al., 2003). Depending on the phys-
ical relationship of neurons relative to the multi-channel
electrode, the amplitude and extracellular waveform of a
neuron on each channel will likely differ from that of a
neuron in a different physical location (Lemon, 1984; Holt
and Koch, 1999; Henze et al., 2000; Buzsaki, 2004).
Spikes presumed to come from the same neuron will form
clusters in a high dimensional feature space which can be
separated from other clusters representing other simulta-
neously recorded cells and noise events. Tetrodes have
been applied successfully to multiple brain structures, al-
lowing for the simultaneous recording of large numbers of
neurons in the rodent hippocampus (Wilson and Mc-
Naughton, 1993) and improving separation of single neu-
rons in visual cortex when compared with single channel
electrodes (Gray et al., 1995).

However, while the use of multi-channel electrodes
has allowed for the simultaneous recording of large en-
sembles of neurons, there is no widely used quantitative
measure of cluster quality comparable to SNR. Instead,
when cluster quality is directly addressed, such measures
are usually based on subjective estimates of how well
segregated the spikes in a cluster are from other spikes
recorded on the same electrode. These subjective esti-
mates of cluster quality have serious drawbacks such as 1)
they are highly dependent on the human observer, and 2)
they are not likely to perform well at every point on the
continuum of cluster quality from well-isolated clusters to
poorly-isolated clusters. The development of quantitative
cluster quality measures addresses these concerns by
creating an objective metric for the evaluation of cluster
quality. Reporting of such quantitative measures would
allow for the better evaluation of experimental results and
may improve the reproducibility of results across laborato-
ries. There exists in the literature at least one quantitative
method for evaluating cluster quality, proposed by Pouzat
et al. (2002), which utilizes statistics of the noise distribu-
tion (i.e. non-spiking times) to evaluate unit quality. The
two measures used in this paper have the advantage that
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they are applicable even when no measurements of the
noise distributions are available.

Two recently introduced measures, L,.,, (Schmitzer-
Torbert and Redish, 2004) and Isolation Distance (Harris
et al., 2001), quantify the quality of a cluster of extracellu-
larly recorded spikes by calculating how well separated the
spikes in the cluster are from other spikes recorded on the
same multichannel electrode. Here, we use simulations
and actual data to demonstrate the utility of these mea-
sures for identifying well-separated clusters. We apply
these measures to data sets taken from the rodent hip-
pocampus where hippocampal pyramidal cells were simul-
taneously recorded intracellularly and extracellularly with a
tetrode (Henze et al., 2000), and to striatal (Schmitzer-
Torbert and Redish, 2004) and hippocampal (J. Jackson
and A. D. Redish, unpublished observations) recordings in
which neurons were recorded extracellularly with tetrodes.
Some of these results have been presented in abstract
form (Jackson et al., 2003).

EXPERIMENTAL PROCEDURES
Cluster quality measures

In an extracellular recording, spike waveforms recorded on a
single tetrode represent a mixture of spikes obtained from one or
more cells and waveforms due to noise events, such as mechan-
ical artifacts. Clustering is normally accomplished by calculating a
set of features of each spike waveform, such as the amplitude on
each channel of a tetrode. Spikes are then represented as points
in a high-dimensional feature space and clusters are either iden-
tified by manual users using projections of this feature space or by
automatic clustering methods. After clustering spikes into putative
cells, it is important to ensure that spikes assigned to one cluster
were well separated from other spikes recorded simultaneously.
While cases in which clusters are quite well separated are easily
identified by human observers (for instance, see Fig. 3 and 4),
such approaches are highly dependent on the human observer,
and are not likely to perform well at all points along a continuum of
cluster quality. The primary aim of this paper is to evaluate two
quantitative measures of cluster quality: L,., and Isolation
Distance.

Each cluster divides the total data set into two mutually ex-
clusive subsets: the set of cluster spikes, or spikes which are
members of the cluster and thought to represent the activity of a
single neuron, and the set of noise spikes which are spikes that
are not members of the cluster and thought to represent other
neurons and noise events. When the distribution of cluster spikes
does not overlap with the distribution of noise spikes in a high-
dimensional feature space, then it is likely that the division of the
data into sets of cluster and noise spikes was appropriate (again,
see Fig. 3 and 4). However, classification errors are expected in
cases where the distributions have significant overlap (for in-
stance, see Fig. 6). In this paper, we use the terms well separated
to describe the case in which the distribution of cluster spikes has
little or no overlap with the distribution of noise spikes and poorly
separated to describe the case in which the distribution of cluster
spikes has a large amount of overlap with the distribution of noise
spikes.

For both L, and Isolation Distance, calculations were per-
formed in a high-dimensional feature space. Energy and the first
principal component coefficient were calculated for each spike
waveform recorded on each tetrode channel. Energy was defined
as the square root of the sum of squares of each point in the
waveform, divided by the number of samples in the waveform and
was calculated as:
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where E; ; is the energy of the ith spike on the jth channel, w;; is the
extracellular waveform of spike i on channel j, n is the number of
samples in the extracellular waveform w; , and w;; , is sample k of
the n sample extracellular waveform of spike i on channel j.

When calculating principal components, each waveform was
normalized by its energy. This allows the principal components to
be based on waveform shape rather than overall amplitude pa-
rameters. Principal components were determined separately for
each tetrode recording.

The eight feature quantities (four tetrode channelsxtwo fea-
tures) defined each spike as a point in eight dimensional space.
Both measures make use of a statistical quantity known as Ma-
halanobis distance. The Mahalanobis distance ch of spike i from
the center of the cluster C is defined by the formula

D?c=(x;— o) 3¢ (X — e) (2)

where X; is the feature vector for spike i, pc is the mean of the
values of the spikes in cluster C, and 3. is the covariance matrix
of the spikes in cluster C. The Mahalanobis distance allows for the
measurement of the distance between points in a high-
dimensional space where there exists correlation between dimen-
sions. For instance, there is often a correlation between the peaks
of spikes observed on each channel of the electrode. In such a
case, the cluster takes on an elongated shape, reflecting the
correlation between the features (see the clusters shown in Fig.
2-6 for examples of clusters with correlations in the energy ob-
served on pairs of channels in a tetrode recording). Depending on
where the noise spikes fall with respect to the long axis of the
cluster in that two-dimensional space, the Euclidean distances
from the center of the cluster to the noise spikes would not well
represent how far noise spikes are from the cluster boundaries.
The Mahalanobis distance has the effect of accounting for the
correlations between these dimensions, and the distances calcu-
lated will reflect the location of spikes with respect to the center of
the cluster, after rescaling the cluster spikes into a sphere. When
all of the dimensions are uncorrelated, and the variances of each
dimension are equal, the Mahalanobis distance is equivalent to
the Euclidean distance.

L

ratio

L,.io was originally described by Schmitzer-Torbert and Redish
(2004) and applied to striatal data. If the distribution of cluster
spikes is multivariate normal (i.e. Gaussian), then D? for cluster
spikes will distribute as x? with eight degrees of freedom (because
the measure is performed in an eight dimensional feature space;
D’Agostino and Stephens, 1986). The assumption of multivariate
normality thus provides x? with eight degrees of freedom as an
expectation for the distribution of the D? values for cluster spikes.
A quantity L is calculated as:

L(C)= >, 1 - CDF2(DZc) (3)
igc s

where i¢ C is the set of spikes which are not members of the
cluster and CDFxgi is the cumulative distribution function of the
¥ distribution with df=8. Noise spikes which are close to the center
of cluster C will contribute strongly to this sum, while noise spikes far
from the center of cluster C will contribute little. A low value of L
indicates that the cluster has a good “moat” and is well separated
from other spikes recorded on the same tetrode. In contrast, a high
value of L indicates that the cluster is not well separated, and is likely
to both include spikes which are not part of the cluster and exclude
spikes that are part of the cluster. The cluster quality measure, L,
was defined as L divided by the total number of spikes in the cluster.
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Fig. 1. Calculation of L, (left) and Isolation Distance (right). For both plots, data points were based on a simulated noise and cluster distribution with
unit variance. Both the cluster and noise were normally distributed in eight dimensions, and were separated by a distance of six standard deviations.
Top: distributions of squared Mahalanobis distances (D?) for the cluster and noise distributions. Solid lines indicate cluster points and dashed lines
indicate noise points. Bottom left: L,,.. Line indicates 1-cdf(xg?). L., is calculated by evaluating each of the noise points using the inverse of the x>
cdf, which indicates the probability that a noise point is near the center of the cluster. Bottom right: isolation distance. Cumulative count of points from
a simulated cluster (solid line) and noise source (dashed line). This simulated cluster contains 500 points, and thus the isolation distance is the location
of the 500th nearest noise point. When the cumulative count functions of the cluster spikes and noise spikes intersect exactly once, the value of
Isolation Distance for the cluster is the intersection of the cumulative count functions.

L(C
Lraiio(C) = ’(7_0)

(4)

where n is the number of spikes in C. Using a criterion based on
L, .4 rather than L allows clusters with larger numbers of spikes to
tolerate more contamination. L,.,, will be most suitable in cases
where the responses of cells are being evaluated relative to some
experimental parameter, as the effect of a given level of contam-
ination on the observed tuning of the cell is likely to be proportional
to the size of the cluster. However, in situations where even small
amounts of contamination in large clusters are not acceptable, L
may be a more appropriate quality measure than L.

Isolation Distance

Isolation Distance was first introduced by Harris et al. (2001)
and applied to hippocampal data sets. If a cluster contains n¢
cluster spikes, the Isolation Distance of the cluster is the D?
value of the n." closest noise spike (see Fig. 1). Isolation
Distance is therefore the radius of the smallest ellipsoid from

the cluster center containing all of the cluster spikes and an
equal number of noise spikes. As such, Isolation Distance
estimates how distant the cluster spikes are from the other
spikes recorded on the same electrode. Isolation Distance is
not defined for cases in which the number of cluster spikes is
greater than the number of noise spikes.

Simulations

To explore how Isolation Distance and L, ., performed in a
controlled context, each measure was tested using simulations
in which a multivariate Gaussian distribution of spikes (the
cluster) was separated by some distance from one or more sets
of Gaussian-distributed noise spikes. The use of simulation
data allowed us to examine the performance of each measure
as a function of separation between a cluster and a noise
source and the dimensionality of the feature space, as well as
the performance in cases of multimodal noise. Simulations
tested Gaussians with unit variance as well as non-Gaussian
cluster distributions.
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Data sets. To compare qualitative estimates of cluster qual-
ity to the performance of Isolation Distance and L, cluster
examples from tetrode data collected from the rodent hippocam-
pus (Henze et al., 2000) or dorsal striatum (Schmitzer-Torbert et
al., 2002) were examined. For both hippocampal and striatal data
sets, surgical and experimental protocols followed appropriate
institutional guidelines for animal care. Experimental procedures
were approved by the Institutional Animal Care and Use Commit-
tees of the appropriate institutions. These analyses were done on
data collected for previous experiments; no additional animals
were used.

Paired intracellular and extracellular data sets. Hippocampal
data sets (Henze et al., 2000) were analyzed to determine the
relationship between cluster quality and the correct identification
of spikes from a cluster. Six paired recordings of one hippocampal
pyramidal neuron recorded intracellularly and multiple neurons
recorded extracellularly were used. The proportion of noise spikes
incorrectly classified as cluster spikes and the proportion of cluster
spikes incorrectly classified as noise spikes were examined for
clusters created by manual users and an automatic clustering
algorithm (for details, see Harris et al., 2000).

RESULTS
Simulations

In these simulations, both L, ,, and Isolation Distance
discriminated between poorly-separated and well-
separated clusters. When a cluster composed of 500
points was moved away from a noise distribution com-
posed of 7500 points, both Isolation Distance and L,
differentiated poorly- and well-separated states. As the
distance between the cluster and noise was increased,
values of L,,,, and Isolation Distance improved.

As the dimensionality of the feature space was in-
creased, values of Isolation Distance and L, varied with
the dimensionality. However, at each dimensionality, both
measures differentiated poorly-separated clusters from
well-separated clusters: all values of Isolation Distances
from poorly-separated clusters were lower than those of
well-separated clusters and all values of L, from poorly-
separated clusters were larger than those of well-
separated clusters. These results indicate that both mea-
sures were effective in discriminating well- and poorly-
separated clusters independent of the dimensionality of
the feature space, but that any threshold used to define a
well- or poorly-separated cluster will depend on the dimen-
sionality of the feature space.

When the noise distribution was bimodal and a small
noise mode was located near the center of the cluster,
L,..;» outperformed lIsolation Distance. Isolation Distance
was not sensitive to the presence of the noise unless this
small noise mode contained at least as many points as the
cluster. L,,,, detected the presence of the noise points.
These results would indicate that in cases where noise
distributions are complex, L,,,, may provide a better esti-
mate of the presence of local noise points.

Cellular spike clusters recorded on multi-channel elec-
trodes are not always well described by Gaussian models
due to spike-adaptation and other effects (Fee et al,
1996a,b; Lewicki, 1998; Harris et al., 2000; Shoham et al.,

2003). Generally, clusters have longer tails than would be
expected from a Gaussian distribution. Although this
means that Gaussian models are not always well suited for
automatic clustering, the question being addressed in this
paper is the contamination of the cluster by noise (other
neurons and non-neural noise). We tested multivariate
t-distributions (Shoham et al., 2003) and mixtures of Gaus-
sians (Lewicki, 1998) as these have been proposed as
models of spike distributions. As expected, deviations from
normality in these non-Gaussian distributions had no ap-
preciable effect on the L, or Isolation Distance measure-
ments. This occurs because L., and Isolation Distance
measure the distribution of non-cluster points relative to
the expected distribution of cluster points. Although a
Gaussian distribution does not approximate multivariate
t-distributions or mixtures-of-Gaussians distributions accu-
rately enough to decide inclusion within a cluster, a Gauss-
ian distribution does approximate them well enough to
measure Mahalanobis distance to non-cluster points, and
thus does approximate them well enough that L,,, and
Isolation Distance continue to provide robust measures of
cluster quality.

We further applied these measures to simulations us-
ing actual hippocampal data sets. Fig. 2 shows an energy
projection for data from a hippocampal tetrode recording.
The spikes from an intracellularly identified hippocampal
neuron are shown in black; all other points are shown in
gray. As can be seen in the energy projections, this cluster
was not well described by a Gaussian fit: the cluster had a
bimodal distribution in this two-dimensional projection.
Also shown in Fig. 2, L ., and Isolation Distance were
calculated for the hippocampal neuron as the cluster was
moved into and out of the noise distribution by multiplying
the average waveform of the cluster by a scalar. In addition
to L,.,, and Isolation Distance, the SNR was calculated for
each tetrode channel for the cluster spikes (SNR defined
as difference in the average energy of the cluster spikes
from the average energy of the noise spikes, normalized
by the standard deviation of the energy of the noise wave-
forms). As the cluster was moved out of the distribution of
noise spikes, all measures improved. This demonstrates,
using actual data, that L,,,, and Isolation Distance can
successfully be used even with non-Gaussian clusters.
SNR on each tetrode channel also improved as the cluster
was moved out of the distribution of noise spikes, but did
not provide an unambiguous measure of cluster quality.

Application to neural data

L,..i, and Isolation Distance agree with subjective es-
timates of cluster quality. Although L,.;, and Isolation
Distance performed well on simulated data, it was also
important to demonstrate that these measures discrimi-
nate clusters which are identified as poorly separated and
well separated by human observers. Fig. 3—6 show four
clusters taken from tetrode data collected in rat hippocam-
pus or dorsal striatum. Fig. 3 shows data from a tetrode
recording in the rodent hippocampus in which a well-
separated cluster of spikes was observed. Fig. 4 shows a
well-separated cluster from data recorded with a tetrode in
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Fig. 2. Simulation with hippocampal data. Top left: actual data from a hippocampal cell. Spikes and noise events recorded on a single tetrode placed
in the rodent hippocampus. Black points are spikes which were identified on the basis of intracellular recordings. Dashed lines indicate 2 and 3
standard deviation isocontours generated from a two-dimensional Gaussian fit of the cluster. Bottom left: average waveform on each tetrode channel
of the hippocampal cell shown above. Right: changes in cluster quality as the center of the cluster is moved. The center of the cluster was shifted from
what is shown in the top left panel by multiplying the average waveform of the cluster by a scalar and leaving the residuals intact. SNR for each of
the four tetrode channels improved as the cluster was increasingly separated from the noise, but each channel gave a different SNR. Even using a
highly bimodal cluster, L,,,, and Isolation Distance discriminated between situations in which the cluster was well and poorly separated.

the rodent striatum. The distributions of D? values for
cluster spikes and noise spikes are also shown, as well as
values of L, and Isolation Distance for each cluster. D?
was calculated in eight dimensions using the energy and
the first principal component coefficient of the extracellular

Energy on channel 4

1

waveforms on each tetrode channel. For both clusters,
there was very little overlap of the D? distributions of the
cluster spikes and noise spikes, and values of L, and
Isolation Distance indicated that the clusters were well
separated. Fig. 5 and 6 show two other clusters recorded
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Fig. 3. Hippocampal cell with good separation. Left: spikes and noise events recorded on a single tetrode placed in the rodent hippocampus. Black
points are spikes which were identified on the basis of intracellular recordings. Right: separation of the cluster from all other events recorded. L,,,, and
Isolation Distance were calculated in eight dimensions. Solid line indicates the distribution of D? values for the cluster (black dots in left panel). Dotted
line indicates the distribution of D? values for the non-cluster points (gray dots in left panel). (Data from Henze et al., 2000: 690 spikes in the cluster,

12,031 spikes recorded total).
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Fig. 4. Striatal cell with good separation. Left: spikes and noise events recorded on a single tetrode placed in the rodent striatum. Black points are
spikes from a cluster defined using extracellular data. Right: separation of the cluster from all other events recorded. Format as per Fig. 3.
(R023-2002-08-TT10-07: 436 spikes in the cluster, 31,394 spikes recorded total).

in rodent striatum. As can be seen in the energy projec-
tions and the D? distributions, the cluster spikes in Fig. 5
and 6 are not as well separated as the examples shown in
Fig. 3 and 4. The worst separation is observed in Fig. 6,
while Fig. 5 has an intermediate separation. Values of L,
and Isolation Distance agreed with this subjective catego-
rization of cluster quality. The clusters shown in Fig. 3 and
4 had the best quantitative separation for both measures,
Fig. 5 had an intermediate value, and Fig. 6 had the worst
values of both L,_,, and Isolation Distance. These exam-
ples support the use of these cluster quality measures as
an objective method for evaluating cluster quality.

Comparison of cluster quality from separate tetrodes. A
highly desirable feature of cluster quality measurements is

Energy on channel 2

Energy on channel 1

Count

that they are comparable across separate recording ses-
sions. As cluster quality values of L,,;, and Isolation Dis-
tance depend on the dimensionality of the feature space
(described above), comparisons across sessions must be
made between feature spaces of equal dimensionality. As
different waveform features (e.g. energy, peak amplitude,
principal component coefficients) can be correlated with
one another (e.g. the peak and energy of a waveform are
not independent), these correlations between features re-
duce the effective dimensionality of a given feature space.
We stress that direct comparisons of cluster qualities cal-
culated using different feature spaces are not justified. For
example, cluster qualities should not be compared directly
between clusters evaluated with four-dimensional versus
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Fig. 5. Striatal cell with intermediate separation. Left: spikes and noise events recorded on a single tetrode placed in the rodent striatum. Black points
are spikes from a cluster defined using extracellular data. Right: separation of the cluster from all other events recorded. Format as per Fig. 3.
(R023-2002-08-TT10-05: 360 spikes in the cluster, 31,394 spikes recorded total).
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Fig. 6. Striatal cell with poor separation. Left: spikes and noise events recorded on a single tetrode placed in the rodent striatum. Black points are

spikes from a cluster defined using extracellular data. Right: separation of the cluster from all other events recorded. Format as per Fig. 3.
(R023-2002-08-TT10-08: 367 spikes in the cluster, 31,394 spikes recorded total).

eight-dimensional feature spaces, or between clusters
evaluated with two eight-dimensional feature spaces cre-
ated using different waveform features (energy/first princi-
pal component coefficients versus peak amplitude/second
principal component coefficients). Thus, cluster quality
comparisons made between clusters recorded in different
recording sessions should be performed using feature
spaces defined by the same set of extracellular waveform
features, and the same number of electrode channels.
(This does not mean that clusters must be created using
the same feature space which is used to calculate cluster
quality. Clusters can be created by any method deemed
appropriate (manual cluster cutting, automatic spike sort-
ing, etc.). Then, after clusters have been created from a
data set, cluster qualities must be calculated on the basis
of a fixed, or standardized, feature space in order that
cluster qualities can be compared across separate
recordings.)
A secondary concern relates to the use of feature
spaces which include principal component coefficients of
the extracellular waveforms. The cannonical vectors used
to compute the principal component coefficients are de-
pendent on the distribution of waveforms obtained on the
tetrode and thus can change between recording sessions.
These changes in the cannonical vectors might have an
effect on the values of both L,.;, and Isolation Distance,
which could limit our ability to make comparisons between
the quality of clusters from separate recording sessions.
We estimated the variability in values of L,,,;,, and Isolation
Distance by recomputing cluster quality values using prin-
cipal component vectors taken from separate tetrodes.
Across a set of 55 tetrode recordings from the striatum (27
recordings, 117 spike trains) and hippocampus (28 record-
ings, 145 spike trains), the median absolute error in L,
and Isolation Distance on the log scale was 0.071 and
0.023 respectively. In these samples, the average L, .,
and lIsolation Distance values on the log scale were

—1.52+1.48 and 1.44+0.37 respectively (mean=standard
deviation). As the error rates for each measure were much
smaller than the width of the distribution of cluster quality
values, we can conclude that the amount of error intro-

duced by using the within-tetrode principal components is
negligible.

Paired intracellular and extracellular data

Type | and type Il errors.  Although values of L, and
Isolation Distance agreed with qualitative evaluations of
well-separated and poorly separated clusters for the te-
trode data shown above, a better test of the utility of each
measure is the relationship between values of L,_,, and
Isolation Distance to the correct identification of the spikes
actually originating from one neuron. Because such infor-
mation is not available in an extracellular recording, we
analyzed hippocampal data sets in which a hippocampal
neuron was simultaneously recorded both intracellularly
and extracellularly (Henze et al., 2000). In these data, the
identity of each spike from the neuron in the extracellular
data can be identified by the intracellular recording. Clas-
sification errors for clusters created using the extracellular
data were compared with values of L, and Isolation
Distance for six hippocampal neurons. For each cluster,
the proportion of noise spikes which were incorrectly in-
cluded in the cluster (type | error) and the proportion of
cluster spikes which were incorrectly excluded from the
cluster (type Il error) were examined separately.

As shown in Fig. 7, both L, ., and Isolation Distance
were related linearly on the log scale to type | and type Il
error rates. While both measures were significantly corre-
lated to both error types, the strongest relationships were
between L,_,;, and type Il (false negative) error rates, and
between Isolation Distance and type | (false positive) error
rates. This suggests that these measures may be used
independently as estimates of the two error types.
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Fig. 7. Relationship between cluster quality and the correct identification of cell spikes. Cluster quality values for six cells identified by paired intra-

and extracellular recordings. L

ratio (

left) and Isolation Distance (right) values were calculated using clusters created by manual users and one automatic

clustering technique (for details, see Harris et al., 2000). For each cluster, the proportion of spikes incorrectly included is shown at top, and the

proportion of spikes incorrectly excluded by the same users is shown at bottom. For both L

and Isolation Distance, decreases in cluster quality were

ratio

associated with increases in the proportion of spikes incorrectly classified. For this data set, L,,,, was well related to the proportion of cluster spikes
incorrectly excluded from the cluster (type Il error), while the Isolation Distance was well related to the proportion of noise spikes incorrectly included

in the cluster (type | error). All four correlations were significant.

Choice of features. The relationships between clus-
ter quality measures and error rates shown in Fig. 7 held
true over a wide range of feature spaces. To measure how
the relationship between cluster quality values and error
rates depended on the choice of waveform features, we
repeated the analysis of the paired intracellular/extracellu-
lar tetrode data sets with nine commonly used waveform
features (energy, peak amplitude, area [sum of the abso-
lute value of the waveform samples], first, second and third
principal component coefficients of the raw extracellular
waveform, and first, second and third principal component
coefficients of the energy normalized waveform). There
was a significant improvement in the correlations of cluster
quality values with error rates (F 176)=9.68, P=0.002)
when using feature spaces defined by pairs of features
(two features measured on each tetrode channel: eight-
dimensional feature spaces) relative to feature spaces
defined by a single feature (one feature measured on each
tetrode channel: four-dimensional feature spaces). While
even larger feature spaces (using three or more features)

might yield further improvements in the correlations be-
tween cluster quality and error rates, further analyses were
limited to pairs of features in order to minimize the com-
plexity of application of the cluster quality measures. The
results for pairs of features (eight-dimensional feature
spaces) held true for even higher dimensional feature
spaces defined by three features (12-dimensional feature
spaces) and are presumed to hold for higher dimensional
spaces as well.

L,.::» and Isolation Distance were calculated using fea-
ture spaces defined by pairs of two waveform features
calculated for each tetrode channel (a total of 36 eight-
dimensional feature spaces, including the feature space
used in Fig. 7). For each eight-dimensional feature space,
the correlations of each cluster quality measure with type |
and type Il error rates were calculated on the log scale. As
shown in Fig. 8, across the set of feature pairs, L,.;, and
Isolation Distance were well correlated with type | and type
Il errors. In a two factor ANOVA (MeasureXError Type),
there was a significant MeasureXError Type interaction
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Fig. 8. Over a wide range of feature choices, L, and Isolation Distance are well related to the number of type | and type Il errors. For the paired
hippocampal intracellular/extracellular data shown in Fig. 7, L, and Isolation Distance were calculated using pairs of waveform features, and correlations
with cluster quality values with the type | and type Il error rates were calculated. Cluster quality values were calculated using feature spaces defined by all
possible pairs of nine waveform features (energy, peak amplitude, area [sum of the absolute value of the waveform], First, second and third principal
component coefficients of the raw extracellular waveform, and first, second and third principal component coefficients of the energy normalized waveform),
for a total of 36 feature spaces. Bars represent the mean correlation of each cluster quality measure with type | and type Il errors over the 36 feature spaces.
Error bars indicate 95% confidence intervals. As with cluster quality values calculated using energy and the first principal component coefficient of the energy
normalized waveform (Fig. 7), type | and type Il error rates were correlated with both cluster quality measures over a wide range of feature spaces. On

average, Isolation Distance was more highly correlated with type | error rates than was L, while L .,, was more highly correlated with type Il error rates
than was Isolation Distance. Both measures were better correlated with type | than type Il error rates.

(F(1,140)=45.7, P<0.0001). Post hoc tests (Tukey-Kramer)
revealed that Isolation Distance was more highly corre-
lated with type | errors than was L, ., while L, was more
highly correlated with type Il errors than was lIsolation
Distance. There was also a main effect of Error Type
(F(1,140)=163.7, P<0.0001), indicating that both L, and
Isolation Distance had higher correlations with type | errors
than type Il errors. There was no main effect of Measure
(F1,140)=2.7, P=0.102).

The correlation between error rates and cluster quality
measures held over many feature spaces, indicating that a
large set of waveform features is adequate for assessing
cluster quality. However, the use of different feature
spaces for reporting cluster quality values in published
data would limit comparisons of cluster quality between
publications. Therefore, a common set of features should
be adopted from the set of acceptable features and used in
calculating cluster quality values for published reports.
Across the 36 feature spaces in which the paired intracel-
lular/extracellular tetrode data sets were examined, the
strongest correlations between cluster quality and error
rates were obtained using the energy and the first principal
component coefficient of the energy normalized waveform.
As these features are also commonly used measures of
extracellular waveforms in processing multi-electrode
data, we recommend using a feature space defined by
energy and the first principal component coefficient of the

energy normalized waveform for reporting published clus-
ter quality values.

DISCUSSION

While multichannel electrodes have allowed for better iso-
lation of cells on the basis of extracellularly recorded action
potentials, there exists a need for quantitative assessment
of cluster quality. Two such quantitative measures, L, .,
and Isolation Distance evaluate the separation of a cluster
from other spikes recorded on the same electrode. L, iS
a measure of the amount of noise observed in the vicinity
of the cluster, and Isolation Distance is a measure of how
distant a cluster is from the noise distribution. On the basis
of simulation, subjective evaluation and the correct identi-
fication of intracellularly recorded spikes, L,.,, and Isola-
tion Distance performed well at quantifying cluster quality.
Using data sets in which hippocampal pyramidal cells were
simultaneously recorded intracellularly and extracellularly,
we have shown that these cluster quality measures have a
relationship with the percentage of spikes correctly identi-
fied in the extracellular recordings.

In simulations, L,.,, and Isolation Distance differenti-
ated well-separated clusters from poorly-separated clus-
ters. Also, while the values of Isolation Distance and L,
varied with the dimensionality of the feature space, at each
dimensionality well-separated and poorly separated clus-
ters were differentiated by both measures. These simula-
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tions do not define what threshold should be used to define
a well-separated cluster, but do indicate that these mea-
sures will provide quantitative measures of cluster quality.

Based on the correct identification of intracellularly
recorded spikes, both Isolation Distance and L,.,;, were
related to the quality of extracellular spike classification. In
these data sets, L,.,;, was better related to the proportion
of intracellular spikes which were “missed” while Isolation
Distance was better related to the proportion of noise
spikes which were incorrectly classified as part of the
cluster. These data demonstrate the usefulness of both
measures for evaluating the quality of clusters created
solely based on extracellular data.

The strong correlations of Isolation Distance and L,
with type | and type Il error rates, respectively, may arise
from the specifics of what they measure. Isolation distance
estimates the distance from the cluster to the nearest
surrounding clusters; clusters that are close to their neigh-
bors are more likely to contain contaminating spikes. L,
estimates the number of non-cluster spikes that lie in the
“‘moat” immediately outside the cluster boundary; clusters
with many nearby non-cluster spikes are more likely to
have missed spikes which were actually generated from
the cell in question.

Suggested application to neural data

The cluster quality measures L,,,;, and Isolation Distance
are not a replacement for the data processing used to
identify cells in extracellular recordings. Rather, these clus-
ter quality measures will assist neurophysiology research
by providing objective criteria for the inclusion of units in
further data analyses.

The suggested method for applying L., and Isolation
Distance is as follows: first, the extracellularly recorded
action potentials should be sorted into putative clusters.
Second, for each spike, some set of feature parameters
must be calculated. The cluster quality measures are ap-
plicable to any such set of features, including peak ampli-
tude, and peak-to-valley measurements, but for consis-
tency between published reports, we suggest that pub-
lished cluster quality values use the energy and first
principal component coefficient of the energy normalized
waveform. Third, once features have been calculated, the
cluster quality of each cell can be calculated.

For the purposes of using these cluster quality values
in published data, there are at least two ways to incorpo-
rate these measures into analyses: 1) the use of a thresh-
old to define the minimum value of each cluster quality
measure in order for a cell to be considered in further
analyses, or 2) the description of the distribution of cluster
quality values obtained. The use of a minimum threshold
for cluster quality is required in cases where the informa-
tion encoded by single cells is critical, for instance in cases
where the tuning of individual neurons is examined relative
to sensory or behavioral parameters.

The choice of threshold may itself depend on the sci-
entific question being asked. In general, a good strategy is
to compute the quantity of interest for all cells, and plot the
dependency of this quantity against isolation quality. If

dependence on cluster quality is seen, poorly isolated
neurons should be excluded from further analysis. The
appropriate threshold should be taken as the value above
which no further dependence on cluster quality is observed
(Harris, 2003; on-line supplementary material).

In other cases, it may be acceptable to include every
cell in an analysis, for instance in cases of the reconstruc-
tion of behavioral or stimulus parameters from neural data
(Georgopoulos et al., 1983; Jensen and Lisman, 2000;
Johnson et al., in press; Salinas and Abbott, 1994; Wilson
and McNaughton, 1993; Zhang et al., 1998). In this case,
we recommend that descriptive statistics should be re-
ported of the distribution of cluster qualities (i.e. mean and
standard deviation), to enable objective evaluation of ex-
tracellular recording. In any report including these cluster
quality measures, it is important to clearly describe how
features were calculated, in order that results from different
labs can more directly be compared. We would further
suggest that the features used for published cluster quality
values be the energy and first principal component coeffi-
cient of the energy normalized waveform.

Conclusions

Multi-channel recordings have allowed for the better isola-
tion of extracellularly recorded cells with lower signal-to-
noise ratios than single-electrode techniques. While the
signal-to-noise ratio has served as a measure of unit qual-
ity in single-channel recordings, few quantitative methods
have been described for multi-channel data. Isolation Dis-
tance and L, offer a significant advance to multi-channel
recordings by providing a quantitative method for evaluat-
ing cluster quality. Wider use of quantitative measures of
cluster quality would likely improve the reproducibility of
results across laboratories, and reporting of such quanti-
tative measures would allow for the better evaluation of
experimental results.

These two measures provide a general, quantitative
method with which to gauge the contamination of a cluster
in a high-dimensional feature space. As such, they are not
limited to tetrode recordings. Separating cells from noise is
required with any multi-channel electrode, including ste-
reotrodes (McNaughton et al., 1983), tetrodes (O’Keefe
and Recce, 1993; Wilson and McNaughton, 1993), and
silicon microelectrodes (Drake et al., 1988; Csicsvari et al.,
2003; Buzsaki, 2004; Bartho et al., 2004). Because signals
occur on multiple channels simultaneously, standard mea-
sures of unit quality (such as SNR; Lemon, 1984) are
inappropriate. L,.;, and Isolation Distance provide mea-
sures of cluster quality and as such, can provide measures
of cell isolation quality for any multi-channel electrode, or
single-channel electrode for which multiple features are
considered (i.e. energy, principal component coefficients,
etc.).

While lIsolation Distance and L,.,, are quantitative
measures of cluster quality, the choice of acceptable val-
ues of each measure will still depend on the experimental
question being addressed. However, by reporting the min-
imum acceptable values of Isolation Distance and L,
obtained for a data set, other researchers would have
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some idea about how much contamination was present. As
such, reporting of Isolation Distance and L, values
would be a great improvement over having little or no
information about the quality of the cells described.
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