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Panel Session
What Does Dopamine Say: Clues from Computational
Modeling

The Role of Dopamine in the Temporal Difference Model of
Reinforcement Learning
Read Montague*

Baylor College of Medicine, Houston, TX, USA

Background: Reinforcement learning models now play a central
role in modern attempts to understand how the brain categorizes
and values events traditionally framed by psychology as rewards and
punishments. These models provide a way to design and interpret of
reward expectancy experiments in humans across a wide range of
rewarding dimensions. They also provide a connection to computa-
tional models of optimizing control, and hence connect the neuro-
biology of reward processing to simple forms of decision-making,
even decision-making about social exchanges. A central signal in
these computational accounts is the reward prediction error signal
encoded by burst and pause responses in midbrain dopamine neu-
rons. Numerous experiments have now provided strong evidence
for the existence of such reward prediction error signals. Despite
these successes, there is a missing piece to this story. The missing
piece is a learning signal known as regret. By regret, we mean the
difference between what ‘could have been obtained’ and what ‘actu-
ally was obtained’.
Methods: We used several event related fMRI and hyperscan-
fMRI experiments to probe both reward prediction error signals
and regret signals in humans subjects. We studied the reward pre-
diction error signals using a simple conditioning paradigm where
a light predicted the temporally consistent arrival of a juice squirt
in the mouth of 25 human subjects. We also probed the existence
of reward prediction error signals in another domain, social ex-
change, using a two-person economic exchange game (a trust
game) and hyperscan-fMRI (n=96 subjects). A third experiment
was carried out on to probe neural correlates of regret single
human subjects carrying out an investment task (basically a gam-
bling game).
Results: All three experiments revealed strong correlates of these
computational learning signals: reward prediction error and the re-
gret signal. In both cases strong responses were observed in the
ventral striatum, and in the case that choices were actually made by
the subjects the prediction error signal activated ventral portions of
the caudate nucleus consistent with previous reports using differ-
ent tasks. The regret experiment showed exceptionally strong re-
sponses in the ventral putamen and also responses in Lateral Inter-
parietal Sulcus area (LIP) that correlated with the value of the
market fluctuation. In the trust experiment, we observe a signal in
the ventral caudate that displays features of a reward prediction
error signal.
Discussion: These results address three major issues. (1) They
show that reward prediction error signals possess detectable corre-
lates in human brains using functional magnetic resonance imag-
ing. (2) They show that reward prediction error signals show up in
the ventral putamen when no action is required by the subject to
obtain reward and the ventral caudate and putamen when an ac-
tion is required. (3) Regret signals are treated by the brain as real
losses and drive changes in behavior (behavioral results) and fur-
thermore that this signals represent another form of learning sig-
nal, a counterfactual reward error signal, that has detectable neural
correlates in the striatum, thus suggesting one physical substrate
for the experience of regret. (4) Collectively, these results show the
utility of using computational models to search for neural corre-
lates of signals involved in reward learning and perturbed by dis-
ease. This approach provides a new direction to more traditional
methods of searching for neural correlates of reasonable psycho-
logical categories.

Dopamine Encodes a Quantiative Reward Prediction Error for For
Reinforcement Learning
Paul W Glimcher*, O’Dhaniel A Mullette-Gillman, Hannah M Bayer,
Brian Lau and Robb Rutledge

Neural Science, New York University, New York, NY, USA

Background: There is much evidence that the activity of midbrain
dopamine neurons is correlated with the reward prediction error sig-
nal postulated by all reinforcement learning models. There has, how-
ever, been little effort devoted to testing the hypothesis that the activ-
ity of these neurons specifically encodes the reward prediction error
term of any particular model or that the activity of these neurons can
account for behaviors related to reinforcement learning processes.
Our laboratory has attempted to address this with a three pronged
approach. First, we have developed behavioral tools for quanifying re-
inforcement learning in humans and primates. Second, we have
linked the trial-by-trial activity of dopamine neurons, measured in
awake behaving primates, to the history of recent rewards which serve
as the input data for reinforcement learning. Third, we have exam-
ined how changes in dopamine unit activity influence the ways in
which the history of recent rewards influence behavior.
Methods: Reinforcement learning combines information about pre-
vious rewards and punishments in order to place values on actions.
This is, however, not the only class of information that can influence
the desirability of an action. Biases and the history of ones own
choices (irrespective of the rewards that they have yielded) can also
influence choice. We therefore developed a mathematical technique
for analyzing the choices made by monkeys that allows us to deter-
mine the specific contribution previous rewards and punishments
make to decision-making; a quantitative estimate of the reinforce-
ment learning process. We performed this analysis on monkeys and
humans performing a Matching-Law task of the type pioneered by
Herrnstein. Our single unit approach is broadly similar. Once again
we ask, here by linear regression, how the firing rates of single
dopamine neurons are related to the previous history of rewards. If
the behavioral and neuronal processes are identical then these two
sets of measurements should also be identical.
Results: Our behavioral studies indicate that the segment of choice
behavior which is driven by the history of recent rewards is strongly
influenced by recent rewards and weakly influenced by rewards that
are more distant in time. This weakening with time occurs with an
exponential decay having a time course of about 7 trials, exactly as
predicted by reinforcement learning theories like the TD model of
Sutton and Barto. We find that the weighting function which relates
the firing rates of dopamine neurons to the magnitudes and times of
previous rewards precisely matches both the theoretical weighting
function predicted by Sutton and Bartos model and the behaviorally
derived estimates of the reinforcement learning process described
above. Most recently we have begun to explore how changes in the ac-
tivity of dopamine neurons influence our sophisticated behavioral
measures of the reinforcement learning process. To this end we have
examined the behavior of monkeys who receive electrical stimulation
in the substantia nigra and of human Parkinsons patients, both on
and off medication, during reinforcement learning tasks.
Discussion: Our results support the conclusion that midbrain
dopamine neurons carry a reward prediction error of precisely the
type required by reinforcement learning models. This activity appears
sufficient to account for behavioral measurements of reinforcement
learning and the contribution that these processes make to behavior.

Implications of the Temporal Difference Reinforcement Learning
Model for Addiction and Relapse
A David Redish*

Neuroscience, University of Minnesota, Minneapolis, MN, USA

Temporal difference reinforcement learning (TDRL) algorithms have
gained popularity to explain both behavior and the firing paterns of
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dopaminergic cells. These models learn to predict value (expected
predicted reward). If the agent (the animal or simulation) knows the
value of the consequences of its actions, it can act to maximize that
value. Estimated value is updated through a value-error term δ, de-
fined as the difference between expected and observed changes in
value. Addictive drugs have been hypothesized to access the same
neurophysiological mechanisms as natural learning systems. A non-
compensable drug-induced dopamine increase will drive a TDRL
model to over-select actions leading to drug receipt. In this model, the
agent incorrectly assigns ever-increasing value to drugs due to the
noncompensable dopamine signal. Because willingness to pay is pro-
portional to estimated value, as the estimated value approaches infin-
ity, the willingness to pay increases proportionally. This willingness to
pay provides an explanation for addicts continued attempt to find
drugs, even at the expense of great and terrible costs. Because re-
sponses are so easily renewed after extinction, extinction cannot en-
tail unlearning of the original association (Pavlov 1927, Bouton
LearnMem 2004). Because standard TDRL models are generaliza-
tions of standard associative models, they do not differentiate learn-
ing from unlearning: a missing reward produces δ<0, which produces
a decrease in value (expectation of reward), which produces a de-
crease in action-selection. We propose instead that acquisition and
extinction are driven by separate processes: Acquisition entails the de-
velopment of an association, is based on phasic increases in
dopamine, and is learned through increases in the value-estimate.
Once this association has been learned, it is permanently stored and
cannot be unlearned. Extinction entails the development of a new
state space, which has no associated value-estimate. Tonically low δ
(signaled by repeated pauses in dopamine neuronal firing) produces
a splitting of the state space, such that a new state s’ is created which
can be differentiated from s. Evidence for dopamine antagonists pro-
ducing representational instability has been found in frontal cortex
(Zahrt et al. JNsci 1997), auditory cortex (Bao et al. Nature 2001), and
hippocampus (Kentros et al. Neuron 2004). Relapse, then, occurs
when the neural representation returns to the original representation
which leads to the addictive path to drug-use. As with extinction
processes, this implies that relapse will be particularly sensitive to
context and other cues which can drive the representation back to the
original representation. This learning-theory explanation of relapse is
independent of whether the association produces positive desire for
drugs or negative symptoms which need to be relieved. In either case,
relapse occurs when the representation returns to the state s and
makes the pathway to drug use available again. Reward/aversion can
be categorized into four separate processes: reward (positive value
larger than expected), disappointment (lack of expected positive
value), aversion (negative value larger than expect), and relief (lack of
expected negative value). We suggest that they arise from different
neurological mechanisms and have different neurological conse-
quences. Whether aversion and relief work in similar ways to reward
and disappointment is unknown at this time, but the similarity of ex-
tinction processes on negative value consequences (e.g. cue leads to
shock) to positive value consequences (e.g. cue leads to food) suggest
that they might.

Dopamine-Norepinephrine Interactions: Exploitation versus
Exploration
Jonathan D Cohen*, Samuel M McClure, Mark S Gilzenrat and Gary
Aston-Jones

Psychology, Center for the Study of Brain, Mind and Behavior,
Princeton University, Princeton, NJ, USA

Background: Adaptive behavior involves a trade-off between exploit-
ing known sources of reward and exploring the environment for new,
potentially more valuable ones. Research over the past decade sug-
gests that DA mediates a learning signal that reinforces responses pre-
dictive of reward. Reinforcement learning (RL) models have success-
fully described DA activity in stable environments, but have not

addressed more realistic conditions in which contingencies between
responses and rewards may change — requiring that previously
learned associations be ignored and new ones discovered. For such
adaptations, RL models require additional apparatus (“annealing
mechanisms”) that detect when the environment has changed and
promote exploration of new behaviors. Models of DA currently lack
such mechanisms. However, recent studies suggest that the locus
coeruleus-norepinephrine (LC-NE) system may serve this role. These
studies have revealed two modes of LC function: a phasic mode, se-
lectively favoring responses to task-relevant events, and a tonic mode
producing a more generalized enhancement of responding. These
findings suggest that the LC-NE system may implement an annealing
mechanism for DA-mediated RL. This theory presupposes that the
LC has access to evaluations of current task utility necessary to adju-
dicate between exploitation (high utility) and exploration (low util-
ity). Recent anatomic findings support this, indicating that the two
primary cortical projections to LC are from orbitofrontal and ante-
rior cingulate cortex — areas consistently implicated in the evalua-
tion of rewards and costs, respectively.
Methods: We implemented a model of interactions between DA-me-
diated RL (using the method of temporal differences), cortical mech-
anisms for decision making and evaluation of utility (reward rate and
conflict), and an LC-NE annealing mechanism (simulating the dy-
namics of LC-NE activity). All of the mechanisms were drawn from
previous models that accurately simulate relevant behavioral and
physiological findings concerning these systems. We tested the model
in a reversal conditioning experiment using a target detection task, in
which the target identity was periodically reversed. The model’s per-
formance was examined with and without the LC-NE system, and
was compared with behavioral and LC recordings from a non-human
primate performing the same task.
Results: Without the LC-NE system, the model rapidly learned the
initial target but took a protracted amount of time (several hundred
trials) to learn to respond accurately following reversals. Introducing
the LC-NE system dramatically improved learning following reversals
(within 25-50 trials). Reversals were associated with transient de-
creases in LC phasic responding and increases in baseline firing (shift
to tonic mode), followed by a return to the LC phasic mode as the
new contingency was acquired. Both the performance of, and dynam-
ics of LC activity in the model closely matched empirical observa-
tions in the same task performed by a monkey.
Discussion: The model demonstrates how DA-NE interactions may
support the self-regulation of exploitation vs. exploration, a function
critical to adaptive learning and decision making. More generally, it
highlights the importance of interactions between neuromodulatory
systems, above and beyond their individual functions. This is likely to
have direct relevance to psychiatric disorders, which almost certainly
involve disturbances of interactions between neuromodulatory sys-
tems that go beyond the simple excesses or deficits of individual sys-
tems commonly postulated by many existing theories.

Panel Session
The Role of Feeding Neuropeptides in Alcohol and Drug
Dependence

Galanin and Opioid Peptides in Relation to Alcohol Intake and
Dietary Fat: Possible Positive Feedback Mechanisms
Sarah Leibowitz*, Olga Karatayev, Valerie Gaysinskaya, Pedro Rada,
Michael Lewis, Nicole Avena, Carmen Carrillo and Bartley Hoebel

Rockefeller University, New York, NY, USA

Recent experiments in our lab have demonstrated a close link be-
tween hypothalamic feeding-stimulatory peptides and both fat con-
sumption and an associated rise in circulating triglycerides (TG).
When injected into the paraventricular nucleus (PVN), which is in-
volved in controlling food intake, the peptide galanin (GAL) and the
opioids, enkephalin (ENK) and dynorphin (DYN), stimulate feeding


