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Abstract

An important question in information processing is the extent to which neural .ring patterns
remain consistent while processing representations. Transient changes in representational consis-
tency can provide clues to the dynamics of neural processing. We present a generalized frame-
work for measuring the consistency of a neuronal representation that does not require explicit
knowledge of the parameters encoded by the ensemble. It requires only neuronal ensembles and
a training set of neuronal activity that samples behavioral parameters equally. This will be useful
in structures where the behavioral parameters signalled by the neural activity are controversial
or unknown.
c© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Neural representations are distributed. Therefore, to address questions about encoded
behavioral parameters, recordings from neural ensembles are needed. Although such
recordings are becoming commonplace, analysis methods for those ensembles remain
underdeveloped. In quantifying the dynamics of neural information processing, two
questions might be asked: “What value is encoded by the neural activity?”, and “How
consistent is the neural activity?”.
A number of methods have been developed to address the .rst question (reconstruc-

tion [3,4,17]). Given the expected neural .ring pattern and the current neural .ring
pattern, these methods attempt to infer the value of the stimulus from the ensemble
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activity. However, these reconstruction methods do not assess how well the activity
supports this value. Subsets of the ensemble could be consistent with diGerent values,
yet these reconstruction methods would still report a single value regardless of the
representational quality.
For example, the well-known population vector reconstruction method reports the

represented direction of an ensemble of direction-tuned neurons as the weighted vector
sum of the unit-vectors corresponding to each neuron’s preferred direction, weighted by
their .ring rates [4]. Recognizing that this reconstruction method reports a value even
with random data, Smyrnis et al. [14] applied the modi.ed Rayleigh test to compare the
values reconstructed from their ensemble .ring patterns against randomness. This test
only works on circular data sets and tests only for non-randomness of the distribution.
Later, Redish et al. [10] developed a more generalized measure of representational

quality, which compared the weighted sum of the tuning curves (weighted by current
.ring rate), with an expected weighted sum (weighted by expected .ring rate, for a
given represented value). This measure, termed coherency, was capable of detecting
when hippocampal ensembles realigned between two coordinate systems to an accuracy
of approximately 1 s [10]. However, this measure was not mathematically or statistically
justi.ed.
In order to overcome these limitations, Jackson and Redish [5] presented a modi.ed

method based on [10] that rede.ned coherency to be the probability of seeing a larger
diGerence than observed in a training set. This statistically justi.ed approach overcame
the drawbacks of the earlier method [10], but still required an explicit knowledge of
the parameters encoded by the neurons. That is, the approach required that neuronal
responses be completely described by classical tuning curves.
In this paper, we present a framework for measuring the consistency of a neuronal

representation that overcomes the limitations imposed by requiring explicit knowledge
of the parameters encoded by the ensemble. We term this measure ensemble consistency
(EC). While the examples used in this paper all derive from a standard network model,
the EC measure itself is very general. It requires only neural ensembles and a training
set of neuronal activity that samples behavioral parameters and stimuli equally.

2. The network model

An attractor network made up of 75 excitatory Wilson–Cowan neurons [7,8,15] was
used to generate neural data for the development of the EC method. Excitatory neurons
had strong connections to other excitatory neurons with similar preferred stimuli and
weak connections to neurons with diGerent preferred stimuli. All neurons had equal
projections to an inhibitory interneuron which provided uniform inhibition to the entire
network. The stable state of this network is a “bump” of activity where only neurons
consistent with the represented value .re maximally. This is a well-studied type of
attractor network [1,6,8,15] that has been used to model a variety of neural structures,
including the rodent head direction system [9,16].
This network enabled the exploration of issues in neural encoding. It allowed us

to test (1) if EC could detect the diGerence between random and coherent network
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states; and (2) if EC could detect transient incoherent network states. For example,
when this network is started in a random noise state, a stable bump of activity soon
forms [6,8,15]. The use of simulation allowed tighter control over the dynamical states
of the network, thus allowing a better test of the EC measurement. For example, with
this network, a smooth rotation can be eGected by chaining together a series of slightly
oGset inputs starting near a stable representation [8,9,11,16]. This can be contrasted with
a sharp, transient instability produced by a strong input far from a stable representation
[6,8,11]. Once the EC measurement is understood in the context of well-understood
simulations, it can then be applied to real neural ensemble recordings.

3. Ensemble consistency

The novel coherency method presented in this paper relies on the assumption that if
neurons in an ensemble are working together to represent some behaviorally relevant
parameters, their .ring rates will maintain the same relationships under similar condi-
tions. De.ne the N -dimensional .ring rate vector f(t) = {f1(t); f2(t); f3(t); : : : ; fN (t)},
where fi(t) is the .ring rate of neuron i at time t, and N is the number of neurons in
the ensemble. If the .ring rates maintain the same relationship for similar conditions,
these points should be grouped in the same region of .ring-rate-space.
To test the similarity of an ensemble .ring pattern to .ring patterns previously

recorded, one has only to test the likelihood of observing that point given the previously
recorded .ring patterns. In this way, one can measure how consistently an ensemble
responds to stimulus and behavioral conditions. We term this measure EC.
In order to measure the likelihood of observing a sample point relative to an ex-

pected distribution, we estimate the density of the distribution at the sample point. EC
thus measures the probability density of the expected (i.e. previously recorded) .ring
patterns at the N -dimensional point de.ned by the ensemble .ring pattern at time t.
This density estimation is commonly carried out by dividing a space into bins and

estimating the average density in each bin. This method has two major problems: its
memory usage can be enormous, and the resolution is limited by bin size. For example,
a data set consisting of just 15 simultaneously recorded neurons at a 15-bin resolution
would require 3.5 exabytes of memory (3.5 billion GB).
To overcome this limitation, we adopted the method of kernel density estimation

(KDE) [13]. In this method, each point in the group is assigned Gaussian parameters
to spread out its contribution to the overall density. Normalizing this distribution gives
an estimate of the joint probability density distribution. The local density of the sam-
ple point can be calculated by evaluating the density contributed by each individual
Gaussian in the group and summing the result. Thus, the group of training set points
is transformed into a continuous estimate of the local density at the sample point.
Fig. 1 shows an example for a two-cell ensemble taken from our training set.
Mathematically, we write

Ct =
∑
i∈S

�i exp
(−‖f(t) − fi‖2

	2i

)
; (1)
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Fig. 1. Density distribution of a two-cell ensemble taken from our training set. Firing rate of cells 1 and 2
are represented by the x and y coordinates, respectively. (Left) the set of observed .ring patterns fi . (Right)
the probability density distribution resulting from variable-width Gaussian kernel density estimation on fi .
Black represents maximum density and white represents zero probability of observing a .ring pattern. Note:
plot is shaded by the logarithm of the density.

where f(t) refers to the ensemble .ring pattern of the point of interest at time t and fi
refers to the ith .ring pattern of the expected distribution S, also called the training
set. �i is the constant of normalization for the Gaussian associated with fi:

�i =
(	2i )

−(N=2)
√
2
 NS

; (2)

where N is the number of neurons in the ensemble, NS is the number of samples
in the training set S, and 	i is the standard deviation associated with the ith sample
of S. Finally, we call Ct the EC since it is a measure of how consistent f(t) is
with S.
To improve our estimate of the density, we let �i depend on the nth-nearest neighbor

distance of fi. First, the nth-nearest neighbor distance D
(n)
i is found for each training set

point i using the Euclidean distance measure. The standard deviation 	i of the Gaussian
associated with fi was de.ned as 	i = k ·D(n)

i . For this data set, k =4 provided a good
overlap between neighboring Gaussians. The order of the nearest neighbor distance,
n = 10 was selected because the average nth-order nearest neighbor distance is very
noisy for low n, rises quickly as n increases, then temporarily plateaus. The beginning
of this plateau represents how closely the points in the training set are packed and
serves as a good reference for choosing the order, n, of the nearest neighbor. For our
simulations, n= 10 provided a robust density estimation.
In summary, EC is the local probability density of the N -dimensional .ring rate

vector at a point in time. Low probability densities represent .ring patterns unlikely to
occur under the conditions of the training set, and high probability densities represent
.ring patterns that were often seen in the ensemble under training-set conditions.
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4. Statistical justi�cation of EC

As stated before, EC measures density not probabilities. Transforming these density
measurements into a probability of seeing a density less than or equal to the observed
density is complicated by the fact that these densities are unlikely to be unimodal, as
can be seen in Fig. 1. This multi-modality occurs because neurons have overlapping
tuning curves: the .ring of one cell may occur either with or without the .ring of
the other cell. We therefore, estimated the likelihood of observing a particular density
through a “leave-one-out” approach. For each sample fi in the training set S, the den-
sity at fi was measured using Eq. (1) summing over all samples in S except for fi.
This provided a set of densities found in the ensemble under normal (training) condi-
tions. These densities were used to construct a CDF of expected log-density values for
one-sided signi.cance testing. A stringent signi.cance threshold of �=0:001 was used
to reduce the false-alarm rate. This still provided for robust detection of inconsistent
.ring patterns within the ensemble.

5. Results

The training set was created by forcing a rotation of the network through the full
range of directions for three revolutions and then a reverse rotation through the same
number of revolutions. This sampled the parameter space evenly.
Figs. 2–4 show the results of a 15-neuron ensemble taken from the population of

75 excitatory neurons in the attractor network simulation. The cells are ordered by
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Fig. 2. A simulation started with random input to the network settles to a stable state. (Top) the neural
activity. Time is shown in ms on the x-axis. Neurons ordered by their preferred direction along the y-axis,
shaded according to their .ring rate. (Bottom) EC. During the random state, the probability density, or EC,
is low (p¡ 0:001, gray zone). Upon reaching the stable state, the EC rises (p¿ 0:001).
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Fig. 3. EC is stable throughout a rotation. (Top) the neural activity rotates smoothly. Time is shown in ms
on the x-axis. Neurons are ordered by their preferred direction along the y-axis and shaded according to
their .ring rate. (Bottom) EC shows a high probability density throughout the rotation (p¿ 0:001).

ne
ur

on
s

Neuronal Activity

300 600
0

15

Lo
g 10

(F
iri

ng
 R

at
e)

-2

-1

0

1

time

Lo
g 10

(D
en

si
ty

)

300 600
 -8

 -4

Fig. 4. EC detects a discontinuity. (Top) the neural activity jumps during a dynamic instability. Time is
shown in ms on the x-axis. Neurons are ordered by their preferred direction along the y-axis and shaded
according to their .ring rate. (Bottom) EC shows a low probability density during the jump (p¡ 0:001,
gray zone). EC is high during the stable state, before and after the jump (p¿ 0:001).

their preferred direction with the preferred direction of each neuron being 24◦ from
its neighbor. Similar results were obtained with randomly sampled ensembles as long
as the component tuning curves spanned the parameter space. Smaller ensembles were
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particularly dependent on fortuitous choices of the component neurons in the ensemble
to span the parameter space.
Fig. 2 shows a simulation started with random activity. However, this network favors

a single “bump” of activity, and soon settled to a stable state with only a few neurons
in an excited state. While the network was in the random state, EC was very near zero
(p¡ 0:001), but transitioning to the stable state resulted in higher densities. Thus, EC
diGerentiated between random and stable activity.
EC was stable during a smooth rotation of the network activity (see Fig. 3). How-

ever, when the representational state jumped discontinously, EC detected the period of
discontinuity (see Fig. 4). Thus, EC diGerentiated between a jump in the representation
and a stable rotation of the network .ring pattern. EC remained stable throughout the
rotation (Fig. 3). During the jump, EC was near zero (p¡ 0:001, gray zone, Fig. 4),
signifying a group of .ring patterns far from the distribution of training set values
(i.e. a dynamic instability that did not occur during training).

6. Discussion

Like the coherency measures described previously [5,10,14], ensemble consistency
(EC) can be used to measure the quality of a neural representation within an ensemble.
However, the EC method has two speci.c advantages: it does not require explicit
knowledge of the neuronal response parameters (the tuning curves), nor does it require
a hypothesis of the encoded value. In other words, EC makes fewer assumptions about
what the neurons are encoding. Thus, it is possible to measure the consistency of the
dynamic relationship between neurons in an ensemble with little or no knowledge about
what they encode.
Instead of making assumptions about the encoding, EC measures the dynamic re-

lationship between neurons by using a density estimate to measure how similar the
current .ring pattern is to other .ring patterns observed in the training set. In this
way, EC is like an abstracted method of generalized template matching. This density
measure is sensitive enough to detect critical changes in state, so as to diGerentiate
between a rotation and a jump or between a stable representation and random noise.
EC is limited, however, by its sensitivity to the training set. Because there is no

normalization for the number of training set points collected for each stimulus, EC
requires an even sampling of parameter spaces. Otherwise, densities of some .ring
patterns could be over- or underestimated. But, it is important to note that many behav-
ioral tasks can be constructed such that the animal evenly samples the entire parameter
space on every trial. For example, Schmitzer-Torbert and Redish [12] use a continuous
� maze which requires the animal to make a series of � choices before receiving food
reward along a return ramp without turning around. This required the animal to sample
each portion of the task equally on each lap. Averbeck et al. [2] recorded ensembles
from monkeys copying geometric shapes. Each component of the shape was sampled
equally on each trial. Finally, this restriction only applies to the training set. Thus, a
rat running a circular track will sample all head directions equally. Using the circular
track as a training set, EC could be used with ensembles of head-direction cells to
examine questions in an open-.eld in which directions are not sampled equally.
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Our examples in the results section were based on 15-cell ensembles. The key to
smaller ensembles is how well the neuronal responses span the parameter space. EC is
not dependent on uniformity of the neuronal responses. Thus, an ensemble with tuning
curves that span the space of potential stimuli, but are not uniformly distributed will
provide a suNcient basis for the EC method.
In summary, the EC method can assess the consistency of an ensemble with little or

no knowledge of the neural encoding. This is a powerful method for examining learn-
ing in structures that have complex representations of cognitive function and may be
especially useful for examining deep brain structures where the behavioral parameters
signalled by the neural activity are controversial or unknown.
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