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Addictive drugs have been hypothesized to access the same neurophysiolog-
ical mechanisms as natural learning systems. These natural learning systems
can be modeled through temporal-difference reinforcement learning (TDRL),
which requires a reward-error signal that has been hypothesized to be carried
by dopamine. TDRL learns to predict reward by driving that reward-error
signal to zero. By adding a noncompensable drug-induced dopamine increase
to a TDRL model, a computational model of addiction is constructed that over-
selects actions leading to drug receipt. The model provides an explanation for
important aspects of the addiction literature and provides a theoretic view-
point with which to address other aspects.

If addiction accesses the same neuro-

physiological mechanisms used by normal

reinforcement-learning systems (1–3), then it

should be possible to construct a computational

model based on current reinforcement-learning

theories (4–7) that inappropriately selects an

Baddictive[ stimulus. In this paper, I present a

computational model of the behavioral con-

sequences of one effect of drugs of abuse,

which is increasing phasic dopamine levels

through neuropharmacological means. Many

drugs of abuse increase dopamine levels

either directly Ee.g., cocaine (8)^ or indirectly

Ee.g., nicotine (9, 10) and heroin (11)^. A

neuropharmacologically driven increase in

dopamine is not the sole effect of these

drugs, nor is it likely to be the sole reason

that drugs of abuse are addictive. However,

this model provides an immediate expla-

nation for several important aspects of the

addiction literature, including the sensitiv-

ity of the probability of selection of drug

receipt to prior drug experience, to the size

of the contrasting nondrug reward, and the

sensitivity but inelasticity of drugs of abuse

to cost.

The proposed model has its basis in

temporal-difference reinforcement models

in which actions are selected so as to

maximize future reward (6, 7). This is done

through the calculation of a value function

V Es(t)^, dependent on the state of the world

s(t). The value function is defined as the

expected future reward, discounted by the

expected time to reward:

VðtÞ 0
Z V

t

gtjtEERðtÞ^dt ð1Þ

where EER(t)^ is the expected reward at time

t and g is a discounting factor (0 G g G 1)

reducing the value of delayed rewards.

Equation 1 assumes exponential discounting

in order to accommodate the learning algo-

rithm (6, 7); however, animals (including

humans) show hyperbolic discounting of

future rewards (12, 13). This will be

addressed by including multiple discounting

time scales within the model (14).

In temporal-difference reinforcement

learning (TDRL), an agent (the subject)

traverses a world consisting of a limited

number of explicit states. The state of the

world can change because of the action of

the agent or as a process inherent in the

world (i.e., external to the agent). For

example, a model of delay conditioning

may include an interstimulus-interval state

(indicated to the agent by the observation of

an ongoing tone); after a set dwell time

within that state, the world transitions to a

reward state and delivers a reward to the

agent. This is an example of changing state

because of processes external to the agent. In

contrast, in a model of FR1 conditioning, an

agent may be in an action-available state

(indicated by the observation of a lever

available to the agent), and the world will

remain in the action-available state until the

agent takes the action (of pushing the lever),

which will move the world into a reward

state. For simplicity later, an available action

will be written as S
k
Y
ai

S
l
, which indicates

that the agent can achieve state S
l

if it is in

state S
k

and selects action a
i
. Although the

model in this paper is phrased in terms of the

agent taking Baction[ a
i
, addicts have very

flexible methods of finding drugs. It is not

necessary for the model actions to be simple

motor actions. S
k
Y
ai

S
l

indicates the avail-

ability of achieving state S
l

from state S
k
.

The agent selects actions proportional to the

expected benefit that would be accrued from

taking the action; the expected benefit can be

determined from the expected change in

value and reward (4, 6, 14, 15).

The goal of TDRL is to correctly learn

the value of each state. This can be learned

by calculating the difference between ex-

pected and observed changes in value (6).

This signal, termed d, can be used to learn

sequences that maximize the amount of

reward received over time (6). d is not equiv-

alent to pleasure; instead, it is an internal

signal indicative of the discrepancy between

expectations and observations (5, 7, 15).

Essentially, if the change in value or the

achieved reward was better than expected

(d 9 0), then one should increase the value of

the state that led to it. If it was no different

from expected (d 0 0), than the situation is

well learned and nothing needs to be changed.

Because d transfers backward from reward

states to anticipatory states with learning,

actions can be chained together to learn se-

quences (6). This is the heart of the TDRL

algorithm (4–7).

TDRL learns the value function by

calculating two equations as the agent takes

each action. If the agent leaves state S
k

and

enters state S
l

at time t, at which time it

receives reward R(S
l
), then

dðtÞ 0 gdERðSlÞ þ VðSlÞ^ j V ðSkÞ ð2Þ
where gd indicates raising the discounting

factor g by the delay d spent by the animal in

state S
k

(14). V(S
k
) is then updated as

V ðSkÞ @ VðSkÞ þ hV d ð3Þ
where h

V
is a learning rate parameter.

Phasic increases in dopamine are seen

after unexpected natural rewards (16); how-

ever, with learning, these phasic increases

shift from the time of reward delivery to

cuing stimuli (16). Transient increases in

dopamine are now thought to signal changes

in the expected future reward (i.e., unexpect-

ed changes in value) (4, 16). These increases

can occur either with unexpected reward or

with unexpected cue stimuli known to sig-

nal reward (16) and have been hypothesized

to signal d (4, 7, 16). Models of dopamine

signaling as d have been found to be

compatible with many aspects of the data

(4, 5, 16, 17).

The results simulated below follow from

the incorporation of neuropharmacologically

produced dopamine into temporal difference

models. The figures below were generated

from a simulation by using a TDRL instan-

tiation that allows for action selection within

a semi-Markov state space, enabling simu-

lations of delay-related experiments (14).

The model also produces hyperbolic dis-

counting under normal conditions, consistent

with experimental data (12, 13), by a sum-

mation of multiple exponential discounting

components (14), a hypothesis supported by

recent functional magnetic resonance imag-

ing data (18).

The key to TDRL is that, once the value

function correctly predicts the reward, learn-

ing stops. The value function can be said to

compensate for the reward: The change in
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value in taking action S
k
Y
ai

S
l

counter-

balances the reward achieved on entering

state S
l
. When this happens, d 0 0. Taking

transient dopamine as the d signal (4, 5, 7)

correctly predicted rewards produce no do-

pamine signal (16, 17).

However, cocaine and other addictive drugs

produce a transient increase in dopamine

through neuropharmacological mechanisms

(1, 2, 8). The concept of a neuropharmaco-

logically produced dopamine surge can be

modeled by assuming that these drugs induce

an increase in d that cannot be compensated by

changes in the value (19). In other words, the

effect of addictive drugs is to produce a

positive d independent of the change in value

function, making it impossible for the agent to

learn a value function that will cancel out the

drug-induced increase in d. Equation 2 is thus

replaced with

d 0 maxAgdERðSlÞ þ V ðSlÞ^

j VðSkÞ þ DðSlÞ; DðSlÞZ ð4Þ

where D(S
l
) indicates a dopamine surge oc-

curring on entry into state S
l
. Equation 4 re-

duces to normal TDRL (Eq. 2) when D(S
l
) 0 0

but decreases asymptotically to a minimum d
of D(S

l
) when D(S

l
) 9 0. This always pro-

duces a positive reward-error signal. Thus,

the values of states leading to a dopamine

surge, D 9 0, will approach infinity.

When given a choice between two ac-

tions, S
0 Y

a1 S
1

and S
0 Y

a2 S
2
, the agent

chooses actions proportional to the values of

the subsequent states, S
1

and S
2
. The more

valuable the state taking an action leads to,

the more likely the agent is to take that

action. In TDRL, the values of states leading

to natural rewards asymptotically approach a

finite value (the discounted, total expected

future reward); however, in the modified

model, the values of states leading to drug

receipt increase without bound. Thus, the

more the agent traverses the action sequence

leading to drug receipt, the larger the value

of the states leading to that sequence and the

more likely the agent is to select an action

leading to those states.

In this model, drug receipt produces a d 9 0

signal, which produces an increase in the

values of states leading to the drug receipt.

Thus, the values of states leading to drug

receipt increase without bound. In contrast,

the values of states leading to natural reward

increase asymptotically to a value approxi-

mating Eq. 1. This implies that the selection

probability between actions leading to natu-

ral rewards will reach an asymptotic balance.

However, the selection probability of actions

leading to drug receipt will depend on the

number of experiences. Simulations bear this

out (Fig. 1).

In the simulations, drug receipt entails a

normal-sized reward R(s) that can be com-

pensated by changes in value and a small

dopamine signal D(s) that cannot (14). Early

use of drugs occurs because they are highly

rewarding (1, 3, 20), but this use transitions

to a compulsive use with time (1, 3, 20–22).

In the model, the R(s) term provides for the

early rewarding component, whereas the grad-

ual effect of the D(s) term provides for the

eventual transition to addiction. This model

thus shows that a transition to addiction can

occur without any explicit sensitization or

tolerance to dopamine, at least in principle.

The unbounded increase in value of states

leading to drug reward does not mean that

with enough experience, drugs of abuse are

always selected over nondrug rewards. In-

stead, it predicts that the likelihood of

selecting the drug over a nondrug reward

will depend on the size of the contrasting

nondrug reward relative to the current value

of the states leading to drug receipt (Fig. 1).

When animals are given a choice be-

tween food and cocaine, the probability of

selecting cocaine depends on the amount of

food available as an alternative and the cost

of each choice (23, 24). Similarly, humans

given a choice between cocaine and money

will decrease their cocaine selections with

increased value of the alternative (25). This

may explain the success of vouchers in

treatment (25). This will continue to be true

even in well-experienced (highly addicted)

subjects, but the sensitivity to the alternate

should decrease with experience (see below).

This may explain the incompleteness of the

success of vouchers (25).

Natural rewards are sensitive to cost in

that animals (including humans) will work

harder for more valuable rewards. This level

of sensitivity is termed elasticity in econom-

ics. Addictive drugs are also sensitive to cost in

that increased prices decrease usage (26, 27).

However, whereas the use of addictive drugs

does show sensitivity to cost, that sensitivity

is inelastic relative to similar measures ap-

plied to natural rewards (26, 28). The TDRL

model proposed here produces just such an

effect: Both modeled drugs and natural

rewards are sensitive to cost, but drug reward

is less elastic than natural rewards (Fig. 2).

In TDRL, the values of states leading to

natural rewards decrease asymptotically to a

stable value that depends on the time to the

reward, the reward level, and the discounting

factors. However, in the modified TDRL

model, the values of states leading to drug

rewards increase without bound, producing a

ratio of a constant cost to increasing values.

This decreasing ratio predicts that the elas-

ticity of drugs to cost should decrease with

experience, whereas it should not for natural

rewards (fig. S4).

The hypothesis that values of states

leading to drug receipt increase without

Fig. 1. Probability of selecting a
drug-receipt pathway depends on
an interaction between drug level,
experience, and contrasting reward.
Each line shows the average proba-
bility of selecting the drug-receipt
pathway, S0 Y

a2 S2, over the contrast-
ing reward pathway, S0 Y

a1 S1, as a
function of the size of the contrasting
reward R(S3). (State space is shown in
fig. S1.) Drug receipt on entering state
S4 was R(S4) 0 1.0 and D(S4) 0 0.025.
Individual simulations are shown by
dots. Additional details provided in
(14).
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Fig. 2. Elasticity of drug receipt and
natural rewards. Both drug receipt and
natural rewards are sensitive to costs,
but natural rewards are more elastic.
Each dot indicates the number of
choices made within a session. Sessions
were limited by simulated time. The
curves have been normalized to the
mean number of choices made at zero
cost.
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bound implies that the elasticity to cost

should decrease with use, whereas the

elasticity of natural rewards should not. This

also suggests that increasing the reward for

not choosing the drug Esuch as vouchers

(25)^ will be most effective early in the

transition from casual drug use to addiction.

The hypothesis that cocaine produces a

d 9 0 dopamine signal on drug receipt implies

that cocaine should not show blocking. Block-

ing is an animal-learning phenomenon in

which pairing a reinforcer with a conditioning

stimulus does not show association if the rein-

forcer is already predicted by another stimulus

(17, 29, 30). For example, if a reinforcer X is

paired with cue A, animals will learn to

respond to cue A. If X is subsequently paired

with simultaneously presented cues A and B,

animals will not learn to associate X with B.

This is thought to occur because X is com-

pletely predicted by A, and there is no error

signal (d 0 0) to drive the learning (17, 29, 30).

If cocaine is used as the reinforcer instead of

natural rewards, the dopamine signal should

always be present (d 9 0), even for the AB

stimulus. Thus, cocaine (and other drugs of

abuse) should not show blocking.

The hypothesis that the release of dopa-

mine by cocaine accesses TDRL systems

implies that experienced animals will show a

double dopamine signal in cued-response

tasks (14). As with natural rewards, a tran-

sient dopamine signal should appear to a

cuing signal that has been associated with

reward (16). However, whereas natural

rewards only produce dopamine release if

unexpected (16, 17), cocaine produces dopa-

mine release directly (8), thus, after learning

both the cue and the cocaine should produce

dopamine (Fig. 3). Supporting this hypothe-

sis, Phillips et al. (31) found by using fast-

scan cyclic voltammetry that, in rats trained

to associate an audiovisual signal with co-

caine, both the audiovisual stimulus and the

cocaine itself produced dramatic increases

in the extracellular concentration of dopa-

mine in the nucleus accumbens.

Substance abuse is a complex disorder.

TDRL explains some phenomena that arise

in addiction and makes testable predictions

about other phenomena. The test of a theory

such as this one is not whether it encom-

passes all phenomena associated with addic-

tion, but whether the predictions that follow

from it are confirmed.

This model has been built on assump-

tions about cocaine, but cocaine is far from

the only substance that humans (and other

animals) abuse. Many drugs of abuse indi-

rectly produce dopamine signals, including

nicotine (10) and heroin and other opiates

(11). Although these drugs have other effects

as well (1), the effects on dopamine should

produce the consequences described above,

leading to inelasticity and compulsion.

Historically, an important theoretical ex-

planation of addictive behavior has been that

of rational addiction (32), in which the user

is assumed to maximize value or Butility[
over time, but because long-term rewards for

quitting are discounted more than short-term

penalties, the maximized function entails re-

maining addicted. The TDRL theory proposed

in this paper differs from that of rational

addiction because TDRL proposes that addic-

tion is inherently irrational: It uses the same

mechanisms as natural rewards, but the sys-

tem behaves in a nonoptimal way because of

neuropharmacological effects on dopamine.

Because the value function cannot compen-

sate for the D(s) component, the D(s) com-

ponent eventually overwhelms the R(s)

reward terms (from both drug and contrast-

ing natural rewards). Eventually, the agent

behaves irrationally and rejects the larger

rewards in favor of the (less rewarding)

addictive stimulus. The TDRL and rational-

addiction theories make testably different

predictions: Although rational addiction pre-

dicts that drugs of abuse will show elasticity

to cost similar to those of natural rewards,

the TDRL theory predicts that drugs of

abuse will show increasing inelasticity with

use.

The rational addiction theory (32) as-

sumes exponential discounting of future

rewards, whereas humans and other animals

consistently show hyperbolic discounting of

future rewards (12, 13). Ainslie (13) has sug-

gested that the Bcross-over[ effect that occurs

with hyperbolic discounting explains many

aspects of addiction. The TDRL model used

here also shows hyperbolic discounting (14)

and so accesses the results noted by Ainslie

(13). However, in the theory proposed here,

hyperbolic discounting is not the fundamen-

tal reason for the agent getting trapped in a

nonoptimal state. Rather, the TDRL theory

hypothesizes that it is the neuropharmaco-

logical effect of certain drugs on dopamine

signals that drives the agent into the nonop-

timal state.

Robinson and Berridge (22) have sug-

gested that dopamine mediates the desire to

achieve a goal (Bwanting[), differentiating

wanting from the hedonic desire of Bliking.[
As noted by McClure et al. (15), Robinson

and Berridge_s concept of incentive salience

(22) has a direct correspondence to variables

in TDRL: the value of a state reachable by

an action. If an agent is in state S
0

and can

achieve state S
1

via action S
0
Y
ai

S
1

and if

state S
1

has a much greater value than state

S
0
, then S

0
Y
ai

S
1

can be said to be a pathway

with great incentive salience. The value func-

tion is a means of guiding decisions and thus is

more similar to wanting than to liking in

the terminology of Robinson and Berridge

(15, 22). In TDRL, dopamine does not

directly encode wanting, but because learning

an appropriate value function depends on an

accurate d signal, dopamine will be necessary

for acquisition of wanting.

Many unmodeled phenomena play impor-

tant roles in the compulsive self-administration

of drugs of abuse (1), including titration of

internal drug levels (33), sensitization and

tolerance (34), withdrawal symptoms and

release from them (20), and compensation

mechanisms (35, 36). Additionally, individ-

uals show extensive interpersonal variability

(37, 38). Although these aspects are not ad-

dressed in the model presented here, many of

these can be modeled by adding parameters

to the model: for example, sensitization can

be included by allowing the drug-induced d
parameter D(s) to vary with experience.

TDRL forms a family of computational

models with which to model addictive

processes. Modifications of the model can

be used to incorporate the unmodeled exper-

imental results from the addiction literature.

For example, an important question in this

model is whether the values of states leading

to drug receipt truly increase without bound.

0 100 200 300
0
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Natural Rewards

Entry into reward state, S(1)
Entry into ISI state, S(0)
Entry into ITI state
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si
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al

Drug receipt

Entry into reward state, S(1)
Entry into ISI state, S(0)
Entry into ITI state

Fig. 3. Dopamine signals. (Left) With natural rewards, dopamine initially occurs primarily at
reward receipt (on entry into reward state S1) and shifts to the conditioned stimulus [on entry into
interstimulus-interval (ISI) state S0] with experience. (State space is shown in fig. S7.) (Right) With
drugs that produce a dopamine signal neuropharmacologically, dopamine continues to occur at
the drug receipt (on entry into reward state S1) even after experience, as well as shifting to the
conditioned stimulus (on entry into ISI state S0), thus producing a double dopamine signal.
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I find this highly unlikely. Biological com-

pensation mechanisms (35, 36) are likely to

limit the maximal effect of cocaine on neural

systems, including the value representation.

This can be modeled in a number of ways, one

of which is to include a global effectiveness-

of-dopamine factor, which multiplies all R(s)

and D(s) terms. If this factor decreased with

each drug receipt, the values of all states

would remain finite. Simulations based on an

effectiveness-of-dopamine factor that de-

creases exponentially with each drug receipt

(factor 0 0.99n, where n is the number of

drug receipts) showed similar properties to

those reported here, but the values of all

states remained finite.

Another important issue in reinforcement

learning is what happens when the reward or

drug is removed. In normal TDRL, the value

of states leading to reward decay back to

zero when that reward is not delivered (6).

This follows from the existence of a strongly

negative d signal in the absence of expected

reward. Although firing of dopamine neurons

is inhibited in the absence of expected reward

(16), the inhibition is dramatically less than

the corresponding excitation (7). In general,

the simple decay of value seen in TDRL

(6, 39) does not model extinction very well,

particularly in terms of reinstantiation after ex-

tinction (40). Modeling extinction (even for

natural rewards) is likely to require additional

components not included in current TDRL

models, such as state-space expansion.

A theory of addiction that is compatible

with a large literature of extant data and that

makes explicitly testable predictions has been

deduced from two simple hypotheses: (i)

dopamine serves as a reward-error learning

signal to produce temporal-difference learning

in the normal brain and (ii) cocaine produces

a phasic increase in dopamine directly (i.e.,

neuropharmacologically). A computational

model was derived by adding a noncompen-

sable d signal to a TDRL model. The theory

makes predictions about human behavior

(developing inelasticity), animal behavior

(resistance to blocking), and neurophysiology

(dual dopamine signals in experienced users).

Addiction is likely to be a complex process

arising from transitions between learning

algorithms (3, 20, 22). Bringing addiction

theory into a computational realm will allow

us to make these theories explicit and to

directly explore these complex transitions.
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The Gs-Linked Receptor GPR3
Maintains Meiotic Arrest in

Mammalian Oocytes
Lisa M. Mehlmann,1* Yoshinaga Saeki,2. Shigeru Tanaka,2.
Thomas J. Brennan,3- Alexei V. Evsikov,4 Frank L. Pendola,4

Barbara B. Knowles,4 John J. Eppig,4 Laurinda A. Jaffe1*

Mammalian oocytes are held in prophase arrest by an unknown signal from
the surrounding somatic cells. Here we show that the orphan Gs-linked
receptor GPR3, which is localized in the oocyte, maintains this arrest. Oocytes
from Gpr3 knockout mice resume meiosis within antral follicles, indepen-
dently of an increase in luteinizing hormone, and this phenotype can be
reversed by injection of Gpr3 RNA into the oocytes. Thus, the GPR3 receptor
is a link in communication between the somatic cells and oocyte of the
ovarian follicle and is crucial for the regulation of meiosis.

Meiosis, which reduces the oocyte_s chro-

mosome number in preparation for fertiliza-

tion, begins long before fertilization occurs.

In most species, including mammals, DNA

replication, entry into meiosis, and chromo-

somal recombination occur early in oogene-

sis, but then at late prophase, meiosis arrests.

Much later, shortly before ovulation, meiosis

resumes: the nuclear envelope breaks down,

the chromosomes condense, and a metaphase

spindle is formed. In vertebrates, this occurs

in response to luteinizing hormone (LH)

from the pituitary, which acts on the somatic

(granulosa) cells that surround the oocyte in

the ovarian follicle (1, 2).

Throughout much of mammalian oogen-

esis, prophase arrest is maintained by inher-

ent factors in the oocyte and correlates with

low levels of activity by cell cycle regulatory

proteins, including cyclin B and CDK1 (1).

However, once the oocyte reaches its full size

and an antral space begins to form between

the granulosa cells, prophase arrest in the

oocyte becomes dependent on unidentified

signals from the granulosa cells. Oocytes that

are removed from antral follicles resume

meiosis spontaneously (3, 4).

The maintenance of prophase arrest in

oocytes within antral follicles requires the

activity of signaling molecules within the

R E P O R T S

www.sciencemag.org SCIENCE VOL 306 10 DECEMBER 2004 1947



Addiction as a computational process gone awry

SUPPLEMENTAL MATERIAL

A. David Redish�

19 October 2004

Contents

The �Agent temporal difference reinforcement learning model . . . . . . . . . . . . . . . . 2

Simulation details: Selection of drug-reward over non-drug reward . . . . . . . . . . . . . . 5

Simulation details: Sensitivity but inelasticity of drugs of abuse to cost . . . . . . . . . . . . 6

Simulation details: Discounting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

Simulation details: Dual dopaminergic signals in experienced users . . . . . . . . . . . . . . 8

List of Figures

S1 State space for selection simulations. . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

S2 Sensitivity of selection processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

S3 State space for elasticity simulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

S4 Elasticity decreases for drug-receipt but not reward-receipt. . . . . . . . . . . . . . . 7

S5 State space for discounting simulation. . . . . . . . . . . . . . . . . . . . . . . . . . . 7

S6 Discounting with natural rewards. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

S7 State space for dopamine simulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

List of Tables

S1 Parameters used in all simulations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
�Department of Neuroscience, University of Minnesota, 6-145 Jackson Hall, 321 Church St. SE, Minneapolis MN 55455.

email: redish@ahc.umn.edu

1



ADR Computational processes of addiction

The �Agent temporal difference reinforcement learning model

As noted in the paper, the goal of temporal-difference reinforcment learning (TDRL) is to learn to select

actions so as to maximize future reward. This is done by learning a value function V �s� dependent on

the state of the world s. See Equation 1 of the main paper.

The qualitative results and predictions in the main paper derive from the explicit hypotheses, specif-

ically that (1) the normal brain uses a temporal-difference reinforcement learning algorithm for normal

learning of action selection, (2) dopamine serves as the reward-error signal within this TDRL algorithm,

and (3) drugs of abuse produce a phasic increase in dopamine directly (i.e. neuropharmacologically).

The qualitative results and predictions do not critically depend on the specific instantiation of TDRL

used. A number of TDRL variants exist, each with subtle differences (S1–S15). Sufficient data are not

yet available to enable a decision between these detailed instantiations of TDRL. However, in order to

show simulation results, we must commit to an instantiation. We will commit to the �Agents model

of Kurth-Nelson and Redish (S13, full paper in preparation). This TDRL instantiation lives within a

partially-observable semi-Markov process model, enabling time-dependent experiments, including dis-

counting. In addition, it is the only current model to show true hyperbolic discounting which is an

important aspect of the extant data (S16–S18). But, again, I stress that neither the compatibility of the

model with extant data, nor the predictions arising from the underlying hypotheses are dependent on

the specifics of this model.

History. The importance of reward-error as a learning signal traces back to Rescorla and Wagner

(S19). Temporal difference reinforcement learning came into being in the early 1980’s following from

earlier work by Bellman (S20) and other dynamic programming algorithms (see Sutton and Barto (S11)

for review). The identification of the TD delta signal with dopamine can be traced to three papers in the

seminal book Models of information processing in the basal ganglia (S21), particularly articles by Barto

(S22), Houk et al. (S23), and Schultz et al. (S24), with the first explicit connections between dopamine

and TDRL made by Montague, Dayan, and Sejnowski (S25) and Schultz, Dayan, and Montague (S26),

based in large part on the work by Schultz and colleages (S27–S30). Since then, a number of TDRL

models have been developed (S1–S15), each with subtle differences. Due to space limitations, I will not

review all of them here.

Three keys to our ability to model the data described in the main paper are semi-Markov state-

spaces, the ability to perform action-selection within those state-spaces, and hyperbolic discounting.

Semi-Markov state-spaces were first used in TDRL models of natural reward systems by Daw (S8),

but the complex representation of the agent’s believed state as implemented by Daw precluded action-

selection (S8). The �Agent model used here allows each �Agent to commit to a single believed state,

thus allowing action-selection within a semi-Markov state-space. The action-selection procedure, itself,

is similar to that used by Montague et al. (S25), with the modification that each �Agent proposes an

action (based on Montague et al.’s action-selection procedure), and the overall agent acts based on a
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weighted poll of the actions preferred by each �Agent. Weighting is done by the current fitness factor

fi of each �Agent i. (See below.) The hyperbolic discounting derives from each �Agent having a

separate discounting function γi. This allows the simulation of each �Agent to use the exponential

TDRL equations (S8, S20), while the overall agent shows hyperbolic discounting, consistent with the

experimental literature (S16, S18). Recent fMRI data suggest a gradient of discounting factors across

the striatal ventromedial-dorsolateral axis, with faster discounting factors occuring in the ventromedial

portion and slower discounting factors occuring in the dorsolateral portion (S31).

Model justifaction. The model described in this paper is an abstract model of temporal-difference

learning. While more concrete models of basal ganglia exist (S5, S7, S23, S32), the actual relationship

of TDRL to the basal ganglia is still hotly debated (see, for example, Refs. S2, S33). I have therefore

chosen to use a more abstract model of TDRL, so as to more directly address the hypotheses of the

modified TDRL theory.

The world model. In all of the simulations below, the agent lived within a discrete set of possible

states, consisting of a semi-Markov process model. Each state entailed a dwell time distribution T �s�,

and an observation O�s�. O�s� was not required to be unique to state s, thus making the process model

partially observable. On entering a state, the agent received a (possibly 0) reward R�s�, and a (possi-

bly 0) drug-receipt D�s�. Transitions between states could occur due to actions selected by the agent or

probabilistically according to the dwell time distribution. For most of the simulations below, the dwell

time distribution was a single value — that is the agent remains in the state for T �s� � T0 time steps.

But the model does not require this.

�Agents. The agent itself consised of a constantly changing set of �Agents, each of which was spec-

ified by a four-tuple �si� ti� fi�γi�, which identified the �Agent’s believed-state si, believed dwell-time

within that state ti, the fitness of the �Agent fi, and the �Agent’s internal discounting parameter γi. A

�Agent thus represented a hypothesis about the current state of the world, but carried no history with it.

Thus the �Agent was essentially Markov and the standard TDRL equations could be used. The fitness

of the �Agent 0 � fi � 1 was recalculated on each time-step, reflecting the likelihood of the �Agent’s

hypothesis, given the observation (or lack of observation) received in the time-step, and given the time

spent by �Agent i in it’s current state. At each time-step, �Agents were selected for “survival” with a

probability equal to their fitness fi. Rejected �Agents were then replaced by a copy of a “surviving”

�Agent selected at random from the remaining population, again with probabilty equal to fitness (so

that fitter �Agents were more likely to be chosen to replace rejected �Agents). When “copying”, only

the si and ti parameters of the �Agent were replaced; γi was not changed. The set of �Agents thus

provided an instantiation of the belief distribution of the agent across the multiple states of the process

model.
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Action-selection. Action-selection proceeded as a three-step process. First, the agent calculated the

expected “benefit”1 of each action. Then, the agent selected an action proportional to the benefit of

each. Finally, the agent decided whether to take the action or not.

Overall benefit expected from action a was calculated as a weighted average of the expected benefits

as calculated by the �Agents. First, each �Agent calculated the �Benefit as:

Bi�a� �

�
V �Sl��E�R�Sl���V �si� if a available from si

0 otherwise
(S1)

where V �si� was the value of the state the �Agent believed itself to be in, and V �Sl� the value of and

E�R�Sl�� the expected reward of the state reached by taking action Si
a
�� Sl . The overall expected

benefit of each action was then defined as the average over all �Agents:

B�a� � ∑
i

Bi�a� (S2)

Based on these benefits, actions were selected proportionally. Thus, the probability of selecting an

action a was proportional to the benefit B�a�:

P�select a� �
B�a�

∑a B�a�
(S3)

Finally, once the agent selected action a, it decided whether to take action a using a soft-max mecha-

nism:

P�take selected action� �
1

1� e��m�Ba�1��
(S4)

This action-selection process captures the three keys to action-selection: the identification of useful

actions, the selection of action based on the change in value expected upon taking the action, and a

process that decides whether to act or not, presumably depenendent on the benefit of acting. Other

action-selection mechanisms which capture these three key processes (such as that proposed by Mc-

Clure et al. (S9)) also produced qualitatively similar results to those shown in the main paper.

Overview This �Agent model, although more complex than some TDRL models, is simple to imple-

ment, replicates the extant data on dopamine and cued- and uncued-reward (S13, full paper in prepa-

ration), allows us to model the important results of the addiction literature (main paper), and shows

hyperbolic discounting. Hyperbolic discounting in this model arises because the agent includes multi-

ple exponential discounting parameters (distributed across the �Agents).

1“Benefit” as defined here is very similar to “advantage” (S12), but because the formulation is not identical, I will term it
differently.
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Discounting parameter uniform distribution, �0�001 � γ � 0�999�
Number of �Agents 1000
Learning rate (η) 0.05
Softmax selection parameter (m) 4

TABLE S1: Parameters used in all simulations.

Simulation details: Selection of drug-reward over non-drug reward

S0
Action

allowed

S1
Delay

3 ts

S3

1 ts
On action a1

Receive 
food

S2
Delay

3 ts

S4

1 ts

Receive
drug

On action a2

ITI
d=20 ts

FIGURE S1: State space for selection simulations.

Simulations were based on the 6-state world-model (Figure S1). The five main states S0�S1�S2�S3�S4

were fully observable (providing unique observations O0�O1�O2�O3�O4 respectively); the ITI state was

implemented as 1000 identical states, each providing observation O5. At the beginning of each simu-

lation, the agent began in state S0. The agent remained in state S0 until it took an action. On taking

action a1, the world changed to state S1, where it remained for 3 time-steps, after which it provided a

reward R�S3� to the agent. On taking action a2, the world changed to state S2, where it remained for

3 time-steps, after which it provided drug R�S4��D�S4� to the agent. After 1 time-step in either state

S3 or S4 (as appropriate) the world entered the ITI state. Actually, the world entered one of the 1000

possible ITI states, but the agent distributed it’s belief across those states. After 20 time-steps, the world

transitioned to state S0.

This world-model simulates a standard two-lever choice paradigm in which an agent must push one

lever to receive food reward and one lever to receive drug, each of which is delivered as appropriate

after a short delay. The ITI state models the agents lack of knowledge about inter-trial intervals and

provides for more realistic simulations in the �Agent model (S13).

All non-reward related parameters were held constant. Figure 1 in the main paper shows how the

probabilty of selecting the drug-reward depended on number of times the agent reached the drug-receipt

state (S4) and on the size of the contrasting reward R�S3�. The selection probability also depended

on the size of the drug reward R�S4��D�S4�. For the figure in the main paper, R�S4� � 1�0�D�S4� �
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0�025�R�S3� � �0�25�0�5�1�0�1�5�2�0�2�5�3�0�. As shown in Figure S2, below, increasing D�S4� in-

creased the likelihood of selecting the S0
a2�� S2 pathway, but it also changed the shape of the response

to counter-food reward.
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0 1 2 3
0
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1

B
Contrasting reward

0 1 2 3
0

0.5

1

C
Contrasting reward

Actions:250− 500
Actions:750−1000

FIGURE S2: Sensitivity of selection to number of drug experiences, size of contrasting food reward, and size of drug-receipt
forced-dopamine signal (i.e. strength/dose of the drug). (A) R�S4� � 1�0�D�S4� � 0�010; (B) R�S4� � 1�0�D�S4� � 0�025;
(C) R�S4� � 1�0�D�S4� � 0�040.

Simulation details: Sensitivity but inelasticity of drugs of abuse to cost

S0
Action

allowed

S1
Delay
3 ts

S2

1 ts

On action a0
R = -cost RewardITI

30 ts

FIGURE S3: State space for elasticity simulation.

The simulations for elasticity were based on a 4-state world-model (Figure S3). Simulations always

started in the S0 Action-available state. The world remained in that state unless the agent took action

S0
a0�� S1. On taking action a0, the agent was assesed a cost (R�S1� � 0). The world then remained

within state S1 for 3 time-steps, at which time the world transitioned to state S2 and the agent received

reward. For the simulation of natural rewards, reward was provided as R�S2� � 1�0. For the simulation
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of drug rewards, reward was provided as R�S2� � 1�0�D�S2� � 0�025. States S0�S1�S2 were fully ob-

servable, providing observations O0�O1�O2. The ITI state was implemented as before (1000 identical

states, each providing observation O3).

Simulations were run for 105 time-steps, and the total number of actions taken was measured. In

order to determine the elasticity, the number of actions taken when faced with cost C was normalized

to the total number of actions taken with no cost (C � 0). See Figure 2 in the main paper. In order to

measure developing inelasticity, the first 500 actions (and thus the first 500 rewards) were measured.

See Figure S4.

As noted in the main paper, elasticity changes for drug-receipt, but not for natural rewards. This

occurs because the values of states leading to natural rewards asymptote to a bound (approximating

Equation 1 in the main paper), while states leading to drug-receipt increase without bound.
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FIGURE S4: Elasticity decreases for drug-receipt but not reward-receipt.

Simulation details: Discounting

S0
ISI
d ts

S1

1 ts

RewardITI
Random 

delay

CS

FIGURE S5: State space for discounting simulation.

The simulations for discounting were based on a 3-state world model, shown in Figure S5. The

world started in the ITI state, after a random delay, the world delivered a conditioning stimulus (CS),

and entered state S0, where it remained for a set time (the delay, d timesteps, the independent variable

in the discounting simulation). After that delay, a reward was delivered to the agent and the world
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entered state S1. As before, states S0 and S1 were fully observable, providing observations O0 and O1,

respectively; the ITI state was implemented as 1000 states providing identical observations O2. This

models a standard conditioned-stimulus Pavlovian task. No action is required.

Proportional value of a reward was measured as the value of state S0 after the delivery of 300

rewards. Natural rewards were modeled as R�S1� � 1�0�D�S1� � 0�0 Figure S6, below, shows that the

�Agents model showed hyperbolic discounting with natural rewards.
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FIGURE S6: Discounting with natural rewards.

Simulation details: Dual dopaminergic signals in experienced users

S0
ISI

5 ts

S1

1 ts

RewardITI

Random 
delay

CS

FIGURE S7: State space for dopamine simulation.

The simulations of the dual dopaminergic signal used the same Pavlovian state space as the dis-

counting simulations (Figure S7). The inter-stimulus interval delay (state S0) was set to a constant

5 steps. Natural rewards were modeled as R�S1� � 1�0�D�S1� � 0�0; drug-receipt was modeled as

R�S1� � 1�0�D�S1� � 0�025.
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