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Abstract

The place fields of hippocampal cells in old animals sometimes change when an animal
is removed from and then returned to an environment [Barnes et al., 1997]. The ensemble
correlation between two sequential visits to the same environment shows a strong bimodality
for old animals (near 0, indicative of remapping, and greater than 0.7, indicative of a similar
representation between experiences), but a strong unimodality for young animals (greater than
0.7, indicative of a similar representation between experiences).

One explanation for this is the multi-map hypothesis in which multiple maps are encoded
in the hippocampus: old animals may sometimes be returning to the wrong map. A theory
proposed by Samsonovich and McNaughton (1997) suggests that the Barnes et al. experiment
implies that the maps are pre-wired in the CA3 region of hippocampus. Here, we offer an
alternative explanation in which orthogonalization properties in the dentate gyrus (DG) region
of hippocampus interact with errors in self-localization (reset of the path integrator on re-entry
into the environment) to produce the bimodality.

To appear in: Spatial Functions of the Hippocampal Formation and the
Parietal Cortex, edited by Neil Burgess, Kathryn Jeffery, and John O’Keefe.
Oxford University Press.

*Author’s current address: NSMA, University of Arizona, Life Sciences North Bldg, Rm. 384, PO Box 24-5115,
Tucson AZ 85724. Electronic mail address: adr@nsma.arizona.edu
PElectronic mail address: dst@cs.cmu.edu



1 Introduction: Reference frames.

Hippocampal place cells also show correlations to non-spatial aspects of the world, including en-
vironment [Kubie and Ranck, 1983, Thompson and Best, 1989, Muller and Kubie, 1987], task
within environment [Markus et al., 1995], and even stage within task [Eichenbaum et al., 1987,
Eichenbaum and Cohen, 1988, Cohen and Eichenbaum, 1993, Hampson et al., 1993, Gothard et
al., 1996). Some have argued that these experiments imply that place cells should be understood
as being general context cells, with space being only one of many parameters to which they are
tuned [Eichenbaum et al., 1992, Wiener, 1993, Eichenbaum, 1996].

However, even when a cell shows different firing patterns under two conditions, the cell still
show place fields under both conditions. For example, a cell that shows a difference between two
tasks performed within the same environment (as reported by Markus et al., 1995), still only fires
within a constrained place field in each task, if it fires at all. To say that a cell is sensitive to a
non-spatial aspect such as task means that if the cell has a place field under one condition, it may
or may not show a place field under the other, and if two cells both show place fields under both
conditions, then the spatial relationships between them may change drastically from one condition
to the other. Essentially, a cell’s place field under one non-spatial condition (in fact whether it has
a place field at all) is independent of its field under other non-spatial conditions.

One way to explain this is the multi-map hypothesis: multiple maps in the hippocampus [O’Keefe
and Nadel, 1978], active subsets [Muller and Kubie, 1987], reference frames [Wan et al., 1994a,
Wan et al., 1994b, Touretzky and Redish, 1996, Redish and Touretzky, 1997a, Redish, 1997], or
charts [McNaughton et al., 1996, Samsonovich and McNaughton, 1997, Samsonovich, 1997]. All of
these authors suggest that the hippocampus includes multiple maps, and that each place cell takes
part in one or more of those maps.

There are, however, minor differences among these hypotheses. In this paper, we will concen-
trate on the two hypotheses which are the most detailed computationally: charts and reference
Sframes. The multi-chart hypothesis suggests that the maps are critically a hippocampal property
arising from internal dynamics of the hippocampus. In contrast, the reference frame hypothe-
sis suggests that the maps arise from interactions of the hippocampus with extrinsic navigational
structures such as a neural path integrator.!

Barnes et al. (1997) have shown an experiment in which the removal and return of an animal to
an environment is sufficient to produce a map transition. In this paper, we present an explanation
for this result, with simulations. Our account says that errors in a path inlegrator reset process
which occur on returning to the environment force a change in reference frame, leading to the
appearance of a map transition.

2 The reference frame theory

Over the last few years, we have synthesized a theory of rodent navigation, bringing together ideas
from the extensive work done on rodent navigation over the last century and showing how the
interaction of several subsystems gives rise to a comprehensive, computational theory of navigation
[Touretzky and Redish, 1996, Redish and Touretzky, 1997a, Redish and Touretzky, 1997c]. A
complete description of the theory and its correspondence to the experimental literature is given
in depth in [Redish, 1997]. Here we will only present a short overview of the theory. Then we will

'Path integration is a process that tracks an animal’s position as it moves, allowing it to later return to the starting
point using only idiothetic cues [Barlow, 1964, Mittelstaedt and Mittelstaedt, 1980, Gallistel, 1990].



compare its explanation for the Barnes et al. (1997) experiment with that of the multi-chart model
[McNaughton et al., 1996, Samsonovich and McNaughton, 1997, Samsonovich, 1997].

Extending O’Keefe and Nadel (1978), the reference frame theory describes navigation as a
consequence of four different functional systems:

e taxon navigation (direct approach/avoidance of a landmark),

e praxic navigation (a sequence of motor actions, driven from an internal sequencing mecha-
nism),

e locale navigation (map-based navigation), and
e route navigation (chained stimulus-response mechanisms).

It also describes locale navigation in detail as a consequence of an interaction among five spatial
representations:

e local view (spatial aspects of external landmarks),

e head direction (the orientation of the animal in space),

e path integrator (the vector home, represented on a canonical map),

e place code (a representation of the animal’s location in the current reference frame), and
e goal memory (allowing trajectory planning).

The anatomical instantiation suggested for these systems is shown in Figure 1.

This theory can explain results from a wide range of methodological paradigms, including
single- and multi-cell recording, behavioral manipulations, neuropharmacological manipulations,
and lesion studies; it is consistent with anatomical data (see Redish, 1997). We have simulated
most aspects of this theory, demonstrating how it can replicate a variety of results, including:

e tracking of head direction by cells in postsubiculum and the anterior thalamic nuclei [Taube et
al., 1990, Blair et al., 1997, Taube et al., 1996, see Redish et al., 1996, Goodridge et al., 1997],

e open-field navigation tasks [Collett et al., 1986, Saksida et al., 1995, see Touretzky and
Redish, 1996],

e memory consolidation in the Morris water maze [Morris, 1981, Sutherland and Hoesing, 1993,
see Redish and Touretzky, 1997c],

e changes in place fields as a consequence of interactions between a consistent entry point and
cue card manipulations [Sharp et al., 1990, see Redish and Touretzky, 1996, Redish, 1997],
and

e consequences of disorientation in rectangular arenas [Cheng, 1986, Margules and Gallistel,
1988, Gallistel, 1990, see Wan et al., 1994a, Touretzky and Redish, 1996].

All of the simulations are also detailed in [Redish, 1997].



=" Caudate

Mucleus
Taxorn nav.
Posterior | Molor
Cingulate T Oulper
ARoutes \ Alignment
¥ Consolidation
Posterior 7
Parietal ECd ~
oG
A3
: <
PeriRh : ECs -
/ I )
Pi-
Local View reset
CA
Pi
¥ ¥
i PoS =" PaS Sub
LMN 1 /\/
mPFC
F
Alignment Goal
¥
VTA > NAch Amyg
Vestibular
Motor |
fnput Outpet |

Figure 1: Anatomical realization of a comprehensive model of rodent navigation. From Redish
(1997). Amyg: amygdala; ATN: anterior thalamic nuclei; DG: dentate gyrus; CA3,CAl: hip-
pocampus proper; ECs: superficial entorhinal cortex; ECd: deep entorhinal cortex; LMN: lateral
mammillary nuclei; mPFC: medial prefrontal cortex. NAcb: nucleus accumbens; PaS: parasubicu-
lum; PeriRh: Perirhinal cortex; PoS: postsubiculum; Sub: subiculum; VTA: ventral tegmental
area; HD: Head direction subsystem pathways; PI: Path integration subsystem pathways. Not all
anatomical structures or connections are shown. Functional pathways are meant to be indicative
only; structures not directly on a labeled pathway may also be involved in that subsystem.



3 The experiment of Barnes ¢t al. (1997).

Barnes et al. (1997) allowed an animal to walk around a figure-eight maze for 25 minutes. They
then removed the animal for one hour, after which the animal was returned to the maze and allowed
to walk around for another 25 minutes. During each 25 minute experience, Barnes el al. recorded
about three dozen place cells simultaneously.

When young animals returned to the environment, they used the same set of place cells to encode
location. But when old animals returned to the environment they sometimes used a completely
different set of cells. The ensemble correlation between place fields in the two experiences was
always high for young animals (approximately 0.7, indicative of a similar representation between
experiences), but was bimodal in old animals (sometimes near 0, indicative of a complete remapping,
other times near 0.7, indicative of a similar representation). Within a single experience in the
environment, place fields were very stable; correlations between the first and second halves of a
single run were always high for both old and young animals.

4 Two competing explanations

4.1 The explanation provided by the multi-chart model

Barnes et al. (1997, see also McNaughton et al., 1996, Samsonovich and McNaughton, 1997, Sam-
sonovich, 1997) explain the bimodal distribution in old animals as a problem in selecting the correct
cognitive map.

Their theory includes a set of pre-wired charts in the hippocampus, such that the synaptic weight
between two cells in hippocampus is inversely proportional to the minimum of their distances across
all of the charts. When combined with global inhibition, this produces a local-excitation-global-
inhibition network structure. This type of network has a coherent representation of a single location
on a single chart as a stable state [Samsonovich and McNaughton, 1997]; any other representation,
such as noise biased by extra activity at candidate locations suggested by sensory cues, will be
unstable and will settle into a stable state.

The major drawback of this theory is that it requires complex pre-wired connections within the
hippocampus. Each place cell needs to be more strongly connected to cells with place fields nearby
(in some chart) than to cells with place fields that are distant (in all charts). There is evidence that
this connection structure exists after exploration [Wilson and McNaughton, 1994], but the theory
requires that the connection structure be in place before exploration.

According to this theory, on entering a novel environment, one location on one chart (map) will
win the competition among competing representations and become the preferred representation
for the entry point. As young animals explore the environment, representations of the local view
become bound to places on the currently active chart. Then, on a return visit to the environment
entering at the same point as before, the local view representation biases the dynamics in the
hippocampus so that the same representation of location on the same chart is reinstantiated. In
the case of old animals, deficiencies in LTP (see Barnes, 1996, for a review) prevent the local view
from becoming as tightly bound to the currently active chart during initial exploration. Thus,
according to the multi-chart model, on returning to the environment, old animals experience a
much weaker bias to select the same location on the same chart as before.



Figure 2: Hippocampal model used to simulate the Barnes et al. experiment. During storage, solid
lines drive place cell activity and dashed lines show correlational learning; during recall, dashed
lines show synaptic transmission and drive place cell activity and path integrator reset. See text
for details.

4.2 The explanation provided by the reference frame model

We propose that the phenomenon seen in older animals is not a consequence of pre-wired chart
selection within the CA3 population, but rather an interaction between a non-linearity of the path
integrator and the orthogonalization properties of dentate gyrus.

The important points for this experiment, drawn from the theory described in Section 2, are:

1. The path integrator is extrinsic to the hippocampus [O’Keefe, 1976, Wan et al., 1994b,
Touretzky and Redish, 1996, Redish and Touretzky, 1997a).

2. During normal navigation, place cells require both local view and path integrator input
[O’Keefe, 1976, Wan et al., 1994b, Touretzky and Redish, 1996, Redish and Touretzky, 1997a).

3. The dentate gyrus orthogonalizes the combined local view and path integrator inputs [Marr,
1969, McNaughton and Morris, 1987, Rolls, 1989, O’Reilly and McClelland, 1994, Rolls, 1996]
so that if either one changes, a new set of place cells is selected.

4. Path-integrator reset occurs on re-entry into an environment [Touretzky and Redish, 1996,
Redish and Touretzky, 1997a, Redish, 1997, see also Rawlins, 1985, Rotenberg et al., 1996,
for similar hypotheses].

Organization of the model. The components required for simulating this experiment are shown
in Figure 2. The model includes an extrinsic path integrator (PI), an extrinsic local view (LV),
strong random connections from each to the dentate gyrus (DG), and strong random connections
from the dentate gyrus to hippocampus (HC). We do not differentiate between CA3 and CAl in
this model, and so HC includes both recurrent connections (as in CA3) and outputs to the path
integrator (as in CA1). Both the Pl and HC models are composed of excitatory (E) and inhibitory
(I) pools.

The path integrator in this model is assumed to consist of a two-dimensional representation of
location in which cells show place fields but the fields do not change from environment to environ-
ment. Cells in entorhinal cortex and subiculum show these environment-independent place fields



[Quirk et al., 1992, Sharp, 1996]. Following these results, we have suggested that the path integra-
tor consists of a loop between three extra-hippocampal structures: subiculum, parasubiculum, and
superficial entorhinal cortex [Redish and Touretzky, 1997a). The path integrator representation
can be updated by offset connections [Zhang, 1996, Samsonovich and McNaughton, 1997].

In addition, we assume that the path integrator has a local-excitation-global-inhibition network
structure. This means that the path integrator reset process can occur by assuming the path
integrator is initialized with noise and then biased by input from the place cells (which are in
turn biased by the local view). This attractor network structure has been extensively studied
both in one dimension [Wilson and Cowan, 1973, Amari, 1977, Ermentrout and Cowan, 1979,
Kishimoto and Amari, 1979, Kohonen, 1982, Kohonen, 1984, Skaggs et al., 1995, Redish et al., 1996,
Zhang, 1996, Redish, 1997] and two [Kohonen, 1982, Kohonen, 1984, Droulez and Berthoz, 1991,
Munoz et al., 1991, Arai et al., 1994, McNaughton et al., 1996, Zhang, 1996, Redish and Touretzky,
1997¢, Redish, 1997, Samsonovich and McNaughton, 1997, Samsonovich, 1997].

The reference frame model requires that cells in the path integrator be most strongly connected
to other cells with nearby place fields, which is similar to the pre-wired connections required in
hippocampus in the multi-chart model. However, the reference frame model only requires this
connection structure to pre-exist for a single map, located outside the hippocampus, which simplifies
the model immensely. The model also includes local excitation (within reference frame) connections
within the hippocampus, as does the multi-chart model. However, in the reference frame model
this complex connection structure is only assumed to exist after exploration. As has been shown
by Muller et al. (1991b, 1996, see also Redish and Touretzky, 1997¢, Redish, 1997), this connection
structure can be learned by random exploration combined with correlational LTP (i.e. Hebbian
learning).

Entering a novel environment. When an animal is placed in an environment, we assume that
it does not have preconceived path integrator coordinates. The path integrator representation in the
model is assumed to initially be random noise. Because the animal has not explored the environment
yet, the learnable connections are assumed to have small, uncorrelated random strengths. (The
learnable connections, shown by dashed lines in Figure 2, are: LV — HC, HC — PI, and recurrent
connections in HC.) Because these connections are very weak, they do not provide any bias to the
settling of the path integrator. Therefore, the path integrator settles to a representation of random
coordinates (a “hill” of activation somewhere on the neural sheet) that will serve as the origin or
“reference point” for the new reference frame. We call this settling process the self-localization or
Pl-reset process.

In contrast to the learnable connnections, the pre-wired connections are assumed to be sparse,
and have strong synaptic weights. These connections are indicated by solid lines in Figure 2:
LV — DG, PI — DG, and DG — HC.

Activity in the dentate gyrus is a consequence of both the LV and PI representations. In order
for a DG cell to fire, it must receive input from both LV and PI. Early in the self-localization
process, the Pl representation is incoherent (i.e. the component neurons show small, random firing
rates). This means that early in the self-localization process, DG is effectively silent due to the
lack of a coherent representation in PI. This allows the LV — HC — PI pathway to drive the
self-localization process.

In contrast, during navigation, the sparse, strong connections passing through DG drive activity
in the hippocampus. Because both LV and PI firing fields are spatially localized, a DG cell will
show a high firing rate only in a small, compact portion of the environment, the place field of the
cell. Because most of the possible LV x PI combinations do not occur in an environment, most
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DG cells are silent.

Each HC cell receives input from 10-20 DG cells. Activity in one DG cell is sufficient to
make the HC cell show a high firing rate. HC cells can therefore have varying numbers of place
fields, depending on their specific inputs from DG. In practice, we have found that most HC cells
simulated with this model show at most one place field within a reference frame, but occasionally,
some cells do show two subfields. Cells with multiple subfields have been reported in real animals
(e.g., O’Keefe and Nadel, 1978, Muller et al., 1991a, Wilson and McNaughton, 1994, Markus et
al., 1995).

As the animal explores the environment, LTP occurs along the learnable (dashed) connections.
We assume that this LTP is Hebbian and rectified at 0, so that synaptic strength can only increase.
We do not model LTD.

Returning to a familiar environment. According to the reference frame theory, when young
animals return to the environment, LTP has created associations between the LV and HC modules,
and between HC and PI. There is a self-localization or Pl-reset process each time the animal enters
the environment. On a return visit, the learned (dashed) connections that were strengthened by
LTP will provide biases to the HC and PI networks. Therefore, upon reentering the environment,
the local view representation instantiates a previous representation in hippocampus, and this in
turn (via the HC — PI) pathway forces the path integrator to reset to the same representation of
location as in the young animal’s previous experience.

In old animals, however, LTP is deficient (as reviewed by Barnes, 1996) and thus there is little
or no bias along the LV — HC pathway to reset the hippocampus, and hence via the HC — PI
pathway, the path integrator, to the same location. Because each DG cell performs a logical and
function of its path integrator and local view inputs, if the path integrator representation is not reset
correctly, this produces a dramatic change in DG representation which will be seen in hippocampus
as a low overlap of place codes across different visits to the environment.

Effect of nonlinearity. The attractor network structure hypothesized to underlie the path inte-
grator has an important nonlinearity dependent on where excitatory bias is input into the network.
There are four important cases, depending on the location and magnitude of the extra-population
input [Redish and Touretzky, 1997b, Redish, 1997, see also Skaggs et al., 1995, Elga et al., 1996,
Redish et al., 1996, Zhang, 1996, Samsonovich and McNaughton, 1997, Samsonovich, 1997 for
discussions of specific cases]:

1. If an attractor network is in a stable state and receives input (synapsing on excitatory cells)
that is peaked at the same position as is currently being represented, then nothing will change.
The attractor network will still be in a stable state representing the same position. The overall
activity in the attractor network may increase slightly, but the represented position will not
change.

2. If the input is offset slightly, then the attractor network will precess until the new represen-
tation is centered at the input position.

3. If the input is offset by a large amount but is small in magnitude, it will not be strong enough
to affect the current representation, and so the representation will not change.

4. If strong enough input is offset by a large amount, the hill of activiation will jump, i.e. the
representation of the current position will disappear and activity will reappear at the offset
location.



The effect of this nonlinearity is that if the bias supplied by the HC — PI connections is near
the position that the path integrator is settling to, it will draw in the representation to match it,
whether in strong LTP (“young”) or weak LTP (“old”) animals. However, if the bias is distant
from the position to which the path integrator is settling, the representation will jump only if it is
sufficiently strong, i.e. in young animals but not in old animals.

4.3 Similarities and differences

The interpretations of this experiment offered by the multi-chart and reference frame models have
some similarities and some crucial differences.

Because place cells are active on initial entry into the environment [Hill, 1978, Austin et al., 1990,
Wilson and McNaughton, 1994, Tanila et al., 1997], there must be some pre-wired connections
producing place field activity. In the multi-chart model, the charts are pre-wired in CA3. In
the reference frame model, pre-wired connections labeled PI — DG, LV — DG, and DG — HC
produce place cells with stable fields on initial entry into the environment. The difference between
the pre-wired connections hypothesized by the multi-chart model and those hypothesized by the
reference frame model is that the latter are initially random.

Because the place cell instability observed by Barnes et al. (1997) is bimodal in older animals,
there must be some sort of nonlinear process occurring during reentry. In the chart-model, this
nonlinearity exists in the competitive dynamics between charts in CA3. In the reference frame
model, it is found in the nonlinear settling behavior of the path integrator.

Because the place cell instability observed by Barnes et al. (1997) only occurs on entry into
the environment, there must be something special about entry into the environment. We explain
this by hypothesizing that the path integrator is only reset on entry into the environment. During
normal navigation, the path integrator is not reset; it continues to be driven by internal dynamics
more than external. But on returning to an environment, the path integrator is reset and external
dynamics can have a strong influence.

5 Simulations

Simulations were based on the model shown in Figure 2. All entries to the environment were made
at a single location. Each triggered a self-localization process, after which the model was allowed
to learn at that location for a short time. The model was then removed from the environment
and returned to the same location again, triggering another self-localization.. Each self-localization
process began with the path integrator reset to random noise. This cycle of removal and return
was repeated 10 times for the simulated young animals with normal LTP, and for simulated old
animals with weak LTP.

Because the LV — HC and HC — PI connections learned the correct mapping in the simulated
young animals, the model always reset the path integrator to the same coordinates (Table 1, left).
This produced the same Pl x LV association, and thus the same DG and CA3 cells became active.
All correlations seen were high, as shown in the left panel of Figure 3.

However, in the simulated “old” animals, the path integrator settled to different coordinates
on different tirals (Table 1, right), although the local view had not changed. This changed the
PI x LV association, engendering a change in the DG and thus the CA3 representations. Typical
correlations were around 0. But occasionally the path integrator would reset to a location close to
its previous value, producing a rare high correlation (> 0.6). See the right panel of Figure 3.



As can be seen in the right half of Table 1, in the last four trials, the simulated old animals
always returned to the same reference point. This occured because LTP built up over time. After
enough experience the old animals were able to recognize the environment and reset their path
integrator representation correctly. The specific timing of the onset of correct reset is strongly
dependent on the parameters chosen for the LTP. In the simulation, old animals had LTP that was
5% that of young animals.

In comparing these results to those reported by Barnes et al., we should note that Barnes et al.
only examined pairs of experiences and so were unable to examine whether old animals eventually
settled on a single location. However, Barnes et al. tested all of their animals (young and old) in
the hidden-platform water maze [Morris, 1981]. They report that early in training, histograms of
length of path taken by all animals are bimodal: sometimes they find the platform with a short path
and sometimes they require a long path. Barnes et al. explain the bimodality as a consequence of
being on the correct map or not. If the hippocampus represents the correct location on the correct
map, the animal should be able to navigate to the goal; but if the hippocampus has an unfamiliar
representation, finding the platform will be much more difficult. As young animals gain experience,
they transition to the short-path peak in the bimodal histogram. Old animals also show more
short-path trials after four days of training than they do after two, but they continue to be more
likely to take a long path than young after four days. In agreement with Barnes et al., we take
this as an indication that the old animals are learning to return to the correct map, but they learn
much more slowly than young animals.

6 Discussion

These simulations show that the dramatic nonlinearity seen by Barnes et al. (1997) does not
necessarily imply that there must be pre-wired charts in the hippocampus. A model that includes
random pre-wired connections from an external path integrator and an external local view into an
orthogonalizing structure (such as dentate gyrus) as well as a single-map pre-wired path integrator
is sufficient to produce the observed bimodality in animals with deficient LTP.

This demonstrates why it is important to consider reference frame as a property of the entire
navigation system and not just the hippocampus. What we are suggesting here is that the old
animals are on a different map (different chart, different reference frame) because they are using
a different reference point for the path integrator. Because the path integrator representation
is changed between experiences, the Pl x LV association changes, and this is why the animal
constructs a different reference frame.

The work presented in this chapter does not prove that the pre-wired CA3 hypothesis is wrong,
only that it is not a necessary conclusion of the bimodality result reported by Barnes et al. (1997).
The two theories (that DG is orthogonalizing extrinsic path integrator and local view inputs, and
that CA3 is pre-wired to form multiple charts) are not incompatible. Further work is being done
to examine the interaction between the two hypotheses.
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Figure 3: Histograms of correlations between representations of a specific location in the environ-
ment after multiple entries into that environment. Simulations were allowed to enter an environment
10 times and the hippocampal representation of a location in the environment was measured. Cross-
correlations were made between each pair of experiences in the environment (45 pairs). Plotted is
a histogram of the correlations found. (left) Simulations with strong LTP (i.e. “young” animals)
always return to the same PI representation, so the correlation is always high. (right) Simulations
with weak LTP (i.e. “old” animals) usually return to different PI representations and so usually
have very low correlations, but occasionally return to similar PI representations and thus have rare
highly correlated pairs.

“Young” “Old”
Entry animals animals
1 (120°,12°) | (120°, 12°)
2 (120°, 12°) | ( 35°, 131 )
3 (120°, 12°) | ( 36°, 113 )
4 (120°,12°) | ( 91°, 63°)
5 (120°,12°) | ( 62°, 109°)
6 (120°, 12°) | (178°, 326°)
7 (120°,12°) | (128°, 11°)
8 (120°, 12°) | (126°, 12°)
9 (120°,12°) | (126°, 12°)
10 (120°,12°) | (125°, 12°)

Table 1: Coordinates represented in the path integrator after each of 10 entries into an environment.
Since the path integrator was simulated as a torus, the coordinates are expressed as pairs of angles.
All entries were to the same location in the same environment. These coordinates can be taken as
indicative of the reference point that would be used for any subsequent navigation.
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