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Abstract—We describe a computer model that reproduces many observed
features of rat navigation behavior, including response properties of place cells
and head direction cells. We discuss issues that arise when implementing models
of this sort on a mobile robot.

I. Rat Navigation

As they navigate through their environment, rats appear to be employing several types of
spatial representations. One type defines “places” based on the views they afford of distal
landmarks [14]. Place cells in hippocampus, which fire when the rat is in a particular
region of space, are known to be sensitive to visual cues (see [21] for a review). Rats’
sense of place, as reflected in their navigation behavior, has also been shown to rotate in
synchrony with the rotation of landmarks, but they fail to recognize the environment when
landmarks are permuted [29]. This suggests that the animal’s sense of place is not based on
single landmarks but rather on landmark configurations. A number of computer models of
visually-driven place cells have been described [3, 26, 27, 28, 33]. Any such model based
on purely visual inputs, in which cells are dependent on more than one landmark, should
show the effects described in [29].

However, place cells are not driven purely by visual inputs. Most cells still fire correctly
when prominent landmarks are removed [22, 23]. As long as some visual cues remain, it is
possible that these are sufficient to drive a subset of the place cells which in turn drive the
others, “filling in” for the excitation provided by the missing landmarks. Thus, local view-
based place descriptions could be reconstructed from partial visual cues. This suggestion is
supported by models of the hippocampus as an associative memory [16, 25], and is bolstered
by the observation of extensive recurrent connections in CA3. On the other hand, place cell
firing is not all-or-none; the firing rate drops off roughly as a gaussian function of distance
from the place field’s center. Thus, as the animal travels through the environment, the
hippocampal activity pattern changes smoothly, with activity in individual cells increasing
and then dropping off again with the approach to and departure from the centers of their
fields. The continuous nature of place coding suggsts that if there is an associative memory
aspect to hippocampal function, the mechanism cannot be as simple as the discrete attractor
models studied in the ANN literature [11]. The difficulty of this problem is underscored
by the observation that the existing place cell models in the literature (including our own)
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are based on essentially feedforward1 circuitry, while the associative memory models of
hippocampus have recurrent connections but do not show place cell-like responses.

Place cells are also known to fire when the animal locomotes in the dark [24]. Thus,
visual inputs cannot be the sole means of driving a hippocampal auto-associator. While it is
conceivable that other perceptual modalities contribute to sense of place, experiments that
control for auditory, olfactory, and tactile cues suggest that they do not play a crucial role
in the rat’s navigational abilities. In fact, rats can be quite resistant to using olfactory and
tactile cues to define goal locations [6].

Hippocampal place coding is primarily a topological representation:2 it defines a set
of distinct places, augmented by information about which places are adjacent to others.
A second spatial representation proposed for rats is a metrical one. Behavioral studies
show that rodents traveling in the dark can execute a straight-line path back to their starting
location after following a complex, twisty trajectory in the performance of a search task
[18]. This is cited as evidence for a path integration faculty in rodents, which other types
of animals are also known to possess [10]. Experiments with passive transport show that
hamsters’ displacement errors when returning home match the distance and direction of the
transport [9], which would not be true if they were homing by olfactory or other perceptual
cues.

In [8] it was shown that gerbils traveling to a goal location defined by a visual landmark
will complete their intended trajectory when the lights are turned off enroute. And in [7]
gerbils trained to travel to a goal location indicated by the lit member of an LED array
continued on their selected path even when the LED and room lights were switched off.
This suggests that the gerbil computes a distance and direction to travel (both metrical
quantities), and executes this plan independent of subsequent sensory inputs.

A metrical representation of space presupposes a coordinate system. A polar reference
frame might seem the most natural choice, but Gallistel [10] argues that a Cartesian system
offers better computational stability when computing incremental position updates, as a
path integrator must do.

Metrical representations can be used for trajectory planning, thereby explaining results
where a rat traveling directly to a goal is able to navigate through parts of the environment it
has not previously visited [12]. Place codes, being purely topological, would require some
sort of graph search to do path planning, and would not be able to generate new shortcut

1There are inhibitory feedback connections in some of these models, and gated recurrent paths in others.
However, the computation of place cell activity values does not involve the sort of iterative relaxation and pattern
completion found in an auto-associator.

2There is a local metrical structure to place codes in that the firing rates of individual cells fall off roughly as
a gaussian function of distance from the center of the place field, and one can estimate the distance between two
nearby locations from the overlap of their place code patterns. But bearing information cannot be recovered, and
one cannot measure distance between locations more than about a dozen body-lengths apart, due to a lack of place
code overlap.
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paths through locations the animal had never experienced [32]. Another posible use for
metrical representations is to explain the observation that place fields appear to peak roughly
120 msec ahead of the rat, rather than reflecting its current position [20]. We hypothesize
that the path integrator predicts the animal’s position based on intended movement, and its
input to hippocampus provides an anticipatory bias to place cells.

Neurophysiological evidence for a path integration faculty is weaker than for place
coding, although there is some data that lesioning the caudate nucleus can disrupt a return
from passive transport task [1]. However, a crucial precursor for path integration is an
accurate sense of direction, and this has now been well-demonstrated in single-cell recording
experiments. Cells in postsubiculum [30, 31] and parietal/retrosplenial association cortex
[4, 5] both show responses tuned to head direction, independent of the animal’s location in
the environment.

II. Robots As Animal Models

Since current robot navigation algorithms are specialized and brittle compared to animal
behavior, one might hope to borrow techniques from nature to improve robot performance
[2]. This laudable goal is not easily accomplished. There is no reason why merely building
place cells into a robot should give better performance than other approaches, such as
constructing occupancy grids [19].

However, one problem with current robot algorithms that might be resolved by animal
modeling is the selection of appropriate cues. Rats are sensitive to the stability of cues
across trials, and they will learn to ignore a cue if experience shows it to be unreliable. Thus,
place cells that are sensitive to the position of a white card along the wall of a circular arena
can lose their relationship to the card if the animal learns to view the card as unstable [13].
Algorithms for detecting whatever cues are available in an environment and monitoring
their stability and usefulness over time could produce more robust robot behavior. In a
laboratory environment, for example, the robot should learn to use desks and file cabinets
as landmarks while ignoring the positions of chairs and wastebaskets, as these latter objects
might be prominent but their positions are unreliable.

Of course, robots that can’t distinguish chairs from desks in the first place will have
a hard time learning which collection of features constitues an unstable cue. One reason
robots have so much trouble in real-world environments is their limited perceptual abilities,
which can be thrown off by simple things such as lightingchanges. If a robot cannot produce
detailed, reliable perceptual descriptions, the navigation problem becomes far more difficult
and we have no reason to expect animal-like performance.

Flexibility in dealing with unexpected situations is another area where animals presently
outperform robots. Gerbils searching for a goal in environments that have been made
ambiguous by manipulation of landmarks appear to distribute their search effort among
plausible alternative locations [8]. In [34] we show how such a distribution can arise from
the operation of a place code model. In general, a hippocampal representation that utilizes
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a distributed place code based on angles and distances to salient landmarks is likely to be
more suitable for coping with environmental changes than, say, an occupancy grid.

A rather different way of relating rats to robots is to view the robot laboratory as a
proving ground for theories of animal cognition. Implementation on a real platform forces
one to consider issues easily overlooked in computer simulations. In the real world one
cannot count on being able to see all the landmarks all the time; many will be occluded.
Furthermore, sensor limitations prevent accurate range measurements to distant objects
even when they are in the robot’s line of sight.

Perception issues come up again when using robots as animal models. In our view, an
important future challenge for roboticists interested in “imitating life” will be to reproduce
the perceptual capabilities of particular species. Many mobile robots rely heavily on sonar
and light stripe sensors, both of which are only effective at close range and cannot provide
the distal landmark information required by theories of rat behavior. Color cameras have
greater range and far better acuity than sonar; better even than real rats, but their field
of view is rather limited compared with the rat’s 300

�

. But the real problem with video
cameras is that image processing is computationally expensive. Even something as simple
as calculating real-time optic flow requires more processing power than is practical for a
mobile robot. Yet optic flow is known to be computed in the early stages of mammalian
vision. Such observations underscore the tremendous gulf that remains between today’s
digital computers and real nervous systems.

III. A Computational Model

In this section we briefly describe our computational model of rat navigation based on
coupled mechanisms for place recognition, path integration, and maintenance of head
direction, as shown in Figure 1. The point we want to empahsize is that this one architecture
reproduces a wide variety of experimental results, as shown in Table 1. Those not covered
here are discussed in [34, 35].

Place units in our model compute a fuzzy conjunction of internal and external states.
External state information, provided by perception, consists of egocentric angles and dis-
tances to visible landmarks. Internal state information comes in the form of coordinates
giving the animal’s position with respect to one or more reference points. These coordi-
nates are maintained by the path integrator as the animal moves through the environment.
A similar proposal was recently made in [17]. Reference points in our model need not be
visible objects; they need not even be perceptually distinctive places, although a location
such as the animal’s nest would be a natural choice. They could simply be locations where
something significant once occurred, e.g., the spot where the animal was first released into
the experimental chamber, or a place where food was discovered.

Individual place units are tuned to coordinates with respect to one reference point, and
angle and distance information with respect to two or more landmarks. The firing rate of
the unit reflects the degree of match between its current inputs and the values it is tuned for.
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Figure 1: Suggested functional organization of orientation and recognition mechanisms in the rat.
Circles are input quantities, boxes are computational modules; they do not necessarily correspond
to disjoint or unique brain areas. Thick lines denote main information pathways. Hashed lines are
pathways not currently modeled.

�
h is head direction,

�
i and � i are allocentric and egocentric bearings

to landmark i. ri is distance to landmark i. (xp � yp) are coordinates to reference point p. (xg � yg) are
coordinates of goal location relative to some reference point g.

Our units therefore respond as radial basis functions. We use the term “fuzzy conjunction”
because terms can drop out when information is not available. So, for example, when the
rat navigates in the absence of visual cues, place units respond solely to path integrator
coordinates. Conversely, if the animal is dropped into the environment at a random spot,
so that path integrator coordinates are not available, the place units are driven solely by
perceptual inputs – either angles between pairs of landmarks, or if head direction information
is available, allocentric bearings3 to landmarks. Once the animal determines its location it
can recall the coordinates associated with that place and use them to reinitialize the path
integrator.

Our model uses allocentric bearings to disambiguate visually similar objects, such as the

3Allocentric bearings are measured with respect to the environment, independent of the animal’s orientation.
Egocentric bearings are measured relative to the animal’s midline.
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Table 1: Features of rat navigation covered by our model.
Experimental Result Aspect of Model

Place fields controlled by visual landmarks. Place units are tuned to landmark angles and
distances.

Place fields persist in the dark. Place units are driven by the path integrator.
Place fields are peaked ahead of the rat. Anticipatory bias from path integrator.
Visually similar features are not confused in
un-rotated environments.

Place units can reference allocentric bearings.

Head direction reset by visual cues. Place units can recall learned allocentric
bearings.

Repeated disorientation causes rats to not reset
head direction based on visual cues.

Salience of head direction cues is decreased
when retrieved head direction leads to failed
predictions.

Place cells can develop direction sensitivity. Reference point selection based on behavioral
context.

Loss of place cell direction sensitivity in re-
sponse to novelty.

Alerting response activates additional refer-
ence points.

identical cylinders used in some of Collett et al.’s landmark-based navigation experiments
[8], or the four corners of a rectangular experimental chamber [6, 15]. Head direction
information is used to convert egocentric to allocentric directions. Normally head direction
is maintained by integrating vestibular cues; when visual input is available, additional help
might be derived from optic flow. When the animal is rotationally disoriented so that head
direction information is not available, remembered allocentric bearings of landmarks can
be used to reconstruct it. Drift in the head direction system resulting from cumulative
integration errors can also be corrected this way.

IV. Navigating by Geometric Cues

Cheng [6, 10] showed that rats rely heavily on the geometric structure of their environment
to locate a goal, ignoring other types of cues even when these provide more reliable
information. He constructed a rectangular experimental chamber with featureless walls and
pine chips on the floor, but with a distinctive panel in each corner. Each panel was made of
a different material, providing a different texture and visual appearance. Two of the panels
had small holes behind which was a cotton wad impregnated with anise in one case and
peppermint in the other. The panels also had zero to three pinholes with light shining out
of them. In summary, the four panels were as different as possible; to a human they would
constitute blatently obvious place cues.

In one series of experiments, the food reward was always located in front of a particular
panel. (Different panels were assigned to different rats.) Cheng rotated the chamber by an
arbitrary amount on each trial before introducing the rat, but did not disorient the animal or
make any other changes to the apparatus. The result was that rats searched equally often
at the correct corner and its rotational equivalent, diagonally opposite it in the chamber,
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despite the fact that these two corners had very different panels. His explanation for this
result was that the rat focused only on the geometric properties of the rectangular chamber.
If the goal was in a corner with a long wall on the left and a short wall on the right, the
diagonally opposite corner also satisfied that description. In cases where the animal first
went to the incorrect corner, upon failing to find the reward it would often switch over to
the diagonally opposite corner, as if realizing that it had made a rotational error.

In a second series of experiments Cheng divided the floor of the chamber into a 9 � 9
grid forming 81 rectangles, and trained the animal on a working memory task. On each
trial, food was buried under the pine chips in one rectangle chosen at random from the set of
80 (the central rectangle was not used.) The rat was then introduced into the chamber and
shown where the food was buried. It was allowed to eat some of it before being removed
for 75 seconds. During this delay interval the chamber was replaced by an identical copy
(to eliminate odor cues), except that the orientation of the new chamber did not match that
of the original. The rat was then allowed to search for the food in the new chamber, which
should have been indistinguishable from the old except for rotation. Cheng measured the
frequency of searching in the correct rectangle (C), the rotationally equivalent rectangle
diagonally opposite the correct one (R), or some other spot, which was scored as an error
(E). For rotations less than 60

�

the animals usually chose the correct spot, while for rotations
greater than 120

�

they preferred the diagonally opposite one (Figure 2.) For 90
�

rotations
they chose both spots with equal frequency.

The obvious explanation for this result is that the rat relies on allocentric bearings to
disambiguate environmental features that are geometrically indistinguishable. It might, for
example, recall the goal location as being at a certain angle and distance from a corner with
a long wall on the left and a short wall on the right. In the rotated chamber it must choose
one of the two corners meeting this description. The rat fails to make use of nongeometric
features of the panels that distinguish the two corners, and instead chooses the one whose
allocentric bearing most closely matches the remembered value.

Our model shows that Cheng’s results do not require any special cognitive operations
on the part of the rat; they can occur as a natural consequence of the place recognition and
head direction maintenance systems. When the animal is shown where the food is hidden at
the start of a trial, it goes to that location and needs to remember its position so it can return
to the goal after the delay period. It does this by noting the path integrator coordinates
associated with this place.

Figure 3 shows the response of a place unit whose field is roughly opposite the goal
location. This unit is tuned to the bearing and distance of two landmarks (corners), and it
has associated with it a set of allocentric coordinates

�
xp � yp � measured with respect to its

controlling reference point. When the animal is sitting within this unit’s place field, the
difference between its current path integrator coordinates (which this unit helps estimate)
and the remembered coordinates of the goal tell it the path to take to return to the goal.

Now consider Figure 4, showing the place field of the same unit as Figure 3 after the
animal is introduced to the second chamber, which has been rotated by a small amount
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Figure 2: Cheng’s experiment showing percentage of trials in which the rat searched in the Correct
rectangle, the Rotationally equivalent rectangle, or an Error location, as a function of amount of
rotation of the experimental chamber. Filled circle indicates the goal. After [6]. Primed values are
results from our simulation.

Figure 3: Place field of a unit during in the first part of the working memory task, prior to rotation.
The center of this field is in the corner opposite the goal location G.

Figure 4: Place field with a small ( � 60
�
) anti-clockwise rotation of the chamber.

Figure 5: Place field with a large ( � 120
�

) anti-clockwise rotation of the chamber.
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relative to the first. The allocentric bearings of corners no longer closely match the values
the place units are tuned for; therefore the response of place units is weaker. The active
place units generate predictions about the allocentric bearings of landmarks, and from the
discrepancy between predicted and observed bearings the model derives an error signal that
it can use to reset its sense of direction. The animal then sees familiar landmarks in the
right locations, and can use path integrator coordinates to calculate the direction to the goal.

Figure 5 shows the place field of the same unit in our simulation after a large rotation of
the chamber. In this case, each of the four corners is now further from its learned allocentric
bearing than the diagonally opposite corner, so the place field flips. Our selected unit’s
place field is now on the same side of the chamber as the goal. When the animal resets its
head direction and calculates the goal location with respect to its assumed position in path
integrator coordinates, it will end up searching the rotationally equivalent location.

The middle portion of Figure 2 shows a case where the animal searched the correct
location and its rotational equivalent with equal frequency. In our model, place units with
fields in the correct and diagonally opposite locations match the corners’ allocentric bearings
equally poorly. Therefore both sets of units become active. Each generates a different set
of allocentric bearing predictions for the observed landmarks, which in turn leads to two
distinct values dervied for head direction. The animal chooses among competing directions
stochastically based on their degree of support. After head direction reset, only one set of
place units matches the allocentric bearings well; the losing set becomes inactive. In the
maximally ambiguous case of a 90

�

rotation, the competing head direction values receive
nearly identical support, so the animal chooses the two values roughly equally often.

The simulation results reported in Figure 2 show good qualitative agreement with
Cheng’s data, i.e., for small rotations the correct spot is preferred over the rotational
equivalent, while for large rotations the reverse is true. However, Cheng’s data is not
symmetric: the ratio of correct to incorrect responses is 13:1 for small rotations, while for
large rotations the ratio of incorrect to correct responses is only 2:1. This suggests that the
rat is probably paying some attention to the panel features, but their influence is not strong
enough to consistently override the conflicting information from geometric cues.

Our theory predicts that we will see head direction reset take place if we record from
cells in postsubiculum or parietal cortex as the animal is introduced to the rotated chamber.
Furthermore, if the animal enters the chamber within a particular cell’s place field, that cell
should begin firing prior to any shift in head direction cell response. Simultaneous recording
from place and head direction cells has been achieved in McNaughton’s laboratory [17], so
it is feasible to test this prediction in the near future.

Our theory also suggests that we can predict whether the rat will succeed or make an
error on each trial by reading the hippocampal place code shortly after it enters the chamber.
(McNaughton has managed to accurately predict a rat’s position in a familiar environment
by simultaneously recording from 80 hippocampal cells using an array of tetrodes [17].) If
the place code correctly reflects the animal’s location, the proper spot should be searched.
If the place fields appear flipped, i.e., the pattern of activity in hippocampus matches that
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seen when the animal is in the diagonally opposite location of the unrotated chamber, the
animal should make a rotational error.

V. Discussion

We have constructed a general rat navigation architecture based on coupled mechanisms
for place recognition, path integration, and maintenance of head direction. A key result
of this work is the realization that the architecture that maintains the animal’s awareness
of position and orientation in space suffices for reproducing results from a wide variety of
behavioral experiments, including navigation in the absence of visual input [35], open-field
landmark-based navigation tasks [34], and as described in the present paper, navigation
in geometrically ambiguous environments. The model is also consistent with single-cell
recording data from hippocampal place cells as well as postsubicular and parietal head
direction cells.

Our place units are considerably more complex than those of previous hippocampal
simulations. They compute fuzzy conjunctions of internal and external state variables,
with terms temporarily dropping out when information is unavailable. The units recognize
places using any combination of allocentric bearings to landmarks (when head direction
information is available), distances to landmarks, egocentric angular difference between
pairs of landmarks, and coordinates with respect to the unit’s controlling reference point
as estimated by the path integrator. The units learn the allocentric bearings of landmarks
visible within their place fields and use this information to guide place recognition. It could
also be used to correct for drift in the head direction system.

The sophistication of these place units, crucial to the behavioral richness of the model,
suggests that they should not be identified with single pyramidal cells. The hippocampal
complex contains several types of neurons, and its connections with entorhinal cortex and
subiculum form a complex information processing loop. Thus, we see our place units as
representing small bits of circuitry in which CA3 and CA1 pyramidal cells (place cells) are
but one component.
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