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ABSTRACT We present a computational theory of navigation in ro- 
dents based on interacting representations of place, head direction, and 
local view. An associated computer model is able to replicate a variety 
of behavioral and neurophysiological results from the rodent navigation 
literature. The theory and model generate predictions that are testable 

place code is represented at the level of neuron-like el- 
ements, the model makes predictions about other brain 

that be of interest neuroscientists. 

memory, path integration 
Place Cells 

There is a wealth of data on rodent performance in spatial learning and 
memory tasks, but as yet there is no comprehensive theory of how rodents 
navigate. Toward that end, we present a computational model based on a 
collection of behavioral and neurophysiological observations that allows us 
to reproduce a variety of results within a single computer program. Ours 
is a systems-level model concerned with interactions among navigational 
subsystems, such as the place code, the head direction system, and the path 
integrator. Previous modeling efforts have generally focused on just one 
subsystem. 

Our fundamental assumption, and a view held by other investigators as 
well (O’Keefe and Nadel, 1978; O’Keefe, 1989; Gallistel, 1990; 
McNaughton et al., 1991, 1996), is that at least two distinct spatial en- 
codings are maintained in the rodent brain: a metric representation that 
supports a limited form of vector arithmetic, and a local view representa- 
tion derived from bearing and/or distance relations to landmarks. The brain 
learns relationships between place descriptions in these two representations, 
and the hippocampal complex appears to operate on (and may be respon- 
sible for maintaining) the conjoint representation. We extend this cote the- 
ory by showing how interactions among the two spatial representation sys- 
tems, the hippocampal complex, and the head direction system can account 
for various facts about rodent navigation. Although only the hippocampal 

cells fire at an elevated rate over a continuous, compact 
area, the placefield of the cell (O’Keefe and Dostrovsky, 
1971). See (Muller et al., 1991) and (McNaughton et 
al., 1994) for reviews. 

Rats performing a spatial working memory task in 
which they must visit every arm of an eight-arm radial 
maze are sensitive to the positions of external landmarks, 
as can be demonstrated by rotating the landmarks part- 
way through the task (Suzuki et al., 1980). Hippocampal 
place fields rotate in correspondence with the rotation 
of prominent landmarks (Muller and Kubie, 1987; 
O’Keefe and Speakman, 1987; McNaughton et al., 
1994; Knierim et al., 1995). In contrast, when land- 
marks are permuted rather than rotated, rats behave as 
ifthe environment were unfamiliar (Suzuki et al., 1980), 
and neural recordings suggest that the animal forms a 
different set of place codes’ in the permuted environ- 
ment that overlaps little with the previous set (Muller 
and Kubie, 1987; O’Keefe and Speakman, 1987). 

These observations suggest that place cells can be 
modeled as visually driven pattern detectors tuned to 
bearings and/or distances to landmarks. A variety of such 

’A “place code” is a pattern of activity over the place 
cell population. It constitutes a distributed representa- 
tion (Hinton et al., 1986) of the animal’s position from 
which the true position can be estimated with high ac- 
curacy (Wilson and McNaughton, 1993). 
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models have been described in the literature, constructed by com- 
petitive learning (Sharp, I99 I), recurrent back propagation learn- 
ing (Shapiro and Hetherington, 1993; Hetherington and Shapiro, 
1993), genetic algorithms (Treves et al., 1992), or radial basis 
functions (Zipser, 1985; Schmajuk and Blair, 1993; Burgess et 
al., 1994). These models all produce place cells with appropri- 
ately shaped fields, and since their responses are purely visually 
driven, the fields rotate with the visual cues. Rut this description 
of place cells is far from complete. 

A second important feature of place cells is that their firing 
fields remain largely intact when prominent visual landmarks are 
removed (Muller and Kubie, 1987; O'Keefe and Speakman, 
1987). An associative memory process was thought to be re- 
sponsible for this. According to this view, a fully specified place 
code learned previously by the hippocampus could later be re- 
constructed from a partial pattern evoked by an incomplete set 
of visual cues (Rolls, 1989; McNaughton and Nadel, 1990). 
However, the memory models cited in these proposals use fixed 
point attractors (Marr, 1969; Kohonen, 1984). Such models store 
only discrete memories; they cannot produce the smoothly vary- 
ing response pattern of place cells, some of whose firing rates fall 
off as Gaussian functions of distance from the place fields' ten- 

ters. A smoothly varying response would appear to be funda- 
mentally incompatible with the pattern completion function of 
an associative memory, because it is supposed to map many dif- 
ferent partial patterns to the same whole. If the memory corrects 
a partial pattern when a landmark is missing, why would it not 
also correct the pattern (i.e., produce an identical firing rate in a 
place cell) when the landmark was at a slightly different distance 
or bearing? 

Another problem with these memory models is that the stored 
patterns must be linearly independent to avoid mutual interfer- 
ence. If the animal is storing a separate memory for every view- 
ing position it experiences, linear independence can only be main- 
tained if the system is made extremely sensitive to differences in 
the original input patterns, and the patterns are then recoded to 
pull them apart, a function Marr (1969) ascribed to the dentate 
gyrus. But this degree of sensitivity would undercut any ability 
to do pattern completion in the event of missing landmarks. 

To summarize, storing a separate memory for every possible 
view of the environment cannot be done without making the sys- 
tem overly sensitive to differences in input patterns, which blocks 
completion of partial patterns. Storing only a few memories is 
compatible with pattern completion, but in that case we would 
expect an identical response to similar input patterns, rather than 
the smoothly varying response exhibited by real place cells. Hence, 
matrix memory models using fixed point attractors are not viable 
models of the hippocampal place system. 

A third critical observation about place cells is that they con- 
tinue to fire when rats navigate in the dark (O'Keefe, 1976; 
McNaughton et al., 1989; Quirk et al., 1990; Markus et al., 
1994). New place fields can even be recruited in the dark (Quirk 
et al., 1990), so the cells cannot be purely visual pattern detec- 
tors. This observation poses difficulties for the associative mem- 
ory theory as well. The firing rates of the cells change as the rat 
moves through the environment. If associative recall were solely 

responsible for place cell activity in the absence of visual input, 
the animal would have to memorize not only the place codes, but 
also a transition table showing for each combination of present 
location and motor action what its new location would be. Such 
a model was proposed by McNaughton and Nadel (1990), but 
no simulations were done for realistic environments. The com- 
binatorics of this approach appear prohibitively expensive, both 
in the amount of memory such a table would require and the 
amount of exploration needed to fill in the entries. 

An alternative hypothesis is that place cells in the dark are dri- 
ven by path integration (O'Keefe, 1976; Wan et al., 1994a,b; 
McNaughton et al., 1996). Muller et al. (1991) and McNaughton 
et al. (1994) have proposed similar hypotheses in which animals 
remember the relative locations of landmarks even when they are 
out of sight. Place cells tuned to these virtual (invisible) land- 
marks would continue to fire in the dark. The proposal would 
require a landmark memory somewhere in the brain that inter- 
acts with the hippocampal formation, and further implies that the 
animal must maintain its position internally, by path integration. 
We see no need to posit the landmark memory: Place cells can 
be driven directly by the same process that allows the animal to 
perform path integration. We return to the discussion of the re- 
lation between virtual landmarks and path integration in Path 
Integration and Virtual Landmarks. 

Path Integration 
Mittelstaedt and Mittelstaedt (1 980) showed that a female ger- 

bil searching for a missing pup via an apparent random walk could 
execute a straight-line return to the nest once the pup was found. 
The experiment was performed in the dark to rule out visual hom- 
ing. Displacement of the animal during its search caused the re- 
turn path to be offset by a comparable amount, eliminating the 
possibility that auditory or olfactory cues guided the trajectory. 
Hence, they concluded that gerbils keep track of their position 
by path integration. 

Etienne (1 987) showed similarly that golden hamsters trained 
to find food at the center of a circular arena used path integra- 
tion to return to the nest. When the nest was rotated 90" or 180" 
while the animal was at the center of the arena, the animal re- 
turned to where the nest had been originally, ignoring the rota- 
tion of the arena. The animals integrated their own active and 
passive rocation to determine the direction to the nest, but as was 
seen in the Mittelstaedt and Mittelstaedt experiments, the ham- 
sters did not integrate passive translation. Alyan and Jander (1994) 
have shown that i n  the house mouse Mus mwculus performing a 
pup retrieval task, path integration is initially the dominant in- 
fluence on navigation behavior, but visual cues that conflict with 
path integration information due to rotation of the environment 
gradually acquire priority as the animal becomes more familiar 
with the arena. 

Path integration has been demonstrated in a variety of other 
animals ranging from insects to humans (see Gallistel, 1990; 
Maurer and Seguinot, 1995, for reviews), although of course the 
mechanisms enabling these animals to path integrate may be quite 
different from those in rodents. 
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The neuroanatomical substrate for rodent path integration is 
presently under investigation. Recent proposals suggest that it 
arises from the interaction of several structures: the hippocampus 
(McNaughton et al., 1996), subiculum (Sharp et al., 1995), and 
parasubiculum (Redish and Touretzky, 1995; Redish and 
Touretzky, 1996a) may all be involved. Data demonstrating that 
striatal lesions impair a rat’s ability to return from passive trans- 
port, but not to perform an odor-following task, suggest that the 
basal ganglia may also contribute (Potegal, 1972, 1982; Abraham 
et al., 1983). 

Any representation subserving path integration must facilitate 
vector addition. In earlier work, we suggested a neural represen- 
tation for direction and distance that supports several vector arith- 
metic operations (Touretzky et al., 1993). Wittmann and 
Schwegler (1995) subsequently showed how this encoding could 
be used to model path integration in ants. Another representa- 
tion suggested for path integration in rodents is described by 
Samsonovich and McNaughton (1995), based on a moving hill 
of activation over a two-dimensional (2D) array of cells. 

Head Direction 
In order for path integration to be possible, the animal must 

have an internal representation of the direction of its motion. 
Cells that show a unimodal tuning to head direction independent 
of location have been reported in at least five areas of the rat brain: 
postsubiculum (Taube et al., 1990a,b), the lateral dorsal nucleus 
(LDN) of the thalamus (Mizumori and Williams, 1993), the an- 
terior thalamic nuclei (ATN) (Blair and Sharp, 1995; Knierim et 
al., 1995; Taube, 1995), and to a lesser extent, striatum (Wiener, 
1993; Mizumori and Cooper, 1995) and posterior parietal and 
cingulate cortex (Chen, 1991; Chen et al., 1994a,b). These cells 
(hereafter head direction cells) provide a sort of internal compass. 

When landmarks in a familiar environment are rotated about 
the animal, tuning curves of head direction cells rotate accord- 
ingly (Taube et al., 1990b; McNaughton et al., 1994; Goodridge 
and Taube, 1995; Knierim et al., 1995; Taube, 1995). But in un- 
familiar environments, vestibular information dominates and the 
rat does not respond to the rotation. Thus, like place cells, head 
direction cell responses can be controlled by visual landmarks 
when the configuration is familiar. 

Head direction cells continue to fire in the dark. But if the 
animal wanders about in a darkened circular arena with no other 
positional cues available, they eventually drifL2 Hippocampal 
place fields appear to drift in synchrony with the head direction 
system (McNaughton et al., 1994; Knierim et al., 1995). 

By comparing the preferred direction of a head direction cell 
with its preferred direction at a previous time, we can measure 
the precersion of the cell’s preferred direction. The difference in 
preferred directions of any pair of head direction cells appears to 

be constant (Taube et al., 1990b; Taube, 1995), so whenever one 
cell is seen to precess, the rest do likewise, by a similar amount. 
Thus, we can talk about the precession of the head direction sys- 
tem as a whole, abstracting away the individual cells. 

Although there are some data suggesting different roles for the 
various head direction areas (Mizumori and Williams, 1993; Chen 
et al., 1994a,b; Blair and Sharp, 1995), we will not attempt to 
separate out those differences here. We will note, though, that 
the head direction system as a whole should make connections to 
both the path integration and local view systems, and that dis- 
ruption of the head direction system should interfere with any 
behavior that depends on path integration. 

Local View 

The Localview (McNaughton, 1989) of an environment is what 
can be seen from a particular viewing position. With a sufficiently 
rich set of cues and no pathological symmetries in the environ- 
ment, local views describe unique places. In real animals, the lo- 
cal view module may be realized by areas of parietal cortex. But 
the neural representation of complex scenes is poorly understood 
at present, so place cell models encode visual input at a highly 
abstract level. Most treat landmarks as points, represented by their 
bearing and/or distance from the animal (Zipser, 1985; 
McNaughton et al., 1989; O’Keefe, 1989; Sharp, 1991). 

In our model, visual landmarks are represented as triples (T~, 
ri, O,), where T~ indicates the type of the ith landmark, ri its dis- 
tance from the animal, and 8i its bearing relative to the animal’s 
midline (egocentric bearing). Types are not unique; there may be 
multiple objects in view that are of the same type. For example, 
in the Collet et al. tasks described in Navigation Using Landmark 
Arrays, several visually identical cylindrical landmarks are used. 
There is evidence that rats use allocentric bearings to solve the re- 
sulting “binding p r ~ b l e m ” . ~  In a rectangular arena, all corners 
may have the same type, but alternatively, following Gallistel 
(1990), we may distinguish two types of corners: one with the 
long wall on the left and the short wall on the right, and the other 
reversed; diagonally opposite corners would be of the same type. 

This simple caricature of the rodent visual system is adequate 
for the present needs of our navigational model, but its limita- 
tions should be acknowledged. Perfect object recognition is as- 
sumed as a primitive. We have not considered how place cell ac- 
tivity might vary in response to objects that are of a slightly 
different shape, size, or color than the expected landmarks. And 
our theory assumes that rodents can recognize objects in unfa- 
miliar orientations, despite a lack of data supporting this. 
However, the experiments we consider have all used either a lim- 
ited range of viewing positions (e.g., a white cue card viewed only 
from the interior of a small arena) or circularly symmetric land- 
marks, so this limitation does not pose a problem for our simu- 
lations. 

2Mizumori and Williams (1 993) and Knierim et al. (1 993) report 
that head direction cells in LDN and ATN drift after about 2 min- 
utes. Taube (personal communication), recording from post- 
subiculum, has observed stable directional tuning over longer pe- 
riods. 

3This i s  the problem of matching perceived to remembered land- 
marks. Binding problems occur in many contexts in cognitive sci- 
ence. Connectionist models have often been proposed as solu- 
tions. 
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O n  the other hand, our model is more perceptually sophisti- 
cated than its predecessors in that it allows for surface-type as well 
as point-type landmarks. In this case (ri, Oj)  encodes the normal 
vector from the animal to the closest point on the surface. Using 
a surface-type landmark, a place cell tuned to the arena wall pro- 
duces place fields contiguous with the wall and makes the model 
sensitive to the geometry of the environment, which is consistent 
with observations of CA1 cells by Muller et al. (1987) and Muller 
and Kubie (1987). It also assists us in modeling tasks in walled 
arenas where the cue card (represented by two point landmarks) 
has been displaced or removed (Sharp et al., 1990; see “Place 
Fields Controlled by Entry Point”). 

The major components of our theory are shown in Figure 1. 
Visual perception provides the type, range, and egocentric bear- 
ing (7z, r,, 0,) of each landmark. The local view system computes 
allocentric bearings 4z by adding in the current head direction 
@h, available from the head direction system. The retinal angle, 
or bearing difference, between pairs of landmarks al, = - 4 
is also computed as part of the local view. 

Position (.“,y*) is maintained by the path integrator in 
Cartesian  coordinate^.^ The path integrator refers to to up- 
date its position estimate. I t  is assumed to receive information 
about the animal’s movements via an efferent copy of motor com- 
mands. It may also use vestibular sensations or visual cues such 
as optic flow to estimate the magnitude of movements. 

The place code in our theory is realized as a set of place units5 
whose activity levels are products of Gaussian response functions 
tuned to (r,, 4z) values, retinal angles al,, and path integrator co- 
ordinates (x*,y*). Because these units are tuned to enough visuo- 
spatial parameters to localize a point in space, they exhibit visu- 
ally controlled place fields. 

The role of place units in our theory is to maintain a consis- 
tent association between landmark configurations (local views) 
and path integrator coordinates. Either representation of location 

~ ~~ 

4Path integration can also be done in polar coordinates, but 
Gallistel (1 990) points out that this is computationally unstable, 
because each time the animal takes a step, the calculation of 
(Ar,A$) depends on the present estimates of rand  4, whereas in 
a Cartesian system Ax and Ay are calculated independent of x 
and y. Errors cannot grow faster than linearly in the Cartesian sys- 
tem. A similar point is  made in Mlttelstaedt (1983). 

We do not suggest that the path integrator in the rodent actu- 
ally consists of a direct representation of Cartesian coordinates; 
instead we claim that the information represented by the path in- 
tegration system is  mathematically equivalent to a pair of 
Cartesian coordinates. Path integration in real biological systems 
is likely to be done using a distributed encoding that is  not purely 
Cartesian or purely polar (see Touretzky et al., 1993, for an ex- 
ample). However, the independence requirements pointed out by 
Gallistel and Mittelstaedt still hold. 
W e  wil l  always refer to theory components as ”units,” reserving 
the term ”cells” for biological neurons. 

Local 
View 
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FIGURE 1. Components of our theory of rodent navigation. 

may be used to reconstruct the other. In the remainder of this 
section we give an overview of how normal navigation is handled 
and discuss some broad issues in navigation before focusing on 
the details of the model. 

Normal Navigation 
During normal navigation through a familiar environment, ro- 

dents probably rely on path integration for short-term updating, 
because computing position by taking visual bearings to land- 
marks with each step would be too time consuming. That rodents 
have been observed to run at full speed into a barrier when it is 
placed across a familiar route (Carr and Watson, 1908) also sug- 
gests that they are not constantly attending to visual input. But 
at longer time scales drift in the path integrator will need to be 
corrected by perceptual feedback, perhaps when the animal has 
paused in its motion or is rearing and looking about. 

When the animal does take visual bearings, the path integra- 
tor can contribute to the interpretation of visual cues by biasing 
place unit activity patterns based on the current rough position 
estimate. In other words, many place cells might match the bear- 
ings and distances of landmarks in the local view, but under the 
path integrator’s influence, only those whose associated coordi- 
nate values are reasonably close to the current estimate would have 
a possibility of becoming active. 

Consider a visually ambiguous environment such as an en- 
closed U-shaped maze (Fig. 2). Locations A and C in this maze 
should be represented by different place cell populations, but the 
visual cues available in the two locations are identical. If place 
cells are driven solely by visual inputs, both populations will be- 
come active. This could result in the perception of being in two 
places at once, or if the position estimate is the average of all votes, 
it might correspond to being in location B, which is not even in 
the maze. But since the two locations have distinct coordinates, 
our theory specifies that interaction between the metric (path in- 
tegrator) and place code representations ensures that only hy- 
potheses A and C will be considered, not their union or average. 

Drift in the head direction system during navigation can be 
corrected visually in two ways. Landmarks at a substantial distance 
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Trajectory Planning 
In unobstructed environments such as open arenas, goal tra- 

jectories are simple vectors. Planning a path to the goal can be 
done by subtracting the present-position vector from the goal-po- 
sition vector. Collett et al. (1986) report that gerbils can suc- 
cessfully execute a path to a goal even when the lights are extin- 
guished shortly after they leave the start box, which suggests that 
they do maintain some sort of internal representation of their in- 
tended trajectory. 

But in environments too large to support a global coordinate 
system, and in maze-like environments where paths contain mul- 
tiple segments linked by heading changes, navigation becomes 
more complex. Some form of route learning is required, which is 
likely to involve additional brain areas. Our theory does not ad- 
dress route learning because of the relative lack of data on this 
phenomenon and the areas that facilitate it. 

FIGURE 2. 
tions A and C. 

U-shaped maze offers identical visual cues at loca- 

compared to the animal’s normal range of travel will appear to 
have stable allocentric bearings. They can serve as “compass marks” 
that directly influence head direction cells. When compass marks 
are unavailable, remembered allocentric bearings of proximal land- 

Other forms of sensory information may also be exploited by 
rodents as they move through the environment. When navigat- 
ing a radial maze in the dark, drift in the head direction and path 
integration systems may be constrained by the narrowness and 
fixed orientations of the arms. The edges of the arms provide con- 
tinuously available tactile cues to direction, whereas the ends of 
the arms provide unambiguous distance cues. In a circular arena, 
contact with the walls may be used to refine position estimates, 
but compass drift cannot be corrected this way, so error in the 
head direction system would continue to accumulate. 

Reference Frames 

The path integrator requires a stable reference point. The head 
direction system requires a stable reference orientation. We call 
the coordinate system defined by these quantities the rfennce 
fiarne. Neither the reference point nor reference orientation need 
be co-localized with an environmental cue, but they must be sta- 
ble over time and space. 

For a variety of reasons, we do not expect rodents to rely on 
a single global reference frame. As Kuipers et al. (1993) have 
noted, over large territories it would be difficult to maintain con- 
sistency of directional alignment and accuracy of metric infor- 
mation, as the same set of landmarks would not be visible from 
all locations. Their solution is a set of local coordinate systems 
linked together in some way. Worden (1992) has also presented 
a model of navigation linking multiple local views together. 

We have suggested (Wan et al., 1994b; Touretzky et al., 1994) 
that the animal can maintain its position with respect to several 
simultaneously active reference frames. Place cells are tied to par- 

Level of Modeling 
The place and head direction systems both have well-estab- 

lished anatomical correlates, and can in principle be modeled us- 
ing connectionist or “neuron-like” units. The place system is in- 
deed treated this way in our model: It is implemented as a 
population of up to 15,000 units, and their firing fields share key 
properties with real hippocampal place cells. Interactions among 
simultaneously active place units play an important tole in de- 
termining the model’s behavior. 

The rodent head direction system is also sufficiently well un- 
derstood that it could be modeled as a population of connec- 
tionist units, but we model head direction as a scalar quantity. 
Unlike place units, there is little to say at present about how in- 
teractions among units comprising a distributed representation of 
head direction would impact the animal’s navigational behavior. 
There is much to say about how such interactions contribute to 
the maintenance of the head direction estimate itself (Skaggs et 
al., 1995a; Blair, 1996; Zhang, 1996), but these models do not 
address how the head direction estimate interacts with other sys- 
tems (such as the place code) or how it drives behavior. 

If a distributed head direction representation were used, the 
direction-dependent computations required by our theory, such 
as calculating allocentric bearings for landmarks, updating path 
integrator coordinates with self-motion, and updating the head 
direction estimate based on sightings of familiar landmarks, would 
require complex wiring schemes that cannot be grounded in 
anatomical data. Even though we do not model the head direc- 
tion system as a population of neuron-like units, we can still make 

ticular reference frames, and can only fire when one of these 
frames is active.‘ If all of the reference frames with which a cell 
is associated are inactive, the cell will not fire. This aspect of our 
theory can explain task-specific fields as well as direction-tuned 
place cells. See “Changing Reference Frames” for details. 

6Hippocampal place cells show fields in multiple environments 
(Kubie and Ranck, g83; Muller and Kubje, 98,; O,Keefe and 
Speakman, 1987; Thompson and Best, 1989). This implies that a 
single cell may be associated with multiple reference frames. 
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predictions about the results of neurophysiological experiments 
by predicting the value of the overall head direction estimate (see 
Predictions About the Head Direction System). We discuss the 
organization of the head direction system in considerably more 
detail in (Redish et al., 1996) and in a companion article to this 
one that is not concerned with modeling (Redish and Touretzky, 
1996a). 

Another crucial system, the path integrator, is also represented 
abstractly in our model. As with the head direction system, it 
would be possible to devise a distributed representation for path 
integrator coordinates and even invent machinery to implement 
the vector subtraction operation required for calculating a goal 
trajectory. In fact, we have done so previously (Touretzky et al., 
1993). But the present model would not benefit from these de- 
tails. When the anatomy and neurophysiology of the path inte- 
grator are better understood, comparable to the level of knowl- 
edge we now have about place cells, it will be profitable to move 
to a more biological representation to accommodate those data. 
In Redish and Touretzky (1 996a) we develop a much more elab- 
orate theory of path integration in which we suggest that this 
function is realized by a loop involving the hippocampus proper, 
the subiculum, the parasubiculum, and the superficial layers of 
entorhinal cortex. A computational model based on this proposal 
is planned for the future. For now, we model only the informa- 
tion represented in the path integrator: Coordinates in the cur- 
rent reference frame are represented in the model as vectors ( x , ~ ) .  

The model we describe here is a hybrid of connectionist and 
symbolic representations. Each subsystem is represented at a level 
of abstraction appropriate to the data being addressed, and the 
focus is on their interactions. For example, in some of the tasks 
we consider, the rodent uses its head direction sense plus visual 
cues to determine its position, whereas in other tasks visual cues 
and position information are used to determine head direction. 
What governs the direction in which information should flow? 
Furthermore, landmarks “out of place” sometimes cause a shift 
in the codes for both position and head direction, but in other 
situations displaced landmarks do not appear to influence these 
variables. What mechanism is sufficient to reproduce all these ef- 
fects? Our model provides a working answer. Even though we 
model some subsystems at an abstract computational level, we can 
still make neurophysiological predictions, some of which are dis- 
cussed below in Predictions. 

Place Unit Activation Function 

The activation level A(u) of a place unit in our model is anal- 
ogous to the firing rate of a neuron. It reflects the degree to which 
current visual inputs and path integrator coordinates match the 
values to which the unit is tuned. There are six features in the ac- 
tivation function: one set of coordinate values, two ranges and 
two allocentric bearings to landmarks, and one retinal angle (bear- 
ing difference) between a pair of landmarks. Each feature match 
is computed by a Gaussian function whose value ranges between 
0 and 1. 

(1) A ( 4  = Cb) . . FZ(4 . Fdu) * F4(4  . M ( u )  

The activation level defined in Equation 1 is the product of 
these six feature match functions. The functions have variable 
gains (defined as I /& in the equations below) which become neg- 
ligible when the feature values the function is trying to match are 
unavailable. For example, if visual information is removed, as 
when navigating in the dark, the gains of the five landmark-de- 
pendent functions are decreased to near 0 (by making the (+terms 
large), bringing the value of the exponential close to 1. Effectively, 
these features have dropped out of the activation equation, leav- 
ing the place unit to be controlled by just the match to path in- 
tegrator coordinates. Conversely, when the animal first enters an 
environment in the light, it can see landmarks but will not know 
its path integrator coordinates, so the gain on that feature is min- 
imized (large rC) until a coordinate estimate is obtained by self- 
localization, described in Self-Localization. Having terms drop 
out of the activation equation by reducing their gain allows us to 
distinguish a match fdilure (output approaches 0) from an in- 
ability to perform the match at all (0 gain; output close to 1). 

Equation 1 should not be taken literally as a model of a pyra- 
midal cell. Since we have not yet deciphered the rodent’s repre- 
sentation of visual scenes, or any other aspect of the hippocam- 
pal input code, the computation performed by a single 
hippocampal place cell is difficult to specify. But it is probably 
safe to say that the six-term multiplication and the gain modula- 
tion mechanism just described are not realized by a synaptic in- 
tegration process within one cell’s dendritic tree. There are many 
layers of processing between visual receptors and place cells where 
parts of these tasks might be performed. Gain modulation for vi- 
sual feature matching, for example, could take place in parietal 
cortex. Furthermore, conjunctions of feature matches need not 
be computed at the neural level by anything as simple as scalar 
multiplication. Many types of nonlinear, distributed operators 
might be suitable. The important point for the present model is 
that certain types of information must be combined in the hip- 
pocampal system in order to account for the full range of ob- 
served place cell responses. 

Returning to the details of our activation equation, the first 
term, C(u), is a Gaussian function tuned to the path integrator 
coordinates (xU,yYll) associated with unit u. This function reaches 
its maximum value when the path integrator’s position estimate 
(x*,y*) matches the coordinates to which the unit is tuned. The 
parameter a, controls the width of the Gaussian, as shown in 
Equation 2. The actual parameter values used in the simulations 
are given in the appendix. 

Each F, term in Equation 1 is a landmark feature from the fol- 
lowing set: rT = distance to landmark of type T, @ = allocentric 
bearing to a landmark of type 7. If feature F, uses a point land- 
mark of type 7, then the feature value rr (or 6;) is compared to 
the distance (or bearing) from the animal to each visible land- 
mark of type 7. If F, uses a surface landmark,’ then the feature 
value is compared to the distance or bearing component of the 
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normal vector from the animal to the surface. Note that since + 
terms are allocentric bearings, the place cell’s activation level does 
not depend on the animal’s heading. (The directionality of place 
cells in some environments is explained by another mechanism, 
reference frame selection, discussed in Changing Reference 
Frames). The parameters a,. and a+ control the width of the 
Gaussians for r-type and +-type Fj terms, respectively. 

The max(k) selector of Equation 3 simulates the effect of an 
attentional mechanism that keeps landmarks distinct. It assures 
that when multiple landmarks of type 7 are present, we choose 
the one that best matches the value to which the feature is tuned. 
If this selector were replaced by a simple summation, a feature 
that matched one object strongly could not be distinguished from 
a feature that matched many objects poorly: an obviously unde- 
sirable outcome. The neural implementation of this attentional 
process would presumably involve some type of inhibitory inter- 
actions between cells coding for competing objects, but the de- 
tails do not concern us here. 

The final term in the activation equation, RA(u), is a Gaussian 
function tuned to the retinal angle a? = ( O i  - Oj) = ( + j  - +J 
between two landmarks. The parameter a, defines the width of 
the Gaussian tuning of RA(u). 

The RA term is partly redundant with the distance and bear- 
ing features, but has its own distinct character. For example, al- 
though retinal angle information is implicit in the allocentric bear- 
ing features +; and +j, the latter are unavailable when head 
direction is unknown. Thus, retinal angle is especially useful for 
self-localization after rotational disorientation. Distance informa- 
tion is useful then too, but the distances r, and 5 to two land- 
marks are not enough to uniquely localize the animal; there is a 
mirror image location, on the opposite side of the line joining the 
two landmarks, with identical distance values. This location will 
have a complementary retinal angle value, though, since the left 
landmark viewed from the original location will be the right land- 
mark when viewed from the mirror image location. (This assumes 
the landmarks are distinguishable.) Another important point 
about the RA term is that retinal angle values change very rapidly, 
making the RA term very sensitive to position, when the animal 
is moving in the area between the landmarks, as when near the 
goal in the Collett et a]. tasks. Our formula for r-type features 
does not show increased sensitivity for small ri values, although 

7We require the simulated animal to be within 10 cm of a sur- 
face (i.e., the arena wall) when tuning a place unit to a surface- 
type landmark. 

this could perhaps be modeled by making a, a function of T,(u). 
The RA term provides a more direct way of expressing the ob- 
servation that, at least in humans, the angles between nearby land- 
marks are a highly salient feature of the local view. 

The mu+) selector in Equation 4 evokes not only an atten- 
tional mechanism, but also a combinatorial search, since it selects 
the pair of landmarks that together give the best match to the an- 
gle aV. As expressed here this appears to involve n(n - 1) distinct 
computations, but less than 2n are required,8 and as a practical 
matter one would not choose landmarks of type T to construct 
an RA feature when there were large numbers of indistinguish- 
able landmarks of that type present. So a neural implementation 
of the RA term appears feasible. 

The place field of a unit is defined as that portion of the en- 
vironment for which the activation function A(u) exceeds some 
threshold SA. Because all of the equations above decrease mo- 
notonically as the input values depart from the tuned values, place 
fields will be compact and continuous. Equations 1 through 4 
predict that place fields can change their shapes when landmarks 
are slightly perturbed, but due to the way missing terms drop out 
of the product in the activation function, they should not change 
much when the lights go out or individual landmarks are removed. 

Self-Localization 
We now explain the process by which the model determines 

its coordinates based on visual cues. In most cases when an ani- 
mal is deposited in an arena, path integrator coordinates are ini- 
tially unavailable. The C(u) term has low gain and thus little ef- 
fect on Equation 1. Place units become active based only on how 
well their landmark tuning matches the current local view. 

Because environments can be visually ambiguous (cf. the U- 
shaped maze in Fig. 2) and individual units sample only a few 
features, there is no guarantee that the initial place code will be 
coherent, i.e., that active place units will have highly overlapping 
place fields. If the code is incoherent, the active units disagree on 
the animal’s location.’ In general, a visually derived place code 
cannot be guaranteed coherent unless every landmark is unique. 

The model achieves a coherent place code by parallel reldx- 
ation. lo Each place unit has coordinates (x ,yu)  associated with it. 
This is the center of the C(u) term. The path integrator’s loca- 
tion estimate tracks the weighted mean of the (xu,yu) values for 

80rder the landmarks from left to right as they appear in the vi- 
sual field. Let i*,F be the indices of the highest scoring pair found 
so far, and let i,j be the indices of the pair currently being ex- 
amined, with j > i. As index j increases, index i must either stay 
the same or increase. Since with each comparison at least one of 
the two indices wil l  increase, there must be fewer than 2n com- 
parisons. 
9Coherency can be defined as the inverse of the confidence in- 
terval of the location represented by the place units. The confi- 
dence interval can be measured by the standard “bootstrap” al- 
gorithm (Efron, 1982). Coherency is also inversely proportional 
to the variance in the distribution of the centers of the place fields 
of the active place cells. 
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all active units u whose activation level exceeds 6,. Coordinate 
values are weighted by the activation levels of the units. As this 
estimate changes, so does the value of the C(u) feature, so every 
unit continually recalculates its activation level. Units whose place 
field centers are too distant from the mean coordinate value may 
become inactive due to a poor match in the C(u) term, whereas 
some inactive units may become active if their C(u) value im- 
proves. As the relaxation proceeds, the initially low gain of the 
C(u) term gradually increases toward its normal value. After just 
a few iterations, the place code converges to a coherent state in 
which all active units have highly overlapped place fields, form- 
ing a tight cluster as shown in Figure 3.  

Muller et al. (1991) remark that because all place fields have 
centers in the arena, as the animal approaches the wall, a calcu- 
lation of mean position based on the active place cells will show 
a uniform error away from the wall. Wilson and McNaughton 
(1993) claim that the place code provides an extremely accurate 
estimate of position (within 1 cm, using 141 simultaneously 
recorded place cells), but they used a different algorithm for de- 
termining the position represented and did not specifically ex- 
amine error near the wall. In our simulations, we have not seen 
this uniform error. We believe this is because some of our place 
units are surface-type (tuned to the arena wall; see Place Unit 
Activation Function), and show crescent-shaped fields (see “Basic 
Place Fields”). 

Re-Orienting 
We now consider versions of the self-localization problem 

where the animal’s head direction estimate is invalid. There are 
two cases. If the animal lacks a heading estimate altogether, e.g., 
because the experimenter disoriented it by vigorous rotation be- 
fore placing it in the arena, then it can ignore its internal com- 
pass temporarily. In the model, when both an initial heading and 
compass points are unavailable, the gain of the +-type terms is 
reduced and place unit activations are computed using just dis- 
tances and retinal angles. After the simulated animal’s position 
has been determined, its compass is realigned as described below. 

The more difficult case is where the animal has a usable head- 
ing estimate, but the value is wrong. Many experimenters disori- 
ent their animals by gently carrying them over a circuitous path 
for several minutes in an opaque box before placing them in the 
arena. Compass errors accumulate over this path because the com- 
pass is being updated solely from vestibular input. There is no 
motor feedback, no tactile information (e.g., from whiskers brush- 
ing the floor), and no visual cues such as optic flow that could 
be used to estimate the amount of each heading change. Nor are 
landmarks available that could be used to correct for drift. In this 
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FIGURE 3. Enforcing coherency in the place code when the an- 
imal is introduced into a familiar environment. Large solid circles 
are landmarks. Each small dot marks the center of a place field de- 
fined by the path integrator coordinates of an active unit. Top: 
Incoherent initial state: active units are widely dispersed. Bottom: 
Coherent final state. 

loAnderson and Hinton (1 981) explain parallel relaxation as ”a 
constraint-satisfaction paradigm in which some input data must 
be given an interpretation that simultaneously satisfies a large set 
of local constraints. This interpretation corresponds to a pattern 
of activity over the units, and it is found by an iteractive com- 
putation in which each unit affects many other units until the 
whole system settles down into a stable state.” 

case, when released into the arena the animal does not realize its 
heading estimate is in error. I t  will encounter difficulty reconcil- 
ing its internal heading estimate with the bearings of whatever 
landmarks it recognizes. In our model, a measure of the conszs- 
tency between local view and path integrator representations de- 
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termines whether the head direction estimate is in reasonable 
agreement with the bearings of familiar landmarks. 

The consistency K of the association between coordinates and 
local view maintained in the place code is given by 

( 5 )  

Because A(u)  < C(u) for all place units, K ranges between 0 
and 1 .  When the current local view is compatible with the local 
view predicted by the current path integrator coordinates, K will 
be high. When the two are not compatible, K will be low. In the 
latter case, the head direction estimate may be invalid. 

The procedure for aligning head direction with the environ- 
ment is as follows. Every place unit has associated with it the 
learned allocentric bearings of two landmarks: the two +-type F, 
terms. For each active unit zt, the model computes the difference 
between the learned allocentric bearing +i(zt) and the egocentric 
bearing Bj of whichever landmark it is presently using to com- 
pute F,(u). This gives a set of roughly twice as many estimates of 
the animal's heading as the number of active place units. One 
peak in this distribution is chosen (stochastically, based on rela- 
tive peak heights) to serve as the new heading estimate @h. 

Aligning Internal Representations With 
Familiar Cues 

To complete the model, we must specify how the self-local- 
ization and re-orienting processes should interact to align the 
model's internal representations with visual cues. The details are 
constrained by experiments examining the effects of cue manip- 
ulations (Suzuki et al., 1980; Collett et al., 1986), disorientation 
(Cheng, 1986; Margules and Gallistel, 1988; Gallistel, 1990), and 
use of a consistent entry point (Sharp et al., 1990). 

If the animal has initial estimates of its position and head di- 
rection when it enters a familiar environment, there are four pos- 
sible outcomes: 

I .  Keep the initial estimates. 
2. Reset head direction (re-orient). 
3.  Reset path integrator coordinates (self-localize). 
4. Reset both head direction and path integrator coordinates. 

These four choices can be prioritized by the Sharp et al. (1990) 
experiments, which we simulate in Figures 7 and 8. 

"Not all of the place fields in (Sharp et al., 1990) showed such 
a clean single place field when the second cue card was added. 
Five of the 18 cells changed their place fields over the various 
recording sessions, including showing paired fields during some 
sessions. Our model does not reproduce these effects, since it 
does not address changes in place cell tuning. Such changes could 
occur due to variations in the hippocampal input from one trial 
to the next as the animal's short-term memory accumulates new 
sensations and loses old ones. Or they could result from learn- 
ing across trials. Although it would seem that place cells with 
paired fields would be incompatible with our model, we can ex- 
plain them as cells not tuned to path integrator coordinates. The 
model requires that these cells be rare, which they do seem to 
be. 

When rats are trained in a gray-walled cylinder with a white 
cue card subtending 90", and then tested with an additional card 
opposite the original (a symmetrical environment), most (13118) 
place fields do not double" (Sharp et al., 1990). Instead, the cells 
continue to fire at the original location. If the cards are visually 
indistinguishable, then the place fields must be controlled by 
something in addition to visual input. In our model, the extra 
factor is the path integrator. 

The animals in this experiment were not disoriented before 
entering the arena, and they always entered at the same location: 
the northwest corner. Thus, when a well-trained animal enters 
the arena, it does not need to reset its path integrator; it already 
knows its path integrator coordinates. This stable entry point can 
serve as the origin of the reference frame for the arena. 

Sharp et al. also tested the animals on the two-card arena by 
placing them at the opposite (southeast) corner of the arena. In 
this case the place fields rotated by 180 degrees. In our simula- 
tions, when the sim-animal12 enters at the southeast corner, nei- 
ther cue card is at the correct allocentric bearing associated with 
the initial coordinate estimate. The consistency in the place code 
association is therefore low, but it can be improved by resetting 
head direction as described in Re-Orienting. In this case, the only 
head direction compatible with the current local view (including 
the normal to the arena wall as one of the features) is 180" op- 
posite of the initial orientation estimate. The sim-animal there- 
fore resets its head direction, but not its path integrator coordi- 
nates, causing place fields to appear rotated by 180". 

Sharp et al. also tested their animals with a southeast entry 
point and a single cue card in the original position. In this case 
the place fields did not rotate. Our model reproduces this result 
as follows: Head direction reset will not improve the consistency 
of the place code. So the model resets its path integrator coordi- 
nates instead, by performing a self-localization operation. Thus, 
the sim-animal correctly determines that it is in the southeast cor- 
ner of the arena. 

When tested with cue cards rotated by +30°, Sharp et al. ob- 
served that place field locations were controlled by an interaction 
between choice of entry point and cue card positions. When the 
animal entered from the southeast with two cue cards at 30" and 
210" (180" + 30°), the place field was rotated by 210". Similar 
results were found for cue card rotations of -30". 

The relationship between head direction reset and path inte- 
grator reset can now be stated. In the rules below, K* is a con- 
stant whose value is determined empirically. 

1. If initial position and head direction estimates prove correct 
by producing a good match to the local view, meaning the con- 
sistency K is high, they are retained. 
2. If realigning head direction improves the consistency by at 
least K', the new head direction value should replace the initial 
estimate. 
3. If self-localization based on visual input (using head direction 
to determine allocentric bearing in the local view representation) 

12When necessary to differentiate our simulations from real ani- 
mals, we refer to our simulation as a "sim-animal." 
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increases the consistency by more than K*,  then the new path in- 
tegrator coordinates (with the original head direction estimate) 
should replace the current position estimate. 
4. If self-localization based on just visual input (head direction 
ignored, so no +-type terms) followed by realignment of the head 
direction system improves consistency by at least K* more than 
the best value obtained in any of the other cases, then both the 
position and heading estimates should be changed. 

Note that this prioritization predicts that given a choice be- 
tween resetting either head direction or path integrator coordi- 
nates to achieve a consistent place code, as in the bottom right 
portion of Figure 7, the animal will reset its head direction, caus- 
ing place fields to rotate. 

FIGURE 5. 
arena with an east cue card. Scales as in Figure 4. 

A typical wall-tuned place field in the cylindrical 

Reproducing Single-Cell Recording Experiments 
Basic place fields 

As we noted at the beginning of the article, cells in hip- 
pocampal areas CA3 and CA1 show firing fields correlated with 
the rodent’s location. Any hippocampal navigation model must 
reproduce this fundamental result. Because the activation of place 
units in our model is controlled by Gaussian functions tuned to 
spatial features, these units will show compact, continuous place 
fields. We have tuned the parameters of our model to produce 
fields such as Figure 4 that resemble those seen by Muller et al. 
(1987) in rats. We model the environment of Muller et al. as a 
circular arena (radius 38 cm) with three landmarks: the arena wall 
(a surface landmark) and two distinguishable point landmarks: a 
“gray-to-white’’ and a “white-to-gray’’ transition, representing the 
left and right edges of a white cue card affixed to the wall. The 
cue-card subtends 90” of arc. 

Crescent-shaped fields. Because some of our place units are 
tuned to surfaces, in an arena with perceptually prominent walls, 
some units will be tuned to distance and allocentric bearing to 

FIGURE 4. A typical simulated place field in a small cylindri- 
cal arena, 38 cm radius, with a cue card along the east segment of 
the wall. Place cell activity ranges from 0.0 (white) to 1.0 (black). 

the arena wall. Such a unit will show a crescent-shaped field like 
those seen by Muller et al. (1987). Other models (such as Sharp, 
1991) also include fields close to the wall, but they only produce 
convex fields. The crescent-shaped fields reported by Muller et 
al. are concave. Our model produces concave crescent-shaped 
fields, such as Figure 5. 

Place fields in manipulated environments 
Pkce fieLds tied to Local kndmarks. A number of investigators 
(Muller and Kubie, 1987; O’Keefe and Speakman, 1987; 
McNaughton et al., 1994; Knierim et al., 1935) have reported 
that place fields rotate with the rotation of prominent visual land- 
marks. Any model in which place cells are driven by visual inputs 
will reproduce this result. Our model does too (Fig. 6). 

Taube et al. report that head direction cells [recorded from 
postsubiculum (Taube et al., 1990b) and anterior thalamic nu- 
clei (Taube, 1995)] rotate their preferred orientation with the ro- 
tation of a prominent visual landmark. Knierim et al. (19%) and 
McNaughton et al. (1994) report that when head direction cells 
(also from anterior thalamic nuclei) are recorded simultaneously 
with place cells, the preferred directions of head direction cells 
and the locations of place fields rotate in correspondence. In our 
model, the interactions between the head direction and place code 
modules serve to keep these two representations in synchrony. 

Moving us. removing hndmarks. Muller and Kubie (1 987) and 
O’Keefe and Speakman (1 987) found that place cells continue to 
show compact fields when visual landmarks are removed. Muller 
and Kubie (1987) removed the cue card from the cylindrical en- 
vironment described earlier and found that although place fields 
sometimes rotated around the center of the arena, they did not 
change shape. O’Keefe and Speakman (1987) trained rats on a 
plus maze and then removed the landmarks. They found that 
place cells were not disrupted by this. 

In our model, if the feature term F, of a place unit is tuned to 
a landmark type ~ i ,  but no landmark of type T~ is visible, then 
the gain of 7i feature-matching functions is decreased, and that 
term drops out of the activation function (Equation 1). If all the 
visual feature terms are missing, the cell will be driven solely by 
the path integrator term, C(u) .  
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(a) Cuecard at 0' (East) 

precession of HD system = -11' 

(c) Cue-card at 180' (West) 

precession of HD system = 169' 

(b) Cue-card at 90' (South) 

(d) Cue-card at 270" (North) 

precession of HD system = 259' 

FIGURE 6. 
cue card. Scales as in Figure 4. 

a-d. The place fields (and head direction) follow the 

However, O'Keefe and Conway (1 978) and Pic0 et al. (1 985) 
found that while removing some of the visual cues did not dis- 
rupt place fields, removing all of the cues did. 

Our model is compatible with all four of these experiments. 
Because the animals in the Muller and Kubie experiment have 
the arena wall as a remaining cue, the shape of the place fields 
will not change, but because the arena wall is a circularly sym- 
metric cue, the animals' head direction representation may drift. 
This would rotate the believed allocentric bearing to the wall, 
which would rotate the place fields around the center of the en- 
vironment. 

The difference between the O'Keefe and Speakman and the 
two latter experiments is that in the former experiment, the ani- 
mals were first placed in the environment with the cues present. 
This would allow the system to reset the path integrator before 
the cues were removed. Even with some of the cues missing, the 
system would then use path integration to drive the place cells as 
the animal traversed the environment. O n  the other hand, in the 
latter experiments, the animals do not have the initial view of the 
cues to reset the path integrator and they may have to reexplore 
the environment. A similar effect was seen by Quirk et al. (1990) 
for animals navigating in the dark. 

Place fields in the dark 
One of the major observations that our model is among the 

first to simulate is the continued firing of place cells in the dark 
(O'Keefe, 1976; McNaughton et al., 1989; Quirk et al., 1990; 
Markus et al., 1994). According to our theory, because place units 
can be driven by the path integrator when visual cues are un- 
available, place units will continue to fire in the dark, and main- 
tain their usual fields. However, because the head direction sys- 

tem can drift (Knierim et al., 1993), and the place code and head 
direction systems are always in synchrony (Knierim et al., 1995), 
place fields in the dark may drift, or may not always lie in the 
same orientation as in the light. This is exactly what is seen by 
Quirk et al. (1990). 

Quirk et al. report that when the animal is placed into the 
arena in the light, and then the lights are extinguished, the place 
fields rarely change. If they do change, they continue to show the 
same shape and distance from the arena wall; it is their orienta- 
tion that varies. O n  the other hand, if the animal is placed into 
the arena in the dark, the place fields often change radically. If 
the lights are then turned on, the fields sometimes snap back to 
their original location and sometimes not. Our theory says that 
when the animal is placed in the arena with the lights on, it can 
self-localize and set its path integrator correctly. When the lights 
are extinguished, the path integrator can drive the place code, and 
drift in the path integrator or head direction system may produce 
drift in the place field orientation. O n  the other hand, if the an- 
imal is placed in the arena in the dark, it cannot set its path in- 
tegrator correctly, so the place fields may change dramatically. 

Place fields controlled by entry point 
As discussed in Aligning Internal Representations with 

Familiar Cues, Sharp et al. (1990) trained rats to find food scat- 
tered on the floor of a gray-walled cylinder with a white cue card 
subtending 90" after entering at a consistent entry point (the 
northwest corner), and then tested them with a variety of cue and 
entry point manipulations. 

Figures 7 and 8 show a sample place field from our model for 
each of the conditions discussed: entering at northwest or south- 
east with one cue card at 0" (top of Fig. 7), two cue cards at 0" 
and 180" (bottom of Fig. 7), rwo cue cards at 330" and 150" (top 
of Fig. 8), and one cue card at 180" (bottom of Fig. 8). The model 
is compatible with all conditions tested in Sharp et al. (1990); the 
results are compared in Table 1. 

When the animal entered from the N W  and was given only 
one cue card at 180", Sharp et al. report that the place field did 
not rotate. But in our model the place field does rotate, since 
place fields normally follow the cue card (see Fig. 6). The dis- 
crepancy might be explained by the fact that this particular ma- 
nipulation was the last one in the sequence. McNaughton et al. 
(1994) and Knierim et al. (1995) have shown that if rats experi- 
ence the cue card moving over a number of sessions, they even- 
tually learn to ignore it and it loses control over the place fields. 
(Knierim et al. actually left the card in place, but rotationally dis- 
oriented the animals before placing them in the arena; we assume 
that moving the card would have a similar effect on Sharp et al.'s 
animals, which were not disoriented.) When we tested our model 
without a cue card, equivalent to a card being present but ig- 
nored, it produced a place field somewhat more diffuse than nor- 
mal, but with no rotation (bottom-left of Fig. 8). The diffuseness 
could be remedied by a more sophisticated activation function 
that adjusted the gains on the remaining features to compensate 
for cue card-related Fi terms dropping out. 

Muller et al. (1991) explain the results in (Sharp et al., 1990) 
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1 cue card at 0' (East) 

entry in Northwest corner 

precession of HD system = 0' 

1 cue card at  0" 

entry in Southeast corner 

precession of HD system = 2' 

2 cue cards at 0" (East) & 180" (West) 

entry in Northwest corner 

precession of HD system = 0" 

2 cue cards at 0" & 180" 

entry in Southeast corner 

precession of HD system = 178" 

FIGURE 7. 
trolled by both cue cards and entry point. 

Simulation of (Sharp et al., 1990): Place fields con- 

by treating the entry point as a virtual landmark. The animal then 
has three sources of information to judge its location: the cue 
card, the animal's position relative to its entry point, and static 
background cues. A majority voting scheme could discard 
whichever source was at odds with the other two. This has as- 
pects in common with our treatment, but we use the consistency 
of the entry point during training only as a justification for ini- 
tializing the path integrator to a known value. See Path Integration 
and Virtual Landmarks for a discussion of the relationship be- 
tween virtual landmarks and path integration. 

Changing reference frames 
Markus et al. (1995) have reported task-specific cells, that is 

place cells that are active in one task but not in another, in the 
same environment. Similarly, Eichenbaum et al. (1987) have re- 
ported cells that show activity during certain aspects of a task, but 
not during other aspects, even while the rat traverses the same 
area of space. We have suggested that the reference frame is goal 
related, and therefore during different tasks (or different aspects 
of a task) the animal will activate different reference frames (Wan 
et al., 1994b). Changing the set of active reference frames will si- 
lence some place cells and enable others. A similar proposal was 
recently made by McNaughton et al. (1996). 

Place cells show direction-dependent firing fields only in some 
specific rypes of tasks, particularly those with restricted movement 
paths. For example, place fields tend to be directional on a radial 
eight-arm maze (McNaughton et al., 1983, whereas directional 
place fields are rarely seen in an open arena (Muller et al., 1991, 

1994). In the latter case, a task requiring restricted movement 
paths produces more directional place fields than one with unre- 
stricted paths (Markus et al., 1995). 

Because directional place fields are predominantly seen in tasks 
with restricted trajectories, Sharp (1991) suggested that the di- 
rectionality results from a competitive learning process that sharp- 
ens the natural separation (in pattern space) between the views 
seen in one trajectory and those seen in its complement. But 
Markus et al. (1995) counters that directional place fields are also 
seen on the central dais of the radial maze, even though views 
from all directions are available there. Contrary to this result, 
Muller et al. (1994) report nondirectional fields on the central 
dais, and also some nondirectional fields on the arms. 

We suggest that directionality is a consequence of changing 
reference frames. When the animal traverses a restricted path, it 
can define reference points at each end of the path, each of which 
serves as the origin for a reference frame. Repeated travel over the 
path may lead to indifference to one of the reference frames. If 
that frame becomes inactive and the path integrator no longer 
tracks the animal's position with respect to it, place cells tied only 
to that reference frame would be disabled. When the animal trav- 
els in the opposite direction, the frame will be active, and place 
cells tied to that frame will fire when the animal enters their fields. 

2 cue cards at 330' & 150' 

entry in Northwest corner 

precession of HD system = 331' 

2 cue cards at 330' & 150' 

entry in Southeast corner 

precession of HD system = 151' 

1 cue card at 180' 

(Ignoring cue card) 

entry in Northwest corner 

precession of HD system = 0' 

1 cue card at 180' 

entry in Southeast corner 

precession of HD system = 0' 

FIGURE 8. Simulation of (Sharp et al., 1990): Place fields con- 
trolled by both cue cards and entry point. See text for discussion of 
lower left figure [NW, cue card at 180"]. 
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TABLE 1. 

Comparison of Data From Sharp et  al. (3990) With Our Model* 

HD precession 
(our model) 

Angle of rotation 
Entry point Cue cards (Sharp et al., 1990) 

NW 
SE 
NW 
SE 
NW 
SE 
NW 
NW 
SE 

0" 
0" 
0" + 180" 
0" + 180" 
150" + 330" 
150" + 330" 
180" 
None 
180" 

2.7" 
-6.0" 
-2.3" 
182.5' 
Not done 
158.3" 
-5.5" 

182.2" 

0" 
2" 
0" 

178" 
331" 
151" 
188" 

0" 
179" 

*Angle of rotation is the angle at whch the place fields in the trial in question are maximally correlated with 
the corresponding place field in the training sessions; values taken from Sharp et al. (1990). HD precession 
is the precession of in our model. Because the head direction and place code are coupled in our model, 
the precession of @h indicates the rotation of the place code. The "NW, no cue card" is our simulation of the 
rat ignoring the cue card; see text. 

Thus, the cells appear to be direction sensitive when in reality 
they are reference frame sensitive. Markus et al. (1 995) have made 
a similar suggestion: that directionality is caused by the rat at- 
tending to only one end of the restricted path. 

Our theory makes no prediction about the directionality of 
place cells on the central dais of the radial maze because we have 
not specified mechanisms for constructing new reference frames 
and switching between them. The only claim is that place cells 
are inherently nondirectional (which is why our Fi features are 
tuned to allocentric and not egocentric landmark bearings), and 
that directionality is an artifact of reference frame switching. The 
fact that some nondirectional cells are observed even on tasks 
where the majority are directional (Muller et al., 1994; Markus 
et al., 1995) poses an interesting problem which a more fully de- 
veloped theory of reference frame selection will need to address. 

One possibility is that multiple reference frames can be si- 
multaneously active. If an animal performing an overtrained task 
begins attending to additional reference frames, perhaps due to 
increased arousal in response to an unexpected stimulus, then a 
sudden loss of directionality of place cells should be observed. 
However, the ability to track multiple reference frames simulta- 
neously is unproven, and is not crucial to our theory. 

Another interesting aspect of the reference frame selection hy- 
pothesis is that it allows us to explain both directionality of place 
cells and task-related place cells using the same mechanism. 
Eichenbaum et al. (1987) report cells tuned to place and behav- 
ioral correlates: after sniffing the stimulus at an odor release port, 
the animals would either receive a reward (odors St) or not (odors 
S-). Independent of the particular odor used, they found that 
certain hippocampal cells only fired in a certain place if the ani- 
mal had received an St odor. Our theory suggests that upon re- 
ceiving an S+ odor, the animals attend to a reference frame that 
includes the reward location. Place cells associated with this ref- 
erence frame would be enabled by the S+ odor. 

Bostock et al. (1991) recorded from place cells in an open 
cylindrical arena, first with a white cue card, and then with a black 
cue card. Sometimes the place fields were similar and sometimes 
they were unrelated (as if the two situations were encoded as dif- 
ferent environments). However, once a place field changed dra- 
matically between the two cue cards, then (1) all other place fields 
recorded from the same animal changed dramatically when the 
environment included the black cue card, and (2) when the white 
cue card was returned the place fields returned to their original 
configuration. Similar effects have been reported by Quirk et al. 
(1990) and Sharp et al. (1995). We suggest that at some point 
the animals began to encode the black cue card trials with a new 
reference frame. 

Reproducing Simple Behavioral Experiments 
We now turn to behavioral experiments. Because there is no 

overt behavior in our simulations, we look at unit responses and 
infer behavioral correlates. We will make clear in each case the 
analogy between our simulation results and the corresponding an- 
imal behavior. 

Radial maze 

Olton and Samuelson (1 976) introduced the eight-arm radial 
maze as a spatial working memory task. Each arm of the maze 
was baited. Rats were allowed to visit three of the arms, then a 
delay was imposed, after which the rats could enter any arm. Well- 
trained rats skipped the three arms previously visited and chose 
each of the five remaining arms once. 

At the end of each arm was a distinctive landmark. Suzuki et 
al. (1980) modified this task by manipulating the landmark lo- 
cations. If, during the delay, the landmark configuration was ro- 
tated by 180", the rats visited the five arms defined by the rota- 
tion (mean = 4.0 correct rotated choices; compare with mean = 
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4.3 correct choices in original configuration). If, however, the 
landmarks were permuted in a manner that did not correspond 
to any rotation, the rats were impaired in choosing unvisited arms 
(mean = 2.9 correct choices, chance level would be 3.13 correct 
choices). 

This experiment demonstrates an interaction between head di- 
rection and place code. Because place units tune to allocentric 
bearings, changing the landmark configuration produces a con- 
flict between the head direction predicted by the landmarks and 
the value in the head direction module. When the configuration 
was rotated by 180", head direction could be reset to resolve the 
conflict, but when the configuration was permuted the conflict- 
ing information from different landmarks could not be recon- 
ciled. 

To replicate this experiment, we assume that the animal has 
generated a place code for the environment with the original stim- 
ulus configuration, associating positions with allocentric land- 
mark bearings based on accurate heading information. For sim- 
plicity, we place the reference point at the center of the arena. 
We model the arena as a cylinder (radius 65.5 cm) with seven 
distinct  landmark^'^ placed at seven of eight equally spaced points 
around the circle, at a distance of 100 cm from the center. See 
Figure 9. 

We model the rotation result by demonstrating (1) that the 
simulation chooses to reset its head direction in the rotated case 
to 180" off normal and (2) that the place code association shows 
a high consistency after rotation by 180". We model the permu- 
tation result by demonstrating that the consistency of the place 
code association is two orders of magnitude less in the permuted 
case. Table 2 shows the precession of the head direction chosen 
by the simulation upon entering the environment at the center 
of the arena and the consistency of the place code association 
based on that head direction for each of the three cases: (A) orig- 
inal stimulus configuration, (B) rotated configuration, and (C) 
permuted configuration. 

Rectangular arena 
Our theory makes an important distinction between disori- 

ented and non-disoriented animals. This distinction has been 
demonstrated behaviorally in rats by Cheng (1 986) and Margules 
and Gallistel (1988) (see also Gallistel, 1990). Cheng tried to train 
rats to find food at one corner of a rectangular arena. In order to 
make the corners as distinct as possible, he placed a panel at each 
one, covered with a different type of material. In addition, the 
panels had from zero to three pinholes through which light was 
visible, and two of the panels had unique odorants placed behind 
them. Cheng disoriented the rats before placing them in the arena 
at a random location, and found that although they were able to 
discinguish one pair of diagonally opposed corners from the other, 
they could not differentiate the two corners in each pair. Cheng 
reports that the animals chose the correct corner in approximately 

l3In Suzuki et al.'s experiment (Suzuki et al., 1980), the eighth 
arm had no landmark. 

Cue configurations 

Origin a1 [ Rotated I Permuted 

G 
D G 

I I I 1 

FIGURE 9. 
radial maze experiment. 

Cue manipulations used in the Suzuki et al. (1980) 

50% of the trials, and, in the other 50%, they chose the corner 
opposite it. This suggested that the rats were sensitive only to the 
geometric structure of the environment, and were ignoring other 
types of cues that could distinguish between the two opposite cor- 
ners. 

Margules and Gallistel replicated the experiment without dis- 
orientation and found that most animals had no difficulty se- 
lecting the correct corner over 75% of the time; some achieved 
better than 90% success rates. 

We are unable to explain why rats ignore the odor, texture, 
and non-geometric visual cues, but we are able to model the ef- 
fect of rotational disorientation on the ability to navigate with 
just ambiguous geometric information. In our model, the corners 
of the arena are modeled as identical point-type landmarks. If the 
sim-animal is disoriented (meaning a head direction estimate is 
not available), the $-type F; terms drop out of the activation equa- 
tion (Equation l). Because the sim-animal is placed into the en- 
vironment at a random location, it also lacks an initial estimate 
of its path integrator coordinates, so the C term drops out as well. 
The only terms left with which the sim-animal can self-localize 
are r-type Fi terms and the RA term, both of which are rotation- 
ally symmetric in this environment. Therefore, the sim-animal 
has a 50% chance of localizing itself at the correct spot, and a 
50% chance of choosing the mirror image location. When asked 
to calculate a trajectory to the goal, the sim-animal will choose 
the opposite of the goal corner 50% of the time. Figure 10a shows 
a histogram of the goal predictions produced when the model was 
disoriented. 

TABLE 2. 

Simulation Results for Suzuki et al. (1980) Radial Maze 
Experiment 

Configuration Precession Consistency 

Original 
Rotated 
Permuted 

0" 
182" 

0" 

0.250 
0.246 
0.004 
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0 )  
(a) Disoriented 

I100 
(b) Not disoriented 

FIGURE 10. Distribution of the simulation’s goal predictions 
in each quadrant of a rectangular environment, (a) with disorienta- 
tion and (b) without. 

When the sim-animal is not disoriented, allocentric bearing 
information is available and the +-type Fj terms do not drop out 
of the activation equation. The sim-animal therefore has enough 
information to differentiate the correct corner from its 180” op- 
posite, and it always chooses the correct corner. Figure 10b shows 
a histogram of the goal predictions in the non-disoriented case. 

Navigation using landmark arrays 
Collett et al. (1986) report experiments in which gerbils were 

trained to find a food reward (a sunflower seed buried in gravel) 
among cylindrical landmarks in an otherwise impoverished envi- 
ronment. The landmarks were translated but not rotated from 
trial to trial, and they maintained the same orientation and dis- 
tance from each other, thus forming a stable landmark array. 

During training, both the gerbils’ starting location and the lo- 
cation of the landmark array varied randomly; however, the food 
was always located at the same position relative to the array, and 
the start box always had the same orientation. Probe trials were 
run without a food reward, and the time spent searching was his- 
togrammed. The left sides of Figures 11-20 show 2D histograms 
of search effort in which larger blobs correspond to more search 
time. 

Our simulations of these tasks start with the simulated animal 
deposited at a random location in the environment; thus, initially 
it has no knowledge of its coordinates, but its sense of direction 
is correct. We assume the animal is already familiar with the task, 
i.e., it has place codes for all locations in the training environ- 
ment; see Appendix A for details. The sim-animal uses visual cues 
to activate an initial place code and self-localize as described ear- 
lier. Once it has determined its coordinates, it estimates the path 
from its present location to the goal by vector subtraction. 

We cannot measure search time directly in our simulations be- 
cause there is no searching behavior. Therefore the distribution 
of goal estimates for 100 probe trials is what is plotted in the right 
halves of Figures 11-20. These simulations are discussed in more 
detail in Redish and Touretzky (1996b). 

One-landmark experiment. Collett et al. (1986) trained one set 
of gerbils to find food placed near a single circularly symmetric 
landmark (Fig. l la) .  The fact that the animals could learn to 
search at the correct bearing as well as distance implies that they 
have some independent means of determining bearing informa- 
tion. Collett et al. supposed that the animals were utilizing some 
external cue, despite their attempts to block this. The subsequent 
discovery of head direction cells suggests that this might not have 

FIGURE 11. a: Histogram of search time of gerbils on the one- 
landmark task. From Collett et al. (1986), with permission of au- 
thor and publisher. b: Histogram of goal predictions by the simu- 
lation. 

been the case. In our model, head direction is used to derive al- 
locentric bearing information, and this plus distance is sufficient 
to localize the animal in the one-landmark case (Fig. 1 1 b.) 

Two-landmark experiments. Collett et al. (1986) also trained an- 
imals to find food at a location specified by a pair of landmarks, as 
shown in the search time distribution in Figure 12a. Our simula- 
tion produces a comparable result: a distribution of goal estimates 
with a single peak, centered at the correct location (Fig. 12b). 

With two landmarks, the array can be manipulated to provide 
ambiguous or inconsistent cues. For example, one landmark can 
be removed. In this case, Collett et al. (1986) report that the ger- 
bils searched alternately in two locations, each at the correct dis- 
tance and bearing from one of the landmarks they had observed 
during training (Fig. 13). Collett et al. theorized that the animals 
were matching the landmark first to one and then to the other 
of the two they remembered. 

In our model, when the animal first enters the environment 
the place code is derived solely from the local view. In the two- 
landmark task, the single landmark visible on the probe trial is 
insufficient to constrain the place code to a single location. 
Therefore, parallel relaxation produces a bi-modal distribution of 
goal predictions with peaks centered at the correct angle and dis- 
tance from each of the two landmarks. See Figure 3 and Self- 
Localization for details. 

The two-landmark array can also be stretched. When trained 
on two landmarks and tested with the distance between them 
doubled, the gerbils again searched at two locations, each at the 
correct distance and bearing from the corresponding landmark 
(Fig. 14a). They did not search at the two exterior locations that 
would be derived by matching the perceived west landmark 
against the learned east one and vice versa. Our simulation also 
concentrates its goal predictions at the interior locations (Fig. 
14b). It prefers the interior points due to TWO factors: 

1. The calculation of the mean coordinate value from all active 
units usually results in a goal prediction near the center of the ar- 
ray, so units coding for exterior positions will be treated as out- 
liers and are likely to be deactivated. 
2.  Units tuned to locations interior to the array will have at least 
a partial match to both landmarks of the stretched array, giving 
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FIGURE 12. a: Histogram of search time of gerbils trained on 
the two-landmark task. From Collett et al. (1986), with permission 
of author and publisher. b: Histogram of goal predictions by the 
simulation. 

them higher activation levels than units tuned to exterior loca- 
tions. This helps pull the goal prediction closer to the interior of 
the array. 

The simulation does not predict the goal to be at the center 
of the split array (located between the two interior search loca- 
tions) because of a third factor: 

3. The four populations of units tuned to single landmarks (ac- 
tually, the same landmark twice), which get a perfect match at all 
four possible search locations and become highly activated, con- 
tribute substantially to the total place unit activation. They there- 
fore constrain the set of possible goal predictions to just those 
four locations. Factors 1 and 2 cause the model to choose the in- 
terior locations from this set. 

Three-landmark eqeriments. Collett et al. (1986) trained a 
third group of gerbils to search for food at the center of a trian- 
gular array. As with the one- and two-landmark arrays, well- 
trained animals searched for food at the correct location (Fig. 
15a). The goal predictions of our simulation (Fig. 15b) again cor- 
respond well to the behavioral data. 

With three landmarks, additional manipulations are possible. 
Collett et al. deleted one or two landmarks (Figs. 16, 17), added 
a landmark to one side forming a second triangle with opposite 
orientation (Fig. 18), and moved one landmark away from the 
others, producing inconsistent cues (Fig. 19). The model is com- 
patible with the behavioral data from each of these experiments. 

When the triangle was inverted (or equivalently, rotated by 

. .  
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FIGURE 14. a: Histogram of search time of gerbils trained on 
the two-landmark task and tested with the inter-landmark distance 
doubled. From Collett et al. (1986), with permission of author and 
publisher. b: Histogram of goal predictions from the simulation. 

GO"), gerbils first searched the center of the array and then pro- 
ceeded to search three exterior points (Fig. 20a). Our model pro- 
duces goal predictions at these four locations (see Fig. 20b). The 
interior and exterior goal predictions occur because of a diver- 
gence in the possible outcomes of the realignment process. 

1. Interior goal predictions. One some trials, realigning the head 
direction produces an improvement in consistency. The sim-an- 
imal will then see a correctly oriented triangle and will predict 
the goal to be in the center of the array. 
2. Exterior goal predictions. O n  other trials, the improvement in 
consistency is below the threshold necessary to sustain a head di- 
rection realignment. In this case the animal will retain its origi- 
nal head direction estimate and use pairs of landmarks in the cor- 
rect orientation to localize itself, as in the missing-landmark probe 
trial. It will therefore search one of the three exterior locations. 

It is unclear how the head direction realignment associated 
with searching an interior point could later be undone, yet Collett 
et al. (1986) report that the gerbils first searched in the center 
and then proceeded to search at exterior locations. Further work 
is needed to determine whether our model is compatible with this 
observation. 

The vector voting hypothesis. To account for the gerbils' be- 
havior in this collection of experiments, Collett et al. (1986) posit 
that the animals begin planning their path to the goal by apply- 
ing every learned landmark-to-goal vector (Fig. 21) to all the land- 
marks they currently perceive. The animal tallies the votes, and 

0 . .  . . . . . . . .  ....... 
.::3:: .... . .  

0 

FIGURE 13. a: Histogram of search time of gerbils trained on 
the two-landmark task and tested with one landmark removed. From 
Collett et al. (1986), with permission of author and publisher. b: 
Histogram of goal predictions by the simulation. 

FIGURE 15. a: Histogram of search time of gerbils in the three- 
landmark task. From Collett et al. (1  986), with permission of au- 
thor and publisher. b: Histogram of goal predictions from the sim- 
ulation. 
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FIGURE 16. a: Histogram of search time of gerbils trained on 
the three-landmark task and tested with one landmark removed. 
From Collett et al. (1986), with permission of author and publisher. 
b: Histogram of goal predictions from the simulation. 

the best-supported location is taken to be the goal. When there 
is a tie, multiple locations are searched. We will refer to this as 
the vector voting hypothesis. 

Both the parallel relaxation and vector voting mechanisms al- 
low multiple hypotheses to be simultaneously active. Threshold- 
ing selects the best-supported hypothesis from the set. The dif- 
ference between the two algorithms is that the vector voting 
scheme requires a separate representation for each candidate, so 
its votes can be tallied independently of the others. The parallel 
relaxation scheme is also a voting scheme, but votes come from 
individual place units trying to estimate a unique location for the 
animal by averaging coordinate values; ties are not permitted. The 
equivalence between relaxation and vector voting depends on two 
assumptions. First, place units must uniformly sample the land- 
marks available in the training environment, so that on probe tri- 
als, locations that should get more votes (due to their being con- 
sistent with a greater fraction of the landmarks present) will 
activate more units and exert more influence on the coordinate 
estimate. Second, there must be sufficient randomness in the sim- 
ulation so that locations that receive equal support have a roughly 
equal chance of being selected by the relaxation process. Thus, 
when two candidates have roughly equal support, the distribu- 
tion of winners across multiple trials will show two peaks. 

Most of the tasks explored by Collett et al. can be explained 
by the vector voting hypothesis, but the split-array (Fig. 14) and 
the rotated-triangle (Fig. 20) tasks cannot. For the split-array task, 
the vector voting hypothesis predicts four search locations (Fig. 
22). The animal's preference for the interior locations can be ex- 

FIGURE 17. a: Histogram of search time of gerbils trained on 
the three-landmark task and tested with two landmarks removed. 
From Collett et al. (1986), with permission of author and publisher. 
b: Histogram of goal predictions from the simulation. 
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FIGURE 18. a: Histogram of search time of gerbils trained on 
the three-landmark task and tested with a fourth landmark added. 
From Collett et al. (1986), with permission of author and publisher. 
b: Histogram of goal predictions from the simulation. 
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FIGURE 19. a: Histogram of search time of gerbils trained on 
the three-landmark task and tested with one landmark moved twice 
as far from the goal. From Collett et al. (1986), with permission of 
author and publisher. b: Histogram of goal predictions from the sim- 
ulation. 
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FIGURE 20. a: Histogram of search time of gerbils trained on 
the three-landmark task and tested with a rotated array. From Collett 
et al. (1986), with permission of author and publisher. b: Histogram 
of goal predictions from the simulation. 

FIGURE 21. In the vector voting scheme, avector from each land- 
mark (solid circle) to the goal (small triangle) is learned during train- 
ing trials (a). In later probe trials (b), these vectors are applied to all 
the perceived landmarks. The location with the most votes is searched. 
The different arrow shapes denote different memory vectors. 
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FIGURE 22. 
goal locations, but gerbils search only the two interior ones. 

Vector voting on the split-array task predicts four 

plained if it treated the landmark pair as a “beacon”: a single land- 
mark co-located with the goal. When far from the landmark pair, 
aiming for this beacon would be easier than computing a trajec- 
tory by self-localization. However, if beaconing is involved, an 
additional mechanism would be required to explain why there is 
no central peak in the search-time histogram (Fig. 14a), as there 
is in the rotated-triangle task (Fig. 20a). 

Collett et al. (1986) instead suggest that the animals use their 
perception of the split array as a whole to distinguish the east 
from the west landmark. This allows them to apply each of the 
two learned vectors to only the corresponding landmark instead 
of to both, generating just two candidates instead of four. The 
mechanisms required for this sort of holistic perception are left 
unspecified. 

The vector voting hypothesis is also unable to explain the ger- 
bils’ search-time spent in the center of the rotated-triangle. It pre- 
dicts only the three exterior search locations (Fig. 23). 

The animal’s predilection for the center of the rotated triangle 
early in its search can be explained if it treated the entire array as 
a beacon, as suggested for the split-array task. The animal might 
not notice at a distance that the triangle was rotated. Failing to find 
food at the center, it would attempt to reorient itself based on its 
place representation, and would thus be led to search the three ex- 
terior locations. However, this explanation is incompatible with the 
fact that the animals do not search at the center of other configu- 
rations, such as the split-array or stretched triangle tasks. 

Our model offers predictions which we hope to see confirmed 
experimentally. All of the effects described below have been ob- 
served in our simulations. 

Predictions About the Place Code 
1. The activation function for place cells predicts that the shapes 
of place fields should change when landmarks are perturbed by 
small amounts, but not when the landmarks are removed alto- 
gether. 
2. Whenever the animal thinks it is at the goal in the Collett et 
al. tasks, its path integrator coordinates will be the same. 
Therefore, when rodents search in multiple locations, as in the 
split-array probe, the same place code should be observed, even 
though the local view (taking allocentric bearings into account) 
is different at each location. 
3 .  In our theory, when the animal decides that its present search 
location is not really the goal, it repeats the self-localization pro- 
cedure and gets back new coordinate values that do not match 
the goal location. This implies that the place code must change 
when the self-localization is repeated. Thus, our theory predicts 
that in the Collett et al. tasks where gerbils search in multiple lo- 
cations, a change in the hippocampal place code will be observed 
just prior to the gerbil leaving one search location for another. 
4. When re-entering a familiar environment, the number of ac- 
cive place cells should initially be larger than usual. This is be- 
cause the path integrator will not yet be constraining the place 
cell activity pattern. We cannot predict the time course that the 
place code will require to settle into its normal mode, but we ex- 
pect that it will be very fast. We are not aware of any study that 
has looked at place cell activity of a rat starting just before it is 
deposited into a familiar arena, so it is not surprising that the ef- 
fect we predict has not been reported yet. Nevertheless, we be- 
lieve that this effect will be observable by examining the number 
of initially active place cells over a number of trials. 

FIGURE 23. 
with two votes each. Gerbils also search in the center of the rotated array. 

Vector voting on the rotated-triangle task predicts three exterior goal locations 
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5. When re-entering a familiar environment, the place code may 
initially be incoherent. Specifically, cells may fire outside of their 
normal place fields, and cells with non-overlapping place fields 
may be simultaneously active. O n  completion of the self-local- 
ization process, a normal, coherent place code should be seen. As 
with prediction 4, above, we cannot predict the time course of 
this initial incoherency; it may be very short-lived, and as far as 
we know, no one has looked for it. But we do expect it to be ob- 
servable. 

Alyan et al. (1995) report that rats appear to use passive path 
integration to keep track of their position while being transported 
from their home cage to a Morris water maze tank. The rats were 
carried on a wooden board along a straight path, and could see 
their surroundings. Another group of animals was transported in 
a black box, along a circuitous path, which presumably prevented 
passive path integration. This latter group scored significantly 
lower on the task according to three different performance mea- 
sures. This suggests that in searching for the effects of self-local- 
ization, experimenters will need to disorient the animal and be- 
gin recording Sdore it is removed from the transport box. 

I t  is also likely that the degree of initial incoherency in the 
place code depends on the amount of symmetry in the environ- 
ment and the number of distal cues available to resolve local am- 
biguities. A Hampton Court-style maze with many identical cor- 
ridors, surrounded on all sides by a featureless black curtain, 
would provide for considerable ambiguity and might make the 
gradual formation of a coherent place code more observable. 

Predictions About the Head Direction System 

1. In the Collett et al. (1986) rotated triangle task, the tuning of 
the head direction system should be off by a multiple of 60" when 
the gerbil searches in the center of the triangle. 
2. In the Cheng (1986) task, the tuning of the head direction 
system should be off by 180" when the rat searches in the mir- 
ror image to the goal location. Thus, by measuring the responses 
of head direction cells while the rat is still in the center of the 
arena, it should be possible to predict whether it will be success- 
ful in finding the goal on that trial. 
3. In the Sharp et al. (1990) experiments, our model predicts 
which cue card and entry point configurations will cause the head 
direction system to precess, and by how much. 

Interactions Between Place Code and Head 
Direction 

1. Since place fields follow the head direction system, our model 
predicts when rotations of place fields will be observed in navi- 
gation tasks, for both rotationally disoriented and non-disoriented 
animals. 
2. If Sharp et al.'s experiment using non-disoriented animals were 
repeated using several entry points for training (for example, plat- 
ing the rat sometimes in the northwest, sometimes in the south- 
west, and sometimes in the northeast), our model predicts that 
place fields would not rotate when the rat entered from the south- 
east during a probe trial with two cards present. The reason is 

that when trained with a varying entry point, the rat cannot es- 
timate its path integrator coordinates upon entry. Therefore it 
would have to perform a self-localization to initialize its path in- 
tegrator, and during this process place cells tuned to allocentric 
landmark bearings would allow it to distinguish between the two 
cards. Afterward, a head direction reset would not improve the 
consistency of the place code, so head direction would not change, 
and place fields would not rotate. 

On the other hand, if the animals were disoriented prior to 
entry on the two-card probe trials, we predict that 50% of the 
time the place fields would appear rotated. A similar behavioral 
experiment by Cheng is described in Reproducing Simple 
Behavioral Experiments. 

Our model demonstrates that a specific computational mech- 
anism can account for a substantial body of navigation data. The 
mechanism is more complex than that of pure place cell models, 
as it includes the maintenance of head direction and involves both 
direct perception and an internal model of the world derived by 
path integration. But it is still relatively simple in comparison to 
the anatomy of the real hippocampal and head direction systems. 
It can be described by a few equations and parameter values. 

One of the ways this work has furthered our understanding of 
rodent navigation is by calling attention to relationships between 
different experiments. For example, the split-array and rotated tri- 
angle tasks of Collett et al. (1 986) are in conflict with respect to 
beaconing. The Sharp et al. (1990) one and two cue card tasks, 
together with the Cheng (1986) and Margules and Gallistel 
(1988) tasks, point out the complexity of interactions between 
the self-localization and head direction alignment operations. 
Modeling has also shown that vector voting can be accomplished 
in a distributed connectionist fashion, perhaps implemented in 
the hippocampal place code, that yields some additional emer- 
gent properties, such as only searching the two interior locations 
in the split-array task. 

Are Place Cells Tied to Single Landmarks? 

McNaughton et al. (1994) have proposed a theory of how vi- 
sual landmarks can be used to locate a goal. Place cells in their 
formulation are only tuned to single landmarks, so that individ- 
ual place cells can be identified with a specific landmark vector. 
Thus, when sitting at the goal in the two-landmark task (Collett 
et al., 1986) there would be two populations of cells active si- 
multaneously: one tuned to the east landmark and one tuned to 
the west one. By subtracting a remembered goal-to-landmark vec- 
tor from the currently perceived vector from the animal to the 
landmark, a vector from the present position to the goal can be 
derived. 

In the absence of head direction information, these place cells 
are predicted to have annular place fields. McNaughton et al. note 
that the animal could self-localize by talung intersections of an- 
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nuli, but the mechanism for doing this is unspecified. In our 
model, place units fall back on distance and retinal angle infor- 
mation when allocentric landmark bearings cannot be deter- 
mined. Some units may choose the same landmark twice, and 
thus might behave in a similar fashion to those of McNaughton 
et al. (1994) until the path integrator came online. However, once 
the path integrator is online, these cells will not show multiple or 
annular fields. Most units in our model are tied to two distinct 
landmarks, so there is no need to compute intersections of an- 
nuli when the model is rotationally disoriented. 

Another difference between these two theories is revealed by 
the split-array probe trial. In the McNaughton et al. (1994) the- 
ory, the two populations of place cells coding for the goal loca- 
tion are predicted to dissociate when the landmarks are moved 
farther apart, so that only one population would be maximally 
active at each of the two search locations. We predict the same 
place cell activity pattern will be observed at both locations. 

Place units tuned to single landmarks would generate four 
search locations in the split-array task. But as with the vector vot- 
ing hypothesis, some additional mechanism might be invoked that 
would limit search to the two locations interior to the array. 

Path Integration and Virtual Landmarks 
Both Muller et al. (1 99 1) and McNaughton et al. (1 994) posit 

“invisible,” “remembered,” or “virtual” landmarks influencing 
place cell activity in tasks such as those with consistent entry 
points, those showing directionality of place fields, and naviga- 
tion in the dark. In contrast, our model, and that of McNaughton 
et al. (1996), use path integrator information rather than virtual 
landmarks. These proposals are quite similar if one regards each 
virtual landmark as the origin of a reference frame for path inte- 
gration, but there are some differences. 

A place cell tuned to a single landmark should maintain its fir- 
ing field when that landmark is removed from the environment. 
If this occurs by the animal’s tracking a remembered landmark at 
that location, then as additional landmarks are removed the cog- 
nitive burden would increase. Eventually a limit should be 
reached. If the environment is rich in landmarks, then some place 
cells may have to shut down in the dark. Alternatively, an auto- 
associative interaction between place cells might activate a cell 
whose landmark was no longer driving it directly. 

By including a separate path integration module referenced by 
all place units, our model is relieved of having to track an un- 
bounded number of virtual landmarks, although it may track two 
or three reference frames simultaneously in some tasks. 

Another difference between these proposals is that virtual land- 
marks, being landmarks, would most naturally be encoded in po- 
lar coordinates, whereas our model uses a Cartesian system for 
path integration. The latter is not only superior with regard to 
numerical stability, it also provides the means for vector subtrac- 
tion necessary to calculate goal trajectories. 

Finally, McNaughton er 31. (1994) suggest that a more coarse- 
grained encoding would be used for large distance values relative 
to small ones. This is a reasonable assumption for representing 
perceived positions of distant landmarks, but it does not appear 

compatible with path integration, where accurate track of posi- 
tion must be preserved so that when the animal returns to the 
vicinity of the (unseen) landmark it will have correct bearing in- 
formation. 

Future Work 
Expanding environments 

Two phenomena not addressed by our current activation func- 
tion are the expansion of place fields in dilated environments and 
the introduction of barriers into the arena, both as reported by 
Muller and Kubie (1987). Place fields based purely on retinal an- 
gle features would expand linearly in a dilated environment. Place 
fields based on distances to pairs of landmarks would either be 
disrupted by dilation, or expanded and highly distorted, depend- 
ing on the value of a,, the width of the Gaussian in the feature 
match function. What Muller and Kubie observed when the di- 
ameter of a circular arena was doubled from 38 to 76 cm, which 
quadrupled the surface area, was that the area of the place fields 
increased by an average factor of only 1.73. Place fields were de- 
fined as the region where the firing rate of the cell was within a 
certain percentage of the maximum firing rate observed for that 
cell in that arena. Although the place field area increased some- 
what by this measure, the maximum firing rates of the cells de- 
creased in absolute terms. This might be modeled by making the 
gain a, of the distance matching features dynamically adjustable 
within some range, suggesting a hippocampal gain control mech- 
anism perhaps mediated by inhibitory interneurons. In the di- 
lated environment, distance mismatches could be partially dis- 
counted by increasing a, whenever that improved certain qualities 
of the resulting place code. 

Barviers in place fields 

Muller and Kubie (1987) studied the effect that introducing 
a barrier into a cylindrical environment had on place cells. The 
barrier tended to disrupt a cell’s response, but only if it was lo- 
cated inside the place field. A barrier outside the field but near 
the center of the cylinder (so that it blocked the animal’s view of 
part of the cylinder) caused much less disruption than a barrier 
that bisected the field. Furthermore, transparent barriers had just 
as much effect on place cell firing as opaque ones. Although most 
cells decreased firing when the barrier was added, Muller and 
Kubie report one cell whose firing became more intense. 

This suggests that place cell activity reflects non-visual aspects 
of the environment as well as visual ones. One hypothesis is that 
the rat maintains a representation of peripersonal space that is not 
primarily visual, and that place cells are tuned to features of this 
representation in addition to visual landmark features. This rep- 
resentation may be constructed in part from tactile information, 
such as from the vibrissae. This could explain how rats are able 
to maintain accurate distance information (but not heading) when 
navigating in a cylindrical arena in the dark. The representation 
of peripersonal space can be seen as an extension of the tuning 
to surface orientations available to place cells in the current model. 
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The role of hippocampal theta 
T h e  most prominent feature of hippocampal physiology not 

addressed by our model is the theta rhythm. Recent observations 
show that the firing phase of place cells with respect to the theta 
rhythm correlates with whether the place field is centered ahead 
of vs. behind the rat (O’Keefe and Recce, 1993; Skaggs et al., 
1995b), and this property has been exploited in  a model by 
Burgess et al. (1994). Several other proposals have also been made 
for a computational role for the theta rhythm in navigation 
(O’Keefe, 1989; O’Keefe, 1991). O u r  model presently makes no 
use of theta, but when its abstract computations are instantiated 
by some biological mechanism, it is possible that the usefulness 
of the phase relationship will become apparent. 

Reference frames 
In a two-landmark task similar to the split-array task, Gothard 

et al. (1994) report a variety of response types for CA1 cells. Some 
exhibited place fields tied to the room, some to the landmarks or 
goal location (which translated from trial to trial), some cells fired 
when the animal was either inside, leaving, or re-entering the start 
box no matter where it was located, and some appeared to be re- 
lated to  a mixture of these features. This suggests that multiple 
representations of space exist simultaneously in the hippocampus. 
W e  plan to extend our model to cover multiple reference frames 
and relationships between frames. 

Learning 
Perhaps the most important area yet to be addressed is the 

learning of new environments. Rats released in novel environ- 
ments show place fields immediately (Hill, 1978), but the fields 
are strengthened and sharpened after an exploratory period of 10 
minutes (Wilson and McNaughton, 1993). Place fields decrease 
in size and increase in directionality over the first few hours in 
an arena (Austin et al., 1993). A model based on realistic visual 
input and neurally plausible learning mechanisms that exhibited 
these sorts of properties would be a significant advance. 
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pair of currently visible landmarks at random to generate the dis- 
tance, bearing, and retinal angle features. Then the process repeats. 

The  algorithm terminates when no new unit has been recruited 
for 20 successive steps, indicating that the set of place cells it has 
constructed is sufficient to cover the environment. Small envi- 
ronments, such as the cylindrical arena with 38 cm radius used 
by Muller et al., require approximately 2,000 place units to sat- 
isfy this criterion. T h e  arena used by Collett et al., with a 175- 
cm radius, requires 10,000 to  15,000 place units. These numbers 
reflect the model’s simplifying assumptions that the sizes of in- 
dividual place fields do not scale with the environment, and that 
the whole arena is treated as a single environment. These as- 
sumptions probably do not apply in more naturalistic settings; 
rodents in the wild can have home ranges covering many hun- 
dreds of square meters (Gaulin, 1992). 

This algorithm suffices to create a place code able to represent 
a familiar environment; when complete, each location of the en- 
vironment is covered (with high probability) by a minimum num- 
ber of place fields. A more realistic learning mechanism that also 
ensures that a sufficient number of place cells will be active at 
every location in the environment should not change any of the 
results discussed in Correspondence with Experimental Data. W e  
are currently exploring such mechanisms. 
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APPENDIX B. 

Model Parameters 

Symbol Value Description 

Place cell turning parameters 
a, 25 cm 
a r  (point) 15 cm 
a, (surface) 10 cm 
u+ (point) 15" 
a+ (surface) 50" 

15" 

500 cm 

0.75 

0.4 

Sharpness of C(u) tuning to path integrator coordinates 
Sharpness of Fi(u) tuning to range values for point landmarks 
Sharpness of Fi(u) tuning to range values for surface landmarks 
Sharpness of Fi(u) tuning to bearing values for point landmarks 
Sharpness of Fi(u) tuning to bearing values for surface landmarks 
Sharpness of RA(u) tuning to retinal angles 

Initial a, large enough to give C(u) negligible gain at start of relaxation 

Minimum activation level for including a place unit in coordinate calculation 

Minimum acceptable improvement in consistency following a reset operation 

Parallel relaxation parameters 
Initial a, 
Pc 0.9 Decay factor for tightening a, during relaxation 
6, 

K* 

Other parameters 




