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Abstract

Brains consist of complex networks of neurons possessing highly non-linear interactions, suggesting that neural sys-
tems will show cooperative dynamics. Previous studies of the non-Gaussian statistics of 1� f noise in spin glasses and
amorphous semiconductors have revealed important information concerning interaction kinetics not available through
other techniques. Five male Brown-Norway-Cross rats were chronically implanted with arrays of microwire electrodes
from which local field potentials (LFPs) were recorded from the dorsocentral striatum as the animals performed complex
navigational tasks. The power spectra displayed a frequency dependence significantly different from 1� f . The correlation
coefficients of the Fourier transform of the LFPs from striatum showed significant non-zero correlations between frequen-
cies separated by less than three octaves. This novel technique may be useful in measuring functional interactions in neural
systems.
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1 Introduction

Neural systems show highly non-linear interactions between their component elements. Delineating these interactions
remains a major goal of computational and theoretical neuroscience. In this paper, we borrow analysis techniques from the
field of condensed matter physics and apply them to local field potentials recorded from the dorsocentral striatum of awake,
behaving rats. These techniques may provide a novel means of measuring and understanding these non-linear interactions.

2 Methods

2.1 Neurophysiological methods

Animals

Five male Brown-Norway Cross rats were used in this study. Rats were obtained from the National Institute on Aging. All
procedures were in accordance with NIH guidelines for animal care and were approved by the University of Minnesota
IACUC.

The data in this study came from rats trained on two tasks, a navigation task (the Multiple-T task [22]) and an operant
conditioning task (the Nose-poke task [6]). All five of the rats were trained on the navigation task. Four of the rats were
also trained on the operant-conditioning task. Data used in this paper are shown in Table 1. During behavioral training,
rats received their daily complement of food on the track, while performing behavior. All rats were maintained above 80%
of the free-food weight throughout training with additional food if necessary. Rats were handled for 15 minutes per day
for three weeks before any training began and then for 15 minutes per day during training, after the animal had run its
behavioral session.

The tasks

The Multiple-T task. Details of the Multiple-T task are available elsewhere [21–23]. Briefly, rats were trained to run
an elevated loop (mean 4.5 m total distance around the loop) which consisted of three T-shaped choices followed by
two return paths. The choice of which return path to take formed a fourth choice. On each return rail, two food pellets



Age at time Task implant-side
Rat of recording Multiple-T Nose-poke target
R010 13–14 mos. * * Right
R011 15 mos. * o Left
R016 10–11 mos. * * Left
R018 14–15 mos. * * Right
R023 13–14 mos. o * Right

Table 1: Experimental details for each rat.
For tasks, * indicates data was taken from the
animal performing the task in question, o in-
dicates no data was taken from that task,

(Research Diets, New Brunswick NJ) were delivered at each of two sites (four pellets total) by automated food delivery
systems (Med-Associates, St. Albans VT). By the time the data were taken that are presented in this paper, the animals
were very experienced on this task and ran even novel choice-sequences quickly and efficiently. Rats were run for one
40 minute session per day.

The Nose-poke task. Details of the Nose-poke task are available elsewhere [6]. Briefly, rats were trained to run back and
forth along a 1.37 m linear track. At one end of the track was an infra-red LED detector (built in-house); at the other was an
automated pellet delivery system (Med-Associates). If the rat blocked the LED continuously for 0.5 sec, a tone sounded.
If the rat then ran to the other end of the track, two to four pellets were delivered. If the rat ran to the food-delivery end
of the track without blocking the LED for the complete 0.5 sec, no tone sounded and no pellets were delivered. Rats were
run for one 40 minute session per day.

Recording details

Local field potentials were recorded from chronically implanted tetrodes using standard techniques. Tetrodes were made
from 14 �m NiChrome wire (Kanthal Precision Wire, Palm Coast FL). Tetrodes were loaded into 14-tetrode hyperdrives
(David Kopf Instruments, Tujunga CA) allowing each tetrode one-dimension (dorsal/ventral) of individual movement. The
hyperdrive was implanted stereotactically (target, Anterior/Posterior, Bregma +0.5 mm, Medial/Lateral, Bregma +3.0 mm).
Three animals received right-side implants, two animals received left-side implants (see Table 1). Because no immediately-
observable differences were seen between recordings on the two sides [23], we have analyzed the data from all the rats
together. Recordings were typically made at a depth of approximately 4.5 mm below Bregma. All electrode locations have
been confirmed to lie in the dorsocentral striatum through standard immunohistochemistry techniques.

Surgery was done under general anesthesia under sterile conditions. Rats were first deeply anesthetized with Nembutal
(sodium pentobarbital, 40–50 mg�kg) and then placed into the stereotaxic apparatus (David Kopf Instruments). Once on
the stereotax, anesthesia was maintained with 0.5–2% isoflurane, vaporized into pure oxygen, delivered at 1.0 L�min.
Dual-cillin (Phoenix Pharmaceutical Inc., St. Joseph MO) was used to combat infection (0.1 cc intramuscularly per hind
leg). The implant was anchored with 8 jeweler’s screws and an additional ground screw was implanted at this time. The
ground screw consisted of a jeweler’s screw with 0.125 mm insulated stainless-steel wire soldered to it. The steel wire was
attached to the hyperdrive through gold-plated Amphenol pins and provided a reliable ground signal for neural recording.
A small hole (2 mm diameter) was opened in the skull with a high-speed trephine and the electrodes lowered into place.
The implant was then cemented into place with dental acrylic. The dental acrylic forms a permanent, sealed casing around
the implant zone, so the skull and brain remain sterile.

After surgery, electrodes were lowered into place over the subsequent two to three weeks.
Local field potentials were recorded with 16 channels of a Cheetah 54-channel system (Neuralynx, Tucson AZ). Signals

were amplified at unity-gain at a head-stage (Neuralynx, Tuscon AZ) directly connected to the implant. They were then
passed through shielded cables into a 72-channel commutator and then to a pair of Lynx-8 amplifiers (1�–10,000�,
Neuralynx) and then processed through the Cheetah A2D processor and stored at a sampling frequency of 943 Hz (R010,
R011, R016) or 2003 Hz (R018, R023). Signals passing through the Lynx-8 amplifiers were typically amplified 500�. All
local field potential signals were filtered at 1–475 Hz in the amplifiers.



2.2 Analysis methods

The standard procedure for determining the frequency components of a fluctuating quantity, such as the current passing
through a metal or semiconductor, involves Fourier transforming the autocorrelation function of the current [3, 10, 25].
This latter function is defined as the product of the excess current ∆I (that is, the current after the DC average value
has been subtracted) passing through the material at a time t and the current at a later time t � τ , averaged over all
starting times t. This is given by �∆I�t�∆I�t � τ��, where the brackets indicate either an ensemble or time average. If
fluctuations in the current occur due to some random uncorrelated process, then the auto-correlation function will decrease
exponentially [17] as �∆I�t�∆I�t � τ�� � exp��t�τ�. The Fourier transform of this exponentially decaying function will
have a Lorentzian frequency dependence, given by S � 4τ��1��ωτ�2� where ω � 2π f . If the fluctuating quantity is
stationary and ergodic over the experimental measurement time, then the two-point auto-correlation function contains all
of the relevant information about the fluctuating quantity [18, 19]. The Lorentzian frequency dependence is illustrated in
Figure 1, which plots the log of S against the log of the frequency ω . For ωτ � 1, S is approximately constant (that is,
frequency independent) while for ωτ � 1, S displays a power law frequency dependence of S � f�2. It is sometimes
convenient to plot the logarithm of the product of the spectral density and the frequency S� f against the logarithm of the
frequency, as shown in Figure 2. In this case, for a Lorentzian function, S f � f for ωτ � 1 and S f � f�1 for ωτ � 1, with
the peak in the plotted function occurring at the corner frequency ω � 1�τ .

Figure 1: Lorentzian dependence of a single
hypothetical fluctuator, plotting the log of S
against the log of the frequency ω .

Figure 2: Lorentzian dependence of a single
hypothetical fluctuator, plotting the log of S�
ω against the log of the frequency ω .

Considering the example of an electrical current passing through a semiconductor, one possible physical mechanism
underlying the current fluctuations would be scattering of the electrons from a defect, typically an imperfection or impurity
in the material. In this case the time τ would be the scattering time, defined as the average time between scattering events,
which is proportional to the density of defects in the material. For a system containing two distinct defects having different
scattering times, the observed spectral density is the sum of the two distinct Lorentzian spectra, as indicated in Figure 3. In
macroscopic, disordered systems, there will be many different defects, each having their own scattering time τ associated
with them. The net observed spectral density will therefore be given by the weighted sum of the Lorentzian power spectra



for each defect [10]. If there is a uniform distribution of scattering times g�τ�dτ � dτ�τ , then the resulting plot of
log�S� f � against log f will be a horizontal line [3], as shown in Figure 4. The data in Figure 4 can be represented by a
constant S� f , or equivalently, S � 1� f . Hence, an ensemble of statistically independent fluctuators, each with their own
scattering time τ , will lead to the observation of a spectral density that decays with a power-law frequency dependence. If
the scattering times uniformly span the observed frequency range, then there will be no characteristic time describing the
resulting spectral density, which is commonly referred to as a 1� f spectrum. If the distribution of scattering times is not
uniformly distributed over the observed frequency range, so that, for example, the density of high frequency fluctuators
is lower than at lower frequencies (equivalently, there are fewer short-time scattering sources), then S� f will display a
decreasing frequency dependence, and the resulting power spectral S will have a power-law spectral slope greater than
unity. Such systems, for which the spectral density can be described by an ensemble of a large number of statistically
independent fluctuators, are termed Gaussian [10, 18, 19, 27, 28].

Figure 3: A system containing two hypothet-
ical fluctuators.

Figure 4: A system containing a uniform dis-
tribution of hypothetical fluctuators produces
a constant S� f density.

Figure 5 displays a plot of the voltage signal recorded from an electrode implanted in the striatum of one of the rats
described above. This continuous signal can be broken up into a series of voltage recordings, each 0.45 seconds long. A
nine second long voltage recording can be therefore considered as twenty successive traces, each 0.45 seconds in duration.
The results described in this paper do not depend on the exact length of the time records that the continuous time traces
are partitioned into. Figure 6 shows a log-log plot of the Fourier transform of one of the time records in Figure 5. The
data in Figure 6 is described by a power-law frequency dependence, that is, S � f�γ , where γ � 1�5. Averaging 1024
distinct Fourier transforms, obtained from an identical number of voltage time records, yields the average power spectrum
in Figure 7, also shown on a log-log plot. Comparing the power spectra in Figures 6 and 7 demonstrates that by averaging
many spectra together, the contributions of background fluctuations were removed from the main signal of interest from
the tetrode.

However, in certain situations, the average spectral density does not contain all of the information regarding the fluctu-
ation phenomena. For example, certain condensed matter systems, such as spin glasses [5, 18, 19, 27, 29] and amorphous
semiconductors [7, 15, 16, 20, 24] display fluctuations which are strongly non-Gaussian, that arise from either the number
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Figure 5: Example voltage signal taken from
a single channel of a single tetrode.
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Figure 6: Example single power spectrum
taken from a single channel of a single
tetrode.

of fluctuators being small (for example, by restricting the sample geometry), or from strong interactions between fluctua-
tors, which has the effect of reducing the number of independent noise sources in a macroscopic sample. These interactions
can lead to non-trivial time-dependent variations in the power spectra, so that Fourier transforms of the auto-correlation
function at one time can differ from those calculated at a later time. These time dependent fluctuations can be examined
by recording a series of Fourier transforms. Since a given time record may contain 1024 current values, its corresponding
power spectra will consist of 512 distinct Fourier amplitudes. To monitor any temporal variations in the spectral den-
sity, several thousand Fourier transforms may need to be acquired, which quickly results in an unwieldy number of data
points. One therefore takes the individual power spectra and sums the noise power into distinct octave bins, as indicated in
Figure 7.

All of the spectral density between f1 and 2 f1 is integrated, so that a given power spectra is reduced to only seven data
points, reflecting the noise power between octaves. (See Table 2 for specific octaves used.) A corresponding plot of the
noise power in Figure 7 for octave 2 (8.8–17.6 Hz) and octave 5 (70.2-140.5 Hz) as a function of the number of power
spectra successively acquired is shown in Figure 8. These time records of the noise power are not simply random, but
contain information about interactions between fluctuators that are not reflected in an average spectral density.

One convenient technique for quantifying the interactions between fluctuators responsible for the variations in the volt-
age traces is to calculate the correlation coefficient ρi j defined as the covariance between octave i and octave j normalized
by the standard deviation of each octave. That is,

ρi j �
∑�Qi�n��Qi���Q j�n��Q j��

σi �σ j
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Figure 7: Example average of 1024 power
spectra taken from a single channel of a single
tetrode, showing how octaves were selected
and averaged.
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Figure 8: Example noise power at two oc-
taves taken from a single channel of a single
tetrode.

where Qi�n is the noise power in octave i for spectrum n, �Qi� is the average noise power in octave i for all N spectra, σi is
the standard deviation in octave i and the octave indices i and j run from one to seven. The ρi j vary from +1 to -1, signifying
variations from perfectly correlated (+1) to perfectly anticorrelated (-1) behavior. Note that ρ1�1 � 1 always, since an octave
noise power is trivially correlated with itself, while for Gaussian, that is, uncorrelated fluctuations ρi j � 0�	i 
� j. Figure 9
shows a plot from Khera & Kakalios [7] of the corresponding average correlation coefficients against octave separation
�i� j� for the spectral density of current fluctuations passing through an amorphous semiconductor or through a 5 MΩ
carbon resistor. An octave separation of �i� j� � 3, for example, indicates that noise power from octave 1 and octave 4
are compared to calculate the correlation coefficient. In Figure 9 all ρi j values that correspond to a given octave separation
are averaged together, and plotted as a single data point. That is, an octave separation of one would include ρi j between
octave 1 and octave 2, octave 2 and octave 3, octave 3 and octave 4, octave 4 and octave 5, and so on being averaged
together and expressed as one correlation coefficient number. The current noise in the amorphous semiconductor has an
1� f frequency dependence, and is observed to be strongly non-Gaussian, as reflected by the large correlation coefficients
in Figure 9. As might be expected, the fluctuations in differing octaves display weaker correlations as the frequency space
separation becomes larger. Nevertheless, even for octave separations �i� j� � 6, which in this case reflect correlations
between an octave at 10-20 Hz and an octave at 750-1500 Hz, the correlation coefficient has a value of 0.2. In contrast, the
correlation coefficients for a 5 MΩ resistor are also shown in Figure 9. Here the current noise power spectrum is frequency
independent, indicating that temporal variations of the current passing through this resistor are due to uncorrelated thermal



fluctuations [10, 11, 17]. As expected, all ρi j � 0 for any two different octaves, no matter how close or distant in frequency
space.

Figure 9: Inter-frequency interactions in
amorphous semiconductors (showing non-
zero correlations) and in a 5 MΩ resistor
(showing Johnson or Thermal noise with no
non-zero inter-octave correlations). (After
Khera & Kakalios [7].)

2.3 Detailed analysis methods

From each recorded channel 1024 traces of 512 sequential data points were analyzed. Only the data for which the animal
was on task were included and any traces for which the signal exceeded the recording threshold were rejected. The first
1024 traces that met both of these criteria were then used. Channels for which 1024 valid traces could not be so constructed
were removed. For R018 and R023, each pair of neighboring data points were averaged such that the frequency ranges of
all animals are comparable. Each trace was then Fourier transformed as described above and the power spectra summed
into octaves as previously described. The details of the octaves are given in Table 2.

Octave Frequency Range (Hz) Frequency Range (Hz) Number of
number R010, R011, R016 R018, R023 FFT Points
1 4.4–8.8 3.9–7.8 2
2 8.8–17.6 7.8–15.6 4
3 17.6–35.1 15.6–31.1 8
4 35.1–70.2 31.1–62.2 16
5 70.2–140.5 62.2–124.4 32
6 140.5–281.0 124.4–248.8 64
7 281.0–562.0 248.8–497.6 128

Table 2: Specific octaves included.

3 Results

The above analysis methods were applied to local field potentials recorded from dorsocentral striatum from five rats
running on two complex, behavioral tasks. All records were taken while the rats were awake and active. The first-order
power spectra exhibited a power-law frequency dependence, as indicated in Figure 10. All five spectra were consistent
with a power-law spectral slope of f�1�2 to f�1�6 over the frequency range of 10–500 Hz,1, as summarized in Table 3.

1The sharp spikes at 60, 180, and 300, 420, and 540 Hz are due to external 60 cycle signals, not indigenous to the neurophysiology. These do not
significantly affect any of the results shown below. All statistics remain unchanged if these spikes are removed from the data.



These slopes were significantly different from f�1�0 (ttest, df=5, P�0.05), indicating that the power spectra do not follow
a 1

f power-law.

10
0

10
1

10
2

10
310

- 6

10
- 4

10
- 2

10
0

frequency (Hz)

n
o

is
e 

p
o

w
er

10, 11

16 

18, 23 

Figure 10: Average power spectra from each
animal.

Animal Mean Slope 95% CI P(Slope=-1)
R010 -1.37 [-1.33 -1.40] ** P� 0�05, df=38
R011 -1.16 [-1.04 -1.29] ** P� 0�05, df=31
R016 -1.45 [-1.41 -1.50] ** P� 0�05, df=77
R018 -1.46 [-1.34 -1.57] ** P� 0�05, df=35
R023 -1.45 [-1.35 -1.56] ** P� 0�05, df=35
Avg -1.38 [-1.22 -1.54] ** P� 0�05, df=4

Table 3: For each animal, the mean slope
taken over all days is given, along with the
95% confidence intervals. The final column
indicates that all five animals had mean slopes
significantly different from -1, indicating that
none of these spectra followed a 1

f power-law.
Final row is the average means, taken over the
five animals, which is also significantly dif-
ferent from a 1

f power-law.

Figure 11 shows the average correlation coefficients across sets of octaves for all five rats, as well as their average (large
filled circles). Correlation values between octaves 2 and 3, between 3 and 4, between 4 and 5, etc., are all shown averaged
in the one-octave-separation average correlation coefficient. All of the rats showed positive, non-zero average correlations
between nearby octaves. Three rats showed average correlations that decayed to zero at large octave separations. Two rats
showed average correlations that remained positive even for octave separations of 6 octaves. As noted below, the large
average correlation values at large separations for Rats R018 and R023 may be due to experimental artifact. However, the
average correlations at small separations (within three octaves) are clearly non-zero (see Table 4).

Separation Mean 95% CI P(Separation=0)
1 octave 0.47 [ 0.3 0.6] ** P�0.05, df=4
2 octaves 0.33 [ 0.1 0.5] ** P�0.05, df=4
3 octaves 0.23 [ 0.0 0.5] ** P�0.05, df=4
4 octaves 0.17 [-0.1 0.4] * P�0.1, df=4
5 octaves 0.14 [-0.1 0.4] P�0.1, df=4
6 octaves 0.11 [-0.1 0.3] P�0.1, df=4

Table 4: Correlations across octaves.
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Figure 11: Mean correlations across octaves.

4 Discussion

In this paper, we have presented a novel analysis method which should allow the detection of internal coupling parameters
between oscillatory frequencies in neural data. We have shown preliminary data which demonstrates the feasibility of this
method.

Local field potentials recorded from dorsocentral striatum showed power-spectra slopes significantly different than 1/f.
The decrease in the spectral density with a power-law exponent of 1.5 indicates that in general a lower density of fluctuators
operated at frequencies above 100 Hz than was true for lower frequencies. This may arise because local field potentials
arise from dendro-synaptic events occurring with generally longer time-courses [14]. Within the local field potential of
hippocampus and cortex, oscillation components strong enough to be directly observed are generally seen in the �100 Hz
range [1, 14, 26]. Specific oscillation components within the striatum have been seen in the theta range (6–10 Hz) [2].
However, the broad peak observed for two rats (R010, R011) may indicate that for these rats there was a large signal that
has a characteristic frequency of 200–400 Hz. In rat R010, a clear 200 Hz component was seen. In hippocampus, 200 Hz
ripples appear during sharp waves and are associated with key processing states [8].

In dorsocentral striatum, there were significant interactions between frequencies separated by fewer than three octaves.
The power law frequency dependence of the spectral density indicates that there are many fluctuating sources contributing
to the voltage that is recorded by any given tetrode. This is consistent with the local field potential arising from the summed
voltage signals of many different sources [12–14]. The non-zero correlations at short octave separations imply that there
are interactions between these multiple signal sources at least at limited spatial ranges.

Whether very large octave separations go to zero or not is still not clear from this preliminary data. Octave separations
greater than four octaves were not significantly different from zero. Observing the data, three rats (R010, R011, R016)
seem to show zero correlations at long intervals implying a statistical independence of well-separated frequency sources.
There were some recording problems with low-frequency-noise rejection in the recordings taken from the other two rats
(R018, R023) which could have caused a spurious rise in the overall correlation across all frequency octaves. We therefore
believe that any conclusions drawn about the zero or non-zero nature of well-separated octaves will have to wait for future
work.

However, the observation that the correlation coefficients are clearly non-zero for octave separations less than three
for all rats averaged over all days of testing is in contrast to the correlation coefficients recorded for thermal noise from a
5 MΩ resistor discussed in the Methods section previously. In the case of Johnson or Thermal noise, every fluctuator is
statistically independent from all other noise sources, so that even nearest neighbors in frequency space (octave separation
of one) show zero correlations. The slower decay to zero of the correlation coefficients observed in the striatal data suggests
that there is a finite frequency range, which in turn corresponds to a finite spatial extent, for interactions between sources
contributing to the local field potential, but much more work is needed to support this preliminary interpretation.



Because neural processing includes canonical frequencies, it will be important to examine frequency-dependent corre-
lations between specific frequencies rather than just looking at averages across frequency separation as was done here. In
addition, it is well known that these canonical frequencies vary with behavioral state. It will thus be important to examine
these correlations as a function of behavioral state as well as the task-dependence of these correlations.

Local field potentials filtered with low-pass filters (� 500 Hz) encompass voltages from large regions of neuropil
(within 0.5–3 mm of the electrode tip, [12, 14]). However, these analyses can be applied to any continuously recorded
voltage traces. It would be very interesting to apply these analyses to multi-unit spike records filtered with higher-frequency
band-pass filters (600Hz–6KHz) which encompass voltages from smaller regions of neuropil (within 50–100 �m of the
electrode tip, [4, 12, 14]).

All of the correlations reported in this paper are between frequencies recorded at a single location (on a single elec-
trode). In future work, we will examine correlations between signals recorded at different locations. This is similar to
the well-studied property of “coherence” [1, 13]. Coherence measures the correlation between oscillations occurring at
different spatial locations, thus between different networks of neurons [9]. The method presented here is a generalization
of coherence, looking at correlations not just within a single frequency, but also across frequency. This provides additional
information about functional coupling at a single location. It will be important to generalize this across-frequency temporal
coherence measure to an across-frequency/across-location spatio-temporal coherence measure.
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